
PROCEEDINGS OF THE SEAL'02, 277-281. 18-22, NOV, 2002, ORCHID COUNTRY CLUB, SINGAPORE

CASE BASED HEURISTIC SELECTION FOR EXAMINATION
TIMETABLING

E.K. Burke, S. Petrovic, R. Qu

School of Computer Science and Information Technology,
 Jubilee Campus, University of Nottingham,

Nottingham, NG8 1BB, U.K.

ABSTRACT

The work presented in this paper could be thought of as a
case based hyper-heuristic approach for examination
timetabling problems. A hyper-heuristic can be taken to be
an automated approach to choose heuristics. Heuristics
and meta-heuristics are employed in this capacity in [1]
and [2]. In this paper the case-based paradigm is explored
as a heuristic selector for examination timetabling
problems. We suggest heuristics during the problem
solving process by employing heuristics which worked
well on previous similar situations and that are memorized
in a case base. The suggestions for heuristics are made
according to the knowledge of modeling the partial
solutions within particular periods of problem solving with
specific heuristics, which are discovered by tabu search.
Experimental results show that this approach performs
better than individual heuristics and they indicate much
potential future work to be carried out in this area.

1. INTRODUCTION

Timetabling problems are a special type of scheduling
problem that have been well studied over the last 4
decades [3], [4], [5], [6] and [7]. To solve a general
timetabling problem, a certain number of events (exams,
courses, meetings, etc) needs to be assigned to a limited
number of time periods while satisfying (as much as
possible) the required constraints. Constraints can be
grouped into two types: hard and soft constraints. Hard
constraints cannot be violated under any circumstances.
For example, two events with common resources (such as
students) cannot be assigned simultaneously. Soft
constraints are desirable but not essential. Examples of
soft constraints are that two events should not be
scheduled consecutively or an event should be scheduled
into a specific room if possible. Recent research on
timetabling employs a variety of algorithms. These include

tabu search (e.g. [8] and [9]), simulated annealing (e.g.
[10]) and evolutionary algorithms (e.g. [11], [12] and
[13]). Other approaches include graph heuristics (e.g.
[14]), constraint logic programming (e.g. [15]) and
knowledge-based techniques (e.g. [16] and [17]). A large
number of recent papers on a variety of timetabling
problems can be found in [18], [19], [20], [21] and [22].

Hyper-heuristics have recently been studied for some
scheduling problems [7], [23], [24] and [25]. These papers
choose heuristics to solve problems often in attempt to
raise the level of generality [1], [2] and [7]. Most of the
previous approaches studied in timetabling employ a
variety of pre-defined heuristics to be operated directly on
the problem. However, a specific heuristic developed to
work well on a particular type of problem may not work
well on other problems. Indeed, this is often the case. A
hyper-heuristic approach solves problems by selecting
heuristics to be operated during the problem solving. The
aim is that such approaches would be much more flexible
and capable of solving a wider range of problems by
adaptable learning according to the current particular
situations.

Knowledge discovery techniques are employed in our
approach to obtain the knowledge within the heuristic
selectors on modeling problems, comparing cases and
choosing heuristics. Fayyad et al. [26] defined Knowledge
discovery to be the “non-trivial process of identifying
valid, novel, potentially useful, and ultimately
understandable patterns in data”. Applications of
Knowledge discovery are usually within ill-structured
domains, which of course, is exactly what timetabling
problems are. Knowledge discovery is usually carried out
on databases. Case-Based Reasoning (CBR) [27] in our
approach works on a case base which stores the
knowledge discovered and provides heuristics for the
heuristic selector to solve the timetabling problem in hand.

2. THE CASE BASED HYPER-HEURISTIC

In Artificial Intelligence, problems are often solved by
searching for possible solutions in the search space and

using a variety of heuristics that guide the search towards a
promising region. However, experience/knowledge of
employing different heuristics during the problem solving
is usually discarded afterwards. The objective of the
proposed case based hyper-heuristic approach is to collect
and model this experience/knowledge and reuse it when
solving new problems. The overall system and the
knowledge discovery process on specific heuristics for
different timetabling problems are discussed in the
following sub-sections. Throughout the paper, source
cases will be used to denote the cases stored in the case
base.

2.1. The overall CBR system

Figure 1 presents the CBR system that we have developed.

Figure 1 The case based hyper-heuristic system

To solve an examination timetabling problem input

into the system, the Heuristic Selector finds different good
heuristics from the case base to construct the solution step
by step. In each step of the construction, the Heuristic
Selector retrieves the most similar source case by using a
similarity measure (presented later in formula (a)) to
compare the current partial solution being constructed with
source cases, which were partial solutions obtained during
the problem solving of the previous problems. The best
heuristic stored with this retrieved case is suggested and
employed in the next step of the construction of the current
solution. By retrieving specific heuristics from the case
base according to the partial solutions obtained, the
construction process is carried out step by step and is
terminated when the stopping condition is met, which is
when all of the exams are scheduled. The aim of the
approach is that, by employing specific good heuristics in
particular situations, good schedules can be made to
produce good quality solutions.

In the CBR system developed:
• The Case Base is a collection of cases describing

different possible partial solutions during the problem
solving, with the suggested good heuristics that will
be employed next to construct the solutions.

• Cases are all represented by a list of feature-value
pairs, in which features are characteristics that
describe the properties of different partial solutions
obtained during the problem solving.

• Heuristics in the current system are four well-studied
sequential methods in the timetabling literature that
order the exams to be scheduled one by one by using
heuristics. They are: Largest Degree, Largest Degree
with tournament selection, Color Degree and
Saturation Degree.

• The similarity measure calculates the sum of
differences of the values between each pair of features
in the cases being compared. This is the nearest
neighborhood approach that is widely used with
feature-value pair representations [29]. It is shown in
formula (a):

1)(1),(
1

2 +∑ −=
=

j

i
iits ftfsCCS (a)

where
 j is the number of features representing the cases;
 fsi, fti are values of the ith feature in the source

case Cs and new case Ct, which are the possible
partial solutions during the problem solving.

The higher the similarity measure S(Cs, Ct) is, the
more similar the two cases are. The best two
heuristics of the source case with the highest
similarity are retrieved and suggested as good
heuristics for the new case.

• The penalty function evaluates the quality of solutions
and is presented in formula (b):

P = 10 × S1 + 5 × S2 (b)

where
 S1 is the number of violations of exams being

scheduled in consecutive time periods;
 S2 is the number of violations of exams being

scheduled in two time periods with only one time
period in between.

The values 10 and 5 are weights that reflect the
relevant importance of the constraints S1 and S2. They
are chosen subjectively by utilizing our experience in
timetabling.

2.2. Knowledge discovering in CBR

The basic assumption in CBR is that similar problems
have similar solutions [27]. The retrieval process in CBR
is a similarity-driven process that assesses cases by a
similarity measure that compares the cases, which are
represented by a list of features in the system. Thus in this

solution

No

CBR System

Heuristic
Selector

Construct
Solution

Case Base Yes
Stop?

problem

hyper-heuristic approach, proper features need to be
chosen in such a way that cases which they represent can
be compared to make good suggestions for heuristics to
use. That is, only those features of problems that can affect
and contribute to the good suggestions of heuristics need
to be employed to describe cases. Knowledge discovery
uses the techniques that were investigated in our previous
work on course timetabling [28] to discover features that
model partial solutions and should be used in the Heuristic
Selector. The knowledge discovery process is described
below.

2.2.1. Preparation for knowledge discovery
To carry out knowledge discovery on the Heuristic
Selector in the CBR system, a case base is built up which
consists of a set of cases with their best heuristics. All of
the heuristics being studied are implemented to construct
solutions step by step for a set of examination timetabling
problems. According to their performance at each step
during the problem solving, these heuristics are ranked by
evaluating the particular partial solutions they generated at
that time. The heuristic that performs the best (makes the
lowest penalty schedule) is given the highest rank and is
seen as the best heuristic for the corresponding partial
solution. These partial solutions, modeled by a list of
possible features, and their best heuristics are then stored
as source cases. It is possible that on some partial
solutions, all or most of the heuristics perform the same. In
this situation these solutions will not be stored as they may
not be good representatives for a class of specific
situations and thus may not contribute to good suggestions
of heuristics.

A set of training cases is also produced with the
expected heuristics that the Heuristic Selector should
suggest. They are produced using the same process as that
presented above. For each case (partial solution in each
step of the solution construction), the best heuristic that
makes the lowest penalty schedule is obtained. This
heuristic will be the expected one that the Heuristic
Selector should suggest. Knowledge discovery is
reinforced to find the features used in the Heuristic
Selector to suggest the expected heuristic in the training
cases.

2.2.2. Knowledge discovery on the heuristic selector
Knowledge discovery is carried out to choose proper
feature lists in case representation on the case base built up
and a set of training cases whose best heuristics are
obtained beforehand. The objective is to find a feature list
to be used in the Heuristic Selector so that good heuristics
can be selected to make the least penalty schedules in the
next step of the construction of the partial solutions.

For each of the training cases, the Heuristic Selector
finds the most similar source case. If the best heuristic of

the training case obtained beforehand is within the best
two heuristics of this retrieved source case, the suggestion
is concluded as successful using this particular feature list
within the Heuristic Selector. All of the training cases are
input into the system to check the suggestions that the
Heuristic Selector makes upon the feature list used. The
system performance is defined as the percentage of the
successful suggestions on all of the training cases.

Knowledge discovery is a process of adjusting the
features selected to improve the system performance on all
of the training cases. In the previous work, this was carried
out by repeatedly investigating the reasons for failures in
suggestions and changing the feature list accordingly.

In this work the knowledge discovery is seen as a
search process on all of the possible combinations of
features. Tabu search is used to carry out the search in the
search space of different feature lists of different lengths
[28]. An initial feature list is first selected randomly from
a set of possible features to model all of the cases.
Possible moves include changing one of the features,
removing irrelevant features and introducing new features
describing the characteristics of cases in the CBR system.
The fitness function employed in the tabu search is the
system performance obtained on all of the training cases.
The feature list that gives the highest system performance
on all of the training cases will be used in the Heuristic
Selector within the case based hyper-heuristic approach to
solve problems by employing the heuristics suggested
during the problem solving.

3. EXPERIMENTS AND RESULTS

All of the timetabling problems in our system are
generated by constructing a conflict matrix that defines the
hard constraints between exams. Each element marked as
‘1’ in the conflict matrix denotes the conflict between the
corresponding exams indicated by row and column. The
density, which is the number of ‘1’s to the number of
overall elements in the matrix, is from 0.65 to 0.85. The
size of the problems ranges from 100 to 300 exams. All of
the problem data used in this section is available online at
http://www.cs.nott.ac.uk/~rxq/publications.htm.

3.1. Knowledge discovering on the heuristic selector

By carrying out all of the heuristics on a set of timetabling
problems generated using the conflict matrix, 95 source
cases are produced to build the case base and 95 training
cases are produced and used to carry out the knowledge
discovery. Tabu search is implemented to discover the
feature list that gives the highest system performance on
all of the training cases. Possible features include 11
different characteristics of the partial solution and the

ratios between each pair of them. They are also available
online at http://www.cs.nott.ac.uk/~rxq/publications.htm.

After the Knowledge discovery on feature lists, the
case base is then refined by the “Leave-One-Out” strategy:
Each time a source case is removed to see if the system
performance is improved. Those that contribute to better
system performance (which is decreased if it is removed)
are retained.

Another set of 195 testing cases was generated to test
the Heuristic Selector with the feature lists discovered by
the tabu search presented above. The lengths of the feature
lists, the number of cases in the refined case base and the
system performance on both the training cases and testing
cases are presented in Table 1.

Table 1 System performance on different lengths of feature lists
found by tabu search

No. of
features

System
performance on
training cases

No. of
source
cases

System
performance on

testing cases
2 97% 95 87%
3 100% 93 91%
4 100% 93 91%
5 100% 93 91%
6 92% 89 89%
7 100% 93 89%
8 87% 95 86%
9 87% 95 85%
10 85% 93 84%

From the system performance on both the training

cases and testing cases we can observe that a higher
number of features in the case representation does not
yield better results. The system performs the best (where
almost 9 out of 10 testing cases obtain the expected
heuristics) with a relatively smaller number of features in
the Heuristic Selector, namely from 3 to 7. This happens
because when more less-relevant features are accessed in
the Heuristic Selector, the similarities are too close to each
other to find good suggestive source cases for the specific
situation.

3.2. Problem solving using the hyper-heuristic

A set of 100 examination timetabling problems of different
sizes is generated with densities ranging from 0.65 to 0.85
in the conflict matrix. These problems are solved using the
hyper-heuristic approach on the CBR system with the
feature lists discovered by tabu search. The average
penalties of solutions obtained by individual sequential
heuristics and the average penalties of solutions obtained
by the case based hyper-heuristic on the feature lists of
different lengths discovered are presented in Table 2 and
Table 3, respectively.

Table 2 Average penalties of solutions by sequential heuristics

Sequential heuristics CD SD LD LDT
Penalty 328 202 245 252

Table 3 Average penalties of solutions by using case based hyper-
heuristic with different features

No. of
features

2 3 4 5 6 7 8 9 10

Penalty 182 199 193 195 196 203 197 200 203

The results shown in Table 3 indicate that, our

approach provides solutions that have better average
penalties than when using individual sequential heuristics
(except in 2 cases – 7 and 10 features). By comparing the
results with those presented in Table 1, we can see that
roughly the higher the accuracy of the good suggestions on
heuristics, the better the case based hyper-heuristic
performs. Using the Heuristic Selector, good heuristics are
suggested and thus better quality solutions are produced.

4. CONCLUDING REMARKS

In this paper we present a case based hyper-heuristic
approach that chooses simple sequential heuristics using
knowledge gained from solving examination timetabling
problems. Based on this knowledge, the Heuristic Selector
recommends good heuristics to construct solutions, aiming
at minimizing the penalty of the schedule at each step. It
has the ability to use heuristics adaptably during the
problem solving. The aim is that the case based hyper-
heuristic approach should be more flexible for solving a
wider range of problems.

Of course, one of the main motivations behind
exploring this heuristic selection approach is to attempt to
develop systems that can operate at a higher level of
generality than problem specific timetabling approaches.
In addition, the approach also indicates that at least for the
evaluation function used here, there is significant promise
for also finding better quality solutions.

5. ACKNOWLEDGEMENTS

This work was supported by EPSRC grant number
GR/N36837/01.

6. REFERENCES

[1] P. Cowling, G. Kendall and E. Soubeiga, “A Parameter-
Free Hyperheuristic for Scheduling a Sales Summit”, In:

Proceedings of the 4th International Metaheuristic Conference
(MIC2001), 127 – 131. 2001.

[2] H. T-Marin, P. Ross and M.V-Rendon, “Evolution of
Constraint Satisfaction Strategies in Examination Timetabling”, In
Proceedings of the Genetic and Evolutionary Computation
Conference, 635 – 642. 1999.

[3] M.W. Carter and G. Laporte, “Recent Developments in
Practical Exam Timetabling”, In: [17], 3 – 21. 1996.

[4] M.W. Carter and G. Laporte, “Recent Developments in
Practical Course Timetabling”, In: [19], 3 – 19. 1998.

[5] E.K. Burke, K.S. Jackson, J.H. Kingston, and R.F. Weare,
“Automated Timetabling: The Sate of The Art”. The Computer
Journal, 40(9): 565 – 571. 1997.

[6] A. Schaef, “A Survey of Automated Timetabling”. Artificial
Intelligence Review, 13: 87 – 127. 1999.

[7] E.K. Burke, S. Petrovic. “Recent Research Directions in
Automated Timetabling”. EJOR, 140(2): 266 – 280. 2002.

[8] D. Costa, “A Tabu Search Algorithm for Computing an
Operational Timetable”, EJOR, 76: 98 – 110. 1994.

[9] L.D. Gaspero and A. Schaerf, “Tabu Search Techniques for
Examination Timetabling”, In: [20], 104 – 117. 2000.

[10] K.A. Dowsland, “Off the Peg or Made to Measure”, In:
[19], 37 – 52, 1998.

[11] P. Ross, E. Hart and D. Corne, “Some Observations about
GA Based Timetabling”, In: [19], 115 – 229. 1998.

[12] W. Erben, “A Grouping Genetic Algorithm for Graph
Coloring and Exam Timetabling”, In: [20], 132 – 158. 2000.

[13] M.P. Carrasco and M.V. Pato, “A Multiobjective Genetic
Algorithm for the Class/Teacher Timetabling Problem”, In: [20],
3 – 17. 2000.

[14] E.K. Burke, J. Newall, and R. Weare, “A Simple
Heuristically Guided Search for the Timetabling Problem”. In:
Proceedings of the International ICSC Symposium on
Engineering of Intelligent Systems (EIS'98), 574 – 579. 1998.

[15] P. Chan and G. Weil, “Cyclic Staff Scheduling Using
Constraint Logic Programming”, In: [20], 159 – 175. 2000.

[16] E.K. Burke, B.L. MacCarthy, S. Petrovic, and R. Qu, “Case-
Based Reasoning in Course Timetabling: an Attribute Graph
Approach”. In: Proceedings of 4th International Conference on
Case-Based Reasoning. 90 – 104. Lecture Notes in Artificial
Intelligence 2080. Springer-Verlag. 2000.

[17] S. Petrovic and R. Qu, “Case-Based Reasoning as a
Heuristic Selector in a Hyper-Heuristic for Course Timetabling
Problems”. To appear in proceedings of 6th International

Conference on Knowledge-Based Intelligent Information &
Engineering Systems 2000.

[18] E.K. Burke and P. Ross (eds.), The First International
Conference on the Practice and Theory of Automated
Timetabling, Lecture Notes in Computer Science 1153,
Springer-Verlag, 1995.

[19] E.K. Burke and M. Carter (eds.), The Second International
Conference on the Practice and Theory of Automated
Timetabling, Lecture Notes In Computer Science 1408.
Springer-Verlag, 1998.

[20] E.K. Burke and W. Erben (eds.), The Third International
Conference on the Practice and Theory of Automated
Timetabling, Lecture Notes in Computer Science 2079,
Springer-Verlag, 2000.

[21] E.K. Burke and P. de Causmaecker (eds.), The Forth
International Conference on the Practice and Theory of
Automated Timetabling. To appear.

[22] E.K. Burke and S. Petrovic (guest editors), Feature Issue of
EJOR on Timetabling and Rostering. To appear.

[23] E. Hart, P. Ross and J. Nelson, “Solving a Real-World
Problem Using an Evolving Heuristically Driven Schedule”.
Evolutionary Computation 6: 61 – 80, 1998.

[24] P. Shaw, “Using Constraint Programming and Local Search
Methods to Solve Vehicle Routing Problems”, Proceedings of
Principles and Practice of Constraint Programming, 417 – 431.
1998.

[25] J. Berger, M. Sassi and S. Salois, “A Hybrid Genetic
Algorithm for the Vehicle Routing Problem with Windows and
Itinerary Constraints”, Proceedings of the Genetic and
Evolutionary Computation Conference 1999 (GECCO-99), 44 –
51. 1999.

[26] U. Fayyad, G. Piatetsky-Shapiro and P. Smyth R.
Uthurusamy, (eds.), Advances in Knowledge Discovery and
Data Mining, AAAI Press, Melo Park, CA, 1996.

[27] D. Leake (ed.), Case-based Reasoning: Experiences,
Lessons and Future Directions, AAAI Press, Menlo Park, CA.
1996.

[28] E.K. Burke, B. MacCarthy, S. Petrovic and R. Qu,
“Knowledge Discovery in Hyper-heuristic Using Case-Based
Reasoning on Course Timetabling”, To be published in [21].

[29] J. Kolodner, Case-Based Reasoning, Morgan Kaufmann
Publishers, 1993.

