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ABSTRACT 
 
The work presented in this paper could be thought of as a 
case based hyper-heuristic approach for examination 
timetabling problems. A hyper-heuristic can be taken to be 
an automated approach to choose heuristics. Heuristics 
and meta-heuristics are employed in this capacity in [1] 
and [2]. In this paper the case-based paradigm is explored 
as a heuristic selector for examination timetabling 
problems. We suggest heuristics during the problem 
solving process by employing heuristics which worked 
well on previous similar situations and that are memorized 
in a case base. The suggestions for heuristics are made 
according to the knowledge of modeling the partial 
solutions within particular periods of problem solving with 
specific heuristics, which are discovered by tabu search. 
Experimental results show that this approach performs 
better than individual heuristics and they indicate much 
potential future work to be carried out in this area. 

 

 
1. INTRODUCTION 

 
Timetabling problems are a special type of scheduling 
problem that have been well studied over the last 4 
decades [3], [4], [5], [6] and [7]. To solve a general 
timetabling problem, a certain number of events (exams, 
courses, meetings, etc) needs to be assigned to a limited 
number of time periods while satisfying (as much as 
possible) the required constraints. Constraints can be 
grouped into two types: hard and soft constraints. Hard 
constraints cannot be violated under any circumstances. 
For example, two events with common resources (such as 
students) cannot be assigned simultaneously. Soft 
constraints are desirable but not essential. Examples of 
soft constraints are that two events should not be 
scheduled consecutively or an event should be scheduled 
into a specific room if possible. Recent research on 
timetabling employs a variety of algorithms. These include 

tabu search (e.g. [8] and [9]), simulated annealing (e.g. 
[10]) and evolutionary algorithms (e.g. [11], [12] and 
[13]). Other approaches include graph heuristics (e.g. 
[14]), constraint logic programming (e.g. [15]) and 
knowledge-based techniques (e.g. [16] and [17]). A large 
number of recent papers on a variety of timetabling 
problems can be found in [18], [19], [20], [21] and [22]. 

Hyper-heuristics have recently been studied for some 
scheduling problems [7], [23], [24] and [25]. These papers 
choose heuristics to solve problems often in attempt to 
raise the level of generality [1], [2] and [7]. Most of the 
previous approaches studied in timetabling employ a 
variety of pre-defined heuristics to be operated directly on 
the problem. However, a specific heuristic developed to 
work well on a particular type of problem may not work 
well on other problems. Indeed, this is often the case. A 
hyper-heuristic approach solves problems by selecting 
heuristics to be operated during the problem solving. The 
aim is that such approaches would be much more flexible 
and capable of solving a wider range of problems by 
adaptable learning according to the current particular 
situations. 

Knowledge discovery techniques are employed in our 
approach to obtain the knowledge within the heuristic 
selectors on modeling problems, comparing cases and 
choosing heuristics. Fayyad et al. [26] defined Knowledge 
discovery to be the “non-trivial process of identifying 
valid, novel, potentially useful, and ultimately 
understandable patterns in data”. Applications of 
Knowledge discovery are usually within ill-structured 
domains, which of course, is exactly what timetabling 
problems are. Knowledge discovery is usually carried out 
on databases. Case-Based Reasoning (CBR) [27] in our 
approach works on a case base which stores the 
knowledge discovered and provides heuristics for the 
heuristic selector to solve the timetabling problem in hand. 
 

2. THE CASE BASED HYPER-HEURISTIC 
 
In Artificial Intelligence, problems are often solved by 
searching for possible solutions in the search space and 



using a variety of heuristics that guide the search towards a 
promising region. However, experience/knowledge of 
employing different heuristics during the problem solving 
is usually discarded afterwards. The objective of the 
proposed case based hyper-heuristic approach is to collect 
and model this experience/knowledge and reuse it when 
solving new problems. The overall system and the 
knowledge discovery process on specific heuristics for 
different timetabling problems are discussed in the 
following sub-sections. Throughout the paper, source 
cases will be used to denote the cases stored in the case 
base. 
 
2.1. The overall CBR system 
 
Figure 1 presents the CBR system that we have developed. 
 
 
 
 
 
 
 
 
 
 

Figure 1 The case based hyper-heuristic system 

 
To solve an examination timetabling problem input 

into the system, the Heuristic Selector finds different good 
heuristics from the case base to construct the solution step 
by step. In each step of the construction, the Heuristic 
Selector retrieves the most similar source case by using a 
similarity measure (presented later in formula (a)) to 
compare the current partial solution being constructed with 
source cases, which were partial solutions obtained during 
the problem solving of the previous problems. The best 
heuristic stored with this retrieved case is suggested and 
employed in the next step of the construction of the current 
solution. By retrieving specific heuristics from the case 
base according to the partial solutions obtained, the 
construction process is carried out step by step and is 
terminated when the stopping condition is met, which is 
when all of the exams are scheduled. The aim of the 
approach is that, by employing specific good heuristics in 
particular situations, good schedules can be made to 
produce good quality solutions. 

In the CBR system developed: 
•  The Case Base is a collection of cases describing 

different possible partial solutions during the problem 
solving, with the suggested good heuristics that will 
be employed next to construct the solutions. 

•  Cases are all represented by a list of feature-value 
pairs, in which features are characteristics that 
describe the properties of different partial solutions 
obtained during the problem solving. 

•  Heuristics in the current system are four well-studied 
sequential methods in the timetabling literature that 
order the exams to be scheduled one by one by using 
heuristics. They are: Largest Degree, Largest Degree 
with tournament selection, Color Degree and 
Saturation Degree. 

•  The similarity measure calculates the sum of 
differences of the values between each pair of features 
in the cases being compared. This is the nearest 
neighborhood approach that is widely used with 
feature-value pair representations [29]. It is shown in 
formula (a): 
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where 
 j is the number of features representing the cases; 
 fsi, fti are values of the ith feature in the source 

case Cs and new case Ct, which are the possible 
partial solutions during the problem solving. 

The higher the similarity measure S(Cs, Ct) is, the 
more similar the two cases are. The best two 
heuristics of the source case with the highest 
similarity are retrieved and suggested as good 
heuristics for the new case. 

•  The penalty function evaluates the quality of solutions 
and is presented in formula (b): 

 
P = 10 × S1 + 5 × S2  (b) 

 
where 
 S1 is the number of violations of exams being 

scheduled in consecutive time periods; 
 S2 is the number of violations of exams being 

scheduled in two time periods with only one time 
period in between. 

The values 10 and 5 are weights that reflect the 
relevant importance of the constraints S1 and S2. They 
are chosen subjectively by utilizing our experience in 
timetabling. 

 
2.2. Knowledge discovering in CBR 
 
The basic assumption in CBR is that similar problems 
have similar solutions [27]. The retrieval process in CBR 
is a similarity-driven process that assesses cases by a 
similarity measure that compares the cases, which are 
represented by a list of features in the system. Thus in this 
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hyper-heuristic approach, proper features need to be 
chosen in such a way that cases which they represent can 
be compared to make good suggestions for heuristics to 
use. That is, only those features of problems that can affect 
and contribute to the good suggestions of heuristics need 
to be employed to describe cases. Knowledge discovery 
uses the techniques that were investigated in our previous 
work on course timetabling [28] to discover features that 
model partial solutions and should be used in the Heuristic 
Selector. The knowledge discovery process is described 
below. 
 
2.2.1. Preparation for knowledge discovery  
To carry out knowledge discovery on the Heuristic 
Selector in the CBR system, a case base is built up which 
consists of a set of cases with their best heuristics. All of 
the heuristics being studied are implemented to construct 
solutions step by step for a set of examination timetabling 
problems. According to their performance at each step 
during the problem solving, these heuristics are ranked by 
evaluating the particular partial solutions they generated at 
that time. The heuristic that performs the best (makes the 
lowest penalty schedule) is given the highest rank and is 
seen as the best heuristic for the corresponding partial 
solution. These partial solutions, modeled by a list of 
possible features, and their best heuristics are then stored 
as source cases. It is possible that on some partial 
solutions, all or most of the heuristics perform the same. In 
this situation these solutions will not be stored as they may 
not be good representatives for a class of specific 
situations and thus may not contribute to good suggestions 
of heuristics. 

A set of training cases is also produced with the 
expected heuristics that the Heuristic Selector should 
suggest. They are produced using the same process as that 
presented above. For each case (partial solution in each 
step of the solution construction), the best heuristic that 
makes the lowest penalty schedule is obtained. This 
heuristic will be the expected one that the Heuristic 
Selector should suggest. Knowledge discovery is 
reinforced to find the features used in the Heuristic 
Selector to suggest the expected heuristic in the training 
cases. 
 
2.2.2. Knowledge discovery on the heuristic selector 
Knowledge discovery is carried out to choose proper 
feature lists in case representation on the case base built up 
and a set of training cases whose best heuristics are 
obtained beforehand. The objective is to find a feature list 
to be used in the Heuristic Selector so that good heuristics 
can be selected to make the least penalty schedules in the 
next step of the construction of the partial solutions. 

For each of the training cases, the Heuristic Selector 
finds the most similar source case. If the best heuristic of 

the training case obtained beforehand is within the best 
two heuristics of this retrieved source case, the suggestion 
is concluded as successful using this particular feature list 
within the Heuristic Selector. All of the training cases are 
input into the system to check the suggestions that the 
Heuristic Selector makes upon the feature list used. The 
system performance is defined as the percentage of the 
successful suggestions on all of the training cases. 

Knowledge discovery is a process of adjusting the 
features selected to improve the system performance on all 
of the training cases. In the previous work, this was carried 
out by repeatedly investigating the reasons for failures in 
suggestions and changing the feature list accordingly. 

In this work the knowledge discovery is seen as a 
search process on all of the possible combinations of 
features. Tabu search is used to carry out the search in the 
search space of different feature lists of different lengths 
[28]. An initial feature list is first selected randomly from 
a set of possible features to model all of the cases. 
Possible moves include changing one of the features, 
removing irrelevant features and introducing new features 
describing the characteristics of cases in the CBR system. 
The fitness function employed in the tabu search is the 
system performance obtained on all of the training cases. 
The feature list that gives the highest system performance 
on all of the training cases will be used in the Heuristic 
Selector within the case based hyper-heuristic approach to 
solve problems by employing the heuristics suggested 
during the problem solving. 
 
 

3. EXPERIMENTS AND RESULTS 
 
All of the timetabling problems in our system are 
generated by constructing a conflict matrix that defines the 
hard constraints between exams. Each element marked as 
‘1’ in the conflict matrix denotes the conflict between the 
corresponding exams indicated by row and column. The 
density, which is the number of ‘1’s to the number of 
overall elements in the matrix, is from 0.65 to 0.85. The 
size of the problems ranges from 100 to 300 exams. All of 
the problem data used in this section is available online at 
http://www.cs.nott.ac.uk/~rxq/publications.htm. 
 
3.1. Knowledge discovering on the heuristic selector 

 
By carrying out all of the heuristics on a set of timetabling 
problems generated using the conflict matrix, 95 source 
cases are produced to build the case base and 95 training 
cases are produced and used to carry out the knowledge 
discovery. Tabu search is implemented to discover the 
feature list that gives the highest system performance on 
all of the training cases. Possible features include 11 
different characteristics of the partial solution and the 



ratios between each pair of them. They are also available 
online at http://www.cs.nott.ac.uk/~rxq/publications.htm. 

After the Knowledge discovery on feature lists, the 
case base is then refined by the “Leave-One-Out” strategy: 
Each time a source case is removed to see if the system 
performance is improved. Those that contribute to better 
system performance (which is decreased if it is removed) 
are retained. 

Another set of 195 testing cases was generated to test 
the Heuristic Selector with the feature lists discovered by 
the tabu search presented above. The lengths of the feature 
lists, the number of cases in the refined case base and the 
system performance on both the training cases and testing 
cases are presented in Table 1. 
 

Table 1 System performance on different lengths of feature lists 
found by tabu search 

No. of 
features 

System 
performance on 
training cases 

No. of 
source 
cases 

System 
performance on 

testing cases 
2 97% 95 87% 
3 100% 93 91% 
4 100% 93 91% 
5 100% 93 91% 
6 92% 89 89% 
7 100% 93 89% 
8 87% 95 86% 
9 87% 95 85% 
10 85% 93 84% 

 
From the system performance on both the training 

cases and testing cases we can observe that a higher 
number of features in the case representation does not 
yield better results. The system performs the best (where 
almost 9 out of 10 testing cases obtain the expected 
heuristics) with a relatively smaller number of features in 
the Heuristic Selector, namely from 3 to 7. This happens 
because when more less-relevant features are accessed in 
the Heuristic Selector, the similarities are too close to each 
other to find good suggestive source cases for the specific 
situation. 
 
3.2. Problem solving using the hyper-heuristic 
 
A set of 100 examination timetabling problems of different 
sizes is generated with densities ranging from 0.65 to 0.85 
in the conflict matrix. These problems are solved using the 
hyper-heuristic approach on the CBR system with the 
feature lists discovered by tabu search. The average 
penalties of solutions obtained by individual sequential 
heuristics and the average penalties of solutions obtained 
by the case based hyper-heuristic on the feature lists of 
different lengths discovered are presented in Table 2 and 
Table 3, respectively. 

 

Table 2 Average penalties of solutions by sequential heuristics 

Sequential heuristics CD SD LD LDT 
Penalty 328 202 245 252 

 

Table 3 Average penalties of solutions by using case based hyper-
heuristic with different features 

No. of 
features 

2 3 4 5 6 7 8 9 10 

Penalty 182 199 193 195 196 203 197 200 203 
 
The results shown in Table 3 indicate that, our 

approach provides solutions that have better average 
penalties than when using individual sequential heuristics 
(except in 2 cases – 7 and 10 features). By comparing the 
results with those presented in Table 1, we can see that 
roughly the higher the accuracy of the good suggestions on 
heuristics, the better the case based hyper-heuristic 
performs. Using the Heuristic Selector, good heuristics are 
suggested and thus better quality solutions are produced.  
 
 

4. CONCLUDING REMARKS 
 
In this paper we present a case based hyper-heuristic 
approach that chooses simple sequential heuristics using 
knowledge gained from solving examination timetabling 
problems. Based on this knowledge, the Heuristic Selector 
recommends good heuristics to construct solutions, aiming 
at minimizing the penalty of the schedule at each step. It 
has the ability to use heuristics adaptably during the 
problem solving. The aim is that the case based hyper-
heuristic approach should be more flexible for solving a 
wider range of problems. 

Of course, one of the main motivations behind 
exploring this heuristic selection approach is to attempt to 
develop systems that can operate at a higher level of 
generality than problem specific timetabling approaches. 
In addition, the approach also indicates that at least for the 
evaluation function used here, there is significant promise 
for also finding better quality solutions. 
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