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Abstract 

Recent years witness a significant growth in multimedia applications. Among them, 

a stream of applications is real-time and requires one-to-many fast data transmission 

with stringent quality-of-service (QoS) requirements, where multicast is seen as an 

important underlying technology. In order to efficiently support those real-time 

broadband multimedia applications, this paper formulates a bi-objective multicast 

routing problem with network coding. As delay and packet loss ratio (PLR) are two 

important performance indicators for QoS, we consider them as the two objectives for 

minimization. To address the optimization problem above, we present a 

multi-objective evolutionary algorithm based on decomposition (MOEA/D), where an 

all population updating rule is devised to address the problem of lacking feasible 

solutions in the search space. Experimental results demonstrate the effectiveness of 

the proposed algorithm and it outperforms a number of state-of-the-art algorithms.  
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1. Introduction 

In recent years, a tremendous growth in multimedia applications has been witnessed. 

Many of them require efficient data transmission services with high quality-of-service 

(QoS) so as to satisfy end users. Parameters e.g. data transmission rate, delay, and 

packet loss ratio are important performance indicators for QoS. In nature, end users 

look for multimedia applications with satisfied QoS guarantees. Multicast is a 

one-to-many communications technology with multiple receivers simultaneously 

requesting the same information sent from a single source. This technology can well 

support multimedia applications with multiple end users involved, such as video 



conferencing, IPTV, interactive online games. However, multicast employing 

store-and-forward forwarding cannot guarantee the theoretically maximized 

throughput [1].  

Fortunately, network coding can always help the multicast achieve the theoretical 

maximum throughput, which is particularly suitable to support real-time broadband 

data transmission, i.e. this technology is ideal for real-time multimedia multicast 

scenarios with stringent QoS requirements [2]. On the other hand, when employed in 

multicast, network coding involves coding operations performed at a subset of 

intermediate nodes in the network. As coding operations are complicated 

mathematical operations, e.g. calculations over some finite field, network coding 

based multicast (NCM) not only consumes additional computing and buffering 

resources, but also could cause serious network performance deterioration [3], 

including the end-to-end delay and packet loss ratio. Hence, it is a nature way to think 

of how to consume as less network resources as possible while exploiting all benefits 

the NCM brings to the existing network infrastructure.  

A considerable amount of research efforts have been dedicated to optimize the 

NCM routing problem. For example, the network coding resource minimization 

problem, which is for minimizing the involved computing resource, has drawn a lot of 

research attention [4-10]. Moreover, as coding and link costs both incur during the 

NCM, some researchers study the trade-off between them using multiobjective 

optimization approaches [11, 12]. In [13], Xing and Qu minimize the total cost and 

end-to-end delay simultaneously, where the cost is a weighted sum of the coding and 

link costs. However, to the best of our knowledge, there has not been any research 

carried out from the perspective of supporting NCM with multiple QoS metrics met. 

Since end users are in urgent need for satisfied QoS multimedia applications, this 

paper investigates a QoS oriented bi-objective NCM scenario, where the average 

end-to-end delay and the average packet loss ratio are the two objectives for 

minimization, respectively.  

Evolutionary algorithms (EAs) usually obtain promising solutions in a single run 

within a short time due to the population-based parallel computing framework. Hence, 

when used for addressing network routing selection problems with multiple (often 

conflicting) objectives, EAs are often considered as an efficient candidate optimizer. 

Among those multi-objective EAs, multi-objective evolutionary algorithm based on 

decomposition (MOEA/D) [14] has received a considerable amount of research 

attention because of its excellent optimization performance. MOEA/D decomposes a 

given MOP into a number of scalar sub-problems by conventional aggregation 

approaches, and the sub-problems are solved simultaneously by evolving a population 

of solutions. It has been proved that MOEA/D obtains promising optimization 

performance with much lower computational complexity than well-known MOEAs, 

e.g., NSGA-II  and SPEA2 [16], which makes it an ideal optimizer for handling the 

problem concerned.  

In this paper, a QoS oriented bi-objective optimization problem in the context of 

NCM is studied. We adapt MOEA/D for the proposed problem, where a new scheme 

is integrated into the basic MOEA/D framework and thus able to enhance the 



searching procedure. This feature is referred to as all population updating rule, where 

a newly generated solution is used to update the most suitable one among all 

sub-problems. The experimental results illustrate the superiority of the proposed 

MOEA/D over several of the state-of-the-art MOEAs. 

2. Problem formulation 

A communications network can be modeled as a directed graph G = (V, E), where V 

and E are the node and link sets, respectively. Assume each link eE has a unit 

capacity. Those with larger capacity are represented by parallel links, each with a unit 

capacity. In a NCM scenario, there is a source node sV, a set of receivers T = {t1,…,td}, 

tkV, and an expected data rate R. We need to find a subgraph consisting of multiple 

link-disjoint paths (i.e. paths without common link), where each path is originated 

from the source s and terminated at one of the receivers, e.g. tk. In this subgraph, 

different data flows may pass through different areas. Such subgraph is referred to as 

NCM subgraph [7].  

The following lists some notations used in the paper: 

 s: the source node in G(V, E); 

 T={t1, t2, …, td}: set of receivers, where d=|T| is the number of receivers; 

 R: the expected data rate (an integer) at which s expects to transmit to T; 

 r(s, tk) : the practical data rate from the source to receiver tkT within the NCM 

subgraph; 

 pi(s, tk): the i-th path from s to tk within the NCM subgraph, where tk∈T and 

i=1, …, R; 

 delay(pi(s, tk)): the end-to-end transmission delay on pi(s, tk); 

 plr(pi(s, tk)): the packet loss ratio (PLR) on pi(s, tk). 

 

The task in the paper is to construct a feasible NCM subgraph with the data rate 

requirement satisfied and two objectives simultaneously minimized, as follows. 
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where, Davg is the average transmission delay of the NCM subgraph; Pavg is the average 

PLR of the NCM subgraph. Constraint (2) defines that the obtained data rate from 

source s to each receiver must be no less than R. Optimal solutions to the problem 

concerned are a set of nondominated solutions, known as the Pareto-optimal front (PF) 



[17]. Given any two solutions x1 and x2, we say x2 is dominated by x1 if either {Davg 

(x1) < Davg (x2), Pavg (x1) ≤ Pavg (x2)} or {Davg (x1) ≤ Davg (x2), Pavg (x1) < Pavg (x2)} holds. 

3. The proposed MOEA/D 

First of all, the chromosome representation and objective evaluation are introduced. 

Then, a performance enhancing scheme, i.e. the all population updating rule, is 

described. Finally, the overall structure of the proposed MOEA/D is given in detail. 

3.1 Chromosome representation and objective evaluation 

Chromosome representation is one of the most important issues when designing 

MOEAs. As aforementioned, coding operations have to be performed if necessary. To 

explicitly see how data-flows pass through each of the intermediate nodes, the binary 

link state (BLS) chromosome representation is adopted. BLS-based representation has 

been widely used in NCM routing problems [6, 7, 10, 13]. More details can be found 

in [13]. 

To evaluate a solution in all objectives, the first task is the feasibility checking and 

the second one is the calculation of objective values. As we know, each solution x 

corresponds to a certain subgraph. Goldberg algorithm [18] is used to verify if the 

associated subgraph of x meets the data rate requirement. If yes, x is feasible; 

otherwise, it is infeasible. For a feasible solution, we compute Davg and Pavg of the 

corresponding subgraph, according to formula (2). 

3.2 All population updating rule 

In MOEA/D, the traditional way of updating the population is that, when a 

promising solution is generated, it is used to replace not only the best-so-far solution 

to the corresponding sub-problem but also those to the neighboring sub-problems. As 

the problem concerned in the paper is of hard constraint, there are many infeasible 

solutions in the search space. Although feasible solutions are urgently needed to guide 

the search towards the true PF, it is quite difficult to obtain them. If a better solution is 

generated and adopted to update only the neighboring sub-problems, all associated 

best-so-far solutions could be replaced, which would lead to premature convergence 

and deteriorated optimization performance. Moreover, due to the problem nature, 

coding operations could seriously affect the delay and/or PLR. In other word, 

solutions with a few different links, whose subgraphs may be quite similar, might be 

far from each other in the search space. Therefore, a solution generated from one 

sub-problem may be more suitable for a far-away sub-problem. Inspired by this idea, 

we propose the all population updating rule, extending the neighborhood range to all 

single-objective optimization problems (SOPs). In this way, a newly generated 

solution can be used to update the most appropriate SOP and the search is thus well 



guided to explore promising areas in the search space. When a promising solution is 

generated, instead of multiple SOPs, a single SOP where the fitness quality 

improvement is the most significant is updated. With the features above, MOEA/D 

gains better performance as observed in Section 4. Moreover, details of the proposed 

solution updating rule can be found in Step 2.3, Subsection 3.3. 

3.3 Overall procedure 

In MOEA/D, the first step is to convert a MOP into a number of scalar optimization 

sub-problems (each with a single objective) by using different decomposition methods 

[14]. This paper adopts Tchebycheff approach for decomposition as it is the most 

commonly-used and able to help MOEA/D gain decent optimization performance [14]. 

To be specific, a MOP is decomposed into multiple SOP as the following shows:  
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is the reference point, 

where zi
*
 is the best-so-far value of the i-th objective. 

Let λ
1
, …, λ

N
 be N weight vectors, each associated with a SOP. If all of them are 

properly selected, the obtained best solutions can provide a good approximation to the 

true PF. In addition, Euclidean distances among those weight vectors are used to 

define the neighborhood relationship for the SOPs. For two SOPs, if the Euclidean 

distance between their weight vectors is small, it indicates the optimal solutions to one 

SOP and those to the other form similar PFs in the objective space (i.e. decision 

space). Hence, SOPs with closer Euclidean distances are regarded neighbors. In 

MOEA/D, SOPs are solved in a collaborative manner, where useful information is 

shared within neighborhoods.  

The procedure of the proposed MOEA/D is described below. 

 

Input: 

 The multi-objective optimization problem 

 a stopping criterion 

 V: the number of the weight vectors in the neighborhood of each weight vector. 

 pc: the crossover probability 

 pm : the mutation probability 

 

Global structure: 

 A population of N search points x1, . . . , xN∈Ω, where xj is the solution of the j-th 

sub-problem. 

 z
*
= (z1, . . . , zm) 

 An external population (EP), which stores nondominated solutions found during 



the search. 

 

Procedure: 

Step 1: Initialization. 

Step 1.1: Set EP = Φ. 

Step 1.2: Compute the Euclidean distances between any two weight vectors and 

then work out the V closest weight vectors to each weight vector. For j 

=1, …, N, set B(j) = {j1, …, jV}. 1j , …, Vj are the V closest weight 

vectors to λ
j
. 

Step 1.3: Employ initialization scheme in [16] to generate initial population. 

Step 1.4: Initialize z = {z1, …, zm}, where zi = min fi(xj), 1≤i≤m, 0≤j≤N. 

Step 2) Update: 

For j=1, …, N do 

Step 2.1) Reproduction: 

Randomly select two indexes k and l from B(j) and generate a new solution y 

by performing crossover and mutation to xk and xl. 

Step 2.2) Update of reference point 

For i=1, …, m, if fi( y)< zi, set zi= fi(y). 

Step 2.3) All population updating rule 

Find an index h so that max{g(xh| λ
h
, z) - g(y | λ

h
, z)} has the largest value. 

Then set xh
 
= y. (see subsection 3.3) 

Step 2.4) Update of EP: 

Remove those solutions from EP that is dominated by f(y). Add f(y) to EP if no 

vector of EP dominates f(y). 

Step 3) Stopping Criteria: If stopping criteria is met, stop the search and output 

EP. Otherwise, go to Step 2. 

4. Experiments and Analysis 

In this section, we first introduce the test instances and performance metrics for 

evaluating the proposed MOEA/D. After that, we study the effectiveness of the 

proposed all population updating rule. Finally, we compare the proposed MOEA/D 

with several state-of-the-art MOEAs in terms of the optimization performance. 

4.1 Test instances 

We evaluate the performance of the proposed algorithm on 8 existing randomly 

instances which are widely used in the literature [15-17, 38]. These instances are all 

available at http://www.cs.nott.ac.uk/~rxq/benchmarks.htm and more details can be 

found in [17]. In addition, the delay on each link is randomly distributed in the range 

[2ms, 10ms], and the PLR on each link is randomly generated in the range [1×10
-5

, 5



×10
-5

]. All experiments are run on a computer with Windows 8 OS, Intel(R) 

Core(TM) i7-3740QM CPU 2.7 GHz and 8 GB RAM. 

4.2 Performance measures 

Let PFref be a reference set of nondominated solutions of the true PF and PFknown be 

the set of nondominated solutions obtained by an algorithm. Solutions in PFref are 

expected to be uniformly distributed in the objective space along the true PF. Note 

that we do not know the true PF for highly complex multi-objective optimization 

problems including the problem concerned in this work. To determine a reference set 

PFref, we combine the best-so-far solutions obtained by all algorithms in all runs and 

select the nondominated solutions as the reference set. This has been widely adopted 

in evaluating multi-objective algorithms in the literature. 

To thoroughly evaluate the performance of the proposed algorithm, the following 

performance measuring metrics are employed throughout the experiments. 

 

 Generational distance (GD): GD measures the average distance from the obtained 

nondominated solution set PFknown to the reference set PFref, defined as： 
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where d(v, PFref) is the Euclidean distance between solution v in PFknown and its 

nearest solution in PFref. A smaller GD indicates the obtained PF is closer to the 

true PF. 

 Inverted generational distance (IGD): IGD is defined distance (in the objective 

domain) between solution v in PFref and its nearest solution in PFknown, defined as: 
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This metric measures both the diversity and the convergence of an obtained 

nondominated solution set. A lower IGD indicates a better overall performance of 

an algorithm. 

 Maximum spread (MS): this metric reflects how well the true PF is covered by 

the nondominated solutions in PFknown through the hyperboxes formed by the 

extreme function values observed in PFref and PFknown, as shown in 

max max min min
2
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where m is the number of objectives; fi
max 

and fi
min 

are the maximum and 

minimum values of the i-th objective in PFknown, respectively; and Fi
max 

and Fi
min

 

are the maximum and minimum values of the i-th objective in PFref, respectively. 

A larger MS shows the obtained PF has a better spread. 



 Average Computational Time (ACT) consumed by an algorithm over 20 runs. 

This metric is a direct indication of the computational time of an algorithm. 

 Student’s t-test [10, 19] to compare two algorithms (A and B) in terms of the IGD 

values obtained in 20 runs. In this paper, two-tailed t-test with 38 degrees of 

freedom at a 0.05 level of significance is used. The t-test result can show if the 

performance of A is better than, worse than, or equivalent to that of B from the 

aspect of statistics. 

4.3 The effectiveness of the all population updating rule 

We evaluate the effectiveness of the proposed solution updating rule by running 

two variants of MOEA/D, i.e. traditional MOEA/D (A1) and MOEA/D with the 

proposed solution updating rule (A2).  

Table 2 shows the experimental results collected in terms of GD, IGD and MS. It is 

observed that A2 algorithm performs better than A1, in terms of the GD, IGD and MS. 

The results clearly show that the proposed updating rule can significantly improve the 

optimization performance of MOEA/D. With the new updating rule, one reproduced 

solution is used to update the most suitable SOP among all SOPs. This rule rationally 

utilizes new solutions and helps to avoid prematurity. Hence, A2 outperforms A1 in 

all instances. 

 

Table 2 Experimental results in terms of GD, IGD and MS (best results are in bold) 

Network 
GD IGD MS 

A1 A2 A1 A2 A1 A2 

Rnd-1 0.000 0.000 0.000 0.000 1.000 1.000 

Rnd-2 0.000 0.000 0.000 0.000 1.000 1.000 

Rnd-3 0.000 0.000 0.000 0.000 1.000 1.000 

Rnd-4 0.112 0.073 2.031 0.173 0.416 0.461 

Rnd-5 0.294 0.190 0.934 0.195 0.687 0.820 

Rnd-6 0.068 0.000 0.159 0.000 0.919 1.000 

Rnd-7 0.027 0.006 0.099 0.008 0.827 0.889 

Rnd-8 0.649 0.249 1.003 0.187 0.700 0.811 

 

4.4 The overall performance evaluation 

We evaluate the overall performance of proposed MOEA/D by comparing it with 

several distinguished MOEAs, i.e. SPEA2 and NSGA-II. The following list the 

parameter settings for each algorithm. 

 



 SPEA2: N = 50, pc = 0.9 and pm = 1/l. 

 NSGA-II: N = 50, pc = 0.9 and pm = 1/l. 

 Proposed MOEA/D: N = 50, pc = 0.9, pm = 1/l. 

 

To make a fair comparison, each algorithm runs 200 generations. The results of GD, 

IGD, MS and ACT are shown in Table 3, 4, 5 and 6, respectively.  

It is clearly seen that, the proposed MOEA/D gains the best performance regarding 

GD, IGD and MS. The nondominated solutions obtained by our MOEA/D are closer 

to the optimal solutions along the true PF and are more diversified in terms of their 

locations in the objective space. Besides, smaller ACT also indicates that the proposed 

MOEA/D has lower computational complexity than NSGA-II and SPEA2. 

To further support our observation, we compare the IGD values of the three 

algorithms by using Student’s t-test. Table 7 shows that our algorithm outperforms the 

others in most of the instances.  

 

Table 3 Results of GD (Best results are in bold) 

Network Rnd-1 Rnd-2 Rnd-3 Rnd-4 Rnd-5 Rnd-6 Rnd-7 Rnd-8 

SPEA2 0.000 0.038 0.000 0.802 0.294 0.088 0.053 0.989 

NSGA-II 0.000 0.000 0.015 0.277 0.110 0.035 0.035 1.125 

MOEA/D 0.000 0.000 0.000 0.073 0.059 0.000 0.006 0.249 

 

Table 4 Results of IGD (Best results are in bold) 

Network Rnd-1 Rnd-2 Rnd-3 Rnd-4 Rnd-5 Rnd-6 Rnd-7 Rnd-8 

SPEA2 0.000 0.016 0.000 3.625 2.791 2.767 0.254 2.440 

NSGA-II 0.000 0.000 0.009 0.530 0.279 0.023 0.099 2.149 

MOEA/D 0.000 0.000 0.000 0.173 0.195 0.000 0.008 0.187 

 

Table 5 Results of MS (Best results are in bold) 

Network Rnd-1 Rnd-2 Rnd-3 Rnd-4 Rnd-5 Rnd-6 Rnd-7 Rnd-8 

SPEA2 1.000 0.987 1.000 0.829 0.914 0.919 0.958 0.693 

NSGA-II 1.000 1.000 0.991 0.798 0.889 0.935 0.910 0.673 

MOEA/D 1.000 1.000 1.000 0.461 0.820 1.000 0.889 0.811 

 

Table 6 Result of ACT(ms) (Best results are in bold) 

Network Rnd-1 Rnd-2 Rnd-3 Rnd-4 Rnd-5 Rnd-6 Rnd-7 Rnd-8 

SPEA2 3648 6819 11249 25891 43177 21422 98731 126541 

NSGA-II 6302 10418 22219 27539 46811 33156 81218 122446 

MOEA/D 2643 3766 8651 8240 18653 9031 21808 50186 

 

 



Table 7 Results of t-test 

Network Rnd-1 Rnd-2 Rnd-3 Rnd-4 Rnd-5 Rnd-6 Rnd-7 Rnd-8 

MOEA/D ↔SPEA2 ~ + ~ + + + + + 

MOEA/D↔ NSGA-II ~ ~ + + ~ + + + 

5. Conclusion 

This paper formulates a QoS oriented multicast routing problem based on network 

coding so as to well support real-time broadband multimedia applications. We 

consider three important performance metrics in the problem, where the average 

transmission delay and the average packet loss ratio are two objectives to be 

minimized simultaneously and the data rate (i.e. bandwidth) is a hard constraint. We 

adapt MOEA/D for the problem above and propose a problem-specific solution 

updating rule, i.e. the all population updating rule, to improve the optimization 

performance. In this rule, each new solution is used to update the most suitable 

sub-problem. The experimental results demonstrate that the proposed MOEA/D 

performs significantly better than traditional MOEA/D, SPEA2 and NSGA-II with 

respect to a number of widely used performance measures, i.e. inverted generational 

distance, generational distance, maximum spread and average computation time.  
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