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Abstract 

Community detection aims to identify topological structures and discover patterns in complex networks, which presents 

an important problem of great significance. The problem can be modeled as an NP hard combinatorial optimization 

problem, to which multi-objective optimization has been applied, addressing the common resolution limitation problem 

in modularity-based optimization. In the literature, ant colony optimization (ACO) algorithm, however, has been only 

applied to community detection with single objective. This is due to the main difficulties in defining and updating the 

pheromone matrices, constructing the transition probability model, and tuning the parameters. To address these issues, a 

multi-objective ACO algorithm based on decomposition (MOACO/D-Net) is proposed in this paper, minimizing 

negative ratio association and ratio cut simultaneously in community detection. MOACO/D-Net decomposes the 

community detection multi-objective optimization problem into several subproblems, and each one corresponds to one 

ant in the ant colony. Furthermore, the ant colony is partitioned into groups, and ants in the same group share a common 

pheromone matrix with information learned from high quality solutions. The pheromone matrix of each group is 

updated based on updated nondominated solutions in this group. New solutions are constructed by the ants in each 

group using a proposed transition probability model and each of them is then improved by an improvement operator 

based on the definition of strong community. After improvement, all the solutions are compared with the solutions in 

the external archive and the nondominated ones are added to the external archive. Finally each ant updates its current 

solution based on a better neighbor, which may belong to an adjacent group. The resulting final external archive 

consists of nondominated solutions, and each one corresponds to a different partition of the network. Systematic 

experiments on LFR benchmark networks and eight real-world networks demonstrate the effectiveness and robustness 

of the proposed algorithm. The ranges of proper values for each parameter are also analyzed, addressing the key issue of 

parameter tuning in ACO algorithms based on a large number of tests conducted. 
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1 Introduction 

Many real-world systems can be regarded as complex networks, such as interpersonal relationship networks and 
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scientific collaboration networks in social systems, protein networks and neuron networks in ecosystems, and internet in 

science and technology systems. Detecting community structures and analyzing functions in the complex network 

presents one of the most important and significant interdisciplinary research challenges to current scientific 

communities (Fortunato and Hric 2016; Guédon and Vershynin 2016; Zhang and Zhou 2016; Lyzinski et al. 2017; 

Schaub et al. 2017; Zhou et al. 2017). 

Mathematically complex networks can be modeled as graphs, where vertices and edges in a network can be modeled as 

nodes and links in a graph respectively (Fortunato 2010; Newman 2011). A community or a cluster is defined as a set of 

vertices whose connections should be dense inside and sparse with other outside communities (Radicchi et al. 2004; 

Newman and Girvan 2004). 

In the recent optimization-based algorithms applied to community detection, modularity of networks introduced by 

Newman and Girvan (2004) has been the most widely used objective function. It was originally applied as a stopping 

criterion in the algorithm, and quickly became an essential measure in many clustering methods. Newman (2004) 

devised a greedy method named Fast Newman (FN) algorithm to optimize the modularity of networks for the first time. 

It is an agglomerative hierarchical clustering method where vertices are merged to form larger communities if the 

modularity of the network increases. More modularity-based optimization algorithms, such as spectral optimization 

(Newman 2006) and evolutionary algorithms (EAs), have been later proposed to solve community detection problems. 

CNM algorithm proposed by Clauset, Newman and Moore (2004) is the improvement version of FN algorithm. By 

exploiting some shortcuts in the optimization problem and using more sophisticated data structures, CNM runs far more 

quickly and can deal with large scale network. Based on CNM, Mu et al. (2014) proposed a two-stage algorithm called 

CNM-IC with an influence coefficient, which can detect the hierarchical, non-overlapping and overlapping community 

structure. 

There is a resolution limitation problem, however, in modularity-based algorithms (Fortunato, and Barthélemy, 2007). It 

means that modularity optimization may fail to identify communities smaller than a scale, depending on the overall size of 

the network and the degree of interconnectedness between the communities. A new measure called modularity density 

was thus proposed by Li et al. (2008) to address this issue. The experimental results showed that, using tunable 

coefficient of different values, modularity density can reveal communities at different hierarchical levels. Gong et al. 

(2012) solved community detection as a multi-objective optimization problem by using the multi-objective evolutionary 

algorithm based on decomposition (MOEA/D) (Zhang et al. 2007), where modularity density was divided into two parts: 

ratio association (Angelini et al. 2007) and ratio cut (Wei et al. 1991). Therefore different community structures can be 

revealed in a single run. 

Besides EAs, ant colony optimization (ACO) algorithm is also a member of bionic algorithms. ACO was firstly 

proposed by Dorigo (1992), inspired by the behavior of foraging of ant colonies. It is a population-based and parallel 

algorithm with outstanding global search ability, and has been integrated with other algorithms (Ji et al. 2011). ACO has 

been successfully applied to many NP hard combinatorial optimization problems including traveling salesman problem 

(Dorigo and Gambardella 1997), job shop scheduling (Colorni et al. 1994), graph coloring (Costa and Hertz 1997) and 

vehicle routing (Bullnheimer et al. 1999). An algorithmic framework for continuous ACO algorithms called UACOR, 

from which earlier continuous ACO algorithms can be instantiated, was introduced by Liao et al. (2014). Ke and Zhang 

et al. (2013) introduced a multi-objective ACO algorithm called MOEA/D-ACO which combines ACO and MOEA/D. 

MOEA/D-ACO showed good performance in solving the multi-objective traveling salesman problem and 

multi-objective 0-1 knapsack problem. 

In recent years ACO has been applied to the community detection problem. He et al. (2011) proposed a Multi-layer 

ACO without employing the pheromone parameter to reduce the tuning time. Each ant in the algorithm only decides 

whether its current vertex belongs to the community of its preceding vertex. To further improve the algorithm 

performance, a Markov random walk theory-based ACO was proposed by Jin et al. (2011), where each ant detects its 
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own community by using a new random walk model. Chang et al. (2013) suggested a modularity-based optimization 

method named ACO-Net which updates pheromone trails within the Max-Min Ant System (MMAS) (Stützle and Hoos 

2000). To avoid redundant computing and premature convergence in ACO-Net, Mu et al. (2014) introduced an 

intelligent ACO (IACO-Net), using intelligent ants with proactive-learning and self-learning to explore the search space 

in a more efficient and stable way. 

Other issues in applying ACO-based algorithms to community detection are worth further investigation. Firstly results 

obtained by ACO are quite sensitive to parameter tuning on the pheromone mechanism and probabilistic choosing 

model. These include the pheromone information factor 𝛼, the heuristic information factor 𝛽, and the persistence ratio 

𝜌. Secondly, like in the other single objective optimization algorithms, the resolution limitation problems also occur in 

ACO for detecting communities in complex networks. Many runs are needed to tune the parameters in single objective 

ACO to obtain partitions at different hierarchical levels. 

A multi-objective ant colony optimization algorithm based on decomposition (MOACO/D-Net) is proposed in this 

paper to address the above mentioned issues and solve the community detection as a multi-objective optimization 

problem. The problem is divided into a number of subproblems, and each one is addressed by an ant in the ant colony 

and corresponds to a particular point in the Pareto Front (PF). To improve the communication between the ants, the ant 

colony is partitioned into several groups, and each has its neighbors which may belong to an adjacent group. In each 

generation, each ant constructs a new solution according to the proposed transition probability model. The ants in the 

same group share a common pheromone information matrix, which is updated based on the information extracted from 

the newly constructed solutions with good quality in this group that are nondominated by the solutions in external archive 

and then added into it. At the end of each generation, each ant then updates its current solution by a better neighbor. In 

addition to systematic experiments on LFR benchmark networks (Lancichinetti et al. 2008) and eight real-world 

networks, the ability of MOACO/D-Net on detecting communities at different hierarchical levels on a real-world 

network is demonstrated. 

The contributions of this paper are as follows. (1) A new solver named MOACO/D-Net is provided for the community 

detection problem by combining ACO and MOEA/D. (2) In MOACO/D-Net several new strategies are designed for 

solving community detection problem, including a new transition probability model and update of pheromone matrices 

based on the concepts of decomposition, as well as a new improvement operator based on the definition of strong 

community that produces better solutions with much less computation cost. (3) The key issue of parameter tuning in 

ACO algorithms is addressed by examining the ranges of proper values for each parameter in MOACO/D-Net based on 

abundant experiments conducted. 

The rest of this paper is arranged as follows. Section 2 defines the community detection problem and introduces some 

basic concepts used in the decomposition-based multi-objective optimization algorithm. Section 3 presents the details of 

MOACO/D-Net. Section 4 presents the experiments and analysis. Finally conclusions are provided in Section 5. 

 

2 Basic concepts 

2.1 Multi-objective optimization 

A multi-objective optimization problem can be defined (Gong et al. 2012) as follows: 

 minimize 𝑭(𝒙) = (𝑓1(𝒙), 𝑓2(𝒙),… , 𝑓𝑚(𝒙))
𝑇
   subject to  𝒙 ∈ Ω (1) 

where x is a decision vector, Ω is the decision space and 𝑭 includes m objective functions. Assuming 𝒙𝐴, 𝒙𝐵 ∈ Ω are 

two different decision vectors of a minimization problem, 𝒙𝐴 dominates 𝒙𝐵 (written as 𝒙𝐴 ≻ 𝒙𝐵) if: 
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 ∀𝑖 = 1,2, … ,𝑚: 𝑓𝑖(𝒙𝐴) ≤ 𝑓𝑖(𝒙𝐵)   ∧    ∃𝑗 = 1,2,… ,𝑚: 𝑓𝑗(𝒙𝐴) < 𝑓𝑗(𝒙𝐵) (2) 

𝒙∗ ∈ Ω is a Pareto-optimal solution or nondominated solution if there exists no another 𝒙 ∈ Ω such that 𝒙 ≻ 𝒙∗. The 

set of all nondominated solutions is called the Pareto-optimal set which can be defined as: 

 𝑃∗ ≜ {𝒙∗ ∈ Ω|¬∃𝒙 ∈ Ω, 𝒙 ≻ 𝒙∗} (3) 

The Pareto Front 𝑃𝐹∗ is a surface in the objective function space, which consists of all the corresponding objective 

vectors of Pareto-optimal solutions in 𝑃∗. 

 𝑃𝐹∗ = {𝑭(𝒙∗) = (𝑓1(𝒙
∗), 𝑓2(𝒙

∗), … , 𝑓𝑚(𝒙
∗))

𝑇
|𝒙∗ ∈ 𝑃∗} (4) 

A multi-objective optimization algorithm aims to find sufficient nondominated solutions to approximate the true 

Pareto-optimal front. 

2.2 Definition of community detection 

Generally a complex network can be modeled as a graph, which is represented by 𝐺 = (𝑉, 𝐸), with 𝑛 = |𝑉| vertices 

and 𝑛𝑒 = |𝐸| edges. V is a set of vertices and E is a set of edges between two vertices in G. A is an 𝑛 × 𝑛 adjacent 

matrix of graph G, and element 𝐴𝑖𝑗 is 1 if vertex 𝑣𝑖 and vertex 𝑣𝑗 are connected, otherwise 𝐴𝑖𝑗 = 0. The degree of 

vertex 𝑣𝑖 can be expressed as 𝑘𝑖 = ∑ 𝐴𝑖𝑗𝑗∈𝑉 . In a final partition 𝑃 = {𝑉1, 𝑉2, … , 𝑉𝐶} of G, each element 𝑉𝑖  is a proper 

subset of V, where C is the number of communities. 

As mentioned above, connections between vertices in the same community should be dense and those between different 

communities should be sparse. Based on this principle, Radicchi et al. (2004) defined a community in a strong sense 

and in a weak sense, as described below. 

For simplicity, a subset 𝑉𝑖 ∈ 𝑉 is written as U. U is a community in the strong sense if 𝑘𝑖𝑛
𝑖 > 𝑘𝑜𝑢𝑡

𝑖 ,   ∀𝑖 ∈ 𝑈, and U is a 

community in the weak sense if ∑ 𝑘𝑖𝑛
𝑖

𝑖∈𝑈 > ∑ 𝑘𝑜𝑢𝑡
𝑖

𝑖∈𝑈 , where 𝑘𝑖𝑛
𝑖  (internal degree) is the number of edges between 𝑣𝑖 

and other vertices in U, 𝑘𝑜𝑢𝑡
𝑖  (external degree) is the number of edges of vertex 𝑣𝑖 connected to the rest of vertices in 

V. Therefore each vertex in a strong community U has a larger internal degree and in a weak community U the sum of 

all the internal degree should be larger than that of all the external degree. Furthermore a strong community is also a 

weak community, but not vice versa. 

2.3 Objective functions 

Multi-objective optimization algorithms have already been applied to solve the community detection problem. A 

multi-objective genetic algorithm called MOGA-Net was introduced to find hierarchical structures (Pizzuti 2009), with 

two different objectives: community score, as proposed in the GA-Net (Pizzuti 2008), and community fitness 

(Lancichinetti et al. 2009). However, optimizing the community fitness does not lead to good partitions. Gong et al. 

(2014) proposed a multi-objective discrete particle swarm optimization algorithm named MODPSO with two objectives, 

namely kernel k-means and ratio cut. These objectives can be extended to a signed version, which is suitable for the 

signed network. 

Considering the resolution limitation problem in modularity, modularity density can be used as the objective function 

for community detection (Li et al. 2008). Given a partition 𝑃 = {𝑉1, 𝑉2, … , 𝑉𝐶} of an undirected graph, C is the number 

of communities. For 𝑖 = 1,2, … , 𝐶, the modularity density is defined in Eq. (5) as: 

 𝐷 =∑
𝐿(𝑉𝑖 , 𝑉𝑖) − 𝐿(𝑉𝑖 , �̅�𝑖)

|𝑉𝑖|
= ∑

𝐿(𝑉𝑖 , 𝑉𝑖)

|𝑉𝑖|
−∑

𝐿(𝑉𝑖 , �̅�𝑖)

|𝑉𝑖|

𝐶

𝑖=1

𝐶

𝑖=1

𝐶

𝑖=1

 (5) 
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where 𝑉𝑖 is the set of vertices in the 𝑖th community and �̅�𝑖 = 𝑉 − 𝑉𝑖, 𝐿(𝑉1, 𝑉2) = ∑ 𝐴𝑖𝑗𝑖∈𝑉1,𝑗∈𝑉2 . 

The larger the value D is, the more accurate a partition is. In fact, the first term of D is equivalent to the ratio association 

(Angelini et al. 2007), and the other term is equivalent to the ratio cut (Wei et al. 1991). The modularity density D can 

thus be seen as a combination of the ratio association and the ratio cut. Generally maximizing the ratio association often 

partitions a network into small communities with dense interconnections, while minimizing the ratio cut often partitions 

a network into large communities with sparse connections with the others. 

In this paper, Negative Ratio Association (NRA) and Ratio Cut (RC) are employed in the objective function vector, and 

is minimized as shown in Eq. (6).  

 minimize 𝑭(𝒙) = (𝑓1(𝒙), 𝑓2(𝒙))
𝑇
,

{
 
 

 
 
𝑓1(𝒙): NRA = −∑

𝐿(𝑉𝑖 , 𝑉𝑖)

|𝑉𝑖|

𝐶

𝑖=1

𝑓2(𝒙): RC =∑
𝐿(𝑉𝑖 , �̅�𝑖)

|𝑉𝑖|

𝐶

𝑖=1

       

 (6) 

2.4 Decomposition of multi-objective optimization problems 

In the literature, several approaches have been used to decompose a multi-objective optimization problem into N 

subproblems (Miettinen 1999; Adriano and Paolo 1984; Ehrgott 2005; Eichfelder 2008). The two most commonly used 

approaches are weighted sum approach and Tchebycheff approach. In our work, the Tchebycheff approach (Zhang et al. 

2007) is employed to convert the multi-objective community detection problem into a number of single-objective 

subproblems, each modeled as a minimization problem shown in Eq. (7). 

 𝑔(𝒙|𝝀) = max
1≤𝑖≤𝑚

{𝜆𝑖|𝑓𝑖(𝒙) − 𝑧𝑖
∗|}            𝑧𝑖

∗ = 𝑚𝑖𝑛
𝑥∈𝛺

𝑓𝑖(𝒙) (𝑖 = 1,… ,𝑚) (7) 

𝑧𝑖
∗ is a reference point. In a maximization problem, 𝑧𝑖

∗ = 𝑚𝑎𝑥𝑥∈𝛺𝑓𝑖(𝒙). 

Let 𝛌 = (λ1, λ2, … , λm) be a weight vector, where  λi ≥ 0 for i = 1,2, … ,m and ∑ λi
m
i=1 = 1. Setting of N and 

𝝀1, 𝝀2… , 𝝀𝑁 is controlled by parameter 𝐻. More precisely, 𝝀1, 𝝀2… , 𝝀𝑁 are all the weight vectors and each individual 

weight component of them takes a value from 

 (
0

𝐻
,
1

𝐻
, … ,

𝐻

𝐻
)  (8) 

Therefore, the number of the weight vectors is 𝑁 = 𝐶𝐻+𝑚−1
𝑚−1 . In MOACO/D-Net, the number of objective functions m 

is 2, and N is the number of ants, so 𝐻 = 𝑁 − 1. Thus 𝝀𝑗, 𝑗 ∈ {1,2, … , 𝑁}, is a vector with two components: 

 𝝀𝑗 = (
𝑗−1

𝑁−1
,
𝑁−𝑗

𝑁−1
)  (9) 

With the increase of j, the proportion of NRA gradually increases, and the proportion of RC gradually decreases. 

Fig. 1 illustrates the concepts of decomposition, neighborhoods and groups in our proposed MOACO/D-Net algorithm. 

Ant i is responsible for solving the ith subproblem, and is associated with a weight vector 𝝀𝑖 and an objective function 

𝑔(𝒙|𝝀𝑖). Since 𝝀 in 𝑔(𝒙|𝝀) is a continuous variable, two neighboring subproblems with close weight vectors are 

likely to have similar solutions. Based on this observation, the concepts of Neighborhood and Group in MOACO/D-Net 

are defined as follows. 

➢ Neighborhood: Each of the N ants for the N subproblems in MOACO/D-Net is associated with a corresponding 

weight vector 𝝀𝑖. The neighborhood 𝒩(𝑖) of ant i consists of T ants, whose subproblems’ weight vectors are 

closer to 𝝀𝑖 than the other weight vectors. We assume that 𝑖 ∈ 𝒩(𝑖), i.e. ant i is its own neighbor. 



6 

 

➢ Group: MOACO/D-Net aims at approximating the whole PF, thus a single pheromone matrix cannot guide all the 

ants towards the optimal solutions with different weight vectors simultaneously. The ant colony is thus divided into 

𝐾 groups, 𝐾 < N. All the ants in the same group share the same pheromone matrix, and each group searches for 

optimal solutions which approximate a part of the whole PF. 

➢ External Archive: An archive is defined to store the nondominated solutions found during the evolution. All the 

solutions dominated by a new solution x in the archive are removed after x is added. 

3 The proposed MOACO/D-Net for community detection 

To design an effective multi-objective ACO algorithm for the community detection problem, important issues such as 

how to represent the solution, and how to define the pheromone information and heuristic information need to be 

addressed. Other research issues include how to initialize and update the pheromone matrices, and how to define the 

maximum and minimum pheromone trails. In this section, the MOACO/D-Net algorithm will be introduced in details. 

3.1 Representation 

For community detection problem, one intuitive choice of representation is to assign different community identifier 

randomly to each gene of the solution with length of n, where n is number of vertices. Thus the vertices (genes) 

assigned with same community identifier belong to the same community. However, these vertices in the network may 

not have links with each other, thus resulting invalid solutions. Actually in practice an initialization operator is usually 

applied (Gong et al. 2011; Mu et al. 2015). In every chromosome with n dimensions, each vertex is put into a different 

community, thus the number of communities for each chromosome in the initial population is n. Then for each 

chromosome, a vertex is randomly selected and its community identifier is assigned to its adjacent vertices which have 

links with it. This operation is repeated several times for each chromosome to initialize the population. Another 

frequently used method is the locus-based adjacency representation (Handl and Knowles 2007). In this graph-based 

representation, each solution consists of n genes and each gene can take the index of one of its adjacent nodes as its 

allele value. Thus, a value of j assigned to the ith gene is then interpreted as a link between node i and j in the resulting 

partition solution, and they will be in the same community. The decoding of this representation requires the 

identification of all connected components. All vertices belong to the same connected component are then assigned to 

one community. Note that, this decoding step can be done in linear time by using a simple backtracking scheme (Shi et 

al. 2009). 

In our proposed algorithm, new solutions are constructed by ants. Due to the property of ACO algorithm, pheromone 

trails should be laid on the edges of the best solution, and the encoding scheme should keep the information of locus. 

Therefore the locus-based adjacency representation is adapted to encode the solution. Furthermore the process of 

locus-based encoding scheme does not need the knowledge of the number of communities in advance. 

Using the locus-based representation, for a particular network 𝐺 = (𝑉, 𝐸) with 𝑛 = |𝑉| vertices, a solution 𝒙 is 

encoded as a vector (𝑥1, 𝑥2, … , 𝑥𝑛) with n genes. If the allele value of the ith element 𝑥𝑖 is j, then vertices 𝑣𝑖 and 𝑣𝑗 

are connected and they both belong to the same community.  

Fig. 2 shows an illustrative example of the locus-based adjacency scheme. Fig. 2(a) is an example network with 11 

vertices and 16 edges. Fig. 2(b) provides a possible encoded solution (3 1 2 6 4 7 8 5 10 11 9), where the allele value of 

the 1st element is 3, meaning 𝑣1 and 𝑣3 are in the same community, and the 2nd element is 1, meaning 𝑣2 and 𝑣1 are 

in the same community, etc. A directed graph is then constructed as Fig. 2(c) to demonstrate the procedure of decoding, 

directing 𝑣1 to 𝑣3, and 𝑣2 to 𝑣1, etc. The network is thus partitioned into three clusters: A, B and C. A contains 3 

vertices {1,2,3}, B contains 5 vertices {4,5,6,7,8}, and the remaining vertices {9,10,11} belong to C.  

3.2 Initialization 

The ant colony is initialized with 𝑁 ants, and each ant 𝑖 represents a solution 𝒙𝑖 corresponding to subproblem 𝑖. The 
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weight vector of 𝒙𝑖, i.e., 𝝀𝑖 is calculated according to Eq. (7). {𝑭1, 𝑭2, … , 𝑭𝑁} is the set of objective function vectors 

of {𝒙1, 𝒙2, … , 𝒙𝑁}, where 𝑭𝑖 = 𝑭(𝒙𝑖) as defined in Eq. (6). 

The neighborhood 𝒩(𝑖) of ant i is obtained as follows. The Euclidean distances 𝑑𝑖𝑗  between 𝝀𝑖  and 𝝀𝑗 , 𝑗 ∈

{1,2, … , 𝑁}, are calculated and sorted, and then T ants with T smallest distance are selected to form 𝒩(𝑖), i.e.: 

 𝒩(𝑖) = {𝒙𝑗  | 𝑑𝑖𝑗 ≤ 𝑑𝑇 , 𝑗 = 1,2, … , 𝑁} (10) 

where 𝑑𝑇 is the 𝑇𝑡ℎ smallest value among all the 𝑑𝑖𝑗 , 𝑗 = 1,2, … , 𝑁. 

𝐾 pheromone matrices {𝝉1, 𝝉2, … , 𝝉𝐾} are set for the 𝐾 groups. The pheromone trails on edge (𝑘, 𝑙) in group 𝑗 are 

initialized with 𝜏𝑘𝑙
𝑗
= 𝜏0, where 𝜏0 is a sufficiently large value. 

The heuristic matrix 𝜼 is defined by Pearson correlation. 𝜂𝑘𝑙 = 0 if there is no connection between vertex 𝑘 and 

vertex 𝑙, otherwise 𝜂𝑘𝑙 is defined and initialized as follows by Eq. (11). 

 𝜂𝑘𝑙 =
1

1 + 𝑒−𝐶(𝑘,𝑙)
 (11) 

 𝐶(𝑘, 𝑙) =
∑ (𝐴𝑘𝑠 − 𝜇𝑘)(𝐴𝑙𝑠 − 𝜇𝑙)𝑉𝑠∈𝑉

𝑛𝜎𝑘𝜎𝑙
 (12) 

In (11), 𝐶(𝑘, 𝑙) is the Pearson correlation between vertex 𝑘 and vertex 𝑙  in G , which indicates the structure 

similarity of vertex 𝑘  and vertex 𝑙 ; in (12), 𝑨  is the adjacency matrix of 𝐺 ; 𝜇𝑘 = ∑ 𝐴𝑘𝑠𝑠 𝑛⁄  and 𝜎𝑘 =

√∑ (𝐴𝑘𝑠 − 𝜇𝑘)
2

𝑠 𝑛⁄ . Constructed based on Pearson correlation, 𝜂 contains heuristic information. The larger the value 

of 𝜂𝑘𝑙 is, the more similar in structure vertex 𝑘 and vertex 𝑙 are and they are more likely to belong to the same 

community. 𝜂𝑘𝑙 always takes values in range (0, 1). 

For each ant 𝑖, the corresponding solution is initialized by the locus-based adjacency scheme and each allele value 𝑙 

assigned to the 𝑘th gene is randomly determined from the adjacent vertices of vertex 𝑘. All the nondominated solutions 

are thus extracted from the 𝑁 solutions and stored in the external archive. 

3.3 Solution construction 

In traditional ACO, the new solution is constructed by the transition probability model. The transition probability model 

usually contains the pheromone matrix and the heuristic matrix. The transition probability model should be built 

according to the problem to be solved. For example, to solve traveling salesman problem, the transition probability 

generally should be updated according to the length of the shortest path found so far, and the heuristic matrix should 

consider the distances between the current city and its neighboring cities. To solve the community detection problem 

using a multi-objective ACO algorithm based on decomposition, a new transition probability model has to be built by 

considering the characteristics of community detection problem. 

Assume that ant 𝒙𝑖 = (𝑥1
𝑖 , 𝑥2

𝑖 , … , 𝑥𝑛
𝑖 ) is in group 𝑗, where 𝑗 = 𝑐𝑒𝑖𝑙(𝑖 × 𝐾/𝑁). For 𝑖 = 1,2, … , 𝑁, ant 𝑖 constructs a 

new solution 𝒚𝑖 = (𝑦1
𝑖 , 𝑦2

𝑖 , … , 𝑦𝑛
𝑖 ) using a pseudo-random transition probability model. This model involves three 

factors: the pheromone information 𝜏𝑘𝑙 , the heuristic information 𝜂𝑘𝑙 and the current solution 𝒙𝑖. The transition 

probability model is presented in Eqs. (13)-(16). 

 

𝑃𝑘ℎ
𝑖 = {

𝜙𝑘ℎ
∑ 𝜙𝑘𝑠𝑠∈𝒩𝑣(𝑘)

, ℎ ∈ 𝒩𝑣(𝑘)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(13) 

 𝜙𝑘ℎ = [𝜏𝑘ℎ
𝑗
+ Δ × 𝐼𝑛(𝒙𝑖 , (𝑘, ℎ))]

𝛼
∙ (𝜂𝑘ℎ)

𝛽 , ℎ ∈ 𝒩𝑣(𝑘) (14) 
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 Δ =
1

1 + 𝑔(𝒙𝑖|𝝀𝑖)
 

(15) 

 

𝑃𝑘ℎ
𝑖  in Eq. (13) is the probability for vertex 𝑘 to choose vertex ℎ in subproblem 𝑖. 𝒩𝑣(𝑘) is the set of adjacent 

vertices of vertex 𝑘. 𝛼 and 𝛽 are two control parameters which aim at striking a balance between pheromone value 

and heuristic information. 𝜏𝑘ℎ
𝑗

 is the element in the pheromone matrix of group 𝑗. In Eq. (14), 𝐼𝑛(𝒙𝑖 , (𝑘, ℎ)) equals to 

1 if edge (𝑘, ℎ) is in 𝑥𝑖, otherwise it equals to 0. 𝑔(𝒙𝑖|𝝀𝑖) in Eq. (15) denotes the g-value of 𝒙𝑖 as defined in Eq. (7) 

with the weight vector 𝝀𝑖. Then the better 𝒙𝑖 is in term of g-value, the more likely the vertex h is selected as the allele 

value of the kth element of the new solution as edge (𝑘, ℎ) is in 𝑥𝑖. 

A new solution 𝒚𝑖 = (𝑦1
𝑖 , 𝑦2

𝑖 , … , 𝑦𝑛
𝑖  ) is constructed by generating each allele value of each element according to the 

transition probability model above. The allele value 𝑙 of the kth element in the new solution is constructed as Eq. (16).  

 𝑙 = {
argmax(𝜙𝑘ℎ)

ℎ∈𝒩𝑣(𝑘)
, 𝑟𝑎𝑛𝑑 < 𝑟

𝑙′, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (16) 

where rand is a uniformly distributed random number within (0, 1). If rand is smaller than r, which is a preset positive 

threshold smaller than 1, vertex l with the largest 𝜙 value in Eq. (14) is selected as the allele value of the kth element; 

otherwise vertex 𝑙 is determined according to the probability 𝑃𝑘ℎ in Eq. (13) using the roulette wheel selection. r in 

Eq. (16) is applied to simplify the transition probability model. If r = 0, Eq. (16) will degrade into a traditional 

transition probability model 

3.4 Solution improvement 

To achieve better performance, it is necessary to improve the solution constructed. We design three different 

improvement operator named Improvement-I, Improvement-II and Improvement-III. The proposed algorithm adopting 

Improvement-I, Improvement-II or Improvement-III are called MOACO/D-Net-I, MOACO/D-Net-II, and 

MOACO/D-Net-III respectively. We will compare MOACO/D-Net-I, MOACO/D-Net-II and MOACO/D-Net-III in the 

experiments, and adopt the best one (MOACO/D-Net-III) as the final version of MOACO/D-Net. 

3.4.1 Improvement-I 

Input the solution s constructed by ant i to Improvement-I. Repeat the procedure of solution construction for (𝑁𝑎nt − 1) 

times. Then ant 𝑖 chooses the best solution from 𝑁𝑎nt new solutions to be the output 𝒙𝑖 according to the 𝑔(𝒙𝑖|𝝀𝑖) 

values of the 𝑁𝑎𝑛𝑡 solutions.  

3.4.2 Improvement-II 

In the network, the nodes which belong to one community but have connections with other nodes belonging to the 

adjacent communities can be called edge nodes. These nodes are most possibly become misclassified. We has proposed 

an error recovery operator to improve the quality of a given solution for community detection by checking and repair 

the edge nodes (Mu et al. 2014), which was proved to be effective. Inspired by this idea, we design two improvement 

operators to check and repair the edge nodes of the solutions that are constructed by the ants and thus improve their 

quality. The main advantages of these improvement operators over Improvement-I lie in that they are simple and cost 

less time. More importantly, these improvement operators do not cost any fitness evaluations during the process of 

execution. 

Improvement-II is designed as follows. Based on the definition of weak community, define a measure of the two 

adjacent communities’ denseness as Eq. (17): 
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 𝑀𝑐(𝑐1, 𝑐2) =
∑𝑘𝑖𝑛 − ∑𝑘𝑜𝑢𝑡

∑𝑘
 (17) 

where 𝑐1, 𝑐2 are two adjacent communities, and ∑𝑘 is the sum of the degrees of all nodes in 𝑐1 and 𝑐2; ∑𝑘𝑖𝑛 is the 

sum of the internal degree of all nodes in 𝑐1 and 𝑐2; ∑𝑘𝑜𝑢𝑡 is the sum of the external degree of all nodes in 𝑐1 and 

𝑐2. Assume a node 𝑣𝑗 originally belongs to 𝑐1. If the value of 𝑀𝑐(𝑐1, 𝑐2) increases after 𝑣𝑗 moves from 𝑐1 to 𝑐2, it 

indicates 𝑣𝑗 is more likely to belong to 𝑐2, and assigning 𝑣𝑗 to 𝑐2 may result in a better solution.. 

Input the solution s constructed by ant i to Improvement-II, and the operator first find out all the edge nodes in s. For the 

edge node 𝑣𝑗 (𝑗 = 1, 2, … , 𝑙 and l is the total number of edge nodes), find out all the adjacent communities 𝑐𝑝 (𝑝 =

1, 2, … , 𝑛𝑢𝑚_𝑐, and 𝑛𝑢𝑚_𝑐 is the total number of the adjacent communities) which have links with 𝑣𝑗. Initially, the 

community of 𝑣𝑗 in 𝒔 is 𝑐𝑗 . For one adjacent community 𝑐𝑝 that have links with 𝑣𝑗, calculate 𝑀𝑐𝑝𝑟𝑒(𝑐𝑗 , 𝑐𝑝) using 

Eq. (17). Then assume 𝑣𝑗  is in 𝑐𝑝  and calculate 𝑀𝑐𝑐𝑟𝑢(𝑐𝑗 , 𝑐𝑝) using Eq. (17). If 𝑀𝑐𝑐𝑟𝑢(𝑐𝑗 , 𝑐𝑝) > 𝑀𝑐𝑝𝑟𝑒(𝑐𝑗 , 𝑐𝑝), 

assign 𝑣𝑗 from 𝑐𝑗 to 𝑐𝑝 and 𝑐𝑝 becomes the new 𝑐𝑗. After repeating for 𝑛𝑢𝑚_𝑐 times, 𝑣𝑗  is assigned to a more 

appropriate community. After repeating above procedure for l times, Improvement-II is terminated and the resulting 

solution 𝒔′ is output as the new solution 𝒙𝑖 of ant i. 

3.4.3 Improvement-III 

Improvement-III is designed as follows. Based on the definition of strong community, define a measure of the node’s 

denseness as Eq. (18): 

 𝑀𝑑𝑗 =
𝑘𝑖𝑛
𝑗
− 𝑘𝑜𝑢𝑡

𝑗

𝑘𝑗
 (18) 

where 𝑘𝑗 is the degree of node j; 𝑘𝑖𝑛
𝑗

 is the internal degree of node j; 𝑘𝑜𝑢𝑡
𝑗

 is the external degree of node j. Assume 

one edge node 𝑣𝑗 has two adjacent communities, 𝐶𝐴 and 𝐶𝐵. Assume 𝑣𝑗 is in 𝐶𝐴, and calculate its 𝑀𝑑𝐴
𝑗
 for 𝐶𝐴; 

Then assume 𝑣𝑗 is in 𝐶𝐵, and calculate its 𝑀𝑑𝐵
𝑗
 for 𝐶𝐵; If 𝑀𝑑𝐴

𝑗
> 𝑀𝑑𝐵

𝑗
, it indicates that 𝑣𝑗 is more likely belong to 

𝐶𝐴 based on the definition of strong community. 

Input the solution s constructed by ant i to Improvement-III, and the operator first find out all the edge nodes in s. For 

the edge node 𝑣𝑗 (𝑗 = 1, 2, … , 𝑙, and l is the total number of edge nodes), find out all the adjacent communities that 

have links with 𝑣𝑗. Calculate 𝑀𝑑𝑗 of 𝑣𝑗 for all the adjacent communities one by one, assuming 𝑣𝑗 is in the current 

adjacent community every time. Then assign 𝑣𝑗 to the community with the largest 𝑀𝑑𝑗 . After repeating above 

procedure for l times, Improvement-III is terminated and the resulting solution 𝒔′ is output as the new solution 𝒙𝑖 of 

ant i. 

3.5 Update of the external archive 

After all the 𝑁  new solutions 𝒚1, 𝒚2, … , 𝒚𝑁  are constructed, 𝑭(𝒚𝑖)  is calculated, where 𝑖 = 1,2, … , 𝑁 , and is 

compared with the objective vectors of nondominated solutions in the external archive. If no solution in the archive 

dominates 𝒚𝑖, 𝒚𝑖 is added to the archive. Those solutions dominated by 𝒚𝑖 are removed. 

3.6 Update of pheromone matrices 

The pheromone matrix is updated according to those ants with a good performance or better objective values. In the 

single-objective ACO algorithms, the iteration-best or global-best solution determined by the single objective is usually 

used to update a single pheromone matrix. In this paper, for 𝑗 = 1,2, … , 𝐾, one pheromone matrix 𝝉𝑗 of group 𝑗 is 

updated by the information extracted from those good new solutions in group 𝑗 using Eq. (19). 
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 𝜏𝑘𝑙
𝑗 (𝑡 + 1) = 𝜌 ∙ 𝜏𝑘𝑙

𝑗 (𝑡) + ∑
1

1 + 𝑔(𝒙𝑖|𝝀𝑖)
𝒙𝑖∈ℋ(𝑗)

× 𝐼𝑛(𝒙𝑖 , (𝑘, 𝑙)) (19) 

where 𝑡 is the iteration index, 𝜌 is the persistence rate and ℋ(𝑗) is the set of good new solutions in group 𝑗 which 

are nondominated during the update of the external archive and have been chosen to be added into the external archive. 

The second item in Eq. (19) means pheromone trails are only laid on the edge (𝑘, 𝑙) in 𝑥𝑖. 

Following the Max-min ant system (Stützle and Hoos 2000), the pheromone of each element in the pheromone matrices 

is limited to a range of [𝜏𝑚𝑖𝑛 , 𝜏𝑚𝑎𝑥], where 𝜏𝑚𝑎𝑥  is determined by an estimate of asymptotically maximum value 

shown in Eq. (20). 

 𝜏𝑚𝑎𝑥 =
𝐵 + 1

(1 − 𝜌)(1 + 𝑔𝑚𝑖𝑛)
 (20) 

where 𝐵 is the number of nondominated solutions found at the current iteration, i.e. the number of solutions added to 

the archive at the current iteration. 𝑔𝑚𝑖𝑛 is the smallest value of 𝑔 for all the 𝑁 subproblems. 𝜏𝑚𝑎𝑥 is used to avoid 

that some edges of pheromone matrices accumulate too much pheromone and thus leading to premature. 

𝜏𝑚𝑖𝑛  is set using Eq. (21). 

 𝜏𝑚𝑖𝑛 = 𝜀 ∙ 𝜏𝑚𝑎𝑥 (21) 

where 𝜀 is a fairly small number (𝜀 is set equal to 0.005 in this paper). 

After each iteration, 𝜏𝑚𝑖𝑛  and 𝜏𝑚𝑎𝑥 are updated according to Eqs. (20) and (21). Therefore the procedure of updating 

pheromone trails contains two stages: a weakening stage and a reinforcement stage. The first stage is for global 

updating, where the values of pheromone on all the edges are reduced by the evaporation factor, aiming to evaporate 

pheromone and avoid a premature convergence. During the second stage, all the edges in the new nondominated 

solutions are reinforced. This strategy makes sure that the information of good solutions is retained to promote these 

ants to the next iteration for finding better solutions. 

3.7 Update of 𝒙𝒊 

Before the next generation, for 𝑖 = 1,2, … , 𝑁, each individual ant 𝑖 then updates the current solution 𝑥𝑖 according to 

its neighbors. Based on its own objectives 𝑭(𝒙𝑖), if there is a solution 𝒙∗  with the smallest 𝑔-value in the 

neighborhood of ant 𝑖 which satisfies 𝑔(𝒙∗|𝝀𝑖) < 𝑔(𝒙𝑖|𝝀𝑖), and 𝒙∗ has not been used to replace any other old 

solutions, then 𝒙𝑖 is replaced by 𝒙∗. This strategy encourage ants to exchange information with its neighbors, even the 

two neighbors are not in the same group. The update of 𝒙𝑖 thus strengthens the cooperation between different ant 

groups. 

The complete pseudo-code of the proposed algorithm MOACO/D-Net for community detection is depicted in 

Algorithm 1. 

Algorithm 1: MOACO/D-Net 

Input: A complex network modeled as 𝐺 = (𝑉, 𝐸) 

Step 1: Initialization 

     Set parameters 𝑁, 𝜏0, 𝛼, 𝛽, 𝜌, 𝑟, 𝐾, 𝑇, 𝜀, Gen; 

     Initialize 𝐾 pheromone matrices {𝝉1, 𝝉2, … , 𝝉𝐾}, heuristic information matrix 𝜼 

     Initialize 𝑁 ants {𝒙1, 𝒙2, … , 𝒙𝑁}, calculate objectives {𝑭(𝒙1), 𝑭(𝒙2), … , 𝑭(𝒙𝑁)}; 

For i = 1 to Gen 

Step 2: Solution Construction 
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     For 𝑖 = 1 to 𝑁 

         Construct a new solution 𝒔 according to Eqs. (13) to (16); 

         𝒙𝑖 ← Improvement operator (𝒔)  

// Call the subprogram Improvement-I, Improvement-II or Improvement-III 

     End For 

Step 3: Update the External Archive 

       For 𝑖 = 1 to 𝑁 

           If (no solution in the archive dominates 𝒙𝑖) 

             Add 𝒙𝑖 to archive; 

             Remove all the solutions dominated by 𝒙𝑖; 

       End For 

Step 4: Update the Pheromone Matrices 

      Update {𝝉1, 𝝉2, … , 𝝉𝐾}, 𝜏𝑚𝑎𝑥, and 𝜏𝑚𝑖𝑛 according to Eqs. (19) to (21); 

Step 5: Update 𝒙𝑖 

      For 𝑖 = 1 to 𝑁 

          If (𝑔(𝒙∗|𝝀𝑖) < 𝑔(𝒙𝑖|𝝀𝑖)) & 𝒙∗ has not been used //𝒙∗ ∈ 𝒩(𝑖) 

          𝒙𝑖 ← 𝒙∗; 

      End For 

End For 

Output: External archive, Pareto front  

// Pareto front is the set of objective function vectors in Eq. (6) of solutions in external archive 

// Subprogram Improvement-I 

Input: 𝒔 

𝑆 = ∅; 𝑆 ← 𝑆 ∪ 𝒔 

     For 𝑗 = 1 to 𝑁𝑎𝑛𝑡 − 1 // 𝑁𝑎𝑛𝑡 − 1 solutions are generated by ant i 

         Construct a new solution 𝒔 according to Eqs. (13) to (16); 

         𝑆 ← 𝑆 ∪ 𝒔; 

     End For 

         𝒙𝑖 ← 𝐵𝑒𝑠𝑡(𝑆); 

Output: 𝒙𝑖 

// Subprogram Improvement-II 

Input: 𝒔 

      𝒙𝑖 ← 𝒔; 𝒗 = (𝑣1, 𝑣2, … , 𝑣𝑙) ← Find out the edge nodes in 𝒙𝑖 // 𝑙 is the number of edge nodes 

      For 𝑗 = 1 to 𝑙 // Repair 𝑣𝑗  in 𝒙𝑖 

         𝑐𝑗 ← the community containing 𝑣𝑗  in 𝒙𝑖 

         For p = 1 to 𝑛𝑢𝑚_𝑐 // 𝑛𝑢𝑚_𝑐 is the number of the adjacent communities linked with 𝑣𝑗  

             𝑐𝑝 ← the current adjacent community of 𝑣𝑗  

             𝑀𝑐𝑝𝑟𝑒
𝑗

← Calculate 𝑀𝑐𝑗(𝑐𝑗 , 𝑐𝑝) according to Eq. (17)  

             assume 𝑣𝑗  is in 𝑐𝑝 

             𝑀𝑐𝑐𝑢𝑟
𝑗

← Calculate 𝑀𝑐𝑗(𝑐𝑗 , 𝑐𝑝) according to Eq. (17)  

             If 𝑀𝑐𝑐𝑢𝑟
𝑗

> 𝑀𝑐𝑝𝑟𝑒
𝑗

 

                 assign 𝑣𝑗  to 𝑐𝑝 in 𝒙𝑖 

                 𝑐𝑗 ← 𝑐𝑝 

             End If 

         End For 
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      End For 

Output: 𝒙𝑖 

// Subprogram Improvement-III 

Input: 𝒔 

      𝒙𝑖 ← 𝒔 

      𝒗 = (𝑣1, 𝑣2, … , 𝑣𝑙) ←Find out the edge nodes in 𝒙𝑖 // 𝑙 is the number of edge nodes 

      For 𝑗 = 1 to 𝑙 // Repair 𝑣𝑗  in 𝒙𝑖 

         max_𝑀𝑑𝑗 ← 0 

         For p = 1 to 𝑛𝑢𝑚_𝑐 // 𝑛𝑢𝑚_𝑐 is the number of the adjacent communities linked with 𝑣𝑗  

             Calculate 𝑀𝑑𝑝
𝑗
 after assuming 𝑣𝑗  is in the current community according to Eq. (18) ; 

             If 𝑀𝑑𝑝
𝑗
> max_𝑀𝑑𝑗  

                 max _𝑀𝑑𝑗 ← 𝑀𝑑𝑝
𝑗
 

             End If 

         End For 

         assign 𝑣𝑗  to the community with max_𝑀𝑑𝑗  in 𝒙𝑖 

      End For 

Output: 𝒙𝑖 

 

4 Experimental results 

In this section analysis on the results of experiments on LFR benchmark networks and eight real-world networks are 

presented in detail. The proposed algorithm is simulated using MATLAB 2018a. All the experiments have been 

performed on the same computer with an Inter(R) Xeon(R) E5-2630 v4 CPU, 2.20 GHz, 64GB RAM under Windows 

10 OS. 

The data sets used in our experiments include LFR benchmark networks and eight real-world networks as follows. 

- LFR benchmark network: the Lancichinetti-Fortunato-Radicchi (LFR) benchmarks (Lancichinetti et al. 2008) are 

widely used for generation of synthetic networks. In LFR benchmarks, a rich set of parameters can be used to 

generate different types of network topology. The parameter setting for the LFR benchmarks is listed in Table 1. 

- Zachary’s karate club network: consists of 34 vertices and 78 edges, introduced by Zachary (1977). Zachary 

observed a karate club with 34 members over a period of two years, and found that there is a disagreement between 

the administrator and the instructor of the club. The club is separated into two groups ultimately. The network splits 

naturally into two communities. 

- Dolphin social network: was constructed by Lusseau et al. (2003), who observed 62 bottlenose dolphins’ behavior 

during seven years in Doubtful Sound, New Zealand. A link between two dolphins means they have a more frequent 

association statistically. The dolphin network includes 159 edges and is divided into two groups according to their 

gender. 

- American college football network: includes 115 vertices and 613 edges. The football network was established by 

Girvan and Newman (2002). It represents American football games between Division I colleges during the 2000 

season. Vertices in the network represent teams and edges represent games between two teams. The network can be 

partitioned into 12 clusters. 

- Books on US politics (Polbooks network): is a network of books on politics discovered by Krebs and divided by 

Newman (2006). It consists of 105 vertices and 441 edges. Each vertex in this network represents a book from 

Amazon.com on American politics, and each edge connects two books which are frequently co-purchased by the 

same buyer. The books are classified into three classes according to the descriptions and reviews of the books. 

- SFI network: represents 271 scientists in residence at the Santa Fe Institute during any part of calendar year1999 
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or 2000, and their collaborators. An edge is drawn between a pair of scientists if they coauthored one or more 

articles during the same time period. The biggest part of the SFI networks consist of 118 nodes and 200 edges. We 

only do experiments on this part. 

- Netscience network: represents the co-authorship of scientists working on network theory and experiment. This 

network consists of 1461 nodes and 2742 edges. It is weighted and we handle it as an unweighted one in our 

experiments. 

- Protein network: is an undirected network containing protein interactions in yeast. A node represents a protein and 

an edge represents a metabolic interaction between two proteins. This network consists of 1870 nodes and 2277 

edges. 

- US Power Grid network: is an undirected network containing information about the power grid of the Western 

States of the United States of America. An edge represents a power supply line. A node is either a generator, a 

transformator or a substation. This network consists of 4941 nodes and 6594 edges. 

Table 1 Parameter setting of LFR benchmarks. 

Parameters Non-overlapping 

Network size N {100,200,300,400,500,600,700,800,900,1000} 

Mixing parameter 𝜇 {0,0.05,0.1,0.15,0.25,0.3,0.35,0.4,0.45,0.5} 

Average degree 𝑘 20 

Maximum degree 𝑘𝑚𝑎𝑥 50 

Exponent of nodes’ degree distribution 𝜏1 2 

Exponent of community size distribution 𝜏2 3 

Table 2 Real-world networks in the test. 

Network n (number of vertices) 𝑛𝑒 (number of edges) True partitions 

karate network  34 78 Known with 2 clusters 

Dolphin network 62 160 Known with 2 clusters 

Football network 115 613 Known with 12 clusters 

Polbooks network 105 441 Known with 3 clusters 

SFI 118 200 Unknown 

Netscience 1461 2742 Unknown 

Protein 1870 2277 Unknown 

US Power Grid 4941 6594 Unknown 

4.1 Evaluation criteria 

Two evaluation criteria are introduced to measure the quality of the partition. One of the most commonly used 

evaluation criteria is modularity Q as shown in Eq. (22). 

 Q =
1

2𝑛𝑒
∑((𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑛𝑒
) × 𝛿(𝐼𝑛(𝑖), 𝐼𝑛(𝑗)))

𝑖𝑗

 (22) 

where 𝑛𝑒 =
1

2
∑ 𝐴𝑖𝑗𝑖𝑗  is the number of edges in the network, 𝐴 is the adjacency matrix, 𝑘𝑖 = ∑ 𝐴𝑖𝑗𝑗  is the degree of 

vertex 𝑖, 𝐼𝑛(𝑖) is the index of the community that vertex 𝑖 belongs to, and the Kronecker delta function 𝛿(𝑢, 𝑣) = 1 

if 𝑢 = 𝑣, otherwise 𝛿(𝑢, 𝑣) = 0. 

The modularity of a network should be maximized during the evolution. Actually the Q values of most social networks 

fall in the range of 0.3 to 0.7 (Newman 2004). Generally the partition corresponding to its maximum on a given network 

should be the best, or at least is a very good one. This principle is the main motivation for modularity optimization in 
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the most popular algorithms to find a more accurate structure of the networks. 

Another important criterion is the normalized mutual information (NMI) (Danon et al. 2005), which is defined to 

measure the similarity between community structure found by the proposed algorithm and the true partition. Assume 

there are two different partitions for a given network: partition A and partition B. A confusion matrix 𝑍 is defined, 

whose element 𝑍𝑖𝑗 is the number of same vertices in community 𝑖 of partition A and community 𝑗 of partition B. The 

NMI can then be evaluated by Eq. (23): 

 NMI(A, B) =
−2∑ ∑ 𝑍𝑖𝑗 log (

𝑍𝑖𝑗𝑛
𝑍𝑖.𝑍.𝑗
⁄ )

𝐶𝐵
𝑗=1

𝐶𝐴
𝑖=1

∑ (𝑍𝑖. log (
𝑍𝑖.

𝑛⁄ ))
𝐶𝐴
𝑖=1 +∑ (𝑍.𝑗 log (

𝑍.𝑗
𝑛⁄ ))

𝐶𝐵
𝑗=1

 (23) 

where 𝐶𝐴 is the total number of communities in partition 𝐴. 𝑍𝑖. = ∑ 𝑍𝑖𝑗𝑗 , which means the sum of elements in row 𝑖, 

𝑍.𝑗 = ∑ 𝑍𝑖𝑗𝑖 , and 𝑛 is the total number of vertices. 

The partition which is more closer to the real one has a larger NMI value. Obviously NMI(𝐴, 𝐵) = NMI(𝐵, 𝐴) and 

NMI(𝐴, 𝐵) = 1 if 𝐴 = 𝐵. Generally NMI is also limited in the range of [0,1]. 

Therefore the values of Q and NMI are proper measures of a solution. However there does not exit a positive correlation 

between Q and NMI. In some cases, a good solution with a larger Q may not share a larger NMI, and a solution with a 

larger NMI may not share a larger Q either. 

4.2 Comparison of three variants of MOACO/D-Net and the analysis of run-time 

In this section, we will compare and analyze three variants of the proposed algorithm MOACO/D-Net, i.e., 

MOACO/D-Net-I, MOACO/D-Net-II, and MOACO/D-Net-III, including their performance and run-time. To be fair, 

the same set of parameters are used for three variants according to experience: N=60, 𝛼=1, r=0.1, K=5, T=8, 𝛽=4, 

𝜌=0.95; 𝑁𝑎𝑛𝑡=50. 

4.2.1 Comparison on four real-world networks with true partition known 

This section provides the comparison on four real-world networks whose true partitions are known, i.e., the Zachary’s 

karate club, the Dolphin social network, the American College football, and the Books on US politics. The run-time of 

three variants is also compared and analyzed. For each network, we calculate average values of NMI and Q obtained by 

each algorithm over 20 independent runs. 

The experimental results are shown in Table 3. It can be observed from Table 3 that the Q values and the NMI values 

obtained by MOACO/D-Net-III are a little better than those by the others on three out of four networks, meanwhile the 

run-time of MOACO/D-Net-III is significantly shorter. Among three variants, MOACO/D-Net-I adopting 

Improvement-I is the most time consuming. For ant i, Improvement-I needs to produce 𝑁𝑎𝑛𝑡 solutions, then calculate 

𝑔(𝒙𝑖|𝝀𝑖) values of them and select the best one as the final new solution of ant i. This procedure is very time 

consuming. In contrast, each time Improvement-II and Improvement-III only repair one solution for ant i, which are 

simple and cost less time. 

Table 3 Results of three variants of MOACO/D-Net on four real-world networks 

Metric  Networks MOACO/D-Net-I MOACO/D-Net-II MOACO/D-Net-III 

Q
avg

 

Karate 0.420 0.420 0.419 

Dolphins 0.523 0.523 0.525 

Football 0.603 0.603 0.604 

Polbooks 0.517 0.525 0.526 

NMIavg 
Karate 1 1 1 

Dolphins 0.981 0.988 1 
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Football 0.927 0.923 0.927 

Polbooks 0.583 0.567 0.606 

Time(s) 

Karate 58.797 10.224 8.232 

Dolphins 116.842 23.977 16.761 

Football 340.412 77.999 45.674 

Polbooks 248.112 52.226 37.759 

4.2.2 Relation between run-time and network size 

To analyze the relation between run-time of three improvement operators and the size of network, the LFR benchmark 

networks are tested here, using the parameters shown in Table 1 and the network size changes from 100 to 1000. We 

record the time of generating N (N=60) new solutions by three improvement operators in one generation on different 

networks over 10 runs. The average results are shown in Fig. 3. It can be seen from Fig. 3 that the time of 

Improvement-III increases most slowly with the increasing of network size. To deal with large scale network, 

MOACO/D-Net-III adopting Improvement-III is a reasonable choice. Then we test MOACO/D-Net-III on the same 

LFR benchmark networks with size changing from 100 to 1000 over 10 independent runs, and the average run-time is 

shown in Fig. 4. So MOACO/D-Net-III is able to deal with large scale network within acceptable time. 

4.2.3 Effectiveness of improvement operator: Improvement-III 

In this section, we will show whether Improvement-III really benefits the performance of MOACO/D-Net. Therefore 

we delete the operator of Improvement-III from MOACO/D-Net-III, and call this temporary version as 

MOACO/D-Net-X, i.e., there is no improvement operator used in MOACO/D-Net-X. Then MOACO/D-Net-X and 

MOACO/D-Net-III are tested on the LFR benchmark networks with same size of 1000 and different mixing parameters 

over 10 independent runs. It can be found from Fig. 5 that NMI values obtained by two versions decease with the 

increasing of mixing parameter. Because when the mixing parameter increases, it becomes more difficult to find the true 

partition of networks. However, NMI values obtained by MOACO/D-Net-III are always larger than those by 

MOACO/D-Net-X, and especially for the situation with large mixing parameter, the advantages of MOACO/D-Net-III 

is more distinct. These indicate that Improvement-III does benefit the performance of MOACO/D-Net. 

Therefore in the subsequent experiments, MOACO/D-Net-III is used as the final version of the proposed algorithm, 

written as MOACO/D-Net. 

4.3 Analysis and experiments on parameters 

It was observed that parameters of ACO algorithm in solving one problem often are different from those for solving 

another problem. The ranges of the optimal parameters are mostly determined based on experience. For the community 

detection problem, priori knowledge about parameters in ACO is rare, and an analysis on the four essential parameters 

in the ACO algorithm is presented in the following paragraphs. The main parameters are as follows. 

➢ 𝛼(pheromone information factor) 𝑎𝑛𝑑 𝛽(heuristic information factor): The value of 𝛼 reflects the relative importance of 

the pheromone trail. When 𝛼 is large, the current ant is more likely to choose the route taken by the ants in the previous 

generation. 𝛽  reflects the relative importance of heuristic information and adjusts the intensity of utilizing the priori 

information during the search. A larger 𝛽 means that the ant is more likely to select local optimal components. This will 

promote convergence speed, however, may cause premature (i.e. the search is trapped in local optimum at early stage of 

evolution). The values of 𝛼  and  𝛽 determine whether the ant pays more attention to pheromone information provided by 

good solutions or heuristic information provided by the structure similarity of vertices in the search process. The value of 𝛼 

is always set equal to 1 in our experiments, and the proportion of 𝛼  and  𝛽 is controlled by the value of 𝛽. The default value 

of  𝛽 is set equal to 6 in our experiments. 

➢ 𝜌 (persistence rate of pheromone trail): 𝜌 is defined as persistence rate of pheromone trail. (1- 𝜌) is thus the evaporation rate, 

which models the phenomenon that the pheromone trail on the route to the goal evaporates as time goes on. 𝜌 is needed to 
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avoid a too rapid convergence of the algorithm towards a local optimal region. It implements a useful forgetting mechanism, 

preferring exploration of new areas in the search space. The default value of 𝜌 is 0.95 in our experiments. 

➢ 𝑟 (threshold value in solution construction): This is a positive value in the pseudo-random transition probability model. A 

proper value of 𝑟 can speed up the search procedure and simplify the algorithm by adopting a greedy strategy to construct the 

solution. When 𝑟 is too large, each ant is more likely to choose an edge with a larger value of pheromone trail and structure 

similarity, thus search may be trapped to local optimal. On the other hand, when 𝑟 is very small, especially when 𝑟 = 0, the 

pseudo-random transition probability model degrades into a traditional transition probability model. The default value of 𝑟 is 

0.2 in our experiments. 

In the MOACO-Net algorithm, there exist another two tunable parameters that also may affect the Pareto optimal 

solutions. 

➢ 𝐾(number of groups) and 𝑇(number of neighbors of each ant): These two special parameters exist in the multi-objective ACO 

algorithm only. There is no theoretical analysis on the performance of ant colony with different number of groups and different 

number of neighbors so far. For a certain ant colony, 𝐾 is the number of pheromone matrices to be established, and 𝑇 

influences the searching scope during the update of current solution 𝑥𝑖. 

The purpose of our preliminary experiments on these parameters is to find a proper range of values for every parameter, 

respectively. All the experiments about different parameters have been done on four real-world networks over 10 

independent runs, setting ant colony size equal to 60 and the maximum number of iterations equal to 50. 

To analyze𝛽, we empirically set 𝛼 = 1, 𝜌 = {0.7,0.75,0.8,0.85,0.9,0.95}, and 𝛽 = {0.2,0.5,0.7,1,2,4,6,8,10,12,14}. 

The results are shown in Fig. 6, and the results on Karate network are not given because it is easy to divide Karate 

network and its results cannot reflect the trend of changes. It can be observed from Fig. 6, that the values of NMI and Q 

are better when 𝛽 = {2, 4, 6}. It indicates that medium values of 𝛽 are reasonable. Too small 𝛽 means useful local 

heuristic information is ignored, resulting degraded search speed and performance. While too large 𝛽 means too much 

local heuristic information is used during the search, resulting that the algorithm is trapped into the local optimum. 

The results of different values of 𝜌 are presented in Fig. 7. We set 𝛼 = 1,𝜌 = {0.7,0.75,0.8,0.85,0.9,0.95} and 𝛽 =

{0.2,0.5,0.7,1,2,4,6,8,10,12,14}. The bar charts show that Q and NMI for the Dolphins network, Football network and 

Politics books network are larger at 𝜌 = {0.85,0.9, 0.95} on the whole. Larger 𝜌 means larger persistence rate of 

pheromone trail, and more helpful experience of good solutions is utilized during the search, thus leading to better 

performance. 

From Fig. 8, we can find that NMI and Q are better when r is a small value, and both NMI and Q will reduce gradually 

when r increases. In Fig. 8 (a) for the Karate network, the watershed values for NMI and Q are 𝑟 = 0.2 and 𝑟 = 0.9, 

respectively. In Fig. 8 (b) for the Dolphins network, NMI and Q begin to fall at 𝑟 = 0.1 and 𝑟 = 0.8, respectively. In 

Fig. 8 (c) for the Football network, NMI and Q almost has the same value when 𝑟 ≤ 0.9. In the last network, NMI and 

Q start to reduce at 𝑟 = 0.1 and 𝑟 = 0.5 respectively. 

From the results in Fig. 6 to Fig. 8, several conclusions about the parameters can be drawn. 𝛼 and 𝛽 adjust the ratio 

between the pheromone information and heuristic information together. A partition with a larger modularity Q, however, 

may not share a larger NMI. Therefore, the value of 𝛽 still needs being chosen carefully. Larger persistence rate of 

pheromone trail 𝜌 generally results in larger modularity Q, which means previous good experience is really helpful to 

the search. The threshold value 𝑟 in solution construction allows the ant to choose an edge with a larger value of 

pheromone trail and structure similarity when it is larger than 0, which may speed up the search procedure and simplify 

the solution construction. However, larger 𝑟 may cause the search to be trapped to local optimal. So small 𝑟 is a better 

choice. Based on the observation from Fig. 6 to Fig. 8, the most appropriate ranges of 𝛼, 𝛽, 𝜌 and 𝑟 are introduced as 

follows: 𝛼 = 1, 𝛽 ∈ [ 2, 4, 6], 𝜌 ∈ [0.85,0.9, 0.95] and 𝑟 ∈ [0, 0.2] In the following experiments on 𝐾 and 𝑇, we 

set {𝛼, 𝛽, 𝜌, 𝑟} equal to the values: {1, 4, 0.95, 0.1}. 
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To analyze 𝐾, we examined 𝐾 = {1, 3, 4, 5, 6, 10, 15, 20, 30, 60}. As shown in Fig. 9 there is no special fluctuation of 

both Q and NMI. The result in Fig. 10 for 𝑇 = {2, 4, 6, 8, 10, 12, 14, 16, 18, 20} shows quite a similar situation as that 

of Fig. 9. Therefore we can conclude that parameters K and T are not sensitive for these four real-world networks. As 

𝐾 = 1, all the ants are in one group and share the same pheromone matrix. It can be observed that results obtained 

by 𝐾 > 1 are generally better that those obtained by 𝐾 = 1. So dividing the ants into several groups is helpful for the 

algorithm. But if K is too large, the algorithm will take more time to record and update the pheromone matrices. 𝑇 

controls the number of neighbors of each ant and promotes information exchange between different ants. Since K and T 

are not sensitive, we prefer medium values of them. 

Based on the analysis and experiments on parameters above, we obtain the parameter setting of MOACO/D-Net as 

shown in Table 4, and MOACO/D-Net will always adopt these parameters in the following experiments. 

Table 4 Parameter setting of MOACO/D-Net 

Parameter Meaning Value 

N Ant colony size 60 

α pheromone information factor 1 

β heuristic information factor 4 

ρ persistence rate of pheromone trail 0.95 

r threshold value in solution construction 0.1 

K number of groups 5 

T number of neighbors of each ant 8 

ε lower bound factor of pheromone information  0.005 

Gen the maximum number of iterations 50 

4.4 Comparison with other algorithms on real-world networks with true partitions known 

In this subsection the proposed algorithm is compared with MOEA/D-Net (Gong et al. 2012), MOGA-Net (Pizzuti 

2009), IACO-Net (Mu et al. 2014) and FN (Newman 2004). In these experiments, the parameter setting of 

MOACO/D-Net is same with that shown in Table 4. Average results of the best Q and NMI over 20 independent runs 

obtained by MOEA/D-Net are shown in Table 6. 

All the algorithms being compared in this subsection fall into three categories: FN is a greedy method maximizing the 

modularity; IACO-Net is ACO based algorithms with the single objective optimizing modularity; MOACO/D-Net, 

MOEA/D-Net and MOGA-Net are three different MOEAs. MOACO/D-Net and MOEA/D-Net optimize negative ratio 

association and ratio cut simultaneously, and MOGA-Net optimizes community score (CS) and community fitness (CF) 

simultaneously. For the sake of fairness, except FN, the results of the algorithms for comparison are from their original 

literatures which ensures that all the algorithms provide their results based on their best performance. Meanwhile, the 

main parameters of these algorithms except FN are listed in Table 5. Different from other population based algorithms, 

FN is a greedy method which runs in time O ((ne+n)n) and always gets the same result over different runs. It can be 

found that the Number of evaluations of MOACO/D-Net is much smaller than those of MOEA/D-Net and MOGA-Net, 

and is also smaller than that of IACO-Net. IACO-Net has a self-learning operator in each generation, so its real Number 

of evaluations is a little more than 5000. 

Table 5 Parameters of different algorithms for comparison 

Parameter MOACO/D-Net MOEA/D-Net MOGA-Net IACO-Net 

Population size 60 100 300 50 

the maximum number 

of iterations 

50 400 
30 100 

Objective function NRA  NRA  CS  Q 
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and RC and RC and CF 

Number of evaluations 3000 40000 9000  >5000 

It can be observed in Table 6 that IACO-Net obtained larger modularity values than FN over four networks, but 

interestingly, only over the football networks IACO-Net obtained a larger NMI value than FN. It is because that there is 

no strict positive co-relationship between the modularity value and the NMI value (Mu et al. 2015). In another word, the 

NMI value of a solution may be small when its modularity value is large. So maximizing modularity or any other single 

objective function, may not be the best choice for finding the good partitions of a network. 

Table 6 Results of the proposed MOACO/D-Net and existing algorithms on four real-world networks 

Metric Networks MOACO/D-Net MOEA/D-Net MOGA-Net IACO-Net FN 

Q
avg

 

Karate 0.419 0.420 0.415 0.420 0.381 

Dolphins 0.525 0.520 0.505 0.526 0.495 

Football 0.604 0.604 0.515 0.602 0.550 

Polbooks 0.526 0.527 0.518 0.517 0.502 

NMIavg 

Karate 1 1 1 0.687 0.837 

Dolphins 1 1 1 0.567 0.606 

Football 0.927 0.925 0.795 0.879 0.654 

Polbooks 0.606 0.596 0.597 0.523 0.534 

For MOEAs, a group of nondominated solutions can be obtained in a single run, and the solution with the best 

modularity value and the solution with the best NMI value can be selected and recorded. Therefore three MOEAs 

performed better than the single-objective algorithms on the whole. As for three MOEAs, MOACO/D-Net and 

MOEA/D-Net obtained better values on modularity Q than MOGA-Net over four networks. For the Karate network and 

Dolphins network, all MOEAs obtained 𝑁𝑀𝐼𝑎𝑣𝑔 = 1, indicating that all MOEAs could always find the true partitions. 

For the Football network and Polbooks network, MOACO/D-Net obtained much better values on NMI than all the 

algorithms for comparison. 

Then the statistic values of best modularity Q and the statistic values of best NMI obtained by MOACO/D-Net, 

IACO-Net and FN over the 20 runs on four real-world networks are shown in terms of box plots in Fig. 11 and Fig. 12. 

It can be found from Fig. 11 and Fig. 12 that the variability of Q values and NMI obtained by MOACO/D-Net over the 

20 runs is relatively small compared to IACO-Net on each of the four networks except Dolphins network. NMI and Q 

values obtained by FN do not change over different runs because it is a greedy algorithm. As we can see from Fig. 12, 

NMI values obtained by MOACO/D-Net are much better than those by IACO-Net and FN. On the whole, the statistic 

results illustrate the effectiveness and stability of MOACO/D-Net. 

4.5 Comparison with other algorithms on LFR Benchmark networks and four Real-world networks with true 

partitions unknown 

In this section, we compare MOACO/D-Net with CNM (Newman 2004) and CNM-IC (Mu et al. 2014) on LFR 

benchmark networks with 1000 nodes and four real-world networks with true partitions unknown including SFI 

network, Netscience network, Protein network and US power grid network. The details of these networks are shown in 

Table 1 and Table 2. For each network, we computed the average NMI obtained by each algorithm over 20 independent 

runs. CNM performs a quick maximization of modularity Q and can handle large networks. CNM-IC is an improvement 

on CNM by adding a simple but effective operator.  

The experimental results are shown in Fig. 13. It can be seen that NMI values obtained by MOACO/D-Net are always 

larger than those by CNM and CNM-IC as the mixing parameter increases. For modularity Q, MOACO/D-Net obtains 

larger values when μ is less than 0.35, and obtains smaller values than CNM and CNM-IC when μ is greater than 0.35. 

This situation is consistent with what have been observed before, i.e., larger Q value is not always leads to a better 
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partition with larger NMI value. In LFR benchmark networks, each node shares a fraction 1 − µ of its links with the 

other nodes within its community and a fraction µ with the other nodes outside its community in the network. So the 

higher the mixing parameter µ of a network is, the more difficult it is to reveal the community structure.  In this 

experiment, as mixing parameter μ increases, MOACO/D-Net can always find partitions with higher NMI values, 

indicating the effectiveness of MOACO/D-Net. 

Next, we executed MOACO/D-Net, CNM and CNM-IC 20 times independently on four real-world networks whose true 

partitions are unknown. Therefore NMI cannot be obtained for these networks. The comparison of modularity Q values 

are shown in Fig. 14. For SFI network, the modularity Q obtained by MOACO/D-Net is 0.710 which is slightly smaller 

than that by CNM. For Netscience network, the Q value got by MOACO/D-Net is 0.910, while the Q value by CNM is 

0.955. CNM aims to maximize Q while our MOACO/D-Net is a multi-objective optimization algorithm, which can 

reveal different community structure. Considering these factors, it can be drawn that MOACO/D-Net is able to deal 

with large networks with satisfactory results. 

4.6 Partitions at different hierarchical levels 

In another set of experiments, partitions at different hierarchical levels of the Karate network are presented. Fig. 15 

presents the final Pareto Front which consists of 26 nondominated solutions, and the horizontal and vertical axis 

correspond to the two objective functions shown in Eq. (6). Each solution has a different NMI which is listed near the 

corresponding vertex. Four solutions (19, 21, 23 and 26) with different number of clusters are chosen. The partition of 

solution 26 (NMI=0) is drawn as a whole cluster in Fig. 16 (a) and all the vertices in the cluster are drawn in the same 

color. The partition of two clusters in solution 23 (NMI=1) is drawn in yellow and in orange in Fig. 16 (b). The NMI of 

solution 23 is 1, which means the partition is the same as the real partition. Fig. 16 (c) shows a result with 3 clusters, which 

divides the first cluster in Fig. 16 (b) into two clusters. In order to obtain smaller communities, the vertices 25, 26, 29 and 

32 can be separated from the second cluster in Fig. 16 (b) and then constitute a new cluster drawn in pink in Fig. 16 (d). It 

can be seen from Fig. 15 and Fig. 16 that MOACO/D-Net is able to find partitions at different hierarchical levels in a 

single run, providing more choices for decision makers.  

Fig. 17 presents the Pareto Fronts of the Dolphins network, the Football network and the Polbooks network. Four 

partitions with different number of clusters of the Dolphins network are shown in Fig. 18. It can be observed from Fig. 

17 that a group of nondominated solutions can be obtained in one run by our MOACO/D-Net. Each of these solutions 

corresponds to a different partition of the network consisting of various clusters. The number of clusters is automatically 

determined by the nondominated solutions resulting from our MOACO/D-Net. Fig. 18 (a) shows the partition of two 

clusters. The NMI of this partition is 1, indicating it is the same as the real partition. In Fig. 18 (b), (c) and (d), the big 

cluster in Fig. 18 (a) is further divided into several small clusters by separating several vertices from the original cluster. 

These different partitions indicate the hierarchical structure of Dolphins network and may provide more useful 

information for investigators focusing on this network. 

Fig. 19 shows four different partitions of the SFI network. SFI network here represents the co-authorship between 118 

scientists. The partition with 12 clusters and 0.6955 Q value, the partition with 13 clusters and 0.7057 Q value, the 

partition with 14 clusters and 0.6925 Q value as well as the partition with 15 clusters and 0.6804 Q value are presented 

in Fig. 19 (a), (b), (c) and (d) respectively. The true partition of SFI network is not known, but the results shown in Fig. 19 

looks interesting and meaningful. Vertices 1, 2, 12 and 24 are always in the center of its own community in different 

partitions. These vertices have links with almost all the other members within its own community, so it can be inferred that 

these vertices may be the leaders of these teams. As shown in Fig. 19, some big communities can be further divided into 

several smaller communities, which is reasonable in real world. Therefore our MOACO/D-Net can reveal different 

structures of real-world networks that are reasonable, indicating its effectiveness and significance. 

5 Conclusions 
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In this paper, to address the difficulties of applying the multi-objective ACO into the community detection problem 

including defining and updating the pheromone matrices, constructing the transition probability model, and tuning the 

parameters, a new transition probability model for the community detection problem is proposed, with which a 

multi-objective ant colony optimization algorithm based on decomposition (MOACO/D-Net) is designed for finding 

communities at different hierarchical levels in complex networks. MOACO/D-Net decomposes the community 

detection problem into a number of single-objective optimization problems, and each subproblem is explored by an ant. 

All the ants construct solutions according to the proposed transition probability model without the need of knowing the 

exact number of communities in advance. The solution constructed by an ant is then improved by a simple and effective 

improvement operator based on the definition of strong community in each generation. Finally a Pareto Front which 

includes a number of nondominated solutions is obtained, and good partitions at different hierarchical levels can also be 

obtained in a single run.  

Several sets of experiments are designed to find out how the parameters of MOACO/D-Net influence the solutions. 

Proper ranges of four parameters (pheromone information factor 𝛼, heuristic information factor 𝛽, persistence rate of 

pheromone trail 𝜌 and threshold value in solution construction 𝑟) in MOACO/D-Net, which are also parameters of 

single-objective ACO algorithm, are found respectively. For the other two parameters (number of groups K and number 

of neighbors of each ant T) with no prior knowledge in MOACO/D-Net especially, their influence to the final partition 

is also given. In our future work, we will focus on improving the efficiency and robustness of the proposed algorithm 

further and applying it on the overlapping community detection problem. 
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Fig. 2 An illustrative example of the locus-based adjacency scheme. (a) An example network with 11 vertices 

and 16 edges (b) A possible encoded solution (3 1 2 6 4 7 8 5 10 11 9), where the allele value of the 1st element 

is 3, and the allele value of the 2nd element is 1, etc. (c) The corresponding decoded solution, where the network 

is partitioned into three clusters: A, B and C (the graph is shown as directed to aid understanding on how it 

originates from the encoded solution). 

Groups Neighbors

Ant 1 

Ant 7 

Ant 16 

Pareto optimal solution generated by min g(x|λ1)

Pareto optimal solution generated by min g(x|λ16)

Pareto optimal solution generated by min g(x|λ7)

The neighborhood of Ant 7
f1

f2

 

Fig. 1 An example of multi-objective optimization problem partitioned into 16 subproblems, each explored by 

an ant, respectively. Ant 𝑖 in the Pareto Front is a Pareto optimal solution defined by min 𝑔(𝑥|𝜆𝑖). All the ants 

in the same ellipse belong to the same group, i.e. group 1 includes ants 1, 2,…, 8 and group 2 includes ants 9, 

10, …, 16. Ant 5, 6, 8 and 9 in the rectangle are neighbors of ant 7. 
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Fig. 3 The relationship between the run-time of three improvement operators and the network size on LFR benchmark networks 

  

Fig. 4 The relationship between the run-time of MOACO/D-Net-III and the network size on LFR benchmark networks  

 

Fig. 5 Comparison of MOACO/D-Net-X and MOACO/D-Net-III on LFR benchmark networks with different mixing parameters 
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(a). 𝒬 for the Dolphins network                          (b). NMI for the Dolphins network 

 

(c). 𝒬 for the Football network                           (d). NMI for the Football network 

 

(e). 𝒬 for the Polbooks network                           (f). NMI for the Polbooks network 

Fig. 6 Results of comparison experiments on the value of 𝛽 (when 𝛼=1 and 𝜌=0.7, 0.75, 0.8, 0.85, 0.9, 0.95) 

for real-world networks. 
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(a). 𝒬 for the Dolphins network                          (b). NMI for the Dolphins network 

 

(c). 𝒬 for the Football network                           (d). NMI for the Football network 

 

(e). 𝒬 for the Polbooks network                           (f). NMI for the Polbooks network 

Fig. 7 Results of comparison experiments on the value of 𝜌 (when 𝛼=1 and 𝛽=0.2，0.5，0.7，1, 2, 4, 6, 8, 12, 

14) for real-world networks. 
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Fig. 9 Plots of the max NMI and the max Q obtained with different values of K for four real-world networks, 

where 𝐾 = {1,3,4,5,6,10,15,50,30,60}. 

 

Fig. 8 Plots of the max NMI and the max Q obtained with different values of 𝑟 for four real-world networks, 

where 𝑟 = {0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1}. 
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Fig. 11 The box plot of the statistic value of Q obtained by MOEA/D-Net, IACO-Net and FN over the 20 runs on the real-world 

networks.  

 

Fig. 10 Plots of the max NMI and Q obtained with different values of 𝑇 for four real-world networks, where 

𝑇 = {2,4,6,8,10,12,14,16,18,20}. 
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Fig. 12 The box plot of the statistic value of NMI obtained by MOEA/D-Net, IACO-Net and FN over the 20 runs on the real-world 

networks. 

 

 

 

 

 

 

   

(a) Q values                                       (b) NMI 

Fig. 13 Average Q values and NMI of different algorithms on LFR benchmark networks with 1000 nodes 
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Fig. 14 Average Q values of different algorithms on real-world networks with real partitions unknown 

 

 

 

 

 

 

Fig. 15 Pareto Front of the Karate network with 26 nondominated solutions obtained by MOEA/D-Net. The 

NMI of each solution is shown. 
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(a) Dolphins network                (b) Football network             (c) Polbooks network 

Fig. 17 Pareto Fronts obtained by MOEA/D-Net on the Dolphins network, the Football network and the Polbooks 

network. 

 
(a) Solution 26 (1 cluster)                    (b) Solution 23 (2 clusters) 

 

(c) Solution 21 (3 clusters)                     (d) Solution 19 (4 clusters) 

Fig. 16 Four different partitions for the Karate network: one cluster in (a), two clusters in (b), three clusters in 

(c) and four clusters in (d). Vertices in different clusters are drawn with different colors 
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(a) 2 cluster                               (b) 3clusters 

 

(c) 4 cluster                               (d) 5clusters 

Fig. 18 Four different partitions for the Dolphins network: two cluster in (a), three clusters in (b), four clusters 

in (c) and five clusters in (d). Vertices in different clusters are drawn with different colors 
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(a) 12 cluster                               (b) 13clusters 

 

(c) 14 cluster                               (d) 15 clusters 

Fig. 19 Four different partitions for the SFI network: 12 cluster in (a), 13 clusters in (b), 14 clusters in (c) and 

15 clusters in (d). Vertices in different clusters are drawn with different colors 


