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Abstract  

Nursing workforce management is a challenging decision-making task in hospitals. The decisions are 

made across different timescales and levels from strategic long-term staffing budget to mid-term 

scheduling. These decisions are interconnected and impact each other, therefore are best taken by 

considering staffing and scheduling together. Moreover, this decision-making needs to be made in a 

stochastic setting to meet uncertain patient demand. A sufficient and cost-efficient staffing level with 

desirable schedule is essential to provide good working conditions for nurses and consequently good 

quality of care. On the other hand, understaffing can severely deteriorate the quality of care thus 

should be strictly controlled. 

To help with the decision making, based on our previous research we formulate in this paper an 

integrated nurse staffing and scheduling model under patient demand uncertainty into a two-stage 

stochastic programming model with an emphasis on understaffing risk control. Conditional Value-at-

Risk (CVaR), a risk control measure primarily used in the financial domain, is integrated in the 

stochastic programming model to control understaffing risk. The IBM ILOG CPLEX solver is applied 

to solve the stochastic model. The model and solution approaches are tested using a case study in a 

real-world environment setting. We have evaluated the performance of the stochastic model and the 

benefit of CVaR in terms of impact on schedule quality. 
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1. Introduction 

The increasing patient demand in healthcare raises challenges for hospitals from many perspectives. 

As nurse labour costs typically represent a large share of the total hospital budget (Appleby et al., 

2014), hospitals need to manage and deploy their human resources efficiently. Overtime workload, 

undesired work patterns, and low satisfaction are widely known issues among nurses (Van den Bergh, 

et al., 2013). Managing personnel cost, reducing overtime workload and undesired work patterns and 

improving work satisfaction efficiently all have positive impact on the quality of care provided for 

patients and the cost efficiency of hospitals (Rafferty et al., 2005). One potential way to address these 

issues is to develop and analyse models and decision support systems to gain insight into the 

outcomes and consequences of various nurse workforce management strategies.   

The management of nurse workforce is extremely challenging due to the fact that it is typically made 

across different time horizons and different organisational levels (Maenhout & Vanhoucke, 2013). It 

is a multi-phase planning and control process that consists of staffing, shift scheduling and allocation 

phases (Maenhout & Vanhoucke, 2013). Staffing is a strategic long-term planning decision that 

determines the mix of nursing resources. Shift scheduling focuses on the assignment of available 

nurses to shifts and then constructs a mid-term roster. The roster needs to strictly meet regulations and 
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policies and satisfy staff’s personal preferences as much as possible.  The regulations and policies 

restrict the acceptable scheduling patterns that nurses can work on, and consequently a different mix 

of nurse resources may be required. The linkage between these two phases suggests a more integrated 

approach, which motivates the model proposed in this paper. 

Decision-making on nurse staffing and scheduling becomes more challenging when uncertainty is 

considered, which almost always presents in realistic scenarios. Many hospitals are subject to 

regulations to guarantee a certain level of nurses to ensure the quality of care provided (Ulrich et al., 

2002, Rogers et al., 2004, Van den Bergh, et al., 2013). The patient demand determines the number of 

nurses required for each shift on each day of the week. This demand fluctuation has direct impact on 

the number of nurses required, i.e. on labour cost (e.g. by hiring agent nurses or overtime nurses when 

understaffing occurs) as well as on the attractiveness of the schedule (e.g. by increasing overtime 

shifts etc.). Understaffing needs to be addressed as it can severely deteriorate the quality of care 

(Ulrich et al., 2002, Rogers et al., 2004). 

Patient demand uncertainty needs to be taken into consideration to ensure an efficient and flexible 

schedule. To account for these issues, we propose a two-stage stochastic programming (SP) model for 

the integrated nurse staffing and scheduling problem under patient demand uncertainty. In the first 

stage, the initial staffing level and schedule is decided to minimise the labour cost, overtime workload 

and unattractive shift patterns. The second stage then adjusts the schedule under different demand 

scenarios by introducing /removing nurse shifts from/into a centre nurse pool. We propose to apply 

Conditional Value-at-Risk (CVaR) to control the risk of understaffing, i.e. to keep the under-staff 

number within a certain confidence level to ensure an adequate number of nurses.  

CVaR is primarily used in finance as a risk measure to control the loss within certain confidence 

levels (Rockafellar & Uryasev, 2000). In has been introduced in healthcare operational research in the 

recent literature. Najjarbashi and Lim (2019) use CVaR to reduce the variability of operating room 

scheduling under uncertainty by reducing the worst-case outcomes of an operating room schedule. 

Their MILP model formulation is based on a finite set of scenarios generated using the Monte Carlo 

sampling method. Kishimoto and Yamashita (2018) apply an LP approach with CVaR type 

constraints for intensity modulated radiotherapy treatment (IMRT) optimisation. A key clinical 

criterion that measures the quality of an IMRT plan is to satisfy dose-volume constraints (DVCs), 

which is a NP-hard problem. The CVaR type constraints, which always satisfy the DVCs, can be 

described as linear constraints; therefore, the optimisation problem is transferred to an LP problem, 

which is much easer to solve. 

One of the aims in this research is to investigate the nurse scheduling problem under patient demand 

uncertainty. One way to react to this uncertainty is to build some robustness in the integrated planning 

and scheduling phases. As summarized in Ingels and Maenhout (2015), several studies in the 

literature propose a reactive decision support model. This model adopts options, such as allocating 

overtime shifts, schedule changes and allocating cross-trained nurses, to match supply and demand. In 

contrast, a proactive approach is to build some mechanisms in the scheduling phase such that a robust 

roster is constructed. A common proactive approach is to include buffers, such as time buffers or 

capacity buffers. Time buffers, e.g. flexible shift length, have been applied in personnel scheduling. 

Capacity buffers, e.g. reserving duties, have mostly been studied in the airline industry. Another 

proactive approach is two-stage stochastic approach. The first stage constructs the baseline schedule 

by minimising the cost while satisfying a minimum staffing requirement. The second stage takes 

recourse actions to adjust the shifts to meet the requirements from different scenarios. Our proposed 

approach falls into this category. 

Two stochastic programming models are proposed in the paper. The first Stochastic Demand Model 

(SDM) models the demand profiles (i.e. the required number of nurses for each shift on each day) as 

scenarios. The second is an SDM with an additional CVaR constraint (SDM-CVaR) to control the 

understaffing risk. Both models aim to optimise the labour cost, to improve work satisfaction, as well 

as to reduce overtime workload and undesired work patterns. A practical yet very efficient solution 

procedure with CPLEX solver is applied to solve these models. 
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The main contribution of the paper can be summarised as follows: 1) An integrated staffing and 

scheduling model under patient demand uncertainty is proposed to produce a more flexible schedule, 

which accounts for reducing labour cost and overtime workload, and unattractive work patterns. 2) 

Applying CVaR as a risk control measure for understaffing, aiming at sufficient staff level within 

desired confidence level.  

The remainder of this paper is organised as follows. Section 2 presents a literature review on the 

problem and related research. In Section 3, we formulate the integrated models under stochastic 

demand. Section 4 presents the solution method. Section 5 presents a case study to evaluate and 

compare the performance of the models. Finally, we draw our conclusions and present future work in 

Section 6. 

2. Literature Review 

Various models have been proposed in the literature on nurse scheduling problems (Van den Bergh et 

al., 2013). Early papers focussed on problem constraints. Van den Bergh et al. (2013) classify the 

constraints into different categories such as coverage, time-related, fairness and balance constraints. 

These constraints can be treated as hard constraints (which must be satisfied) or soft constraints 

(which can be violated but usually associated with a penalty) to achieve flexibility of problem 

modelling and solving. Nowadays, the quality of a nurse roster is increasingly measured in terms of 

personal satisfaction (Van den Bergh et al., 2013). Overtime workload, work patterns and job 

satisfaction are the key factors that are investigated to achieve a satisfactory roster. 

To simplify the modelling of the problem, nursing workforce management has been divided into a 

multi-phase sequential process (Easton et al., 1992, Venkataraman & Brusco, 1996, Maenhout & 

Vanhoucke, 2013) with different time horizons and different management levels. Early research 

focussed on phase-specific problem modelling and solving methodologies (Easton et al., 1992, 

Venkataraman, & Brusco, 1996, Maenhout & Vanhoucke, 2013, He & Qu, 2012). 

Then some researchers realised that workforce management should not be considered in isolated 

phases because of the inter-relationship of staffing-size and scheduling, as well as the conflicting 

multiple objectives of minimising cost and maximising costumer service (Thompson, 1997, Maenhout 

& Vanhoucke, 2013, Punnakitikashem et al., 2013, Kim & Mehrotra, 2015). This line of research can 

be generally concluded as a two-step approach: it first determines the staffing levels required to meet 

the desired performance at low cost, and then generates the minimum cost shift schedules to meet 

these requirements. Dantzig’s set covering formulation (Dantzig, 1954), dated back to the ’50s, is still 

highly relevant and used frequently in this approach. In the first step, the staffing level requirement is 

interpreted as a strict constraint to be met in Dantzig’s model. The constraints introduced in the 

second step are commonly related to working regulation and employee preferences. The two-step 

approach is appealing because it evades the difficulty of stochastic performance constraints in the 

mathematical models. With this approach, the performance constraints are taken care of in the staffing 

stage, so that shift scheduling becomes a deterministic problem. However, the two-step approach may 

lead to sub-optimal shift schedules (Ingolfsson et al., 2002). Therefore, recent literature has started to 

focus on more integrated approaches. 

Maenhout and Vanhoucke (2013) propose a more compact integrated staffing and scheduling model 

for a long-term nurse management problem over multiple departments. It is a single aggregated model 

compared with the two-step approach described above. It shows that staffing multiple departments 

simultaneously and integrating nurse characteristics into the staffing decision can lead to substantial 

improvements in schedule quality. Wright and Mahar (2013) tackle the staffing and scheduling 

problem and achieve reduced cost and improved nurse satisfaction by scheduling cross-trained nurses, 

which come from multiple departments in a centre nurse pool. Wright and Bretthauer (2010) present 

coordinated decision-making models to coordinate nurses inside the hospital, and agent nurses outside 

the hospital to reduce labour cost, as well as overtime workload. The results show how centralised 

scheduling can be used to reduce cost and improve nurse satisfaction. However, all these studies 

assume a deterministic setting. 
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Healthcare systems, like many other service systems, are featured with non-stationary and uncertain 

demands: the number of patients/customers fluctuates over time in a stochastic manner. Defraeye and 

Nieuwenhuyse (2016) provide a state-of-the-art literature review on staffing and scheduling 

approaches that account for non-stationary demand, mainly focusing on applications in call centres 

and emergency departments. In healthcare systems, patient demand uncertainty is prominent.  Most 

hospitals enforce a patient-to-nurse ratio. Therefore, uncertainty should be taken into account in the 

decision making to produce a flexible schedule. Zinouri (2016) addresses staff scheduling problems 

through a demand prediction and scenario-based approach. In his work, based on historical data, a 

time series forecasting method is applied to predict daily surgical case volume. Based on the 

prediction, a scenario set is generated for the staff-scheduling problem. 

Stochastic programming is a well-developed method to model decision-making under uncertainty in a 

flexible way, which imposes real-world constraints relatively easily. Bard and Purnomo (2005) 

consider the problem of short-term nurse rescheduling for daily fluctuation in patient demand, where a 

given mid-term schedule is revised to cover shortage. In Bagheri, Devin and Izanloo (2016)’s 

stochastic model, in addition to fluctuation in patient demand, uncertainty in patient stay period over 

time is also considered. Zhu and Sherali (2007) present a two-stage stochastic workforce-planning 

model in which the second stage decisions assign continuous workload to each worker. Kim and 

Mehrotra (2015) propose a two-stage stochastic integer programming model to the integrated staffing 

and scheduling problem, where the second stage decision variables are integer. They assume that all 

acceptable working schedule patterns are pre-generated; then a modified multi-cut aggregation in an 

integer L-shaped algorithm with a priority branching strategy is proposed to solve the model. In 

Bagheri et al.,  (2016), a sample average approximation method is applied to obtain an optimal 

schedule with the minimum regular and overtime assignment cost. 

The model proposed in this paper seeks to efficiently schedule nurses in a ward facing uncertain 

demand while simultaneously optimising the number of nurses assigned to the ward based on an 

initial staffing number.  We formulate the problem as a two-stage stochastic program. Patient demand 

i.e. the required number of nurses for each day is modelled using scenarios that vary over time.  Thus, 

overstaffing and understaffing may occur. In order to keep understaffing under certain level, a CVaR 

constraint, which is often used to measure uncertainty in finance, is utilised in the model.  

3. Problem description and modelling 

3.1 Problem description 

In nursing workforce management systems at most hospitals, the staffing level in each department 

needs to be decided, based on which a schedule for the corresponding staffing level over a period of 4 

weeks (usually) can be constructed under stochastic patient demand. This usually starts with an initial 

base line number of nurses available for each department within the hospital’s budget. The scheduling 

policy, which is defined in terms of practices rules, needs to be tackled to construct a satisfactory 

schedule, therefore staffing and scheduling need to be simultaneously considered in the process.  

Previous work (Maenhout & Vanhoucke, 2013, Wright & Mahar, 2013, Wright & Bretthauer, 2010) 

showed that coordination of staffing across different departments can improve the quality of decision-

making. Nurses are typically assigned according to a fixed or cross-utilisation policy. The former 

policy states that a nurse is permanently assigned to a specific ward. The latter implies that a nurse 

who is a member of a centre pool can be referred to a different unit. The hospital in our study applies 

a mixed policy. That is, an initial base number of nurses within the department’s budget are assigned 

to the department. However, a centre pool of nurses is maintained from where extra nurse shifts can 

be transferred from the pool to cover the shortage in certain department, or redundant nurse shifts can 

be transferred into the pool. 

3.1.1 Objective function 

The quality of a nurse staffing plan and scheduling should be measured from multiple perspectives as 

stated above for both hospital and nurses. In Maenhout and Vanhoucke (2013), the quality of a nurse 



5 

 

staffing and shift scheduling plan is measured using three dimensions representing the hospital’s and 

nurses’ objectives, i.e., the effectiveness in providing nursing care, the efficiency of a nursing unit and 

the job satisfaction among nursing staff. We adapt similar measurements in our objective function, 

explained as follows:  

(1) Personnel cost: The personnel cost consists of regular payment and overtime payment. In 

practice, the salary scale of nurses varies according to their experience, length of employment 

and other factors. The regular payment and overtime payment are represented by their 

corresponding parameters. In this work overtime payment is 1.5 times of regular payment, 

and nurses’ pay is doubled on bank holidays.  

(2) The quality of a nurse roster in modern working environment is increasingly measured using 

personnel job satisfaction (Van den Bergh et al., 2013) including violations of balanced 

workload and individual preferences. This is captured in our model. 

(3) The recourse cost is the cost of over-staffing and understaffing in the second-stage SP model. 

The overall objective function is thus an integrated function of all the above costs. 

3.1.2 Constraints 

Nurse scheduling in hospitals involves many constraints including working regulations, legal 

requirements, and nurses’ preferences, etc. The constraints concerned in this paper are derived from 

real-life scenarios in hospital wards and are mostly tested in benchmark problems in the literature. 

Rules and regulations have been directly taken from real-world cases and preserved with essential 

characteristics. The problem can have several variants with respect to the number of nurses, the 

number of shifts and the length of the scheduling period.  

3.2 Problem modelling  

3.2.1 Background on two-stage stochastic program 

Stochastic programming is a well-developed optimisation method under uncertainty. Shapiro and 

Philpott (2007) provide a very good introduction to the topic. The classical two-stage linear stochastic 

programming problems can be formulated as 

min
𝑥∈𝑋

{𝑔(𝑥) ≔ 𝑐𝑇𝑥 + 𝔼[𝑄(𝑥, 𝛿(𝜔))]} 

where 𝑄(𝑥, 𝛿) is the optimal value of the second-stage problem 

min
𝑦

𝑞𝑇 𝑦  

Subject to 𝑇𝑥 + 𝑊𝑦 ≤ ℎ 

Here 𝑥 ∈ ℝ𝑛 is the first-stage decision vector, X is a polyhedral set, defined by a finite number of 

linear constraints, 𝑦 ∈ ℝ𝑚 is the second-stage decision vector, and 𝛿 = (𝑞, 𝑇, 𝑊, ℎ) contains the data 

of the second-stage problem.  

The first stage variables 𝑥 must be decided before the realisations of the random variable 𝜔, and the 

second stage or recourse variables 𝑦  are taken, as corrective actions after the value of random 

variables become known. That is, the recourse actions are a compensation for any infeasibility from 

the first stage decisions; the objective is to minimise the sum of the first stage cost and the expected 

value of recourse costs. 

3.2.2 Stochastic demand model (SDM) for the integrated nurse scheduling problem 

We formulate the Stochastic Demand Model (SDM) as a two-stage integer stochastic program. In the 

first stage, before a realisation of patient demand is known, staffing decisions are made, i.e. the 

assignment of shifts to nurses based on the available nurses and (estimated) baseline requirement. In 

the second stage, the patient demand, i.e. the real required number of nurses is realised, and 

adjustment needs to be made to meet the requirement. The recourse actions are adding additional 
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nurse shifts to cover understaffing or cancelling surplus shifts when overstaffing happens. The 

expected value of shortfall and surplus of shifts will be minimised. In Table 1 we present the notations 

used in the model.  

 
Table 1. Notations 

The first-stage problem: 

Parameters 

I The set of nurses (index i) 

J 

W 

K 

The set of days during the planning period (index j) 

The set of weeks in the planning period (index w)  

The set of shift types, for example, {E (Early), D (Day), L (Late), N (Night)} (index k) 

KU
 The set of unwanted shift patterns, for example, {DE, LE, LD, EN} (index k’)  

n1 Maximum number of working shifts a nurse can take in the period  

n2 Maximum number of night shifts a nurse can take in the period 

n3 Minimum number of regular shifts a nurse need to take in the period 

n4 Minimum number of weekends off a nurse should take in the period  

M A big constant number 

𝑅𝑗𝑘 Baseline required number of nurses on day j with shift k 

c1 Regular wage rate per shift 

c2 Overtime wage rate per shift 

c3, c4 Penalty for violating the corresponding soft constraint 

Decision variables 

𝑠𝑟𝑖𝑗𝑘 Binary, takes value 1 if nurse i on day j takes shift k with regular pay, 0 otherwise. 

𝑠𝑜𝑖𝑗𝑘  Binary, takes value 1 if nurse i on day j takes shift k with overtime pay, 0 otherwise. 

𝑆𝑅𝑖 Binary, takes value 1 if nurse i works regular shifts, 0 otherwise. 

𝑆𝑂𝑖  Binary, takes value 1 if nurse i works overtime shifts, 0 otherwise. 

dev1,dev2 Integer, the amount of deviation when modelling the corresponding soft constraints 

The second-stage problem: 

Parameters 

Ω The set of all scenarios (index 𝜔) 

𝑝𝜔 The probability of scenario 𝜔 

𝑅𝑗𝑘
𝜔  The required number of nurses under scenario 𝜔 on day j with shift k 

𝑞+ The cost of adding a shift 

𝑞− The cost of cancelling a shift 

Decision variables 

𝛼𝑗𝑘
𝜔  Integer, the additional number of nurse shift need to be added on day j with shift k for 

scenario 𝜔 

𝛽𝑗𝑘
𝜔  Integer, the excess number of nurse shift need to be cancelled on day j with shift k for 

scenario 𝜔 

The stochastic demand model (SDM) for the integrated nurse scheduling problem can be formulated 

as follows: 

 

min 𝑐1 ∑ ∑ ∑ 𝑠𝑟𝑖𝑗𝑘

𝑘𝑗𝑖

+ 𝑐2 ∑ ∑ ∑ 𝑠𝑜𝑖𝑗𝑘

𝑘𝑗𝑖

+ 𝑐3 ∑ ∑ 𝑑𝑒𝑣1𝑖𝑗

𝑗𝑖

+ 𝑐4 ∑ ∑ ∑ 𝑑𝑒𝑣2𝑖𝑗𝑘

𝑘𝑗𝑖

+ ∑ 𝑝𝜔 ∑ ∑(𝑞+𝛼𝑗𝑘
𝜔 + 𝑞−𝛽

𝑗𝑘
𝜔 )

𝑘𝑗𝜔

 

s.t. 

∑ 𝑠𝑟𝑖𝑗𝑘 + 𝑠𝑜𝑖𝑗𝑘 ≤ 1

𝑘

, ∀𝑖, 𝑗                                                                                                    (1) 

∑ ∑ 𝑠𝑟𝑖𝑗𝑘

𝑘𝑗

≤ 𝑀𝑆𝑅𝑖 , ∀𝑖                                                                                                        (2) 
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∑ ∑ 𝑠𝑜𝑖𝑗𝑘

𝑘𝑗

≤ 𝑀𝑆𝑂𝑖 , ∀𝑖                                                                                                        (3) 

𝑆𝑂𝑖 ≤  𝑆𝑅𝑖, ∀𝑖                                                                                                                            (4) 

∑(𝑠𝑟𝑖𝑗𝑘

𝑖

+ 𝑠𝑜𝑖𝑗𝑘) ≥ 𝑅𝑗𝑘 , ∀𝑗, 𝑘                                                                                               (5) 

∑ ∑(𝑠𝑟𝑖𝑗𝑘 + 𝑠𝑜𝑖𝑗𝑘)

𝑘𝑗

≤ 𝑛1, ∀𝑖                                                                                               (6) 

∑(𝑠𝑟𝑖𝑗𝑁 + 𝑠𝑜𝑖𝑗𝑁)

𝑗

≤ 𝑛2, ∀𝑖                                                                                                    (7) 

∑ ∑ 𝑠𝑟𝑖𝑗𝑘

𝑘𝑗

≥ 𝑛3, ∀𝑖                                                                                                                (8) 

∑ ∑(𝑠𝑟𝑖𝑤(𝑠𝑎𝑡)𝑘 + 𝑠𝑟𝑖𝑤(𝑠𝑢𝑛)𝑘 + 𝑠𝑜𝑖𝑤(𝑠𝑎𝑡)𝑘 + 𝑠𝑜𝑖𝑤(𝑠𝑢𝑛)𝑘) ≤ 2|𝑊| − 2𝑛4, ∀𝑖

𝑘𝑤

        (9) 

𝑠𝑟𝑖(𝑗−1)𝑁 − 𝑠𝑟𝑖𝑗𝑁 + 𝑠𝑟𝑖(𝑗+1)𝑁 ≥ 0, ∀𝑖, 𝑗 ∈ {2, |𝐽| − 1}                                                    (10) 

𝑠𝑟𝑖(𝑗−1)𝑁 − ∑ 𝑠𝑟𝑖𝑗𝑘

𝑘∈{𝐸,𝐿,𝐷}

+ ∑ 𝑠𝑟𝑖(𝑗+1)𝑘

𝑘∈{𝐸,𝐿,𝐷}

≤ 1, ∀𝑖, 𝑗 ∈ {2, |𝐽| − 1}                      (11) 

𝑠𝑟𝑖(𝑗−1)𝑁 + ∑ 𝑠𝑟𝑖𝑗𝑘

𝑘∈{𝐸,𝐿,𝐷}

− ∑ 𝑠𝑟𝑖(𝑗+1)𝑘

𝑘∈{𝐸,𝐿,𝐷}

≤ 1, ∀𝑖, 𝑗 ∈ {2, |𝐽| − 1}                       (12) 

𝑠𝑟𝑖(𝑗−1)𝑁 + ∑ 𝑠𝑟𝑖𝑗𝑘

𝑘∈{𝐸,𝐿,𝐷}

+ ∑ 𝑠𝑟𝑖(𝑗+1)𝑘

𝑘∈{𝐸,𝐿,𝐷}

≤ 2, ∀𝑖, 𝑗 ∈ {2, |𝐽| − 1}                       (13) 

∑(𝑠𝑟𝑖(𝑗−1)𝑘 − 𝑠𝑟𝑖𝑗𝑘 + 𝑠𝑟𝑖(𝑗+1)𝑘) + 𝑑𝑒𝑣1𝑖𝑗 ≥ 0, ∀𝑖, 𝑗 ∈ {2, |𝐽| − 1}                         (14)

𝑘

 

𝑠𝑟𝑖𝑗𝑘1
+ 𝑠𝑟𝑖𝑗𝑘2

− 𝑑𝑒𝑣2𝑖𝑗𝑘′ ≤ 1, ∀𝑖, 𝑗 ∈ {1, |𝐽| − 1, (𝑘1, 𝑘2) ∈ 𝐾𝑈}                              (15) 

∑(𝑠𝑟𝑖𝑗𝑘

𝑖

+ 𝑠𝑜𝑖𝑗𝑘) + 𝛼𝑗𝑘
𝜔 − 𝛽𝑗𝑘

𝜔 ≥ 𝑅𝑗𝑘
𝜔 , ∀𝜔, 𝑗, 𝑘                                                                 (16) 

 𝑠𝑟𝑖𝑗𝑘 , 𝑠𝑜𝑖𝑗𝑘 , 𝑆𝑅𝑖, 𝑆𝑂𝑖 ∈ {0,1}, ∀𝑖, 𝑗, 𝑘                                                                                   (17) 

𝛼𝑗𝑘
𝜔 , 𝛽𝑗𝑘 

𝜔 , Integer, ∀𝑗, 𝑘, 𝜔                                                                                                       (18)                                 

 

The objective function minimises the aggregated cost which consists of regular time wage and 

overtime wage, the penalty from violations of soft constraints and unwanted shift patterns, as well as 

the expected penalty costs occurred from nurse shortage and surplus when the second stage patient 

demand is realised.  

Constraint (1) states that each nurse can only start one shift each day. It also serves as the exclusive 

constraint stating that each nurse on a single day cannot take a regular shift and an overtime shift at 

the same time. Constraint (2) imposes a relation constraint using a large constant value M between the 

indicator variable 𝑆𝑅𝑖 and assignment variables 𝑠𝑟𝑖𝑗𝑘. It states that if nurse i takes a regular shift 𝑠𝑟𝑖𝑗𝑘, 

then the indicator variable 𝑆𝑅𝑖  = 1, while 𝑆𝑅𝑖  = 0 means nurse i is not assigned.  The same rule 

applies to overtime shift, defined by constraint (3). Constraint (4) ensures that when a nurse works 

additional time over a regular shift, he or she also works through a required shift. i.e. if 𝑆𝑂𝑖 = 1, then 

𝑆𝑅𝑖 =1. Constraint (5) ensures a sufficient number of required nurses are assigned over the planning 

period based on the baseline requirement before the realisation of patient demand. Constraint (6) 
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limits the maximum number of working shifts during the planning period. Constraints (7) limits the 

maximum number of night shifts that a nurse should take. Constraint (8) states that a nurse should 

work a certain minimum number of regular shifts during the planning period. Constraint (9) states a 

nurse must receive a certain minimum number of complete weekends off during the planning period, 

where |W| denotes the number of weeks in the planning period. Constraint (10) states there should be 

no stand-alone night shift, i.e. no night shift between two non-night shifts.  Constraints (11), (12), and 

(13) impose that there must be at least two days off after a night shift, i.e. no sequence of “NOW” 

“NWO” “NWW”, where N, O and W denote a night shift, a day off and a regular working shift, 

respectively. Constraint (14) penalises a stand-alone regular shift, i.e. there should be only one 

working day between two off days. Constraint (15) penalises unwanted regular shift patterns such as 

Day Early, Late Early, Late Day, and Early Night. Constraint (16) is the adjusted coverage constraint 

after realisation of patient demand. It states that on each day, the assigned number of nurse shifts at 

the first stage, after cancelling excess nurse shifts and adding additional nurse shifts, should meet the 

demand for each shift in each scenario.  

3.2.3 Stochastic demand model with CVaR constraint 

In most service systems, staffing and scheduling determine both cost and service qualities (Defraeye 

& Nieuwenhuyse, 2016). This is especially true in health care systems. A common approach is to treat 

staffing level as a minimum coverage constraint that needs to be strictly met. This approach has been 

applied widely with Dantzig’s formulation in the literature, and in some of our previous work (Qu & 

He, 2008, He & Qu, 2012). This approach is appealing yet less flexible under uncertainty. A more 

flexible approach is using a probability constraint to limit the expected probability that the number of 

patients exceeds the nurse-to-patient ratio as proposed in (Wright & Mahar, 2013). Another 

innovative approach is to adopt the concept of robust optimisation and choose the worst case to 

determine the smallest number of required staff (Chen et al., 2016).   Kim and Mehrotra (2015) adopt 

a big M method by setting a sufficiently large penalty to track the nurse-to-patient level. 

Understaffing needs to be specially attended to, as it can severely deteriorate the quality of care 

(Ulrich et al., 2002, Rogers et al., 2004). In this paper, we introduce an additional constraint adapted 

from the financial domain to control the risk of understaffing. 

Value at Risk (VaR) has been widely used in finance to estimate the exposure to risk by estimating 

the loss of a finance product. VaR represents the maximum loss associated with a specific confidence 

level. However, it does not explain the magnitude of loss when the VaR limit is exceeded.  

Conditional Value-at-Risk (CVarR) is firstly proposed by Rockafellar and Uryasev (2000). It is 

defined as the expected value of losses strictly exceeding VaR, shown in Fig. 1. CVaR is a coherent 

risk measure, and has superior mathematical properties compared with VaR. It can be applied either 

as an objective function or a constraint to control the risk of loss. In both cases it can be reduced to a 

set of linear functions, which are very easy to optimise in mathematical programming. 

 

 

Fig.1.  VaR and CVaR (Rockafellar & Uryasev ,2000) 

 

In general, we can simply add a CVaR constraint in a model to control the loss under a user specified 

threshold value 𝜇 by specifying that  
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𝐶𝑉𝑎𝑅 ≤ 𝜇 

4.  Solution approach 

In this section, we describe how the two-stage stochastic programming models are solved. We first 

discuss how to linearise the CVaR constraint and solve the problem as an integer linear program. 

Then, we discuss how to construct scenarios for the problem. The resulted stochastic integer 

programming is finally solved by the IBM ILOG CPLEX solver. 

The objective function of a general two-stage stochastic programming (SP) model is to minimise the 

first stage cost and the expected value of the second stage cost. Recourse variables can be continuous 

or integer.  Our model is a two-stage SP model with integer recourse, which is very challenging to 

solve. The solution approaches to two-stage SP with integer recourse can be generally grouped into 

exact methods and heuristic methods. Ahmed et al., (2004) adopt an L-shape method based on 

Bender’s decomposition, which incorporates a Branch-and-Bound procedure to achieve optimality. 

Kim and Mehrotra (2015) developed a modified multi-cut approach in the L-shape algorithm with a 

prioritising branching strategy.  Ahmed and Shapiro (2002) reported a general sample average 

approximation algorithm for stochastic integer optimisation, which can provide an exact optimal 

solution with a large enough sample size. However, for a relatively small sample size, only a good 

approximation solution can be obtained. In our problem, we will first linearise the CVaR constraint, 

and then a relatively small number of scenarios will be generated. IBM CPLEX will be used to solve 

the resulting stochastic integer programming. 

4.1 Linearisation of CVaR constraint 

As we described in Section 3.2.3, CVaR is used to control the loss under a user-specific value µ. The 

appealing property of CVaR is that it can be re-written into a set of easy-to-solve linear functions. 

With the notations defined in Table 2 we demonstrate how a CVaR constraint can be written as a set 

of linear constraints.  

 

Table 2. Notations for a general and Nurse Rostering Problem (NRP) models with CVaR 

x  
Decision vector.   

In our NRP model, x consists of the decision variables 𝑠𝑟𝑖𝑗𝑘 and 𝑠𝑜𝑖𝑗𝑘. 

𝒚𝜔  

Random vector that influences the loss of decision x.  

In our NRP model, it is the patient demand uncertainty denoted by 𝑅𝑗𝑘
𝜔 , i.e. the 

number of nurses required on day j with shift of type k under scenario 𝜔 

𝑓(𝒙, 𝒚𝜔)  

A loss function that is generated by x and y.  

In our NRP model, 𝑅𝑗𝑘
𝜔 − ∑ (𝑠𝑟𝑖𝑗𝑘𝑖 + 𝑠𝑜𝑖𝑗𝑘) is the nurse shortage function on 

day j with shift type k under scenario 𝜔. Thus 𝑓(𝒙, 𝒚𝜔)=∑ ∑ (𝑅𝑗𝑘
𝜔 −𝑘𝑗

∑ (𝑠𝑟𝑖𝑗𝑘𝑖 + 𝑠𝑜𝑖𝑗𝑘) − 𝛼𝑗𝑘
𝜔 + 𝛽𝑗𝑘

𝜔
) 

 

𝑝𝜔

 
 

The probability of scenario 𝜔.  

In our NRP model, it is the probability of patient demand scenario 𝜔. 

 

𝜉  The VaR value in the optimal solution. 

𝑧𝜔  
Auxiliary variables in the linear programming formulation which represent the 

loss (i.e. 𝑓(𝒙, 𝒚𝜔))  in excess of the VaR value (i.e. 𝜉).  

𝜎  
A user specified percentile value, i.e. the confidence level, 95% in our case 

𝜇  A user specified threshold value of loss 
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According to Rockafellar and Uryasev (2000), the general  𝐶𝑉𝑎𝑅 ≤ 𝜇  term can be replaced by the 

following linear constraints (19)-(21): 

 

𝜉 +
1

(1 − 𝜎)
∑ 𝑝𝜔

𝜔

𝑧𝜔 ≤ 𝜇                                                                           (19) 

𝑧𝜔 ≥ 𝑓(𝒙, 𝒚𝝎) − 𝜉                                                                                          (20) 

𝑧𝜔 ≥ 0                                                                                                                (21)                                                                                

 

We can now express the constraints using the notations defined in Table 2 in the context of nurse 

scheduling as follows:  

 

min 𝑐1 ∑ ∑ ∑ 𝑠𝑟𝑖𝑗𝑘

𝑘𝑗𝑖

+ 𝑐2 ∑ ∑ ∑ 𝑠𝑜𝑖𝑗𝑘

𝑘𝑗𝑖

+ 𝑐3 ∑ ∑ 𝑑𝑒𝑣1𝑖𝑗

𝑗𝑖

+ 𝑐4 ∑ ∑ ∑ 𝑑𝑒𝑣2𝑖𝑗𝑘

𝑘𝑗𝑖

+ ∑ 𝑝𝜔 ∑ ∑(𝑞+𝛼𝑗𝑘
𝜔 + 𝑞−𝛽

𝑗𝑘
𝜔 )

𝑘𝑗𝜔

 

s.t. 

(1)-(18) 

𝜉 +
1

(1 − 𝜎)
∑ 𝑝𝜔

𝜔

𝑧𝜔 ≤ 𝜇                                                                             (19) 

𝑧𝜔 ≥ 0 , ∀𝜔                                                                                                        (20) 

𝑧𝜔 ≥ ∑ ∑(𝑅𝑗𝑘
𝜔

𝑘𝑗

− ∑(𝑠𝑟𝑖𝑗𝑘

𝑖

+  𝑠𝑜𝑖𝑗𝑘) − 𝛼𝑗𝑘
𝜔 + 𝛽𝑗𝑘

𝜔 ) − 𝜉, ∀𝜔              (22) 

 

We denote it as the stochastic demand model with CVaR constraint or SDM-CVaR. 

4.2 Scenario generation  

We used two different approaches to generate scenarios:  

(1) Based on historical data: 

In Parisio and Jones (2015), demand vectors were generated based on historical data, and then fed into 

a pool. From the pool, a small number of vectors were randomly selected to construct the demand 

scenarios. In our model, 𝑅𝑗𝑘
𝜔  represents the number of nurses required for a given shift k on day j 

under a given scenario 𝜔. Inspired by Parisio and Jones (2015), we considered the historical number 

of patients occupying beds as a representation of the true distribution of patient demand and collected 

this weekly over a 12-month period (52 weekly data). Then these patient demand patterns were fed 

into a pool. From this pool, we randomly selected 4 weekly data values to construct one monthly 

demand scenario - each of the scenarios has equal probability. Then we used the nurse-to-patient ratio 

to convert the number of patients into the number of nurses required.  We have taken this approach 

because it is practical and normally provides a good approximation of the true demand.  

(2) Based on Auto-Regressive Integrated Moving Average (ARIMA) forecasts: 

In Zinouri’s work (2016), empirical forecast errors were used to generate demand scenarios for the 

model. More specifically as in Kim and Mehrotra (2015), long-term forecasts were obtained using the 

ARIMA method. We applied this method to generate demand scenarios. We defined 52-week as a 
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time window and rolled it forward one day to create a new time window. Thus, 364 (52x7) time 

windows were created over a year period. For each time window, a forecast is generated using 

ARIMA. Then the forecast error vectors were fed into a pool. From this pool, we randomly selected a 

certain number of error vectors and added them to the mean point forecast to generate demand 

scenarios.  

Kaut and Wallace (2007) stated that in stochastic programming we only solve an approximation of the 

stochastic programming model with a finite number of scenarios. The quality of this approximation is 

directly linked to the quality of the scenarios. The quality of the scenarios is problem dependent. The 

number of scenarios is also important. We would like the number of constructed scenarios to be 

relatively modest so that the resulting model can be solved with reasonable computational effort.  

These scenario generation methods have been applied previously in several nurse-scheduling 

problems and simply adapted to our problem here, given their suitability. While an in-depth 

investigation of scenario generation methods would be worthy on its own in the literature, it is out of 

the scope of this manuscript. 

5. A case study 

The development of the approach is based on several benchmark nurse rostering problems, e.g. 

GPOST and ORTEC, which are publicly available at http://www.schedulingbenchmarks.org. They are 

monocyclic problems and different from each other with respect to the parameters, such as the 

number of nurses, number of shift types and length of scheduling periods. These are notably 

simplified problems, only serving the purpose of developing modelling and solution approaches.  

These problems preserve the generic constraints, such as coverage constraints and shift pattern 

constraints, in general nurse rostering problems. The model and the solution approach can thus be 

adapted and applied to problems with similar features and constraints. The main problem, i.e. 

integrated nurse-scheduling problem, in this section is based on a variant of the ORTEC problem (He 

& Qu, 2012) with the additional characteristics described in Section 3 and historical patient demand 

patterns. We use this problem as a case study to explore the benefits of SDM and SDM-CVaR models. 

The models are developed in C++ with concert technology in CPLEX on top of the CPLEX solver.  

5.1 Problem instances and input data 

We created the problem instances covering the period from January to December 2013.  Shift types, 

start times, and end times are presented in Table 3. Fulltime nurses work 36 hours regular time per 

week. The working regulations of the hospital in our case study state that a nurse may work at most 

one extra 9-hour overtime shift per week. However, on a single day, if a nurse has already taken a 

regular shift, she/he cannot take an overtime shift on the same day.  
 

Table 3.  Shift types, durations and baseline demand. Each shift covers 9 hours including one hour resting time, 

except for night shifts that contain no resting time. Demand is based on historical data. 

Shift type Start time End time 
Demand 

   Mon          Tue           Wed         Thu              Fri             Sat             Sun 

Early 07:00 16:00 3 3 3 3 3 2 2 

Day 08:00 17:00 3 3 3 3 3 2 2 

Late 14:00 23:00 3 3 3 3 3 2 2 

Night 23:00 07:00 1 1 1 1 1 1 1 

 

Daily patient census data from January to December over the study period were applied to create the 

problem instances and scenarios. A 1:4 nurse-to-patient ratio was applied to the patient demand 

during the daytime to obtain the baseline of nurses required shown in Table 3 as an example.  

http://www.schedulingbenchmarks.org/
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The two methods based respectively on historical data and ARIMA forecasts and described in section 

4.2 were tested to generate demand scenarios in our experiment. The model parameters were set as 

follows: the number of shift types was 4, the number of weeks in the period was 4, 𝑛1=24, 𝑛2=3, 

𝑛3=16, 𝑛4=4, 𝑐1=10, 𝑐2=15, 𝑐3=𝑐4=5, 𝑞+=18, 𝑞−=2. 

5.2 Evaluation of SDM model and SDM-CVaR model solutions and 

computational time  

Table 4 presents the performance of the SDM model based on the two scenario generation methods, 

i.e. based respectively on historical data and on ARIMA forecasts. For each of the methods, we tested 

50 and 200 scenarios. The choice of using 50 and 200 scenarios in our empirical study is arbitrary. 

The first two rows report the numbers of regular and overtime shifts assigned at the first stage, and the 

third and fourth rows report the adjustment made (added and cancelled shifts) at the second stage to 

meet demands. It can be seen that scenarios generated with ARIMA forecasts required more 

adjustments, maybe due to larger fluctuations in demand. The CPU time needed to solve the models 

are similar as well as the optimality gap of the final solution. The fundamental reason of the similar 

CPU time is that the CVaR constraint has been transformed to linear constraints, which do not 

increase the complexity of the problem. The CPLEX parameter CPX_PARAM_EPGAP (gap to the 

optimum) was set to 0.01.  

Given the concerns about nurses’ job satisfaction, many hospitals are actively seeking ways to 

improve the situation. We now show how the SDM model can be used to improve the overall 

desirability of the schedule in terms of reduction of personnel constraint violations.  

The violations of soft constraints such as unwanted shift patterns were measured using 

𝑐3 ∑ ∑ 𝑑𝑒𝑣1𝑖𝑗𝑗𝑖 + 𝑐4 ∑ ∑ ∑ 𝑑𝑒𝑣2𝑖𝑗𝑘in  𝑘𝑗𝑖 in the objective function defined in Section 3.2.2. We 

penalised unwanted shift patterns by dev1, dev2.  We observed that the penalty cost was 0, as shown in 

the fifth row in Table 4. This demonstrates that the solutions satisfied all these constraints. This 

finding demonstrates that that better work satisfaction for nurses can be achieved in the SDM model 

solution. 

Table 4. SDM model solution evaluation 

 Historical data based scenario 

generation 

Forecast data based scenario 

generation  

50 scenario 

solution 

200 scenario 

solution 

50 scenario 

solution 

200 scenario 

solution 

No. of regular shift ( 𝑠𝑟𝑖𝑗𝑘) 231 231 231 231 

No. of overtime shift ( 𝑠𝑜𝑖𝑗𝑘) 25 25 25 25 

No. of added shift ( 𝛼𝑗𝑘
𝜔 ) 36 38 168 189 

No. of cancelled shift ( 𝛽𝑗𝑘
𝜔 ) 6 6 29 35 

Soft constraint violation 

(dev1,dev2) 
0 0 0 0 

CPU time 61.64 sec 80.09 sec 66.10 Sec 88.93sec 

Optimality gap 1.02% 0.90% 0.43% 0.26% 

 

Table 5 presents the performance of the SDM-CVaR model also based on the two scenario generation 

methods. The user-specified parameters in the model were set to 𝜇 = 50, 𝜎 = 95%. The difference 

between the SDM and SDM-CVaR models mainly exists in the scheduled adjustment shifts, i.e. 

𝛼𝑗𝑘
𝜔 , 𝛽𝑗𝑘

𝜔 . We will investigate the SDM-CVaR model in more details in the next section. 

 

Table 5. SDM-CVaR model solution evaluation 

 Historical data based scenario Forecast data based scenario 
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generation generation  

50 scenario 

solution 

200 scenario 

solution 

50 scenario 

solution 

200 scenario 

solution 

No. of regular shift ( 𝑠𝑟𝑖𝑗𝑘) 231 231 231 231 

No. of overtime shift ( 𝑠𝑜𝑖𝑗𝑘) 25 25 25 25 

No. of added shift ( 𝛼𝑗𝑘
𝜔 ) 19 20  90  90  

No. of cancelled shift ( 𝛽𝑗𝑘
𝜔 ) 15 14 50  35  

Soft constraint violation 

(dev1,dev2) 
0 0 0 0 

CPU time 103.82 sec 139.58 sec 125.30 Sec 155.56 sec 

Optimality gap 0.6% 0.34% 0.82% 0.20% 

 

5.3 Comparison of SDM and SDM-CVaR schedule 

To observe a clearer comparison on the basic SDM and SDM-CVaR models, we compared the 

schedule quality of the two models for the same set of historical data based scenarios. The actual 

historical number of nurse shifts required was applied as the baseline for comparison, in contrast to 

the schedules obtained by solving the SDM model (SDM schedule) and the SDM-CVaR model 

(SDM-CVaR schedule). 

To measure the quality of a schedule s, we applied a quality factor as defined in Parisio & Jones (2015) 

as follows: 

𝜃 = 1 −
∑ 𝜀𝑡𝑡

∑ 𝑑𝑡𝑡
 

where 𝜀𝑡 = |𝑠𝑡 − 𝑑𝑡| is the deviation between the nurse shifts assigned at time t by schedule s and the 

actually required number of nurse shifts (demand) at time t.  The quality factor, which is always 

between 0 and 1, is plotted in Fig. 2 for both SDM and SDM-CVaR schedules. This factor ranges 

from 0.8 to 1 with an average of 90% in the SDM schedule, and from 0.9 to 1 with an average of 95% 

in the SDM-CVaR schedule. Therefore, the average quality of the SDM-CVaR schedule is 

approximately 5% better than that of the SDM schedule. 
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Fig.2. Quality factors of SDM and SDM-CVaR schedule 

 

5.4 Evaluation of the CVaR constraint 

The coverage constraint ∑ (𝑠𝑟𝑖𝑗𝑘𝑖 + 𝑠𝑜𝑖𝑗𝑘) + 𝛼𝑗𝑘
𝜔 − 𝛽𝑗𝑘

𝜔 = 𝑅𝑗𝑘
𝜔 , ∀𝜔, 𝑗, 𝑘  includes adjustment shifts 

from the nurse pool applied to meet demand fluctuations. By adding extra shifts 𝛼𝑗𝑘
𝜔 , the downside risk 

of the schedule, i.e. the nurse shift shortage, can be restricted by constraints (19), (20), and (21). That 

is, we can control the number of shortage shifts by setting different user specified values for µ in 

equation (19) in the CVaR constraint. For instance, if we want to keep the shift shortage under 50 (i.e. 

set µ=50) with 95% confidence in the CVaR constraint, we need about 20 extra shifts as shown in the 

third row of Table 6. If we want to have a tighter control on nurse shortage, we can set the CVaR 

constraint to a smaller value e.g. µ=20, with 95% confidence. However, a large number of extra shifts 

is required (95 for µ=20 vs 20 for µ=50) to achieve this target. 

Table 6. SDM-CVaR model with different parameter  𝜇  
 𝜇 = 50, 𝜎 = 95%  𝜇 = 20, 𝜎 = 95% 

No. of regular shift ( 𝑠𝑟𝑖𝑗𝑘) 231 231 

No. of overtime shift ( 𝑠𝑜𝑖𝑗𝑘) 25 25 

No. of added shift ( 𝛼𝑗𝑘
𝜔 ) 19 95 

No. of cancelled shift ( 𝛽𝑗𝑘
𝜔 ) 15 10 

Soft constraint violation 

(dev1,dev2) 
0 0 

CPU time 103.82 sec 104.56 sec 

Optimality gap 0.6% 0.93% 

Table 7 compares the results of SDM and SDM-CVaR based on 50 scenarios generated from 

historical data for the 12-instance (monthly) set. The second column presents the baseline requirement 

of shifts required in the first stage. The regular and overtime shifts are constructed based on this 

baseline requirement. The number of adjustments consists of the number of shifts added and cancelled. 

We also report the number of soft constraints violations. From the results we can see that there is no 

difference between the two models in terms of soft constraints violations. The average and standard 

deviations in Table 7 show that the difference lies in the number of adjustments. The incorporation of 

the CVaR constraint into the SDM-CVaR model leads to less adjustments. 

Table 7. Comparisons of the SDM and SDM-CVaR models on the 12 instances. 

  SDM SDM-CVaR 

 Baseline 

No. 

No. of 

regular  

No. of 

overtime 

No. of 

adjustment 

Soft 

constraint 

violation 

No. of 

regular  

No. of 

overtime 

No. of 

adjustment 

Soft 

constraint 

violation 

Jan 286 231 25 42 0 231 25 35 0 

Feb 256 212 22 35 4 212 22 30 4 

Mar 280 230 25 40 3 230 25 32 3 

Apr 286 231 25 44 0 231 25 33 0 

May 301 235 32 46 1 235 32 40 1 

Jun 294 231 25 42 0 231 25 40 0 

Jul 289 230 25 42 0 230 25 42 0 

Aug 301 236 30 53 2 236 30 47 2 

Sep 298 234 28 43 1 234 28 43 1 
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Oct 286 230 26 38 0 230 26 38 0 

Nov 283 230 26 32 2 230 26 28 2 

Dec 260 210 20 55 1 210 20 42 1 

Avg 285 228.33 25.75 42.67 1.17 228.33 25.75 37.5 1.17 

s.d. 13.77 8.01 3.06 6.29 1.28 8.01 3.06 5.60 1.28 

 

6. Conclusions 

In healthcare management systems, one of the main issues faced by the operations managers when 

planning and scheduling nursing resources is on the handling of non-stationary and uncertain demand 

from the patients. Intensive research has been carried out on the scheduling of nurse shifts based on 

pre-defined demand of shifts. Decision making on nurse staffing and scheduling, however, should be 

considered realistically in integrated and stochastic settings. When patient demand fluctuates, 

overstaffing or understaffing may occur. In particular, understaffing needs to be paid more attention to, 

as it can severely deteriorate the quality of care. 

In this paper, two integrated nurse scheduling models with patient demand uncertainty have been 

proposed and analysed. The experimental results showed that the Stochastic Demand Model (SDM) 

with CVaR constraint is able to control the number of shortage shifts at a user-specified confidence 

level. The models can potentially lead to improvement of healthcare quality and cost reductions. Our 

research demonstrates how nurse schedule can be created adaptively with respect to the level of risk 

the decision maker is willing to take.  

In this paper, we used historical patient data and the forecast error vectors by the ARIMA method to 

generate scenarios for the SDM and SDM-CVaR models. These scenarios are rather rough 

estimations of the real patient demand scenarios. The numbers of the scenarios are modest. As known 

in the research, different scenario generation methods model the uncertainties in different ways, thus 

may lead to different solutions in decision-making and better scheduling of nurse shifts. In our future 

work the stochastic demand models will be investigated with a larger number of scenarios generated 

using different methods based on further investigations of patient demand distributions. 
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