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Educational Timetabling

» Assigning a set of exams into limited timeslots satisfying
Hard constraints: cannot be violated
Soft constraints: desired
Quality of solutions: objective function

Programme: Computer Science 12 month PG (Session start) Full time/1
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Educational Timetabling

» Important activities in all universities

> Hard constraints: No events for students at the same time
> Soft constraints: Spread students’ events

» State-of-the-art: different “tailor- \
made”, “fine-tuned” techniques

> Graph heuristics, constraint based techniques
> Meta-heuristics, multi-criteria
- Recent developments:

> hybrid techniques, hyper-heuristics, VNS, ILS, GRASP, adaptive
techniques, etc.

R. Qu, Burke E.K., McCollum B., Merlot L.T.G. and Lee S.Y.: A Survey of Search Methodologies

and Automated Approaches for Examination Timetabling. Journal of Scheduling, 12(1): 55-89,
2009. Top 1% cited by ISI
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Educational Timetabling

» Carter, Laporte & Lee (1996): exam timetabling instances
> Hard constraint: conflicts between exams
> Objective function: min time slots (graph colouring)
> Soft constraints: spread out exams over time slots
> Obijective function: C(t) = ( S§0Ws Ns)/S
» Meta-heuristic Network (2000): course timetabling instances
> Hard constraints: exams conflicts, room features

> Soft constraints: minimise only one class a day, class in the last slot
of a day, more than two classes in a row

> Objective function: min sum of the costs for soft constraints
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A Graph Based Hyper-heuristic

» Hyper-heuristics: Heuristics that choose heuristics
- High level: Meta-heuristics, Choice function, CBR, etc.
- Low level: moving strategies, constructive heuristics, etc.
» Aim of hyper-heuristic
- Explore general techniques for wider problems
> High level search doesn’t look into domain knowledge
» Applications
> bin packing, educational timetabling, personal scheduling, etc.

KEEP
CALM

AND R. Qu, co-authors: E. K. Burke, A. Meisels, S. Petrovic. A Graph-based Hyper-Heuristic for Exam
GET Timetabling Problems. EJOR, 176: 177-192, 2007. Five Year Top Cited Article EJOR 2007-2011
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A Graph Based Hyper-heuristic

» High level search: Any meta-heuristics
o Search for lists of low level heuristics to construct solutions

» Low level heuristics: order events by
how difficult to schedule them
- Saturation Degree: least available slots

- Colour Degree: most conflicted with those scheduled
- Largest Degree: most conflicted with the others

- Largest Weighted Degree: LD + students s

- Largest Enrolment: students enrolled I

- Random Ordering: brings randomness

me:
33333

- Bin packing: best fit, first fit o
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A Graph Based Hyper-heuristic
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A Graph Based Hyper-heuristic

exams

e2 e4 eb J_e6 e/ e8 el0 ell el2
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A Graph Based Hyper-heuristic

€exams

e2 e4 eb e/ e8 ell el2

Heuristic list JL
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order of exams .
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A Graph Based Hyper-heuristic

» Graph based Hyper-heuristics (GHH) Framework

> Search space: permutations of graph heuristics, rather than actual
solutions

> Moving operator: randomly change two heuristics in the heuristic
list within a local search

> Objective function: maps heuristic lists to penalty of timetables
constructed

» Further investigations
> Role of different high / low level heuristics (ILS, TS, SDM, VNS)
> Characteristics of heuristic search space
> Search in two search spaces




Which High Level Heuristics?

» High level search methods
o Iterated Local Search
> Tabu Search

> Steepest Descent
- Variable Neighbourhood Search

» Objective function

> heuristic lists = penalties (costs of timetables constructed)
- “Walks” are allowed. Why?

NATCOR - Hel



Which High Level Heuristics?
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WhICh ngh Level Heuristics?

s3 s5 | ml m2 m3 | m4 | m5 large
SDM |best 7 8 3 6 10 | 368 | 100% | 367 | 356 | 195 100%
SDM|avg |[10.8(15.6| 5 |11.8/12.2(382.5| 100% | 383 |374.5/194.5| 100%
SDMitime| 15 | 38 |10| 8 | 30 (3823| 3672 [3752|3637|1989| 4013
ILS |best| 6 9 4| 6 | 8 | 373 461 375 | 374 | 172 1132
ILS |lavg | 8.8 |[13.2|5.4| 7.6 | 12 | 375 | 480.5 [377.5/380.5|179.7{1144 60%
ILS [time| 32 | 47 |15| 11 | 23 |3656| 3018 |3382(3451|1822| 3811
TS |best, 11 | 11 | 5| 11 | 16 | 496 533 460 | 529 | 214 1164
TS |avg (12.2(16.4|9.2|12.2|118.2|511.5|533 80%| 468 | 539 | 236 (1164 80%
TS |time| 12 | 18 | 9| 7 | 19 [3326| 2996 |3160(3280/1650, 3564
VNS|bestf, 7 |12 |4 | 6 | 6 | 346 | 433 359 | 370 | 156 1148
VNS|avg| 10 [14.8(5.2| 8 |10.6| 365 |443 40%|369.5(377.5(165.5/1148 80%
VNS |time| 32 | 45 |16| 10 | 30 [3920| 3723 [3856(3667|2013| 4079

Similar performance within GHH framework (same total no. of
evaluations, same initials, etc.), ILS and VNS are slightly better

Results are comparable to state-of-the-art approaches on both

course and exam benchmark problems
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Which Low Level Heuristics?

» Within the GHH framework

- Different subsets of graph heuristics (SD+LD, SD+LWD, SD+LE,
SD+LWD+CD, etc.)

- With a limited computational time: SD + LWD performed the best
> With more graph heuristics: Longer time given, the better the results
-/ (I: length of the sequence, h: number of graph heuristics)
- Larger search space, more solutions sampled
- Random ordering also contributes

\




Two Search Spaces

search space of GHH solution space of problem

» Search space of high level heuristics: permutations of low level
heuristics

» Solution space of problem: actual solutions

» Are all the solutions in solution space reachable?
> GHH: search is upon heuristics, not solutions

R. Qu and E.K. Burke. Hybridisations within a Graph Based Hyper-heuristic Framework for University
. Timetabling Problems. JORS, 60: 1273-1285, 2009. Top 5 highly cited paper at JORS 2009-2010
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Representa-
tion

Size (Upper
Bound)

Neighbor-
hood
Operator

Objective
Function

Two Search Spaces

Heuristic space Solution space
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Search in Two Spaces

search space of GHH solution space of problem

» With one move
- Local search approaches One bit different

- Graph based hyper-heuristics One part different (from
different heuristic lists)

NATCOR — Heuristics and Approximate Algorithms, Nottingham, April 2016



Search in Two Spaces

» Local search based algorithms
> Move within limited search areas
> Easily stuck to local optima: different mechanisms developed
> Search attracted within limited parts of search space

» GHH

(e]

Change the way of building the solutions at a high level

Search space of heuristics -> solutions far from each other in the
solution space

Key feature: coverage of the solution space
GHH vs. VNS?

o

(e]

o
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Search in Two Spaces

» Hybridisation with greedy local search
> Coverage of solution space: Results greatly improved!
- Diversification by GHH in the heuristic space, vs.
- Intensification by local search in the solution space
> Hybrid GHH vs. Memetic Algorithms

search of GHH

greedy local search

NATCOR — Heuristics and Approximate Algorithms, Nottingham, April 2016



Extension I: Adaptive GHH

» Heuristic hybridisations in GHH

> Knowledge: best solutions = good heuristic hybridisation

- I - Random GHH (SD+LWD, SD+LE, SD+LD)
- A large collection of different heuristic sequences

- II - Analyse the best 5% heuristic sequences
- Rates of hybridisation at different parts of heuristic sequences
- Patterns of hybridizations in the best sequences

ute9? | ear83 | hec92 |
0.46 0.80 0.80
0.42 - 070 1 070 4\ -
| 0.60 -
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os01 \ 0.50
0341
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my R.Qu and E. K. Burke. Adaptive Automated Construction of Hybrid Heuristics for Exam Timetabling
\ and Graph Colouring Problems. EJOR, 198(2): 392-404, 2009, Top 10% cited by ISI
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Extension I: Adaptive GHH

» Heuristic hybridisations in GHH
> SD + LWD: better results compared with LE or LD

> In the best 5% (and 10%) sequences
- Higher proportion of LWD at early stage

> No obvious patterns in the worst LWD hybridizations

» Adaptive heuristic hybridization ..gewycars o
- GHH: focuses on early sequences 5
- Adaptively adjust LWD hybridisation

i

For iterations
hybridize a% of LWD into the first half of h | = o
produce a solution s using h i

If s Is better or infeasible, increase a
otherwise decrease a
Keep the best h so far

0 \\\
A\ \t\i :
X \




Extension II: Case Based GHH

» Exltr_act/record knowledge of heuristic selection during problem
solving

» Learn to select and suggest
good heuristics for particular
situations

» Obtained good results on

simulated problems, and
test on real-world problems

Learn=d
Caze

» Assumption:
similar problems
similar solutions

Sanifrmec Suggested
Rt Saiertion

R. Qu, co-authors: E. Burke, S. Petrovic, Case Based Heuristic Selection for Timetabling Problems.
Journal of Scheduling, 9: 115-132, 2006. Top 1% cited by ISI.




Extension II: Case Based GHH

_______________________

problem

- CBR System

i Heuristic i | Construct

| Selector || | Solution

| [ Case Base |! Yes

| | No solution
i | Stop?

NATCOR — Heuristics and Approximate Algorithms, Nottingham, April 2016



Extension II: Case Based GHH

» CBR: suggests good heuristics that worked well in
previous similar situations employing knowledge stored
in the system

» Case base

- problems and their partial solutions during problem solving
> best heuristics for that situations

» Similarity measure: nearest neighbourhood approach

» Key issue of meaningful comparison between two
problem solving situations

> features describe the characteristics of problem and partial
solution (cases)

NATCOR — Heuristics and Approximate Algorithms, Nottingham, April 2016



Extension II: Case Based GHH

» Analysis on all possible features

» Training process on feature list

- Search for most relevant features by which cases (problems and
problem solving situations) can be compared concerning most
appropriate heuristics used

> Tabu search

» Training process on cases in case base

- Leave-one-out strategy: refine the cases stored in case base for
problem solving

> Only cases that may make contribution to problem solving are
retained

NATCOR — Heuristics and Approximate Algorithms, Nottingham, April 2016



Extension II: Case Based GHH

» Observations

(¢]

O

the more features, the better?

features selected are more important than their weights in the
similarity measure

search methods for the feature list are not crucial

vs. graph based hyper-heuristics

not an easy task for selecting the best meta-heuristics to solve
the whole problem
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Extension III: GHH Landscape

» Landscape of high level heuristic space

> More likely to have “walks” or plateau
- Not mapped to all solutions in solution space (hypothesis)

- Size of neighbourhoods is very large

- Computational time: limited humber of evaluations within a limited

time

38

ear83 |, 1-flip neighbours of best-known
T T T

- 1-flip on a heuristic list

- Fitness distance correlation
(fdc): local optimal vs. best

ark
& s6sr
36

355

35
0

*

oo

il i i i L L UL
Ead HEE MR SR N R

1
20

1
40

|
60

1 1
80 100
Enumeration (1-flip)

1 1
120 140

| 1
160 180



Extension III: GHH Landscape

» Landscape of high level heuristic space
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Other Extensions

Landscape of high level heuristic space
> More likely to have plateau (neutral)

v

Synchronise the search in two search spaces
> Difficulty of landscape analysis in solution space

v

Other recent extensions in the literature
- Hierarchical hybridisation of graph heuristics

(¢]

v

v

More details available at: http://www.cs.nott.ac.uk/~rxg/publications.htm
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