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Decomposition techniques have not been widely investigated in timetabling research mainly due to
the complexity of the problems. In this paper, we develop a new general adaptive decomposition
technique where problems are iteratively partitioned into two sub-sets, each containing a set of
events with different levels of difficulty. The events in these two sets, namely the difficult set and
the easy set, are ordered in turn and used to construct the solutions. Potentially difficult events
are adaptively included in the difficult set, whose size is also adaptively adjusted according to the
solution quality obtained in previous iterations. It is observed that in most cases, the difficult
set, although of small size, contributes to a much larger portion of the total cost of the solutions
constructed. This simple yet effective adaptive technique obtained competitive solutions compared
with state-of-the-art approaches in the literature for benchmark exam timetabling problems.
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1 Introduction

As one of the most important administrative activities in all universities, the exam timetabling
process has attracted significant research attention in the last four decades [13, 15]. A general
exam timetabling problem consists of scheduling a list of exams into a limited set of timeslots so as
to satisfy some constraints absolutely (the hard constraints) and some others as much as is possible
(the soft constraints). The most common hard constraint is that of avoiding assigning exams
with common students to the same timeslot. The most common soft constraint in the literature
is to spread students’ exams as far as possible to allow enough revision time. These constraints
are considered in the benchmark exam timetabling problems tested in this paper. They were
introduced by Carter, Laporte and Lee [9] in 1996 and have since been widely used in the literature.
The problem consists of assigning exams (81-682 across different instances) to a limited number
of timeslots, while satisfying the above hard and soft constraints. The quality of the solutions
is evaluated by the average cost of how exams are spread for each students. During the years,
there has been an issue with different instances circulating under the same name. This situation is
clarified in [15]. More details can be found at http://www.cs.nott.ac.uk/~rxq/data.htm.

The last ten years have seen a considerable increase in the number of research publications
where meta-heuristics were developed for educational timetabling (e.g. [7, 15, 16]). These include
Tabu Search (e.g. [14, 18]), Simulated Annealing (e.g. [12, 17]) and Evolutionary Algorithms (e.g.
[6]), etc. Usually different mechanisms are defined to underpin efficient exploration of the search
space. Very often, the methodologies in the literature represent tailor-made algorithms that work
very well on the specific problem for which they developed but not on others.

Recent research in timetabling has seen some development on improving the flexibility and
generality of search algorithms (see [15]). For example, variable neighbourhood search [10] and
large scale neighbourhood search [1] employ different neighborhood structures to enable wider
exploration in the search space and have been developed with some success for exam timetabling.



Another example is provided by hyper-heuristic research which search upon a space of heuristics
rather than upon the actual solutions (e.g. [3]) in attempt to be more generally applicable across
a wider range of problems. Examples of recent research papers on hyper-heuristic approaches to
exam timetabling include [2, 5].

This paper explores adaptive techniques, which are relatively new in timetabling. In [4], a
methodology was developed to adaptively order the exams by how difficult they were in the previous
solution’s construction. At each iteration, those exams which contributed to costs greater than a
certain threshold were assigned increased difficulty values and were ordered and scheduled earlier to
construct solutions. This simple adaptive approach was very efficient on the benchmark problems
tested. It was based upon the “squeaky wheel” optimisation technique [11] which was originally
applied to both scheduling and graph coloring problems.

The basic idea of decomposition is to “divide and conquer”, as (near) optimal solutions may
be obtained more easily for smaller sub-problems using relatively simple approaches [8]. However,
the task of decomposing the problem is challenging and problem specific. Determining how the
sub-solutions obtained can be combined for the original problem also represents a key issue. There
are very few papers in the timetabling literature which have investigated decomposition techniques.
In [6], a look ahead mechanism in a multi-stage approach considered two sub-problems at a time.
The methodology of [6] significantly reduced the computational time and improved the solution
quality on the addressed exam timetabling benchmark. In [9], a clique of the graph that modelled
the timetabling problems is first obtained and used to generate solutions. This can be seen as
decomposing the problems into two parts, which are used one after another to construct solutions.

2 The Adaptive Decomposition and Construction Approach

In our adaptive decomposition approach, an initial ordering of the exams is first obtained by the
Saturation Degree graph heuristic (which orders the exams by the number of remaining feasible
timeslots during the solution construction). In some cases, the ordering may need to be adjusted
by randomly swapping two exams in the ordering until a feasible solution can be obtained. Based
on this initial ordering, this list of exams is decomposed adaptively into two subsets (called the
difficult and the easy set) by a two-stage approach, which is described next.

In a constructive approach, if the assignment method that schedules exams into the timeslots is
fixed, then the problem can be seen as being transferred into an ordering (permutation) problem.
This problem has a search space of size e!, (where e is the number of exams) and thus is much larger
than that of the original problems (of size t¢, where ¢ is the number of timeslots). The adaptive
decomposition approach decomposes the original ordering problem into two smaller ordering sub-
problems and thus the size of the search space is significantly reduced.

2.1 Adaptive Detection on the Difficult Set

In the first stage, both the exams and their ordering in the difficult set are adaptively adjusted by
using information derived from the solution construction that was observed in previous iterations.
It is an iterative process where, at each iteration, the exams in both the difficult set and the easy
set are used to construct a complete solution, whose quality is used to identify problematic exams.
The aim is to collect these troublesome exams into the difficult set, which can be dealt with with
higher priority in future iterations of solution construction. Thus better solutions can be generated.

The pseudocode presented in Algorithm 1 outlines the process. In each iteration, ordering of the
exams in the difficult set is adjusted to find the best order that produces an improved or feasible
solution. If no feasible solution can be generated using the current ordering, then the exam which



cannot be scheduled is moved forward in the difficult set ordering, and the difficult set is reduced to
include only the exams before this exam. Initial tests showed that moving the exam 2 to 6 positions
forward obtained good results thus 5 is selected in the approach. If a feasible or improved solution
is obtained, then this order of exams is kept and the difficult set is increased to include the first
exam in the easy set to detect more potentially difficult exams iteratively. The optional steps in
Algorithm 1 are only taken in the experiment presented in Section 3.2 for comparison purpose.

Algorithm 1: DIFFICULT_SET_DETECTION()

build the initial ordering of exams by Saturation Degree
initial size of difficult set Sd = number of exams / 2
MaxNolterations = 10,000; iteration = 0
while iteration<MaxNolterations
easy set = {€gqt1, €5d+2, - €e}
reorder the exams in the difficult set {e1, ez, ... egq}
construct a solution using ordered exams in both difficult and easy sets
//optional step: calculate costs of exams in the constructed solution
//optional step: move forward the exam incurring the highest cost
if a feasible solution or an improved solution is obtained
Sd = Sd + 1 // include more potential exams in the difficult set
else
move forward the difficult exam causing the infeasibility
re-set the size of the difficult set to where the exam was
store the difficult set and its size Sy if the best solution is obtained
iteration = iteration + 1

do

2.2 Ordering in the FEasy Set

In the second stage, after the adaptive decomposition, the potentially difficult exams and their
ordering in the difficult set are fixed. The exams in the easy set are then reordered to further
improve the quality of solutions built by scheduling the ordered exams one by one in both the
difficult set and the easy set.

In most decomposition approaches in the literature [6, 8], the sub-solutions obtained need to
be carefully combined together. This particularly concerns global information pertaining to the
original problem. In our adaptive decomposition approach, a solution is constructed by ordering
the exams in one set while keeping the other set fixed. It thus deals with the global problem
information as both sets are concerned while solving the sub-problems, thus no adaptation needs to
be made. Also the difficulty of exams is adaptively obtained (rather than by using a fixed measure)
based on online information from the previous solution quality value for the problem in-hand.

3 Experimental Results on the Benchmark Data Set

We carried out a set of experiments to analyse the adaptive decomposition and construction ap-
proach. We were particularly concerned with the effects of the decomposition, the ways the difficult
set is adjusted, the relationship between the two sets, and the effects that the difficult set has on
the overall solution quality. They are presented in the next sub-sections, respectively. For each
experiment, five runs were carried out, from which both the average and best results are reported



to give a better evaluation of the approaches. All the approaches in different experiments were run
for the same number of iterations for fair comparisons. The results obtained by our approach, when
comparing with the state-of-the-art approaches, indicate the efficiency, simplity and generality of
the adaptive decomposition approach (see section 3.5). The coding is in C++ and experiments
were carried out on a PentiumlIV 3GHZ machine with 1G memory. Computational time is reported
here only for comparisons between variants of the adaptive decomposition approach. Most of the
approaches in the literature did not report the computational time as it is impossible to compare it
across different platforms. Also, time is not a crucial issue in real world circumstances as usually the
timetables are built weeks or months before they are utilised. The version of the exam timetabling
problem that we tackle is that introduced in [9] and the naming conventions for the datasets are
those introduced in [15].

3.1 Analysis on the Adaptive Decomposition

In the first set of experiments, the effect of decomposition in the adaptive approach is evaluated.
We developed an adaptive approach without decomposition. That is, a single set of ordered exams
is adjusted adaptively to construct solutions. At each iteration, the exam causing infeasibility is
moved forward. Note that this approach is different from the adaptive ordering approach developed
in [4], where at each iteration a subset of exams with costs higher than a certain threshold are given
a higher priority in the next iteration. Different thresholds were thus tested in [4]. In this study,
we try to keep the approach simple by introducing the least number of parameters.

This approach is compared with the adaptive decomposition approach presented in Section
2 and results are given in Table 1. It can be seen that the adaptive decomposition approach
performs significantly better than its variant without decomposition. On all of the 11 problems,
the improvement on solution quality ranges from 0.69% - 11.02%. This indicates that the adaptive
decomposition can effectively decompose the problems in hand and produce better results.

Table 1: Average and best results from the adaptive approach with (upper ) and without (lower I1) decomposition
on benchmarks. (the best and average results are highlighted in bold; improve % = (without-with)/with

car91 I | car92 1 | ear83 1 | hec92 I | kfu93 1 | 1se91 1 | sta83 1 | tre92 1 | ute92 1 | uta93 1 | yor83 I
I avg 5.47 4.7 39.14 12.21 15.43 11.66 | 162.44 9.18 28.03 3.6 45.1
best 5.38 4.53 36.76 | 11.45 14.79 11.2 157.4 8.83 26.87 3.53 42.04
time (s) 3104 2140 126 32 185 148 47 192 39 2736 126
IT avg 5.55 4.66 41.7 12.53 16.86 12.26 158.6 9.17 28.43 3.71 43.84
best 5.53 4.59 41.7 12.26 16.2 12.05 | 157.77 8.89 27.81 3.68 42.12
time (s) 2993 2020 128 32 191 180 32 183 30 2616 110
improve % 1.46 1.57 11.02 2.95 11.01 7.92 0.69 0.99 2.52 2.9 0.93

3.2 Analysis on the Construction of the Difficult Set

In the second set of experiments, a variant of the adaptive decomposition approach was developed.
Not only is the exam (from the difficult set) that incurs an infeasibility, but also the exam that
incurs the highest cost in the timetable constructed moved forward. Here, we implement the
optional steps in Algorithm 1 to see what benefit this could have in the adaptive decomposition
approach. The above two ways of adjusting the difficult set are compared and presented in Table
2. The results obtained in both the 1% stage (by detecting the difficult set) and the 2"? stage (by
ordering the easy set) are also presented. The computational time for the adaptive decomposition
is the same as that in Table 1 so is not presented again in Table 2.



Table 2: Average and best results from the adaptive approach forwarding only exams causing infeasibility (upper
“I”) and also exams incurring the highest cost (lower “III”). “1°*” and “2™®” present the results obtained after stage
1 and stage 2, respectively. “improve %” = (15t-2”d)/15t

car91 I | car92 1 | ear83 1 | hec92 1 | kfu93 1 | 1se91 1 | sta83 1 | tre92 1 | ute92 1 | uta93 1 | yor83 I

I1° avg 5.59 4.7 39.54 12.21 15.43 11.66 | 162.44 9.18 28.03 3.67 45.1

2" avg 5.47 4.68 38.43 12.18 15.19 11.36 | 157.51 9.08 27.73 3.6 43.1

improve % 2.2 24 2.8 2 1.6 2.6 3 1.1 1 1.9 3.7
best 5.38 4.53 36.76 | 11.45 14.79 11.2 157.4 8.83 26.87 3.93 42.04

IIT 1% avg 5.5 4.69 41.2 12.21 15.5 11.5 158.85 9.08 27.95 3.68 45.25
2" avg 5.38 4.59 40.66 12.2 15.3 11.31 | 157.67 9.01 27.72 3.62 43.72

improve % 2.2 2.3 1.3 0.1 1.3 1.7 0.7 0.8 0.8 1.58 3.4
best 5.32 4.53 38.59 11.75 14.63 | 10.96 | 157.51 | 8.81 26.88 3.51 42.16
time (s) 3203 2198 138 36 185 148 42 203 36 2980 154

We can see that these two approaches perform quite similarly on the benchmark problems (i.e.
they obtained better results on 5 problems, respectively, and the same results on 1 problem). This
indicates that considering exams of the highest cost does not improve the approach. Also, more
computational time is required in the variant as, at each iteration, the costs of exams need to be
re-calculated. It can also be observed that in both of the variants, reordering the easy exams also
contributes to better solutions based on the difficult set obtained from the 15! stage.

3.3 Analysis on the Difficult Set vs. the Easy Set

We further investigate the relationship between the difficult set and the easy set in the adaptive
decomposition approach. Instead of using a distinct boundary between the two sets, in the 27¢
stage, the easy set will also include the 2" half of the difficult set. That is, the difficult set and
the easy set have some overlapping exams (i.e. the exams in {eg, /2, €g,..,/2415 -+ €Sp.s, ) aT€ also
considered in the 2"¢ stage, Spes: is obtained from Algorithm 1).

Table 3: Average and best results from the adaptive decomposition approach with (lower V) and without (upper
I) and overlapping between the difficult set and the easy set.

car91 I | car92 1 | ear83 1 | hec92 1 | kfu93 1 | 1se91 I sta83 I tre92 I | ute92 1 | uta93 1 | yor83 1
I avg 5.47 4.7 39.14 12.21 15.43 11.66 162.44 9.18 28.03 3.6 45.1

best 5.38 4.53 36.76 11.45 14.79 11.2 157.4 8.83 26.87 3.53 42.04
IV avg 5.5 4.58 37.85 12.09 15.16 11.31 157.55 8.98 27.6 3.61 43.27
best 5.45 4.5 36.15 | 11.38 14.74 | 10.85 | 157.21 8.79 26.68 3.55 42.2

It can be clearly seen from Table 3 that considering overlapping exams in the easy set contributes
to a better performance for the approach. It obtained better solutions on 8 out of 11 problems.
This indicates that some exams could be considered as both easy and difficult in the problem, and
there is no distinct boundary between the two subsets. Computational time is almost the same for
all the problems (thus it is not presented in Table 3).

3.4 Contributions of the Difficult Set to the Overall Solution Quality

Based on the above experiments, we finally analyse the exams in the difficult set detected by
the above different adaptive approaches and evaluate their contribution to the overall cost of the
solutions generated. Table 4 presents these evaluations.



Table 4: Average size (“size %”) of the difficult set in different adaptive approaches. (I: forward exams causing
infeasibility; III: T 4+ forward exams of the highest cost; IV: I 4+ overlapping difficult set and easy set. “match %”
presents the number of exams in the difficult set that matches the first 50% of exams with the highest cost. “cost %”
presents the summed cost occurring from the exams in the difficult set.

car91 I | car92 1 | ear83 1 | hec92 1 | kfu93 1 | 1se91 1 | sta83 1 | tre92 1 | ute92 I | uta93 I | yor83 I

size % 32 23 38 61 23 14 15 46 37 22 44

I match % 89 88 83 73 99 98 32 86 66 98 68
cost % 66 62 60 71 83 58 12 79 57 66 47

size % 33 25 44 70 27 18 43 47 24 51 43

IIT match % 88 91 75 65 99 94 40 84 97 64 65
cost % 66 64 64 72 87 65 30 80 67 67 43

size % 32 23 38 61 23 14 15 46 37 22 44

IV match % 87 87 79 71 91 95 49 83 63 98 63
cost % 65 62 59 70 78 58 23 79 54 66 46

First, we obtain the size of the difficult set with respect to the overall size of the original
problem. It can be seen that, in all cases except “hec92 I”, less than half of the exams are detected
as difficult in the problem. The problems with the largest difficult set are “hec92 17, “tre92 I”
and “yor83 I”, which are actually the most difficult problems, in the sense that a feasible solution
cannot be obtained using a pure Saturation Degree. It is also observed that the sizes of the detected
difficult set by these different adaptive approaches are consistent, indicating that these approaches
are adapting appropriately to very different problems.

To evaluate how important the exams are in the difficult set, we first order (in a descending
manner) all the exams e; > eg > ... > e, by their costs in the best solution generated. Then the
first 50% of the exams with the highest costs are checked to see if they are also detected as difficult
exams in the difficult set (i.e. we check the membership of {e1,ez...ec/2}). It can be seen that
in all the problems, up to 98% of the difficult exams are contributing to the highest costs in the
solutions. The exception is sta83 I, where only 12% - 30% of the difficult exams are incurring the
highest costs.

Whilst the above evaluation quantitively indicates the difficulty of the exams in the difficult
set, we further evaluate qualitively the difficulty of these exams. We calculated the summed cost
incurred from the exams in the difficult set to the total cost of the solutions. In most cases, the
cost from the difficult set contributes to 54% - 87% of the total cost except in the case of “sta83
I” and “yor83 I”. Note that this should be read in conjunction with the size of the difficult set,
which, in most cases, is much smaller, indicating that in most problems, a small set of difficult
exams contributes to a large portion of the cost of the solutions.

It is interesting to see that for problems “hec92 1”7, “sta83 I” and “yor83 I”, roughly the same
proportion of difficult exams contributes to the same proportion of cost and the difficult set (i.e.
percentages across “size %7, “match %” and “cost %” are close to each other for each problem).
This indicates that almost all the exams in these problems are equally important. Furthermore,
it also explains why forwarding the highest costs in approach III does not contribute to better
performance of the adaptive approach. Further study on these problems in comparison with the
others may reveal other interesting observations.

3.5 Comparisons with State-of-the-art Approaches

During the years, a number of approaches have been developed to solve these benchmark exam
timetabling problems. We present the best results (taken from [15]) in Table 5 and evaluate our



adaptive decomposition method (ADA) against these best results and against the adaptive method
of [4].

Table 5: Best results from the adaptive decomposition approach with overlapping exams (ADA) and the best
reported from the state-of-the-art approaches on benchmark exam timetabling problems.

car91 I | car92 1 | ear83 1 | hec92 I | kfu93 I | 1se91 1 | sta83 1 tre92 I | ute92 1 | uta93 1 | yor83 1
ADA | 5.45 4.5 36.15 11.38 14.74 10.85 157.21 | 8.79 26.68 3.55 42.2
[4] 4.97- 4.32- 36.16- | 11.61- | 15.02- | 10.96- | 161.91- | 8.38- 27.41- | 3.36- 40.77-

5.95 4.68 38.55 12.82 16.5 12.53 170.53 8.96 29.67 3.6 42.97
best 4.2 4.0 29.3 9.2 13.46 9.6 157.3 8.13 24.21 3.2 36.11

By comparing our adaptive decomposition approach with that of the adaptive ordering approach
developed in [4], we can see that in the 11 problems, our approach obtained better results on 5
problems, and similar results (i.e. within the range of results from [4]) for the other problems.
Note that in [4] a number of variants were tested by adjusting the difficulty values added to the
measure of exams in different ways. Also a threshold needs to be chosen to decide which exams
need to be moved forward. Furthermore, in each iteration, the difficulty of all of the exams needs
to be re-calculated, based on which an ordering can be set. Our approach does not involve these
calculations on each exam in each iteration and thus is much simpler.

For the benchmark problems, different approaches in the literature worked particularly well on
specific instances (but not on all of them). These best results are summarised in [15]. Compared
with all the other approaches, our adaptive decomposition approach obtained competitive results
which are in the range of the best reported. In particular, for problem “sta83 I”, our approach
obtained the best result (157.21) reported in the literature. Note that our approach is a simple
pure constructive approach and does not reply on initial solutions and fine tuning of a number of
parameters, which are crucial to the success of most approaches.

4 Conclusions and Future Work

This paper develops an adaptive decomposition and ordering approach which constructs solutions
for exam timetabling problems. The original problems are decomposed adaptively into two sub-
sets, the difficult set and the easy set. They are used to construct solutions by adjusting the
orderings of the exams in one set while fixing the other. The approach integrates both the adaptive
and the decomposition techniques and has links to a number of approaches developed in the field.
Our first aim is to decompose the complex timetabling problems into small problems which are
easier to handle. Another aim is to automatically integrate adaptive mechanisms into the simple
constructive technique when dealing with different problems. Current non-adaptive mechanisms
are usually specially designed and hard coded in most of the meta-heuristic approaches in the
literature [15].

It is observed by experimentation that the potentially difficult exams detected by our approach
usually represent a small proportion of the original problems but contribute to a large proportion
of the costs of the solutions. The difficulty of the exams is adaptively adjusted during the problem
solving rather than using static or pre-defined methods. It is observed that ordering the exams in
the easy set also contributed to the generation of better solutions.

The comparisons of this adaptive decomposition approach with the state-of-the-art approaches
indicate that it is a simple yet effective technique. It is also a general technique which can be
adapted to quickly construct good quality solutions to any problems which can be solved using
heuristic ordering strategies.



There are also exceptions detected by the adaptive decomposition approach i.e. that, in some
cases, almost all exams are equally difficult when ordered and used to construct solutions. This
requires further study. Also, the difficult set and the easy set do not have a distinct boundary.
Future work will study more learning and classification techniques for detecting the difficult set
more accurately. It will also be interesting to study more elaborate ordering methods on both the
difficult set and the easy set.
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