
Ying Xu
The Automated Scheduling, Optimisation and Planning (ASAP) Group, School of Computer Science,
University of Nottingham, Nottingham, NG8 1BB, UK
School of Computer and Communication, Hunan University, Changsha, 410082, CHINA
E-mail: yxx@cs.nott.ac.uk
Rong Qu
The Automated Scheduling, Optimisation and Planning (ASAP) Group, School of Computer Science,
University of Nottingham, Nottingham, NG8 1BB, UK
E-mail: rxq@cs.nott.ac.uk

MISTA 2009

A GRASP approach for the delay-constrained multicast routing problem

Ying Xu •Rong Qu

Abstract The rapid development of real-time multimedia applications requires Quality of
Service (QoS) based multicast routing in underlying computer networks. The constrained
minimum Steiner tree problem in graphs as the underpinning mathematical model is a well-
known NP-complete problem. In this paper we investigate a GRASP (Greedy Randomized
Adaptive Search Procedure) approach with VNS (Variable Neighborhood Search) as the local
search strategy for the Delay-Constrained Least-Cost (DCLC) multicast routing problems. A
large number of simulations carried out on the benchmark problems in the OR-library and a
group of randomly generated graphs demonstrate that the proposed GRASP algorithm with
VNS is highly efficient in solving the DCLC multicast routing problem. It outperforms other
existing algorithms and heuristics in the literature.

1 Introduction

Multicast routing is a mechanism which transfers information from a source to a group of
destinations simultaneously. With the increasing development of numerous multicast network
applications (e.g. E-learning, E-commerce, video-conferencing), the underlying computer
network requires multicast routing with certain QoS (Quality of Service) constraints. One
example is that many of these real-time applications can tolerate only a bounded end-to-end
delay. Other QoS constraints in reality include cost, bandwidth, delay variation, lost ratio and
hop count, etc. Multicast QoS routing has received significant research attention in the area of
computer networks and algorithmic network theory [1-3]. This paper is concerned with two of
the most important QoS demands, the total cost of the multicast tree from the source to all the
destinations and the end-to-end delay bound for the total delay from the source to any
destination in the multicast group.

Multicast routing problems can be reduced to Minimum Steiner Tree Problems in Graph
(MStTG) [4]. Generally, given an undirected graph G = (V, E), where V is a set of nodes, E is
a set of edges, and a subset of nodes DV, a Steiner tree is a tree which connects all the nodes
in D using a subset of edges in E. Extra nodes in V\D may be added to the Steiner tree, called
the Steiner nodes. The MStTG problem is to search for a minimal Steiner tree with respect to
the total edge costs c(e), e∈E, which has been proven to be NP-complete [5]. The Delay-
Constrained Least-Cost (DCLC) multicast routing problem searches for a Delay-Constrained
Steiner Tree (DCST), which is also NP-complete [6]. An early survey on protocol functions
and mechanisms for data transmission within a group and related solutions was given in [7]. A
recent overview has been presented in [8] on applications of combinatorial optimization
problems and associated algorithms for multicast routing.

In this paper, we investigate a GRASP approach with VNS as the local search method for
DCLC multicast routing problems. To our knowledge, very little attention has been given to

http://en.wikipedia.org/wiki/Weighted_graph


the GRASP approach on multicast routing and we know only one exception in [9]. We tested
our proposed GRASP-VNS algorithm on a set of benchmark problems (steinb [10]) for Steiner
tree problems in the OR library. Computational results indicate that the GRASP-VNS algorithm
obtains the same or better quality solutions compared with other three algorithms: Multi-VNS
(a multi-start algorithm of the extension of our previous variable neighborhood search
algorithm [11]), the GRASP algorithm in [9] and VNSMR2 [11]. Furthermore, we tested our
GRASP-VNS algorithm on a set of random graphs. Our proposed GRASP-VNS algorithm
performs the best in terms of the total tree cost in comparison with the existing algorithms and
heuristics.

The rest of the paper is organized as follows. In section 2, we present the problem
definition and related work. Section 3 presents the proposed GRASP-VNS algorithm. We
evaluate our algorithm by computer simulations on a range of problem instances and
summarize the obtained simulation results in section 4. Finally, section 5 concludes this paper
and presents the possible future work.

2 The problem definition and related work

2.1 The network model and problem definition

A computer network can be modeled as a connected, directed graph G = (V, E) with |V| = n
nodes and |E| = l links, where V is a set of nodes and E is a set of links. Each link e = (i, j) ∈E
is associated with two real value functions, namely link cost c(e) and link delay d(e). The link
cost c(e) is a measure of the utilization of the corresponding link’s resources. The link delay
d(e) is the delay caused by transferring messages along the link. Due to the asymmetric nature
of computer networks, for link e = (i, j) and link e’= (j, i), it is possible that c(e) ≠ c(e’) and
d(e) ≠  d(e’). The nodes in V include a source node s and a set of destination nodes D called
multicast groups, which receive data stream from the source, denoted by D V\{s}.

We define a path from node u to v as an ordered set of links, denoted by P(u, v) = {(u, i),
(i, j), … , (k, v)}. A multicast tree T(s, D)E is a tree rooted at source s and spanning all
destination nodes in D. We denote by P(s, ri)T the set of links in T that constitute the path
from s to ri ∈D. The end-to-end delay from s to each destination ri, denoted by Delay(ri), is
the sum of the delays of all links along P(s, ri), i.e.

Delay(ri) = 
 ),(

)(
irsPe

ed ,  ir D (1)

The delay of the tree, denoted by Delay(T), is the maximum delay among all Delay(ri)
from source to each destination, i.e.

Delay(T) = max{ Delay(ri) |  ir D } (2)
The total cost of the tree, denoted by Cost(T), is defined as the sum of the cost of all links

in the tree, i.e.

Cost(T) = 
Te

ec )( (3)

The delay bound is the upper bound for each Delay(ri) along the path from s to ri.
Applications may assign different upper bound i to each destination ri ∈D. In this paper, we
assume that the upper bounds for all destinations are the same, and is denoted by ∆= i.

Given these definitions, we formally define the Delay-Constrained Steiner Tree (DCST)
problem as:

The Delay-Constrained Steiner Tree (DCST) Problem: Given a network G, a source
node s, a destination node set D, a link cost function c(), a link delay function d(), and a delay
bound ∆, the objective of the DCST Problem is to construct a multicast tree T(s, D) such that



the delay bound is satisfied, and the tree cost Cost(T) is minimized. We define the objective
function as:

min{ Cost(T) | P(s, ri) T(s, D), Delay(ri) ≤ ∆,  ir D } (4)

2.2 Related work

The DCST problem has received extensive studies, and consequently many exact and heuristic
algorithms have been developed since the first DCLC multicast routing algorithm KPP [12]
was presented in 1993. Most of these algorithms can be classified as source-based or
destination-based multicast routing algorithms. In source-based algorithms, each node has all
the necessary information to construct the multicast tree [12-16]. While destination-based
algorithms do not require that each node maintains the entire network status information, and
multiple nodes participate in constructing the multicast tree [6,17-19].

In recent years, metaheuristic algorithms such as simulated annealing [20,21], genetic
algorithm [22,23], tabu search [24-27], GRASP [9], path relinking [28] and VNS [11] have
been investigated for various multicast routing problems. Although GRASP algorithms [29,30]
have been applied to solve the Minimum Steiner Tree Problem in Graphs (MStTG), along with
many other optimization problems, little attention has been given to GRASP for solving the
multicast QoS routing problem. Martins et al. [29] describe a hybrid GRASP heuristic with
two local search strategies for the Steiner problem. The proposed algorithms were tested on a
group of parallel processors. The computing results show that their GRASP heuristic has high
possibilities of finding the optimal solutions. Ribeiro et al. [30] present a hybrid GRASP with
weight perturbations and two adaptive path-relinking heuristics on a set of elite solutions for
the Steiner problem in graphs. One is the path relinking with complementary move; the other is
the path relinking with weight penalization. Experiment results on a broad set of benchmark
problems illustrate the effectiveness and the robustness of their GRASP algorithm. Both [29]
and [30] are restricted to deal with Steiner tree problems with no constraints. In [9], a GRASP
heuristic is developed for delay-constrained multicast routing problem. In the GRASP
construction phase, a randomized feasible solution is constructed by Dijkstra’s shortest path
algorithm. The tabu search heuristic [25] is applied in the local search phase. The best found
solution after a given number of iterations is accepted as the final solution. Experiment results
show that their algorithm outperforms the KPP [12] and the tabu search algorithm [25] on the
same problems. A variable neighborhood descent search algorithm VNSMR2 [11] is proposed
in our previous work for the DCLC multicast routing problem. It employs three neighborhood
structures, one is node-based and the other two are based on a path replacement strategy. The
three neighborhoods are designed to reduce the tree cost and at the same time satisfy the delay
constraint.

3 The GRASP-VNS algorithm

GRASP (Greedy Randomized Adaptive Search Procedure) is an efficient multi-start
metaheuristic for a wide range of optimization problems, where each iteration consists of two
phases: a construction phase and a local search phase [32]. After creating a feasible solution in
the construction phase, a local search is applied to explore the neighborhood of the feasible
solution until a local minimum is found. The construction phase builds the feasible solution in
a greedy randomized manner by iteratively creating a candidate list of elements, called the
restricted candidate list (RCL), by evaluating the elements not yet included in the unfinished
solution with a certain greedy function. Elements in RCL can be randomly selected and added
in the unfinished solution until a feasible solution is obtained. The size of RCL is limited either
by the number of the elements or by the quality of the elements with respect to the best
candidate element. To further improve the feasible solution generated in the construction
phase, a local search is applied to search for better neighboring solutions of the feasible
solutions. Different local search strategies can be used by employing the designed



neighborhood structures. After a given number of iterations, the best overall solution is kept as
the final solution. More detailed descriptions of the GRASP heuristic can be found in [31,32].

The construction phase of GRASP makes the search diversified, while the local search
phase in the GRASP intensifies the search by exploring the neighborhood of the current
solution. GRASP has been successfully applied to a wide range of combinatorial optimization
problems [33-35]. An especially appealing characteristic of GRASP is that it is easy to
implement and few parameters need to be set and tuned. Our motivation is to apply GRASP in
conjunction with our previous VNSMR algorithm for the multicast routing problem. Fig.1
illustrates the pseudo code of our proposed GRASP-VNS algorithm.

Fig. 1. The pseudo code of the GRASP-VNS algorithm

3.1 The construction phase

In the construction phase of our GRASP-VNS algorithm, we use the similar greedy strategy in
[9] to create the randomized initial solution. A delay-constrained Steiner tree T is constructed
in the following three steps. The pseudo code of the construction phase is given in Fig.2.

(1) Starting from the source node, i.e. T = {s}, we calculate the shortest path which
connects s and each destination by using the Dijkstra’s shortest path algorithm. This
path is denoted as ConnectPath[ri], for each destination node ri ∈D\T. We set
ConnectPath[ri] as the least cost path from s to ri if the delay of the path satisfies the
delay bound; otherwise, ConnectPath[ri] is set as the least delay path from s to ri. We
denote ConnectCost[ri] as the cost of the path.

(2) We create the restricted candidate list (RCL) by choosing those nodes ri∈D\T, for
which ConnectCost[ri] ≤ ·BestConnectCost, where  ≥1 and BestConnectCost =
min{ConnectCost[rj],  rj ∈D\T }. If  =1, then the algorithm is purely greedy. This
means the RCL contains only the destination node with the least connect cost. If  >1,
the RCL includes the nodes with the path cost within the range of  ·
BestConnectCost.

(3) We randomly choose a destination node r from the RCL and add ConnectPath[r] to the
tree T. We update the ConnectPath[ri] and ConnectCost[ri] of the remaining
unconnected destination nodes in D\T by searching the new shortest path from these
destination nodes to the current tree T. After that, the algorithm will return to step (2).
The procedure ends until all the destination nodes are included in the tree.

GRASP-VNS(G =(V, E), s, D, ∆, Iter,  )
{ // s: source node; D: destination set; ∆ ≥ 0: the delay bound

// Iter: the number of iterations;  : parameter for creating greedy randomized solution
if Delay(ri) of the Dijkstra’s least delay path P(s, ri) > ∆, ri∈D;
then return FAILED; // no feasible solution exists
else
{

i = 0;
while i < Iter do {

if i ==0 // pure greedy solution ( =1) in the first iteration
Tbest = GreedyRandomSolution(G , s, D, ∆, 1); //the construction phase, see Fig. 2

else // the remaining iterations of GRASP-VNS ( >1)
T0= GreedyRandomSolution(G, s, D, ∆,  ); //the construction phase, see Fig. 2
T = VNSMR2(G, s, D, ∆, T0); // the local search phase
if ((Cost(T)<Cost(Tbest))||((Cost(T)==Cost(Tbest))&(Delay(T)<Delay(Tbest))))
then Tbest = T;
i++;

} //end of while loop
}
return Tbest;

}



In order to construct a high quality starting solution, we use the pure greedy algorithm in
the first iteration i.e.  = 1. In the remaining iterations, we set  > 1 which gives more
diversity to the construction phase to explore the solution space.

3.2 The local search phase

After a feasible solution is generated in the construction phase, we apply our VNSMR2
developed in [11] as the local search method to improve the initial solution. It systematically
changes the employment of different neighborhoods within a local search, thus the search is
more flexible to traverse among different search spaces and potentially leads to better
solutions. Three neighborhood structures are designed for multicast routing problems. The first
neighborhood based on the nodes operation generates a neighboring solution by deleting a
node from the current solution and then using Prim’s algorithm to create the minimum
spanning tree of the remaining nodes. The other two neighborhoods operate on the paths by
using a path replacement strategy based on the Dijkstra’s shortest path algorithm to reduce the
tree cost of the current solution and at the same time satisfy the delay bound. VNSMR2 was
implemented based on the variable neighborhood decent search algorithm, a variant of variable
neighborhood search (VNS) [36], where the current solution is always updated by the best
neighboring solution in each neighborhood structure. In this paper we hybridize VNSMR2
within the GRASP approach for solving not only random multicast routing problems but also
more challenging benchmark problems in the OR Library.

Fig. 2. The pseudo code of the construction phase of GRASP-VNS

4 Performance Evaluations

We use a multicast routing simulator (MRSIM) implemented in C++ based on Salama’s
generator [1] to generate random network topologies. The simulator defines the link delay
function d(e) as the propagation delay of the link (queuing and transmission delays are
negligible). The link cost function c(e) is defined as the current total bandwidth reserved on the
link in the network, and is related to the distance of the link. The Euclidean metric is used to
determine the distance l(u, v) between pairs of nodes (u, v). Links connecting nodes (u, v) are
placed with a probability

)/),(exp(),( Lvulvup   α, β∈(0,1] (5)

where parameters α and β can be set to obtain desired characteristics in the graph. For
example, a large βgives nodes a high average degree, and a small αgives long connections in
the networks. L is the maximum distance between two nodes. In our simulations, we set α=
0.25, β= 0.40, average degree = 4. All simulations were run on a Windows XP computer with
PVI 3.4GHZ, 1G RAM. More detailed information of the test datasets and some example

GreedyRandomSolution(G =(V, E), s, D, ∆,  )
{ // s: source node; D: destination set; ∆ ≥ 0 is the delay bound

// is parameter to create the RCL (restricted candidate list)
for all ri∈D

Calculate ConnectPath[ri] and ConnectCost[ri];
T = s;
while D T do {

BestConnectCost = min{ConnectCost[ri],  ri ∈D\T};
Create RCL of all ri ∈ D\T where ConnectCost[ri]≤ ·BestConnectCost;
r = Random(RCL, Randseed); //Randomly choose r from RCL

//Randseed∈ (0,1]
T = TConnectPath[r];
Update ConnectPath[rj] and ConnectCost[rj] for all rj ∈D\T;

} //end of while loop
return T;

}



solutions obtained by the algorithms on the tested instances are publicly available at
http://www.cs.nott.ac.uk/~yxx/resource.html.

4.1 Experiments on benchmark problems (steinb) in OR-library

Firstly, experiments were carried out on 18 small and medium sized (50-100 nodes) steinb
benchmark problems in the OR library, details given in Table 1. Since steinb problems are for
the Steiner tree problem, only a cost function is assigned to the links in each benchmark
problem. In our experiments, we randomly set the delays of the links when generating the
network topology in the simulator for each steinb problem. The simulation was run 10 times on
each instance. We implemented our proposed GRASP-VNS and re-implemented the GRASP-
CST algorithm in [9]. We also extended VNSMR2 to a multi-start algorithm by running it for a
fixed number of iterations, named Multi-VNS. Each iteration of Multi-VNS starts from a greedy
random initial solution, which is generated by randomly choosing a starting destination node
and connecting it with the source by using the Dijkstra’s shortest path algorithm, then
repeatedly connecting the unvisited destination nodes with the sub-tree until all the destination
nodes have been mounted to the tree.

Table 1. The problem characteristics of dataset steinb from the OR-library (|V|, |E|, |D| denote the number
of nodes, the number of edges and the number of destinations in the instances respectively, ‘OPT’
denotes the optimal solution)

To determine appropriate settings for the parameters in our GRASP-VNS algorithm, a
number of initial tests were carried out. Our aim was to obtain good quality solutions by using
as less number of iterations as possible to reduce the execution time. Parameter  (see Fig. 2.)
should be properly set to find the balance between diversification and intensification of the
search over the search space. In other words, we should find a trade off between the solution
quality and the execution time. After the initial tests, the number of iterations is set as 4,  is
set as 5 in the GRASP-VNS algorithm. Parameters for GRASP-CST are set as the same as in
[9], where the number of iterations is 5,  is 5, and the number of iterations without
improvement of the local search procedure is 2. The number of iterations is set to 4 in Multi-
VNS

In the first group of experiments, we set the delay bound to a large enough number so that
the problems are reduced to the unconstrained Steiner tree problem since the delays of the
links play no role in constructing the Steiner tree. The average, best, worst tree cost and the
computing time of GRASP-VNS, compared with that of Multi-VNS, GRASP-CST and VNSMR2,
are illustrated in Table 2. We can see that the GRASP-VNS algorithm gave the best solutions
(marked in bold) on all the instances except one (B13) with respect to the average tree cost,
while Multi-VNS algorithm got 14 best solutions, both GRASP-CST and VNSMR2 found 10
best results. The GRASP-VNS algorithm always found the optimal solutions in 14 out of 18
instances, which is better than Multi-VNS, GRASP-CST and VNSMR2 which always got the
optimal solutions on 13, 10 and 10 instances, respectively. Both GRASP-VNS and GRASP-CST
found the optimal solution at least once out of 10 runs for each instance. It should be noticed
that the GRASP-VNS algorithm achieved better results by consuming longer computing time
than GRASP-CST.

For the DCST multicast routing problem, the delay bound is the key factor which affects
the solutions obtained. The smaller the delay bound, the stronger the constraint. In the second

No. |V| |E| |D| OPT No. |V| |E| |D| OPT No. |V| |E| |D| OPT
B01 50 63 9 82 B07 75 94 13 111 B13 100 125 17 165
B02 50 63 13 83 B08 75 94 19 104 B14 100 125 25 235
B03 50 63 25 138 B09 75 94 38 220 B15 100 50 125 318
B04 50 100 9 59 B10 75 150 13 86 B16 100 17 200 127
B05 50 100 13 61 B11 75 150 19 88 B17 100 25 200 131
B06 50 100 25 122 B12 75 150 38 174 B18 100 50 200 218



group of experiments, we set the delay bound ∆1 =1.1*Delay(TOPT), where TOPT is the multicast
tree of the optimal solution with the minimal cost and delay. With the bounded end-to-end
delay, the GRASP-VNS algorithm still performs the best among these three algorithms in terms
of average tree costs in Table 3. GRASP-VNS found the best solutions in 15 out of 18 instances,
compared with that of Multi-VNS (13 best solutions), GRASP-CST and VNSMR2 (9 best
solutions). GRASP-VNS always found the optimal solutions in 12 out of 18 cases, while Multi-
VNS, GRASP-CST and VNSMR2 did so in 11, 8 and 10 cases, respectively.

Table 2. Performance of GRASP-VNS, Multi-VNS, GRASP-CST and VNSMR2 for unconstrained Steiner
tree problems ( = ∞). The values marked with ‘*’denote the optimal solution.

GRASP-VNS Multi-VNS GRASP-CST VNSMR2No.
Avg. Best Worst Time(s) Avg. Best Worst Time(s) Avg. Best Worst Time(s) Avg. Best Worst Time(s)

B01 82* 82* 82* 0.79 82* 82* 82* 0.49 82* 82* 82* 0.63 82* 82* 82* 0.13
B02 83* 83* 83* 1.46 83* 83* 83* 1.95 83* 83* 83* 0.80 83* 83* 83* 0.18
B03 138* 138* 138* 2.12 138* 138* 138* 2.09 138* 138* 138* 1.10 138* 138* 138* 0.26
B04 59* 59* 59* 1.41 59* 59* 59* 1.74 59* 59* 59* 0.68 59* 59* 59* 0.15
B05 61* 61* 61* 2.11 61* 61* 61* 2.63 61* 61* 61* 0.86 61* 61* 61* 0.22
B06 122.8 122* 124 3.49 124 124 124 4.11 123.1 122* 125 1.80 125 125 125 0.41
B07 111* 111* 111* 3.39 111* 111* 192 3.81 111* 111* 111* 1.86 111* 111* 111* 0.26
B08 104* 104* 104* 6.11 105.2 104* 107 5.02 104* 104* 104* 2.80 107 107 107 0.55
B09 220* 220* 220* 9.38 220* 220* 220* 8.68 220* 220* 220* 4.92 220* 220* 220* 1.11
B10 86* 86* 86* 4.9 86* 86* 86* 7.39 86.5 86* 91 2.39 88.5 86* 91 0.73
B11 88* 88* 88* 6.31 88* 88* 88* 10.12 88.1 88* 89 2.93 89.6 88* 90 0.79
B12 174* 174* 174* 14.86 174* 174* 174* 14.56 174* 174* 174* 6.76 174* 174* 174* 1.75
B13 168.6 165* 172 14.06 166.6 165* 169 18.96 169.7 165* 173 6.98 172 172 172 2.23
B14 235.2 235* 236 21.01 236 236 236 47.4 235.4 235* 236 8.57 236 236 236 1.78
B15 319.8 318* 320 37.39 320 320 320 41.21 321.2 318* 322 16.56 321 321 321 2.94
B16 127* 127* 127* 16.9 127* 127* 127* 26.38 128 127* 132 6.41 127* 127* 127* 3.06
B17 131* 131* 131* 28.93 131* 131* 131* 24.79 131* 131* 131* 10.3 131* 131* 131* 4.44
B18 218* 218* 218* 41.12 218* 218* 218* 34.41 218.4 218* 219 19.28 218.1 218* 219 3.76

Table 3. Performance of GRASP-VNS, Multi-VNS, GRASP-CST and VNSMR2 for Steiner tree problems
with 1 =1.1*Delay(TOPT)

GRASP-VNS Multi-VNS GRASP-CST VNSMR2No. 
Avg. Best Worst Time(s) Avg. Best Worst Time(s) Avg. Best Worst Time(s) Avg. Best WorstTime(s)

B01 145 82* 82* 82* 0.48 82* 82* 82* 0.46 82* 82* 82* 0.54 82* 82* 82* 0.07
B02 228 83* 83* 83* 1.45 83* 83* 83* 1.95 83* 83* 83* 0.8 83* 83* 83* 0.18
B03 248 138* 138* 138* 2.14 138* 138* 138* 2.05 138* 138* 138* 1.09 138* 138* 138* 0.26
B04 173 59* 59* 59* 1.23 59* 59* 59* 1.71 59* 59* 59* 0.64 59* 59* 59* 0.14
B05 125 61* 61* 61* 2.01 61* 61* 61* 2.64 61* 61* 61* 0.81 61* 61* 61* 0.21
B06 281 122.2 122* 124 3.58 124 124 124 3.9 123 122* 124 1.73 125 125 125 0.41
B07 212 111* 111* 111* 3.36 111* 111* 111* 3.77 111* 111* 111* 1.83 111* 111* 111* 0.26
B08 209 104* 104* 104* 6.35 104.6 104* 107 5.44 104* 104* 104* 2. 8 107 107 107 0.55
B09 280 220* 220* 220* 9.33 220* 220* 220* 8.6 220* 220* 220* 4.87 220* 220* 220* 1.11
B10 262 86.5 86* 91 4.91 86* 86* 86* 7.51 87 86* 91 2.20 88.5 86* 91 0.73
B11 235 88* 88* 88* 6.7 88.2 88* 90 9.74 88.3 88* 90 2.92 89.7 88* 91 0.9
B12 225 174* 174* 174* 15.87 174* 174* 174* 12.52 175 174* 178 6.37 174* 174* 174* 2.07
B13 190 169.4 165* 172 15.48 167 165* 169 19.05 170.6 165* 173 6.67 172 172 172 2.23
B14 221 235* 235* 235* 15.5 244.1 236 245 14.28 235.2 235* 236 8.19 236 236 236 1.81
B15 308 319.5 318* 320 36.22 320 320 320 38.76 319.8 318* 320 17.94 321 321 321 5.27
B16 291 127* 127* 127* 17.06 127* 127* 127* 24.93 130 127* 132 6.12 127* 127* 127* 3.07
B17 219 131.5 131* 132 25.13 131* 131* 131* 24.21 131.9 131* 132 9.64 132 132 132 4.46
B18 425 218.1 218* 219 40.32 218.1 218* 219 34.37 218.1 218* 219 19.54 218.4 218* 219 3.77

In the third group of experiments, we set the delay bound ∆2 to a smaller value
Delay(TOPT), thus the optimal solutions are not known to any of the cases. Table 4 shows that
again GRASP-VNS outperforms Multi-VNS and GRASP-CST upon the average tree costs on 13
instances. GRASP-VNS, GRASP-CST and VNSMR2 could not find the feasible solutions on 2
instances (B03, B07) due to the tighter delay bound. The Multi-VNS also failed to find the



feasible solutions on instance B07 and B14. The GRASP-CST, Multi-VNS, GRASP-CST and
VNSMR2 obtained 13, 8, 5 and 5 best solutions out of 16 instances, respectively. With regards
to the average computing time for the instances, Multi-VNS requires longer time (13.872
seconds) than GRASP-VNS (11.803 seconds), GRASP-CST (5.333 seconds) and VNSMR2
(1.464 seconds).

Table 4. Performance of GRASP-VNS, Multi-VNS, GRASP-CST and VNSMR2 for Steiner tree problems
with 2 = 0.9* Delay(TOPT). “\”denotes that no feasible solution was obtained.

Further experiments are designed to test how the algorithms evolve within a given period
of time. Examples of the evolution process of these algorithms on one instance (B15) in the
above steinb problems are shown in Fig.3. Here, we set the delay bound to a very large number
so as not to act as a constraint. In Fig.3.(a), we can see that our GRASP-VNS algorithm
converged faster than GRASP-CST and Multi-VNSMR2 in the given 10 iterations. The GRASP-
VNS algorithm finds the optimal solution at iteration 3, GRASP-CST finds the optimal solution
at iteration 8, while Multi-VNS does not find the optimum within the 10 iterations. Furthermore,
the three algorithms were tested by giving the exact same amount of time (60 seconds).
Fig.3.(b) shows that our GRASP-VNS still converged faster than GRASP-CST and Multi-VNS
on the instance B15.

All experiment results demonstrate that the GRASP-VNS algorithm has the overall best
performance compared with Multi-VNS, GRASP-CST and VNSMR2 in terms of the average
tree cost for this set of benchmark problems. The proposed GRASP-VNS algorithm, which
applies GRASP metaheuristic by building the RCL in the construction phase, outperforms the
simple multi-start Multi-VNS algorithm with only randomized initial solutions in terms of both
average tree cost and computing time in most cases. Both GRASP-VNS and Multi-VNS, the
extension of our previous VNSMR2 algorithm, outperform VNSMR2, indicating the two multi-
start algorithms are more robust and efficient than the single VNSMR2 algorithm with only one
variable neighborhood search phase when exploring the solution space of hard problems.

GRASP-VNS Multi-VNS GRASP-CST VNSMR2No. 
Avg. Best Worst Time(s) Avg. Best Worst Time(s) Avg. Best Worst Time(s) Avg. Best WorstTime(s)

B01 118 83 83 83 0.42 83 83 83 0.31 83 83 83 0.46 83 83 83 0.06
B02 187 84 84 84 0.77 84 84 84 1.43 84 84 84 0.63 84 84 84 0.09
B03 203 \ \ \ \ 142 142 142 1.81 \ \ \ \ \ \ \ \
B04 142 62.4 62 64 1.26 63.8 62 64 2.75 62.6 62 65 0.65 66.2 62 76 0.2
B05 102 62 62 62 1.52 62.1 62 63 2.26 64.7 62 65 0.54 62 62 62 0.26
B06 199 123.9 123 124 3.81 124.3 124 125 4.8 124 124 124 1.58 129 129 129 0.4
B07 173 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
B08 171 107 107 107 5.75 107 107 107 5.19 107 107 107 2.59 107 107 107 0.55
B09 229 221 221 221 8.68 221 221 221 9.15 221 221 221 5.05 221 221 221 1.05
B10 215 88.3 88 91 5.08 88 88 88 7.72 88.3 88 91 2.12 89.2 88 91 0.8
B11 180 89.2 89 91 6.48 91.5 89 93 9.75 89.2 89 90 3.09 91 90 93 1.05
B12 184 176.8 176 177 12.95 177.2 177 179 16.41 178.5 177 189 6.37 197.6 177 202 1.73
B13 139 171.2 169 172 15.72 169 169 169 19.99 172 168 173 6.62 173 173 173 1.38
B14 180 237.2 237 239 16.66 \ \ \ \ 242.1 237 243 6.83 239 239 239 3.49
B15 194 327.1 326 329 38.84 328.7 326 329 40.27 330.1 328 331 15.62 341.6 339 342 7.27
B16 238 131.1 129 132 12.84 132 132 132 26.99 131.7 129 132 5.46 132 132 132 1.8
B17 180 134.2 134 135 20.98 134 134 134 33.53 134.8 134 135 8.34 135 135 135 4.36
B18 348 219.2 219 220 38.93 219.8 219 220 39.59 219.6 219 220 18.55 219.5 219 220 3.73



310

320

330

340

350

360

370

0 1 2 3 4 5 6 7 8 9 10
Iteration

T
re

e
C

o
st

Optimum GRASP-VNS GRASP-CST Multi-VNS

310

320

330

340

350

360

370

0 2.98 3.56 5.36 6.52 10 16.55 30 40 50 60
Computing Time (Sec.)

T
re

e
C

o
st

Optimum GRASP-VNS GRASP-CST Mulit-VNS

(a) Tree cost vs. iterations (b) Tree cost vs. computing time

Fig. 3. Evolution process of the three algorithms on instance B15

4.2 Experiments on random graphs

In order to compare our GRASP-VNS algorithm with other existing algorithms, we tested
GRASP-VNS on a group of randomly generated graphs which are the same simulation data
tested in our previous work [11]. These random graphs include three random topologies for
each network size (10, 20, 30, 40, 50, 60, 70, 80, 90, 100 nodes). The link costs are set
depending on the length of the link; all the link delays are set to 1. The group size was set to
30% of the network size in each graph, the delay bounds were set to different values depending
on the network sizes (∆ = 7 for network size 10-30, ∆ = 8 for network size 40-60, ∆ = 10 for
network size 70-80 and ∆ = 12 for network size 90-100). The simulation was run 10 times on
each random graph.

Table 5. Average tree costs of our GRASP-VNS and some existing heuristics and algorithms on the
random graphs

Algorithms
Average

Tree Cost

Heuristics
KPP1 [12]
KPP2 [12]
BSMA [16]

905.581
911.684
872.681

GA-based
Algorithms

Wang et al. [22]
Haghighat et al. [23]

815.969
808.406

TS-based
Algorithms

Skorin-Kapov and Kos [25]
Youssef et al. [24]
Wang et al. [26]
Ghaboosi and Haghighat [27]

897.875
854.839
869.291
739.095

Path relinking Ghaboosi and Haghighat [28] 691.434

VNS Algorithms
VNSMR1 [11]
VNSMR2 [11]
Multi-VNS

680.067
658.967
653.257

GRASP
Algorithms

GRASP-CST [9]
Our proposed GRASP-VNS algorithm

669.927
649.203

Table 5 shows that our GRASP-VNS algorithm performs the best in terms of the average
tree cost. Both Multi-VNS and VNSMR2 get better average tree costs than GRASP-CST. Details
of the average tree cost, standard deviation and execution time of these three algorithms on
each network size are given in Table 6. It shows that GRASP-VNS found the best solutions in 8
out 10 network sizes, while GRASP-CST and Multi-VNS obtained the best results twice on the
10 types of random graphs. With respect to the average standard deviation , GRASP-VNS has
lower  (5.316) than GRASP-CST (7.238), but higher  than Multi-VNS (4.641). To
summarize, our GRASP-VNS algorithm gives high quality solutions and stable on most of the
tested random graphs. GRASP-VNS has longer average computing time (11.006 seconds) in



comparison with GRASP-CST (3.289 seconds), however it is better than Multi-VNS which has
the longest computing time (12.737 seconds).

Table 6. Average tree cost, standard deviation of the tree cost and execution time of GRASP-VNS, Multi-
VNS, GRASP-CST and VNSMR2 on the random graphs

GRASP-VNS Multi-VNS GRASP-CST VNSMR2Network
Size Cost  Time(s) Cost  Time(s) Cost  Time(s) Cost  Time(s)

10 94.67 0 0.008 94.67 0 0.008 94.67 0 0.009 94.67 0 0.003
20 272.07 2.25 0.085 275.33 0 0.089 271.13 1.48 0.048 275.33 0 0.032
30 392.33 0 0.353 395.27 3.95 0.461 394.67 0 0.156 399.67 0 0.17
40 512.8 1.55 0.857 513.33 0 1.238 526.47 1.79 0.388 514 0 0.362
50 662.33 1.94 2.109 665.07 3.92 3.027 697.07 3.43 0.815 674.67 0 0.859
60 757.33 13.48 3.894 757.37 14.01 4.894 761.13 17.13 1.625 777.67 0 1.392
70 780.83 2.96 9.029 796.2 4.48 9.268 797.53 1.64 2.648 805 0 2.571
80 868.87 7.73 19.421 896.2 4.48 16.365 902.67 5.49 5.941 905.33 0 5.127
90 1155.57 19.02 32.621 1136.23 11.17 38.76 1201.93 18.02 10.27 1137.67 0 11.705
100 995.23 4.23 41.681 1002.9 4.4 53.256 1052 23.4 10.983 1005.67 0 15.332

5. Conclusions

In this paper, we have investigated a GRASP-VNS algorithm (Greedy Randomized Adaptive
Search Procedure approach with Variable Neighborhood Search) for solving Delay-
Constrained Least-Cost multicast routing problems. The problem is a special case of Delay-
Constrained Steiner tree (DCST) problem and has been proved to be NP-complete. Although
GRASP is an efficient metaheuristic for optimization problems, little attention has been given
on applying it for solving the QoS constrained multicast routing problem. A large number of
experiments have been carried out on a set of benchmark problems for Steiner tree problems in
the OR-library and a group of random graphs. Experiment results show that the proposed
algorithm performs the best in comparison with some existing algorithms for all the tested
instances in terms of average tree cost. Experiments demonstrate that our GRASP-VNS
algorithm is able to find high quality solutions for DCST multicast routing problems and
efficiently solve benchmark Steiner tree problems.

Many interesting future research directions could be explored. The introduction of
multiple QoS constraints, such as the bandwidth, delay-variation or node degrees to the
multicast routing problem deserves further investigation. In reality, network scenarios are
mostly dynamic with multicast members leaving and joining the multicast group at various
times. The adaptation and extension of GRASP approaches to the problem of dynamic
multicast routing is worthy of further investigation.

Acknowledgements This research is supported by Hunan University, China, and the School
of Computer Science at The University of Nottingham, UK.

References

1. Salama H.F., Reeves D.S., Viniotis Y., Evaluation of multicast routing algorithms for real-time
communication on high-speed networks, IEEE Journal on Selected Areas in Communications,
15(3), 332--345 (1997)

2. Yeo C.K., Lee B.S., Er M.H., A survey of application level multicast techniques, Computer
Communications, 27(15), 1547--1568 (2004)

3. Masip-Bruin X., Yannuzzi M., Domingo-Pascual J., Fonte A., Curado M., Monteiro E., Kuipers F.,
Van Mieghem P., Avallone S., Ventre G., Aranda-Gutierrez P., Hollick M., Steinmetz R., Iannone
L., Salamatian K., Research challenges in QoS routing, Computer Communications, 29(5), 563--
581 (2006)



4. Cheng X., Du D.Z., (eds.) Steiner Trees in Industry, Kluwer Academic Publishers, Dordrecht,
Netherlands (2001)

5. Garey M.R., Johnson D.S., Computers and Intractability: A Guide to the Theory of NP-
Completeness, W.H. Freeman and Company, New York (1979)

6. Guo L., Matta I., QDMR: An efficient QoS dependent multicast routing algorithm. In: Proceedings
of the 5th IEEE RealTime Technology and Applications Symposium, pp. 213--222 (1999)

7. Diot C., Dabbous W., Crowcroft J., Multipoint communication: a survey of protocols, functions,
and mechanisms, IEEE Journal on Selected Areas in Communications, 15(3), 277--290 (1997)

8. Oliveira C.A.S., Pardalos P.M., A survey of combinatorial optimization problems in multicast
routing. Computers & Operations Research, 32(8), 1953--1981 (2005)

9. Skorin-Kapov N., Kos M., A GRASP heuristic for the delay-constrained multicast routing problem,
Telecommunication Systems, 32(1), 55--69 (2006)

10. http://people.brunel.ac.uk/~mastjjb/jeb/orlib/steininfo.html
11. Qu R., Xu Y., Kendall G., A Variable Neighborhood Descent Search Algorithm for Delay-

Constrained Least-Cost Multicast Routing, In: Proceedings of Learning and Intelligent
OptimizatioN (LION3), Trento, Italy (2009)

12. Kompella V.P., Pasquale J.C., Polyzos G.C., Multicast routing for multimedia communication,
IEEE/ACM Transactions on Networking, 1, 286--292 (1993)

13. Widyono R., The design and evaluation of routing algorithms for realtime channels. Technical
Report, ICSI TR-94-024, International Computer Science Institute, U.C. Berkeley (1994)

14. Sun Q., Langendoerfer H., An efficient delay-constrained multicast routing algorithm. Technical
Report, Internal Report, Institute of Operating Systems and Computer Networks, TU
Braunschweig, Germany (1997)

15. Sun Q., Langendoerfer H., Efficient multicast routing for delay-sensitive applications, In:
Proceedings of the 2nd workshop on protocols for multimedia systems, pp. 452--458 (1995)

16. Zhu Q., Parsa M., Garcia-Luna-Aceves J. J., A source-based algorithm for delay-constrained
minimum-cost multicasting, In: Proceedings of the 14th Annual Joint Conference of the IEEE
Computer and Communication (INFOCOM’95), pp. 377--385. IEEE Computer Society Press,
Washington, DC, USA (1995)

17. Kompella V.P., Pasquale J.C., Polyzos G.C., Two distributed algorithms for the constrained Steiner
tree problem, In: Proceedings of the 2nd International Conference on Computer Communications
and Networking, pp.343--349 (1993)

18. Shaikh A., Shin K., Destination-driven routing for low-cost multicast, IEEE Journal on Selected
Areas in Communications, 15, 373--381 (1997)

19. Jia X., A distributed algorithm of delay-bounded multicast routing for multimedia applications in
wide area networks, IEEE/ACM Transactions on Networking, 6, 828--837 (1998)

20. Wang X.L., Jiang Z., QoS multicast routing based on simulated annealing algorithm, In:
Proceedings international and applications, pp. 511--516 (2004)

21. Zhang K., Wang H., Liu F.Y. Distributed multicast routing for delay and delay variation-bounded
Steiner tree using simulated annealing. Computer Communications 28(11): 1356-1370 (2005)

22. Wang Z., Shi B., Zhao E., Bandwidth-delay-constrained least-cost multicast routing based on
heuristic genetic algorithm, Computer communications, 24, 685--692 (2001)

23. Haghighat A.T., Faez K., Dehghan M. Mowlaei A., Ghahremani Y., GA-based heuristic algorithms
for bandwidth-delay-constrained least-cost multicast routing, Computer Communications, 27, 111--
127 (2004)

24. Youssef H., Al-Mulhem, A., Sait S.M., Tahir M.A., QoS-driven multicast tree generation using
tabu search, Computer Communications, 25(11-12), 1140--1149 (2002)

25. Skorin-Kapov N., Kos M., The application of Steiner trees to delay constrained multicast routing: a
tabu search approach, In: Proceedings of the seventh international Conference on
Telecommunications, Zagreb, Croatia (2003)

26. Wang H., Fang J.,Wang H., Sun Y.M., TSDLMRA: an efficient multicast routing algorithm based
on tabu search, Journal of Network and Computer Applications, 27, 77--90 (2004)

27. Ghaboosi N., Haghighat A.T., A tabu search based algorithm for multicast routing with QoS
constraints, In: 9th International Conference on Information Technology, pp. 18--21 (2006)

28. Ghaboosi N., Haghighat A.T., A path relinking approach for Delay-Constrained Least-Cost
Multicast routing problem, In: 19th International Conference on Tools with Artificial Intelligence,
pp. 383--390 (2007)

29. Martins S.L., Resende M.G.C., Ribeiro C.C., Pardalos P.M., A parallel GRASP for the Steiner tree
problem in graphs using a hybrid local search strategy, Journal of Global Optimization, 17, 267--
283 (2000)



30. Ribeiro C.C., Uchoa E., Werneck R.F., A Hybrid GRASP with Perturbations for the Steiner
Problems in Graphs, INFORMS Journal on Computing, 14(3), 228--246 (2002)

31. Feo T.A., Resende M.G.C., Greedy randomized adaptive search procedures, Journal of Global
Optimization, 6, 109--133 (1995)

32. Resende M.G.C., Ribeiro C.C., Greedy randomized adaptive search procedures, In: Glover F.,
Kochenberger G. (Eds.), Handbook of Metaheuristics, Kluwer Academic Publishers, Dordrecht.
219--249 (2003)

33. Kontoravdis G., Bard J.F. A GRASP for the vehicle routing problem with time windows. ORSA
Journal on Computing, 7, 10--23 (1995)

34. Pardalos P.M., Qian T., Resende M.G.C. A greedy randomized adaptive search procedure for the
feedback vertex set problem. Journal of Combinatorial Optimization, 2, 399--412 (1999)

35. Resende M.G.C., Pitsoulis L.S., Pardalos P.M. Fortran subroutines for computing approximate
solutions of weighted MAX-SAT problems using GRASP. Discrete Applied Mathematics, 100, 95-
-113 (2000)

36. Mladenovic N., Hansen P., Variable neighborhood search, Computers & Operations Research, 24,
1097--1100 (1997)


