
Learning-Guided Cross-Sampling for Large-Scale Evolutionary
Multi-Objective Optimization⋆

Haofan Wanga,1, Li Chena,∗, Xingxing Haoa,∗, Rong Qub, Wei Zhoua, Dekui Wanga and Wei Liuc

aSchool of Information Science and Technology, Northwest University, Xi’an 710127, China
bSchool of Computer Science, University of Nottingham, Nottingham, NG8 1BB, UK
cLeiden Institude of Advanced Computer Science, Leiden University, Leiden, 2333 CA, Netherlands

A R T I C L E I N F O

Keywords:
Evolutionary algorithm
Large-scale multi-objective optimiza-
tion
Learning-guided
Cross-sampling
Two-level

A B S T R A C T

When tackling large-scale multi-objective problems (LSMOPs), the computational budget could be
wasted by traditional offspring generators that explore the search space in a nearly directionless manner,
impairing the efficiency of many existing algorithms. To address this issue, this paper proposes a novel
two-level large-scale multi-objective evolutionary algorithm called LMOEA-LGCS that incorporates
neural network (NN) learning-guided cross-sampling for offspring generation in the first level and
a layered competitive swarm optimizer in the second level. Specifically, in the first level, two NNs
are trained online to learn promising vertical and horizontal search directions, respectively, against
the Pareto Set, and then a batch of candidate solutions are sampled on the learned directions. The
merit of learning two explicit search directions is to devote the employed NNs to concentrating on
separate or even conflicting targets, i.e., the convergence and diversity of the population, thus achieving
a good trade-off between them. In this way, the algorithm can thus explore adaptively towards more
promising search directions that have the potential to facilitate the convergence of the population while
maintaining a good diversity. In the second level, the layered competitive swarm optimizer is employed
to perform a deeper optimization of the solutions generated in the first level across the entire search
space to increase their diversity further. Comparisons with six state-of-the-art algorithms on three
LSMOP benchmarks, i.e., the LSMOP, UF, and IMF, with 2-12 objectives and 500-8000 decision
variables, and the real-world problem TREE demonstrate the advantages of the proposed algorithm.

1. Introduction
Multi-objective optimization (MOO) algorithms play a

crucial role in solving multi-objective optimization problems
(MOPs) in various domains like medicine [1], transportation
[2], logistics [3], and industrial production [4, 5], where
multiple conflicting objectives always need to be optimized
simultaneously. However, problems in real scenarios could be
high-dimensional, namely, numerous variables are involved
in the objective function that is used to evaluate the perfor-
mance of systems or methods [6–8]. The goal of MOO is
to find a set of Pareto optimal solutions as improving one
objective may harm others.

Recent decades have seen flourishing research that lever-
ages evolutionary algorithms to achieve such goals due
to their population-based property and implicit parallelism
[9, 10]. Among them, increasing attention has been paid to
the development of large-scale multi-objective evolutionary
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optimization algorithms (LMOEAs) that aim to solve large-
scale multi-objective optimization problems (LSMOPs) [11–
16]. Existing LMOEA can be broadly classified into three
categories.

The first category follows a divide-and-conquer manner,
where decision variables are grouped into sub-problems
and optimized via sharing and cooperation. For instance,
MOEA/DVA [17] divides variables into distance and diverse
ones via variable analysis, transforming difficult LSMOPs
into simpler low-dimensional and easy-to-solve MOPs.
LMEA [18] uses an angle-based clustering to separate
convergence-related and diversity-related variables, and
then a convergence and diversity optimization strategy are
employed to optimize them, respectively. LSMOEA/D [19]
proposes a decomposition-based adaptive local decision
variable analysis method where an adaptive scaling strategy
is used to optimize the grouped decision variables, which
can balance the convergence and diversity of the population.
Other approaches work alike, but some optimize sub-
problems in parallel [20] and some sequentially [21]. This
type of LMOEA is capable of trading off the population’s
convergence and diversity well. However, they usually
require a large number of evaluations to reasonably analyze
the decision variables, which could be a burden when
computational budgets are limited.

The second category encompasses problem transformation-
based LMOEAs. These algorithms transform the original
problem into equivalent sub-problems to simplify their
complexity. For example, WOF [22] integrates multiple
objective functions into a single objective function via
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weighted sum, which is then optimized using traditional
single-objective optimization algorithms. To alleviate the
impact of different weights in WOF, WOF-MMOPSO-RDG
[23] employs a dynamic grouping strategy [24]. LSMOF [25]
proposes a problem reformulation framework in which the
decision space is reconstructed by the weight variables, and
the objective space is reduced by the indicator function. Due
to the reformulated problems having lower dimensionality
than the originals, quasi-optimal solutions can be efficiently
obtained and subsequently refined by existing LMOEAs.
Inspired by LSMOF, LMOEA-DS [26] establishes search
directions in the decision space and then directly samples
solutions on them to generate candidates. Benefiting from
the guidance of search directions, LMOEA-DS exhibits
remarkable ability to speed up the convergence of the popu-
lation. However, as the population evolves, such directions
that are bounded by the margins of decision space could
limit the flexibility of sampling solutions, thus degrading its
effectiveness at the later stage [27].

Different from the above categories that either divide
original problems into sub-problems or transform them into
simpler ones to reduce the difficulty of LSMOPs, the third
category focuses on designing more efficient search strategies
or operators to solve LSMOPs directly. For instance, FDV
[28] introduces fuzzy concepts to solve LSMOPs by fuzzify-
ing decision variables. DGEA [29] proposes a preselection
strategy to select a balanced parent population, which is then
used to construct two types of direction vectors for generating
promising offspring with good convergence and diversity,
respectively. LMOCSO [30], a variant of the traditional
competitive swarm optimizer (CSO) [31], specifically designs
a new particle updating strategy that updates the particle’s
position in a two-stage manner to improve its search efficiency.
Due to the good performance and extensibility, it is embedded
as a module in many LMOEAs[28, 32–35].

Recently, learning-guided LMOEAs have gained increas-
ing interest. For example, ATLMOEA [32] utilizes a neural
network (NN) to predict potentially directional improvement
information, which then guides a Differential Evolution
(DE) operator to search in promising directions. It exhibits
remarkable ability in exploration, but performance would
degrade as the number of variables increases due to the under-
utilization of the learned directions. NN-CSO [33] embeds
NN into CSO to not only guide the evolution of the loser
particles but also to evolve the winner particles. It is shown
to improve the performance of CSOs significantly. Lately,
ALMOEA [36] extends the learning-based mechanism to
existing LMOEAs, such as the MOEA/D, NSGA-II, etc., to
further enhance their performance. It is encouraging to see
that incorporating learning mechanisms such as a simple
NN into the existing LMOEAs could further promote their
performance.

Although many LMOEAs proposed in the past decades
demonstrate good performance in solving LSMOPs, there
remain limitations and areas for improvement. For example,
LMOEAs that fall into the divide-and-conquer category
are sensitive to the grouping strategy. Moreover, these

algorithms would consume significant computational budgets
in variable grouping, which will degrade their performance as
the problem’s dimensionality grows [37]. Besides, problem
transformation-based LMOEAs may encounter information
loss during transformation, which may make them blind to
certain areas of the decision space, thus leading to local
optima. Moreover, decomposing and merging solution sets
for large-scale instances are also computationally expensive
[38]. At last, the improved LMOEAs that employ traditional
offspring generators may exhibit random behaviors during
search due to the inherent mechanisms of their generators.
Therefore, it is imperative to search in the right direc-
tions within a limited number of evaluations when solving
LSMOPs.

To address these challenges, this paper proposes a novel
large-scale multi-objective evolutionary algorithm, termed as
LMOEA-LGCS, that incorporates a learning-guided cross-
sampling mechanism for offspring generation in the first
level and a layered CSO for solution refinement in the
second level. The workflow of LMOEA-LGCS is similar
to the ATLMOEA [32] but with the following dissimilarities.
(1) Two groups of search directions, i.e., the vertical and
horizontal search directions against the Pareto set (PS) are
learned in LMOEA-LGCS, while ATLMOEA only learns
the vertical search directions according to the definitions
in this paper. (2) Solutions predicted by NNs in LMOEA-
LGCS are used to establish promising search directions, but
in ATLMOEA, they are used as components of a DE [39]
operator. (3) The learning-guided cross-sampling and the
layered CSO are performed sequentially without extra level or
stage control parameters, which are opposite in ATLMOEA.
The advantages of LMOEA-LGCS will be elaborated in the
following contexts. The main contributions of this paper can
be summarized as follows:

1) Unlike most learning-based LMOEAs, two NNs are
trained in LMOEA-LGCS to learn promising vertical and
horizontal search directions, respectively, against the PS
in each generation, aiming at trading off the exploration
and exploitation of the search space. The merit of training
two NNs is that it can avoid interference between learning
to improve convergence and learning to improve diversity,
which is always the case if a sole NN is used to accomplish
these two tasks.

2) To sufficiently utilize the learned directions, LMOEA-
LGCS introduces a cross-sampling framework. After the
vertical and horizontal search directions are learned, a number
of solutions are then sampled on them. The vertical and
horizontal search directions are very likely perpendicular
or crossed with each other. The sampled solutions can thus
complementally cover the search area as much as possible
and maintain a balance between convergence and diversity. In
addition, the knowledge learned in different directions during
the evolution can be transferred between each other via the
selected training dataset at each iteration, which can further
benefit the evolution.

3)To further refine the solutions obtained from cross-
sampling, the layered CSO is employed as a deep optimizer
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to exploit the population in the entire space. It differs from
the explicitly two-stage paradigm like [32]. In LMOEA-
LGCS, the layered CSO is conducted sequentially after
cross-sampling in each generation. Thus, there is no need
to design level or stage switching strategies, which usually
introduce extra control parameters. Compared with six state-
of-the-art LMOEAs, the experimental results demonstrate the
effectiveness of LMOEA–LGCS not only on LSMOPs but
also on large-scale Many-objective optimization problems.

The subsequent sections of this paper are organized as
follows. Section 2 provides preliminaries related to LSMOPs,
NNs, CSO, and our motivations. Section 3 elaborates on the
main framework and implementations of LMOEA-LGCS.
Section 4 analyses the parameter settings and presents
experimental results. Section 5 provides more discussions on
evaluation indicators and practical implementation of a real-
world optimization problem. Finally, Section 6 concludes this
paper and suggests potential directions for further research.

2. Preliminaries and Motivations
2.1. Large-Scale Multi-Objective Optimization

Problems
Without loss of generality, a LSMOP can be mathemati-

cally defined as follows [40]:
{

min𝐹 (𝑋) =
(

𝑓1 (𝑋) , 𝑓2 (𝑋) ,⋯ , 𝑓𝑚 (𝑋)
)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑋 ∈ Ω
(1)

where 𝑋 = (𝑥1, 𝑥2,⋯ , 𝑥𝑛) is an 𝑛-dimensional decision
variable vector in the decision space Ω. Normally, the value
of 𝑛 is equal to or greater than 100 [17, 18, 28]. The 𝐹 (𝑋)
consists of 𝑚 conflicting objectives, where 𝑚 is equal to or
greater than 2. Due to the inherent conflicts among these
objectives, it is not achievable to simultaneously obtain
optimal solutions for all objectives. Instead, the goal is to
find a set of non-dominated solutions known as the PS, in
which the solutions are equally good or incomparable with
each other, and the mapping of PS to the objective space via
𝐹 (𝑋) is called the Pareto front (PF). In this paper, we test the
designed algorithm on LSMOPs, UFs, and IMFs benchmarks
with 𝑚 ranging from 2 to 12 and 𝑛 ranging from 500 to 8000,
which are considerably large scale.

2.2. Neural Networks
NNs are computational models inspired by the function-

ing of biological nervous systems [41]. Generally, an NN
consists of interconnected neurons in three main components:
the input layer, hidden layers, and output layer, and each layer
is connected by neurons. Each neuron receives input data
to calculate a weighted linear combination and then uses a
nonlinear activation function to modify and output the result.
In this paper, the number of neurons in the input layer and
output layer is set to be identical to the dimension of the
corresponding LSMOPs [36]. To balance the computational
cost and the desired accuracy, a hidden layer with 10 neurons
is used. The effect of the number of neurons in the hidden

layer on the performance of the algorithm will be discussed
in Section 4. The mean square error (MSE) is used as the
loss function [42], and the Sigmoid activation function is
employed [43].

The training process of NNs is shown as Algorithm 1, in
which 𝑆𝑖𝑛𝑓𝑒𝑟𝑖𝑜𝑟 and 𝑆𝑠𝑢𝑝𝑒𝑟𝑖𝑜𝑟 are selected training datasets,
and the former represents the input, and the latter is the
desired output, respectively. For each solution 𝑥 in the input
dataset, its expected output 𝑦 is randomly selected from the
output dataset (Step 2). Then, the MSE loss between the
inference of the current NN (𝑦′) and the expected output (𝑦)
is calculated and used to update NN’s parameters (Steps 3-5).

Algorithm 1 Training of NN
Input: 𝑆𝑠𝑢𝑝𝑒𝑟𝑖𝑜𝑟 (the output data), 𝑆𝑖𝑛𝑓𝑒𝑟𝑖𝑜𝑟 (the input data)
Output: the trained NN

1: for each solution 𝑥 ∈ 𝑆𝑖𝑛𝑓𝑒𝑟𝑖𝑜𝑟 do
2: randomly choose an expected output 𝑦 ∈ 𝑆𝑠𝑢𝑝𝑒𝑟𝑖𝑜𝑟 /*

𝑦 is the ground truth */
3: input 𝑥 into the current NN and get its inference 𝑦′ /*

𝑦′ is the predicted value */
4: compute the MSE loss 𝐿 between 𝑦′ and 𝑦
5: update the parameters of NN based on 𝜕𝐿∕𝜕𝑊
6: end for
7: return the trained NN

2.3. Competitive Swarm Optimizer
The CSO [31] is an optimization algorithm for solving

multi-objective optimization problems. It is derived from
particle swarm optimization (PSO) but works very differently
from PSO. Every particle in CSO can be the global best,
and the personal best depends on the pairwise competition,
and the loser will update its position by learning from the
winner. Benefiting from this flat competition relationship
among particles, CSO exhibits good ability to maintain the
population’s diversity but at the cost of slow convergence [32].
In recent developments, LMOCSO [30] uses a new strategy
to evaluate the competitive relationship between particles.
Specifically, it calculates particles’ fitness based on the shift-
based density estimation (SDE) [44], and then the loser will
update its velocity (𝑣𝑙) and position (𝑥⃗𝑙) by learning from the
winner as follows,

𝑣𝑙 (𝑡 + 1) = 𝑟0𝑣𝑙 (𝑡) + 𝑟1
(

𝑥⃗𝑤 (𝑡) − 𝑥⃗𝑙 (𝑡)
)

𝑥⃗𝑙 (𝑡 + 1) = 𝑥⃗𝑙 (𝑡) + 𝑣𝑙 (𝑡 + 1) + 𝑟0
(

𝑣𝑙 (𝑡 + 1) − 𝑣𝑙 (𝑡)
) (2)

where 𝑣𝑙(𝑡) and 𝑥⃗𝑙(𝑡) are the velocity and position of the
loser particle in the 𝑡th generation, respectively, and 𝑥⃗𝑤(𝑡)
indicates the position of the winner particle in the 𝑡th
generation. 𝑟0 and 𝑟1 are random values between 0 and 1.
By (2), the loser particle can sufficiently learn from the
winner, which ensures a good diversity of the population.
However, it still suffers from slow convergence that would
greatly degrade its performance on solving LSMOPs with
increasing dimensionality [30, 34, 45]. Therefore, to fully
exploit particles’ potential and ensure a good diversity of
the population, [32] divides particles into four layers where
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particles in high layers are considered to have higher quality
than those in lower layers. Then, particles in low layers can
learn from any of them from any higher layers in a CSO-based
manner, which can intuitively promote better diversity than
those variants that only divide particles into two categories.

Thus, in this paper, we employ the layered CSO from [32]
as an auxiliary optimizer of the designed learning-guided
cross-sampling to ensure the population’s diversity during
the search.

2.4. Motivations
With the increased objective and decision variable sizes,

generating promising solutions becomes more difficult and
directionless for LMOEAs in solving LSMOPs. Among
existing LMOEAs, the search direction-based methodologies,
such as LMOEA-DS [26] and ATLMOEA [32], have shown
advantages in solving LSMOPs. Benefiting from the guiding
solutions generated by sampling on search directions defined
by chosen representative individuals in the current population,
LMOEA-DS exhibits good potential in generating promising
offspring with good convergence and diversity. To better
guide the evolution in promising search directions, unlike
LMOEA-DS, ATLMOEA [32] uses an NN to learn the
potentially directional improvement directions, which is ded-
icated to accelerating the convergence speed. However, the
sampling in LMOEA-DS is limited to a few search directions
that are established by the chosen individuals, which may
not match the PS shape of the solving problems well and
result in performance degradation on complex LSMOPs [26].
Moreover, although ATLMOEA [32] employs an NN to
learn the potential improvement directions, the predicted
promising solutions are only used to assist a DE operator in
generating offspring, which is an underutilization. In addition,
only the vertical potential improvement direction, as opposed
to our proposed algorithm, is learned in ATLMOEA, which
may be easily misled by non-convergent training samples.
Consequently, its performance is compromised when tackling
problems with dimensions larger than 1000.

To address these challenges, in LMOEA-LGCS, at first,
two NNs are used to learn two categories of search direc-
tions, i.e., the horizontal and the vertical search directions,
which are intentionally parallel and perpendicular to the
PS, respectively. Cross-sampling is then performed on the
learned directions, ensuring that the generated solutions can
consistently converge to the PS and maintain a good diversity
as well. Compared with LMOEA-DS and ATLMOEA, our
method tends to capture the PS shape of the solving problems
more adaptively by sampling on two categories of directions.
Besides, the predicted solutions of NNs are utilized to
establish search directions rather than as candidates merely
or as assistance to genetic operators. By this, more promising
offspring can be probably produced once correct directions
are established. The experimental results in Sections 4 and
5 show that our algorithm is competitive and time-efficient
though two NNs are involved.

Moreover, many LMOEA algorithms, such as WOF [22]
and DGEA [29], involve two evolutionary levels where one

focuses on convergence and the other focuses on diversity
to ensure good performance. This has been experimentally
proved a useful mechanism in solving LSMOPs. Therefore,
we also incorporate a second level in our algorithm. Specifi-
cally, in the second level, the layered CSO [32] is utilized to
continue optimizing solutions obtained from the first level,
namely, the learning-guided cross-sampling, allowing for a
more comprehensive exploration of the search space. Note
that the layered CSO is conducted sequentially after the
cross-sampling in each generation instead of performing as
a separate stage as in [22] and [29]. This avoids bringing in
additional control parameters.

3. The Proposed Methods
3.1. Main Architecture

Algorithm 2 presents the main framework of LMOEA-
LGCS. Firstly, a set of weight vectors, 𝑉 , is generated
uniformly across the objective space [46], and the population
is randomly initialized to 𝑃 (Step 1). Then, the LMOEA-
LGCS starts its main evolution loop, which consists of two
main levels. In the first level (Steps 3-7), 𝑁∕2 individuals are
randomly selected from population 𝑃 as the initial population
𝑄𝑣, and another 𝑁∕2 individuals are also randomly selected
from population 𝑃 as the initial population 𝑄ℎ. 𝑄𝑣 and 𝑄ℎ
are used as the training dataset of NNs that learn horizontal
and vertical search directions, respectively (Step 3). The
purpose of randomly selecting half of the population is to
avoid homogenization of training data and, on the other
hand, promote knowledge exchange among learned search
directions. Then, vertical search directions are established by
the 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑉 𝑒𝑟𝑡𝑖𝑐𝑎𝑙_𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 procedure, which takes
𝑄𝑣 as input and outputs starting points 𝑉𝑠𝑝 and directions
𝐷𝑣 for vertical sampling at Step 4. Finally, 𝑁𝑠1 solutions
are sampled on vertical search directions that are decided
by 𝐷𝑣 and 𝑉𝑠𝑝 at Step 5. Similarly, 𝑁𝑠2 solutions are
sampled on horizontal search directions learned by the
𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔_ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙_𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 in Steps 6 and 7. The next
subsection provides a detailed description of vertical and
horizontal direction learning and the cross-sampling method.

After obtaining 𝑄′
𝑣 and 𝑄′

ℎ, 𝑁 solutions are selected
from the combination of 𝑄′

𝑣, 𝑄′

ℎ, and 𝑃 based on domi-
nance relationship and the crowded environment selection
strategy [11] (Step 8), forming population 𝑂𝑓𝑓 as the
result of the first level. Solutions in 𝑂𝑓𝑓 are those with
high quality that are generated by cross-sampling at the
current generation or from the last generation. To remedy
the diversity of the population, the second level employs
the layered CSO [32] to further optimize them (Step 9) and
generate the new offspring population 𝑄. Specifically, in the
𝐿𝑎𝑦𝑒𝑟𝑒𝑑_𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒_𝑆𝑤𝑎𝑟𝑚_𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟, the sampled so-
lutions in 𝑂𝑓𝑓 are divided into four equal layers based on
reference vector-guided sorting and their SDE fitness[44],
after which the solutions in low layers are considered to
have worse performance than those in higher layers. Then,
the competitive strategy of LMOCSO is adopted to let the
solutions in low layers learn from those in higher layers.
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Fig. 1: Overall flowchart of LMOEA-LGCS.

Finally, the reference vector-guided environmental selection
proposed in [47] is adopted to select the next generation 𝑃
from the combination of 𝑂𝑓𝑓 and 𝑄 (Step 10). The evolution
loop ends until it reaches the computational budget, i.e., the
maximum number of function evaluations. Fig. 1 provides
the overall flowchart of the proposed LMOEA-LGCS, and
the components of Algorithm 2 will be elaborated in the
following subsections.

Algorithm 2 Main Framework of the Proposed LMOEA-
LGCS.
Input: 𝑁 (population size), 𝑁𝑠1 (Number of vertical sam-

ples), 𝑁𝑠2 (Number of Horizontal samples)
Output: 𝑃 (final population)

1: Generate vector 𝑉 in a uniform manner and initialize
population 𝑃

2: while termination criterion is not fulfilled do
3: Select 𝑁∕2 individuals from population 𝑃 forming

two subpopulations 𝑄𝑣 and 𝑄ℎ, respectively
4: (𝑉𝑠𝑝, 𝐷𝑣) = 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑉 𝑒𝑟𝑡𝑖𝑐𝑎𝑙_𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛(𝑄𝑣)
5: 𝑄′

𝑣 = 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛_𝐺𝑢𝑖𝑑𝑒𝑑_𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝐷𝑣, 𝑉𝑠𝑝, 𝑁𝑠1)
// Vertical sampling

6: (𝐻𝑠𝑝, 𝐷ℎ) = 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙_𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛(𝑄ℎ)
7: 𝑄′

ℎ = 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛_𝐺𝑢𝑖𝑑𝑒𝑑_𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝐷ℎ,𝐻𝑠𝑝, 𝑁𝑠2)
// Horizontal sampling

8: 𝑂𝑓𝑓 = 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙_𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛1(𝑄′

ℎ, 𝑄
′
𝑣, 𝑃 )

9: 𝑄 = 𝐿𝑎𝑦𝑒𝑟𝑒𝑑_𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒_𝑆𝑤𝑎𝑟𝑚_𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟
(𝑂𝑓𝑓, 𝑉 )

10: 𝑃 = 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙_𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛2(𝑂𝑓𝑓,𝑄, 𝑉 )
11: end while
12: return 𝑃

3.2. Neural Network-guided Direction Learning
3.2.1. Learning Vertical Search Directions

Algorithm 3 outlines the process of learning vertical
search directions using a NN. Note that the purpose of
learning here is different from that in [32]. Instead of learning
the directional solutions for guiding the DE operator, we learn
the convergence directions and the diversity directions of
the population. Initially, the decision variable values of the
solutions in 𝑄𝑣 are normalized using (3) (Step 1), where 𝑥𝑖
represents the 𝑖th variable of the solution 𝑥, and 𝑈𝑖 and 𝐿𝑖
represents the upper and lower bounds of 𝑥𝑖, respectively.

𝑥′𝑖 =
𝑥𝑖 − 𝐿𝑖
𝑈𝑖 − 𝐿𝑖

, 𝑖 = 1, 2,⋯ , 𝑛 (3)

Then solutions in 𝑄𝑣 are sorted by non-dominated sort-
ing [48] and equally divided into two sub-populations
𝑆_𝑠𝑢𝑝𝑒𝑟𝑖𝑜𝑟 and 𝑆_𝑖𝑛𝑓𝑒𝑟𝑖𝑜𝑟 based on their ranks (Step 2),
where 𝑆_𝑠𝑢𝑝𝑒𝑟𝑖𝑜𝑟 contains the first half solutions that are
closer to the PS and 𝑆_𝑖𝑛𝑓𝑒𝑟𝑖𝑜𝑟 contains the rest half.
That is, individuals in 𝑆_𝑠𝑢𝑝𝑒𝑟𝑖𝑜𝑟 are better than those in
𝑆_𝑖𝑛𝑓𝑒𝑟𝑖𝑜𝑟.

Afterwards, 𝑉𝑁𝑁 , namely, the vertical direction learning
model, is trained by using the 𝑆_𝑖𝑛𝑓𝑒𝑟𝑖𝑜𝑟 and 𝑆_𝑠𝑢𝑝𝑒𝑟𝑖𝑜𝑟
as the input and expected output, respectively (Step 3). Since
solutions in 𝑆_𝑠𝑢𝑝𝑒𝑟𝑖𝑜𝑟 are better convergent than those in
𝑆_𝑖𝑛𝑓𝑒𝑟𝑖𝑜𝑟, 𝑉𝑁𝑁 is expected to learn potentially directional
improvement information that can guide the population to
evolve in promising directions. Therefore, once the 𝑉𝑁𝑁 is
trained, the normalized population 𝑄𝑣 is input to 𝑉𝑁𝑁 to pre-
dict a new potential superior population 𝑄′

𝑣 (Step 4), which
should have better prospects than 𝑄𝑣. Next, non-dominated
sorting is performed on 𝑄𝑣 and 𝑄′

𝑣, respectively, and their
first fronts are picked out as 𝑄𝑣𝑓 and 𝑄′

𝑣𝑓 , respectively (Step
5), solutions in which will be utilized as the start and end
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points of the promising search directions, respectively. That is,
the predicted solutions are not directly treated as candidates
but used to construct search directions. The reason is that
searching in promising directions is more preferential than
searching for promising solutions. Intuitively, a promising
search direction can promote higher probabilities for finding
potential candidates than a sole solution.

To establish a vertical search direction, a start point
from 𝑄𝑣𝑓 and an end point from 𝑄′

𝑣𝑓 should be paired
somehow. To this end, at first, solutions in 𝑄𝑣𝑓 and 𝑄′

𝑣𝑓
are respectively sorted in descending order according to their
objective values, 𝑓𝑖, 𝑓𝑗 , . . . (1 ≤ 𝑖 < 𝑗 ≤ 𝑚) (Step 6). Namely,
they are firstly sorted by 𝑓𝑖 value, then those with the same 𝑓𝑖
values are further sorted by 𝑓𝑗 value, where 𝑖 < 𝑗, etc. This
is to avoid intersects of established search directions, thus
reducing the probability of duplicated samplings. Note that
𝑄𝑣𝑓 and 𝑄′

𝑣𝑓 hardly contain the same number of solutions,
so we first establish 𝑚𝑚 = 𝑚𝑖𝑛(|𝑄𝑣𝑓 |, |𝑄′

𝑣𝑓 |) number of
search directions (Steps 7-13 ), where | ∙ | gives the size
of ∙ and 𝑚𝑖𝑛(∙, ◦) returns the smaller one between ∙ and ◦.
Then, the unpaired solutions in 𝑄𝑣𝑓 (or 𝑄′

𝑣𝑓 ) will be paired
with randomly selected ones from 𝑄′

𝑣𝑓 (or 𝑄𝑣𝑓 ), making the
total number of search directions to 𝑛𝑛 = 𝑚𝑎𝑥(|𝑄𝑣𝑓 |, |𝑄′

𝑣𝑓 |)
(Steps 14-19), where 𝑚𝑎𝑥 returns the larger one of its two
inputs. The constructed search direction can be represented
as (4)

𝑑𝑖𝑣 = 𝑄𝑖
𝑣𝑓

′ −𝑄𝑖
𝑣𝑓 , 𝑖 = 1, 2,⋯ , 𝑛𝑛 (4)

where 𝑄𝑖
𝑣𝑓

′ and 𝑄𝑖
𝑣𝑓 represent the 𝑖th solutions in ordered

𝑄′
𝑣𝑓 and 𝑄𝑣𝑓 , respectively. Once the search directions are

established, solutions in 𝑄′
𝑣𝑓 are used as the start points of

vertical sampling (step 18), namely, we sample along the
established search directions that emit from 𝑄′

𝑣𝑓 . This is
because the solutions in𝑄′

𝑣𝑓 have greater potential to promote
successful samples. Fig. 2(a) shows examples of vertical
search directions, in which 𝑋1, 𝑋2, and 𝑋3 are 𝑉𝑁𝑁 ’s input
and 𝑋′

1, 𝑋′
2, and 𝑋′

3 are its selected output, i.e., solutions in
𝑄′

𝑣𝑓 . The red arrows 𝑑1𝑣 , 𝑑2𝑣 , and 𝑑3𝑣 represent three search
directions that emit from 𝑋′

1, 𝑋′
2, and 𝑋′

3, respectively. It
can be seen from Fig. 2(a) that the vertical search directions
intend to intersect the PS vertically to provide improvement
information of convergence for evolution. Different from most
learning-based LMOEAs [32, 36], the trained 𝑉𝑁𝑁 is used
to learn promising search directions instead of just generating
offspring. Most likely, a promising search direction can
provide more valuable guidance to the evolution than a
promising offspring.

3.2.2. Learning Horizontal Search Directions
Algorithm 4 presents the pseudocode of learning hori-

zontal search directions using 𝑄ℎ. The data preprocessing,
training of horizontal search directions learning model 𝐻𝑁𝑁 ,
and prediction of potential superior populations follow the
same process as Algorithm 3. However, in the construction

Algorithm 3 Learning Vertical Search Directions.
Input: 𝑄𝑣 (The randomly selected sub-populations)
Output: 𝐷𝑣 (Set of vertical search directions), 𝑉𝑠𝑝 (Set of

start points of vertical search directions)
1: Normalize decision variable values of solutions in 𝑄𝑣
2: Divide 𝑄𝑣 into subsets 𝑆_𝑠𝑢𝑝𝑒𝑟𝑖𝑜𝑟 and 𝑆_𝑖𝑛𝑓𝑒𝑟𝑖𝑜𝑟 via

non-dominated sorting
3: 𝑉𝑁𝑁 = 𝑇 𝑟𝑎𝑖𝑛𝑖𝑛𝑔(𝑆_𝑠𝑢𝑝𝑒𝑟𝑖𝑜𝑟, 𝑆_𝑖𝑛𝑓𝑒𝑟𝑖𝑜𝑟)
4: 𝑄′

𝑣 = 𝑉𝑁𝑁 (𝑄𝑣)
5: Perform non-dominated sorting on 𝑄𝑣 and 𝑄′

𝑣, and pick
out their first front as 𝑄𝑣𝑓 and 𝑄′

𝑣𝑓 , respectively
6: Sort𝑄𝑣𝑓 and𝑄′

𝑣𝑓 based on objective values, respectively

7: Initialize the set for storing vertical search directions
𝐷𝑣1 = ∅, 𝐷𝑣2 = ∅, 𝐷𝑣 = ∅

8: 𝑚𝑚 = 𝑚𝑖𝑛(|𝑄𝑣𝑓 |, |𝑄
′

𝑣𝑓 |)
9: 𝑛𝑛 = 𝑚𝑎𝑥(|𝑄𝑣𝑓 |, |𝑄

′

𝑣𝑓 |)
10: for 𝑖 = 1 to 𝑚𝑚 do
11: Get 𝑑𝑖𝑣 by (4)
12: 𝐷𝑣1 = 𝐷𝑣1 ∪ {𝑑𝑖𝑣}
13: end for
14: 𝑇1 =Randomly select 𝑛𝑛 − 𝑚𝑚 individuals from 𝑄′

𝑣𝑓 if
|𝑄𝑣𝑓 | > |𝑄′

𝑣𝑓 |, otherwise select from 𝑄𝑣𝑓

15: 𝑇2 = Unpaired individuals in 𝑄𝑣𝑓 or 𝑄′

𝑣𝑓
16: for 𝑖 = 1 to 𝑛𝑛 − 𝑚𝑚 do
17: Calculate 𝑑𝑖𝑣 = 𝑇 𝑖

1 − 𝑇 𝑖
2

18: 𝐷𝑣2 = 𝐷𝑣2 ∪ {𝑑𝑖𝑣}
19: end for
20: 𝑉𝑠𝑝 = 𝑄′

𝑣𝑓 ∪ 𝑇1 if |𝑄𝑣𝑓 | > |𝑄′

𝑣𝑓 |, otherwise 𝑄′

𝑣𝑓
//Start points of vertical search directions

21: 𝐷𝑣 = 𝐷𝑣1 ∪𝐷𝑣2
22: return 𝐷𝑣, 𝑉𝑠𝑝

procedure of horizontal search directions, it is important to
note that Step 3 in Algorithm 4 only requires non-dominated
sorting for the predicted population 𝑄′

ℎ, and its first front
is picked out as 𝑄′

ℎ𝑓 . Then, solutions in 𝑄′
ℎ𝑓 are randomly

paired and stored in pairs in 𝑄𝑝 (step 4), and the midpoint
of each pair is calculated as the start point of two opposite
search directions. By doing this, it is expected to expand
the distribution of solutions to margins to enhance the
population’s diversity. The construction of the horizontal
search directions is as (5)

⎧

⎪

⎨

⎪

⎩

ℎ𝑖𝑝 =
(

𝑄𝑖,1
𝑝 +𝑄𝑖,2

𝑝

)

∕2

𝑑𝑖+ = 𝑄𝑖,1
𝑝 − ℎ𝑖𝑝 , 𝑖 = 1, 2,⋯ , 𝑛𝑛

𝑑𝑖− = 𝑄𝑖,2
𝑝 − ℎ𝑖𝑝

(5)

where 𝑄𝑖,1
𝑝 and 𝑄𝑖,2

𝑝 represent solutions in the 𝑖th pair in
𝑄′

ℎ𝑓 . ℎ𝑖𝑠𝑝 represents the midpoint of 𝑄𝑖,1
𝑝 and 𝑄𝑖,2

𝑝 , which is
also the start point of two search directions 𝑑𝑖+ and 𝑑𝑖−. 𝑛𝑛
represents the number of pairs in 𝑄′

ℎ𝑓 . Since each pair of
solutions in 𝑄′

ℎ𝑓 can derive two search directions, a total
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of 2𝑛𝑛 search directions and 𝑛𝑛 start points are produced
and returned by Algorithm 4 (steps 5-12). Fig. 2(b) shows
an example of horizontal search directions, in which 𝐶1 is
the midpoint of the paired individuals 𝑋′

1 and 𝑋′
2, and the

red arrows indicate the two established search directions
𝑑1+ and 𝑑1−. From Fig. 2(b), we can see that the purpose of
horizontal search directions is to intersect the PS horizontally
to capture its shape as much as possible. In addition, since
the horizontal search directions are established by using the
predicted solutions that are potentially near the PS of the
solved problem, they can be dynamically adjusted as the
shape of the PS changes, thus improving the robustness of
LMOEA-LGCS in solving different LSMOPs.

Algorithm 4 Learning Horizontal Search Directions.
Input: 𝑄ℎ (The randomly selected sub-populations)
Output: 𝐷ℎ (Set of horizontal search directions), 𝐻𝑠𝑝 (Set

of start points of horizontal search directions)
1: Train 𝐻𝑁𝑁 as Algorithm 3 (Step 1-3) does
2: 𝑄′

ℎ = 𝐻𝑁𝑁 (𝑄ℎ)
3: Perform non-dominated sorting on 𝑄′

ℎ, and pick out its
first front as 𝑄′

ℎ𝑓
4: Randomly pair solutions in 𝑄′

ℎ𝑓 and store those pairs in
𝑄𝑝

5: 𝑛𝑛 = |𝑄𝑝|
6: Initialize the set for storing horizontal search directions

𝐷ℎ = ∅ and the set for storing starting points 𝐻𝑠𝑝 = ∅
7: for 𝑖 = 1 to 𝑛𝑛 do
8: Calculate start points ℎ𝑖𝑠𝑝 and search directions 𝑑𝑖+ and

𝑑𝑖− using (5) for each 𝑄𝑝
𝑖

9: 𝐷ℎ = 𝐷ℎ ∪ {𝑑𝑖+} ∪ {𝑑𝑖−}
10: 𝐻𝑠𝑝 = 𝐻𝑠𝑝 ∪ {ℎ𝑖𝑠𝑝}
11: end for
12: return 𝐷ℎ,𝐻𝑠𝑝

3.3. Learning-guided Cross-sampling
After obtaining the vertical and horizontal search di-

rections, offspring are generated by sampling along them.
Algorithm 5 presents the sampling method adopted in this
paper. Note that the procedures of sampling on horizontal
and vertical search directions are similar, but their directions
and starting points of sampling are different. At first, 𝑄𝑠 that
stores sampled solutions is initialized to empty (Step 1). Then,
for every search direction in 𝐷, 𝑁𝑠 solutions are sampled by
(6) (Steps 2-9).

𝑄𝑗
𝑖 = ||𝑈 −𝐿|| ∗ 𝜆 ∗

𝐷𝑖
||𝐷𝑖||

+ 𝑆𝑝𝑖, 𝑗 ∈ 1, 2,⋯ , 𝑁𝑠 (6)

where 𝑈 and 𝐿 represent the upper and lower bounds of the
decision space, respectively, and ||𝑈 − 𝐿|| is the length of
the decision space. 𝜆 is a random number that controls the
sampling range, which is a random value in [0, 0.6]. The
choice of 𝜆 values will be discussed in Section 4. 𝐷𝑖 and

𝑆𝑝𝑖 denote the 𝑖th sampling direction and start point for
sampling, respectively. In case the sampled solution 𝑄𝑗

𝑖 is
infeasible, i.e., some variables exceed their ranges, a repair is
conducted at Step 6 to resolve this. Fig. 2(c) shows an example
that contains both vertical and horizontal search directions
in a 3-dimensional decision space, where the blue surface
represents the real PS, the green arrow 𝑑𝑖𝑣 and red arrows
𝑑𝑖+ and 𝑑𝑖− represent the vertical search directions and the
horizontal search directions, respectively. The cross-sampling
procedure is to sample solutions on these search directions
with the expectation that some of them may intersect the PS
or approximate the PS like the yellow stars in Fig. 2(c).

It is important to note that although the sampling range is
controlled by parameter 𝜆, the sampled solutions may still be
infeasible, i.e., variables in them exceed their allowed ranges.
For instance, in Fig. 2(d), the black triangle is an infeasible
solution whose 𝑥1 exceeds its lower bound. To solve this, the
procedure shown in (7) is used to repair infeasible sampled
solutions.

𝑄𝑗′
𝑖 = max

{

min
{

𝑄𝑗
𝑖 , 𝑈

}

, 𝐿
}

(7)

where 𝑄𝑗′
𝑖 is the repaired version of 𝑄𝑗

𝑖 , 𝑚𝑎𝑥 and 𝑚𝑖𝑛 here
returns element-wise maximum and minimum values. The
repair procedure in (7) is similar to pulling the variables that
exceed their ranges back as the yellow triangle in Fig. 2(d).

Note that the learned vertical and horizontal search
directions are very likely perpendicular or crossed with each
other, so the sampling on them is also crossed like grids.
In addition, since the training sets of 𝐻𝑁𝑁 and 𝑉𝑁𝑁 are
randomly selected from the current population, there are
chances that the solutions used in the vertical search direction
construction are generated by the horizontal sampling and
vice versa. Thus, the knowledge learned by both directional
sampling may be shared with and complementary to each
other, which can promote the evolution of the population.
That is the reason for calling it cross-sampling. The benefits
of cross-sampling will be discussed in the experimental part.

Algorithm 5 Directions Guided Samplings.
Input: 𝐷 (Set of search directions), 𝑆𝑝 (Set of start points),

𝑁𝑠 (Number of samples on each search direction), 𝐿
(Lower bound of the decision space), 𝑈 (Upper bound of
decision space), 𝜆 (Parameter that controls the sampling
range)

Output: 𝑄𝑠 (Sampling results)
1: 𝑄𝑠 = ∅
2: for 𝑖 = 1 to |𝐷′

| do
3: for 𝑗 = 1 to 𝑁𝑠 do
4: 𝜆 =Randomly generate a number in (0, 0.6]
5: Get 𝑄𝑗

𝑖 by (6)
6: Get repaired solution 𝑄𝑗′

𝑖 using (7)
7: 𝑄𝑠 = 𝑄𝑠 ∪ {𝑄𝑗′

𝑖 }
8: end for
9: end for

10: return 𝑄𝑠
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(a) (b)

(c) (d)

Fig. 2: (a) and (b) are examples of vertical and horizontal search directions, respectively. (c) shows an example of both vertical
and horizontal sampling. (d) shows the repair operation for infeasible solutions.

3.4. Layered CSO
To improve the population’s diversity, the layered CSO

[32] is adopted in the second level to deeply optimize the
sampled solutions 𝑂𝑓𝑓 from the first level. Firstly, the
objective values of the sampled solutions are normalized
as (8)

𝑓 ′
𝑖 (𝑥) =

𝑓𝑖 (𝑥) − 𝑧∗𝑖
𝑧𝑛𝑎𝑑𝑖𝑟𝑖 − 𝑧∗𝑖

, 𝑖 = 1, 2, ..., 𝑚 (8)

where 𝑧∗𝑖 is the ideal point in the objective space, which is set
to the minimal value of the 𝑖th objective from all particles, and
𝑧𝑛𝑎𝑑𝑖𝑟𝑖 is the nadir point which is determined as that in [49].
𝑚 is the number of objectives. Then, particles are divided
into four layers based on reference vector-guided sorting and
their SDE fitness[44], after which particles in the high layers
are considered to outperform those in the low layers. Then,
two particles from different layers are randomly paired, and
the one with the lower layer is updated by learning from
the one with the higher layer via (2) until all particles are
involved. Finally, the reference vector-guided environmental
selection [47] is used to select the next generation from the
combination of 𝑂𝑓𝑓 and 𝑄 by using the uniformly generated
weight vector set 𝑉 , forming the next population 𝑃 .

4. Experimental Studies
4.1. Benchmarks and Performance Metrics

Three widely used LSMOP benchmarks, i.e., UF [50],
IMF [51], and LSMOP [52], are used to evaluate the per-
formance of the proposed LMOEA-LGCS. The number of
decision variables, i.e., the dimension, is set to 500, 1000,
2000, 5000, and 8000, while the number of objectives is
set to 2, 3, 5, 7, 9, and 12 for LSMOP1-9, and 2 and 3 for
UF1-10 and IMF1-10. The inverted generational distance
(IGD) [53], the modified inverted generational distanced
(IGD+) [54], the coverage over the Pareto front (CPF)
[55], and the hypervolume (HV) [56] are used to assess
algorithms’ performance. To calculate the IGD and IGD+,
10,000 reference points are uniformly sampled from the
true PF. A smaller IGD and IGD+ value indicates a better
performance [57]. For HV calculation, the reference points
(1.1, 1.1, . . . ) are used, and a larger HV value indicates a
better performance, so as the CPF. The maximum number of
evaluations is set to 100,000 [58], and the population size 𝑁
for all algorithms and experiments is set to 300. The other
parameters of compared algorithms are set to recommended
values in their original articles, in case they are not provided
in Table 1.
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Table 1
Specific parameter settings of compared algorithms

All algorithms are independently run 20 times on each
instance to obtain statistical results. The Wilcoxon rank-sum
test [59] with a significance level of 0.05 and the Friedman
test that contains Tukey-Kramer post-hoc tests are used to
assess the significance of comparisons. In the following
context, symbols "+", "-", and "=" indicate the number of
instances that the compared algorithm performs significantly
better than, significantly worse than, and equally to LMOEA-
LGCS, respectively, under the Wilcoxon rank-sum test unless
otherwise stated. All experiments are conducted on the
PlatEMO [60] in a personal computer with Windows 10
operating system, Intel(R) Core(TM) i7-7700K CPU, and
64 GB RAM.

4.2. Analysis of Parameter Settings
In the proposed LMOEA-LGCS, 𝑁𝑠1 and 𝑁𝑠2 control

the number of vertical and horizontal samplings, respectively,
𝜆 controls the sampling range in each search direction, and
the number of neurons 𝑁𝑒 affects the complexity of NNs.
They may have an impact on the algorithm’s performance.
Thus, we perform sensitivity analyses on 𝑁𝑠1, 𝑁𝑠2, 𝜆, and
𝑁𝑒 in this subsection.

4.2.1. Effects of Parameters 𝑁𝑠1 and 𝑁𝑠2
In the proposed LMOEA-LGCS, parameters 𝑁𝑠1 and

𝑁𝑠2 determine the number of vertical and horizontal sam-
plings, respectively, which may affect LMOEA-LGCS’s
performance. To obtain an appropriate combination of 𝑁𝑠1
and 𝑁𝑠2 values, we examine their settings as 5, 10, 15, 20,
25, 30, 35, and 40 on 2- and 3-objective LSMOP1-9 with 500
and 1000 dimensions. The statistical IGD results are shown
in Tables S1-S4 of the Supplementary Material, in which

digits in brackets of the first row denote the values of 𝑁𝑠1
and 𝑁𝑠2, respectively. Specifically, Tables S1 and S2 present
the IGD results of LMOEA-LGCS by varying the value of
𝑁𝑠1 from 5 to 40 while keeping 𝑁𝑠2 as 15. The overall trend
suggests that [20, 35] is a proper range for 𝑁𝑠1. Similarly,
Tables S3 and S4 of the Supplementary Material present the
IGD results of LMOEA-LGCS by varying the value of 𝑁𝑠2
from 5 to 40 while keeping 𝑁𝑠1 as 30. From these results, it
can be seen that for 𝑁𝑠2, [10, 30] should be a proper range.
Therefore, in this paper, we set (𝑁𝑠1 = 30, 𝑁𝑠2 = 15) as a
compromise.

4.2.2. Effects of Parameter 𝜆
According to (6), parameter 𝜆 controls the range of both

vertical and horizontal samplings. A large 𝜆 may increase the
number of infeasible samples, which will lead to diversity
degradation. On the contrary, if it is too small, the learned
directions may not be fully exploited. Therefore, we examine
the value of 𝜆 in [0.1, 4.0]. The experiments are conducted
on LSMOP1, 2, 4, 6, and 8 with 2- and 3-objective and
500 and 1000 dimensions. The final results are shown in
Figs. S1-S2 and Tables S5 and S6 of the Supplementary
Material. From Figs. S1 and S2 of the Supplementary
Material, it can be observed that when 𝜆 is set to 0.5 and
0.6, there is a significant decrease in IGD values for 2-
objective LSMOP1 and LSMOP8, while other instances are
insensitive to 𝜆. In addition, from Tables S5 and S6 of the
Supplementary Material, it can be seen that the overall trend is
the larger the 𝜆, the more the LMOEA-LGCS’s performance
degrades. The main reason is that a large sampling range will
increase the probability of generating infeasible solutions,
which, although can be repaired by (7), will compromise the
performance of LMOEA-LGCS. Therefore, we set the upper
bound of 𝜆 to 0.6 as a compromise in experiments.

4.2.3. Effects of the Neuron Number
To evaluate the effects of the neuron numbers 𝑁𝑒 in 𝑉𝑁𝑁

and 𝐻𝑁𝑁 on the overall performance of LMOEA-LGCS, we
examine their values as 1, 5, 10, 15, 20, and 25, on LSMOP1-
9 with 2 and 3 objectives and 500 and 1000 dimensions.
The statistical IGD results are shown in Table S7 of the
Supplementary Material, from which we can see that the more
neurons in 𝑉𝑁𝑁 and 𝐻𝑁𝑁 , the better the LMOEA-LGCS
performs. It is reasonable that more neurons can capture
more complex features and thus can provide more accurate
predictions, but more training samples and computational
resources are needed to train them. Given that finding or
tuning an optimal neural model is not our primary target,
we set the neuron numbers 𝑁𝑒 in 𝑉𝑁𝑁 and 𝐻𝑁𝑁 to 10
as a comprise to balance the efficiency and effectiveness.
Researchers interested in designing more efficient learning
models may refer to Table S7.

4.2.4. Effects of the Population Size
To verify the effect of different population sizes on the

algorithm’s performance, we examine the performance of
all algorithms with population size 𝑁 = 100, 300, and 500
on 2- and 3- objective LSMOP1-9 with 500 dimensions.
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The statistical IGD+ results are given in Tables S14-S16
of the Supplementary Material, from which we can see that
the population size does have effects on the performance of
the algorithms. Generally, for an algorithm, the larger the
population size the better the metric values it can achieve.
However, it has almost no effect on comparisons among
different algorithms. The proposed LMOEA-LGCS exhibits
superiority throughout all these different population sizes.

4.3. The Effectiveness of Dual Training Datasets
To avoid the 𝑉𝑁𝑁 and 𝐻𝑁𝑁 from learning homogeneous

information, we use two randomly selected sub-populations
from the current population to train them, respectively. A
variant of LMOEA-LGCS termed LMOEA-LGCS-One that
utilizes the same sub-population, i.e., the same training
dataset to train 𝑉𝑁𝑁 and 𝐻𝑁𝑁 is compared against LMOEA-
LGCS on 3-objective LSMOP1-9 with dimensions ranging
from 500 to 8000. The averaged IGD values over 20 inde-
pendent runs are given in Table S8 of the Supplementary
Material, from which it can be seen that LMOEA-LGCS-
One is significantly worse than LMOEA-LGCS on 35 out
of 45 instances. This indicates that training 𝑉𝑁𝑁 and 𝐻𝑁𝑁
using different datasets has a positive impact on enhancing
the algorithm’s performance.

4.4. The Effectiveness of Cross-sampling
To validate the effectiveness of the cross-sampling strat-

egy, i.e., the synergy of vertical and horizontal sampling,
we compare LMOEA-LGCS with its two variants, namely,
LMOEA-LGCS-H that only performs horizontal sampling
and LMOEA-LGCS-V that only performs vertical sampling.
All other parameters of these two variants are consistent with
LMOEA-LGCS. Table S9 of the Supplementary Material
presents statistical IGD results on 3-objective LSMOP1-9
with dimensions ranging from 500 to 8000. It can be observed
that LMOEA-LGCS outperforms both variants in terms of
IGD values on 44 out of 45 instances, which indicates the ne-
cessity of the cross-sampling strategy for better performance.
Moreover, from Table S9 of the Supplementary Material, we
can also see that LMOEA-LGCS-V outperforms LMOEA-
LGCS-H in most instances. This outcome is consistent with
our original intentions that are shown in Fig. 2 (c), i.e.,
the purposes of vertical and horizontal search directions
are to intersect the PS vertically and horizontally, thus
providing potential improvement information for enhancing
convergence and diversity, respectively. Hence, LMOEA-
LGCS-V could achieve better convergence than LMOEA-
LGCS-H. However, it is the synergy of vertical and horizontal
sampling that promotes the overall performance of LMOEA-
LGCS.

4.5. The Effectiveness of the Two-level Paradigm
To verify the effectiveness of the two-level paradigm, i.e.,

cross-sampling in the first level and layered CSO in the second
level, we compare LMOEA-LGCS with its two variants,
namely, LMOEA-LGCS-L1 and LMOEA-LGCS-L2 that
only use the first level and second level, respectively. Table
S10 of the Supplementary Material presents the statistical

results on 3-objective LSMOP1-9 with dimensions ranging
from 500 to 8000. From these results we can see that
the LMOEA-LGCS outperforms LMOEA-LGCS-L1 and
LMOEA-LGCS-L2 on all 45 test problems. Meanwhile,
LMOEA-LGCS-L1 gets better results than LMOEA-LGCS-
L2 on LSMOP 2, 3, 4, 6, 7, 8, and 9, which indicates the
cruciality of the learning-guided cross-sampling. In short,
these results indicate the necessity of the two-level paradigm
in enhancing the overall performance of LMOEA-LGCS.

4.6. The Effectiveness of Learning
To analyze the impact of leaning on cross-sampling, we

compare LMOEA-LGCS with its other variant, LMOEA-
CS, that establishes search directions without learning, i.e.,
it treats the superior solutions of the current population
as the expected outputs of the inferior solutions without
actually using NNs, and other procedures are identical with
LMOEA-LGCS. Table S11 of the Supplementary Material
presents the statistical results on 3-objective LSMOP1-9
with 500 to 8000 dimensions. It can be seen that LMOEA-
LGCS outperforms LMOEA-CS on 35 out of 45 instances,
which demonstrates the importance of NN learning on cross-
sampling and LMOEA-LGCS’s performance.

4.7. Comparisons with State-of-the-Arts
In this part, we present comparisons between LMOEA-

LGCS and other six state-of-the-art LMOEAs, i.e., FDV [28],
WOF-NSGA-II [22], DGEA-RVEA [29], LMOEA-DS [26],
LMOCSO [30], and ATLMOEA [32] on the three widely-
used benchmarks.

4.7.1. Comparisons on LSMOP
In this subsection, we compare LMOEA-LGCS with

other six state-of-the-art LMOEAs on 2-, 3-, 5-, 7-, 9-, and
12-objective LSMOP1-9 with up to 8000 dimensions. Table
2 presents the statistical IGD results of 20 independent
experiments on 2-objective LSMOP1-9 with dimensions
ranging from 500 to 8000. Detailed IGD results on 3-, 5-
, 7-, 9-, and 12-objective LSMOP1-9, and HV and IGD+
results on 2- to 12-objective LSMOP1-9 are attached in the
Supplementary Material.

From Table 2 it can be observed that LMOEA-LGCS
outperforms the other six LMOEAs on most 2-objective
LSMOP instances, except that it performs worse than FDV
and WOF-NSGA-II on some of the 2-objective LSMOP3, 5,
and 7 instances. However, LMOEA-LGCS still outperforms
FDV and WOF-NSGA-II overall. Specifically, it performs
significantly better than, significantly worse than, and equally
to FDV and WOF-NSGA-II on 4/40/1 and 4/30/11 instances,
respectively, which demonstrates the superiority of LMOEA-
LGCS over FDV and WOF-NSGA-II. In addition, the statis-
tical HV results in Table S18 and the IGD+ results in Tables
S29-S38 of the Supplementary Material also illustrate the
similar phenomenon. The above comparisons demonstrate
that the proposed LMOEA-LGCS is very competitive with
the compared algorithms.

To demonstrate the superiority of LMOEA-LGCS visu-
ally, Fig. 3 shows the final solutions and IGD convergence
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Table 2
Statistical results (mean and standard deviation of IGD metric) on 2-objective LSMOP1-9 with 500, 1000, 2000, 5000, and 8000
dimensions. The best result in each row is highlighted in gray.

curves of all compared algorithms on 3-objective LSMOP8
with 500 dimensions under 100,000 evaluation budgets. The
shaded region represents the true PF, and the green dots
represent the final solutions obtained by the algorithms. From
Fig. 3(a) to (g), it can be seen that LMOEA-LGCS can
converge to the PF uniformly while others exhibit either
weak convergence or poor diversity. In addition, we also
draw the final solutions of 2- and 3-objective LSMOP9 with
8000 dimensions, which has irregular PF and is consid-
ered a complex instance [52], as Figs. S6 and S7 of the
Supplementary Material, respectively. From Fig. S6, we
can see that LMOEA-LGCS converges better than other
compared algorithms and distributes solutions well along
the PF. Fig. S7 shows that none of the compared algorithms
can converge to all disconnected parts of the PFs of the 3-
objective LSMOP9. However, LMOEA-LGCS exhibits the
best convergence and diversity among them. This is probably
because they fail to search in the right directions, leading to
a waste of computational resources and a lack of a proper
balance between convergence and diversity of the population.
Furthermore, by comparing the IGD and HV convergence
curves in Fig. 3(h) and Fig. S3 of the Supplementary Material,
respectively, it can be seen that LMOEA-LGCS converges the
fastest compared to other algorithms. The possible reasons are
that the learning-guided cross-sampling can find promising
search directions that can provide valuable improvement
information for the evolution of the population and can well

trade off the exploration and exploitation by incorporating
with the layered CSO.

Furthermore, Table 3 summarizes the statistical IGD
results (detailed data can be found in the Supplementary
Material) of all compared algorithms on 3-, 5-, 7-, 9- and
12-objective LSMOP1-9 with up to 8000 dimensions. From
Table 3, we can see that LMOEA-LGCS still has overall better
performance than the other six state-of-the-art in these large-
scale many-objective problems. Moreover, we summarize the
statistical HV results on all test instances in Table S12 and the
IGD+ results in Tables S63 and S64 using Friedman test and
Wilcoxon rank-sum test, respectively, of the Supplementary
Material, which also demonstrates the superiority of LMOEA-
LGCS. Moreover, to quantitatively compare the diversity of
all algorithms, we calculate the CPF of their final solutions
on 500-dimensional LSMOP1-9 with 2, 3, 5, 7, 9, and 12
objectives as Table S17 of the Supplementary Material. As
can be seen that the proposed LMOEA-LGCS exhibits better
performance in diversity than other competitors.

Additionally, Fig. S5 of the Supplementary Material
presents the boxplots of the IGD values of all compared al-
gorithms on 12-objective LSMOP1-9 with 8000 dimensions.
For clearer visualization, the IGD values are processed with
logarithm. It can be seen that LMOEA-LGCS achieves the
best median results on seven test functions, i.e., LSMOP1, 3,
5, 6, 7, 8, and 9, and gains competitive results on LSMOP2
and 4. Overall, compared with other algorithms, LMOEA-
LGCS exhibits relatively robust performance.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3: (a) - (g) Final solutions obtained by all compared algorithms on 3-objective LSMOP8 with 500 dimensions. (h) IGD
convergence curves on 3-objective LSMOP8 with 500 dimensions.

To further evaluate the efficiency of LMOEA-LGCS, the
average runtime over 20 independent runs of all compared
algorithms on 2-objective LSMOP1-9 with 500 variables
under a 100, 000 evaluation budget is shown in Fig. S4 of
the Supplementary Material. We can see that the average
runtime of LMOEA-LGCS is medium among all compared
algorithms. In addition, what is interesting is that it consumes
less average runtime than ATLMOEA, which is also learning-
based, in all tested instances, and spends nearly the same time
with LMOEA-DS, which is purely directed sampling-based.
This demonstrates that the training of two NNs, i.e., the 𝑉𝑁𝑁
and 𝐻𝑁𝑁 , does not bring much computational overhead to
LMOEA-LGCS but promotes its overall performance.

Additionally, to verify the effect of using the time con-
sumption as the termination condition on comparisons of
algorithms, we set the time budget to 40 seconds for all algo-
rithms and keep other parameters untouched. Comparisons
in terms of IGD+ on 500-dimensional 2-objective LSMOPs
are given in Table S13 of the Supplementary Material. As
can be seen that the performance of LMOEA-LGCS is still
better than that of other six state-of-the-art LMOEAs.

4.7.2. Comparisons on UF and IMF
For a more comprehensive understanding of LMOEA-

LGCS’ performance, we also test it on the benchmarks UF1-
10 [50] and IMF1-10 [51]. The number of dimensions of
instances in both UFs and IMFs is set to 500, 1000, 2000,
5000, and 8000, while the number of objectives is set to 2
and 3. The computational budget and parameter settings in
HV, IGD, and IGD+ metrics are identical to those in the
LSMOP benchmark. The statistical HV, IGD, and IGD+
results on UFs are shown in Tables S55, S56, S59 and S61

Table 3
The summary of statistical IGD results on 500-, 1000-, 2000-,
5000-, and 8000-dimensional 3-, 5-, 7-, 9- and 12-objective
LSMOP1-9. The number before the left backslash represents
the number of instances in all 45 instances that LMOEA-LGCS
performs significantly better than (+), significantly worse than
(-), and equally to (=) the compared algorithm, respectively.

of the Supplementary Material, respectively. From these
tables we can see that LMOEA-LGCS performs significantly
better than FDV, WOF-NSGA-II, DGEA-RVEA, LMOEA-
DS, LMOCSO, and ATLMOEA on 42/50, 34/50, 50/50,
34/50, 50/50, and 49/50, respectively, in terms of IGD metric,
and on 36/50, 28/50, 40/50, 25/50, 40/50, and 40/50 instances,
respectively, in terms of HV metric, and on 37/50, 1/50, 50/50,
9/50, 48/50, and 35/50 instances, respectively, in terms of
IGD+ metric with Friedman test, and on 41/50, 30/50, 50/50,
31/50, 50/50, and 49/50 instances, respectively, in terms of
IGD+ metric with Wilcoxon rank-sum test. Although WOF-
NSGA-II shows competitiveness with LMOEA-LGCS on UF
benchmark in terms of the Friedman test, the summarized
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results in Tables S63 and S64 of the Supplementary Material
show that LMOEA-LGCS has overall superiority on these
three benchmarks.

Similarly, Tables S57, S58, S60 and S62 of the Sup-
plementary Material that present statistical IGD, HV, and
IGD+ results on IMFs, respectively, also show that LMOEA-
LGCS has better overall performance than compared algo-
rithms.Specifically, LMOEA-LGCS performs significantly
better than FDV, WOF-NSGA-II, DGEA-RVEA, LMOEA-
DS, LMOCSO, and ATLMOEA on 49/50, 31/50, 50/50,
30/50, 50/50, 45/50, instances, respectively, in terms of IGD
metric, and on 47/50, 32/50, 47/50, 35/50, 47/50, 47/50
instances, respectively, in terms of HV metric, and on 41/50,
7/50, 47/50, 20/50, 48/50, and 35/50, instances respectively,
in terms of IGD+ metric with Friedman test, and on 50/50,
39/50, 50/50, 36/50, 50/50, and 50/50 instances, respectively,
in terms of IGD+ metric with Wilcoxon rank-sum test. All
these results demonstrate the superiority of LMOEA-LGCS
on IMF benchmarks.

Thus, through the above experimental results, we can that
the proposed LMOEA-LGCS is very competitive in solving
LSMOPs.

5. More Discussions
In this subsection, we will discuss how reference points

in IGD and HV, and different computational budgets affect
the comparisons, and an application on real cases.

5.1. Analysis of Reference Points in IGD and HV
To verify how different reference points in HV affect the

comparisons, we reevaluate all compared algorithms on 2-,
3-, 5-, 7-, 9-, and 12-objective LSMOP1-9 with 500 and 1000
dimensions with reference points as (1.5, 1.5, ...) and (2.0, 2.0,
...). The statistical results are shown in Tables S39-S42 of the
Supplementary Material, from which we can see that different
reference points in HV calculation have little influence on the
overall comparisons. LMOEA-LGCS still shows competitive
performance compared with other algorithms among all these
different settings.

Similarly, to verify the effect of the number of reference
points in IGD on algorithm’s performance, we reevaluate
all algorithms on LSMOP1-9 with 2-12 objectives and 500
and 1000 dimensions with 100, 000 and 1, 000, 000 reference
points in IGD calculation. The statistical results are shown
in Tables S43-S46 of the Supplementary Material. It can
be seen that there is no significant impact on performance
comparisons when various numbers of reference points are
used in IGD calculation. The LMOEA-LGCS is also shown to
be competitive with other algorithms among all these settings.

5.2. Analyses of the Computational Budget
To verify how different amounts of computational budget

can affect the comparisons, we compare all algorithms on
2- and 3-objective LSMOP1-9, UF1-10, and IMF1-10 with
500, 1000, and 3000 dimensions under 10,000 and 1,000,000
function evaluations. The detailed IGD results with 10,000

and 1,000,000 function evaluations are shown in Tables S47-
S52 of the Supplementary Material, and Tables S53 and
S54 of the Supplementary Material present summaries of
these results. Interestingly, LMOEA-DS exhibits competitive
performance under 10,000 function evaluations, but when it
increases to 1,000,000, it is the FDV that shows competitive
performance. These indicate that LMOEA-DS has relatively
fast convergence at early stages but may stagnate in late
stages, while FDV is the opposite. Actually, Fig. 3(h) tells the
same conclusions. However, although LMOEA-DS and FDV
perform competitively under 10,000 and 1,000,000 function
evaluations, respectively, LMOEA-LGCS still has overall
better performance than others under both computational
budgets.

5.3. Applications on Real Cases
The Ratio error (RE) estimation of the voltage transform-

ers (VTs) is important in modern power delivery systems [61].
In [61], the time-varying RE estimation (TREE) problems
are formulated as LSMOPs, where three types of benchmarks
are constructed considering the involved data, i.e., TREE1,
TREE2, and TREE3 are type 1 that only involve primary
voltage values, TREE4 and TREE5 are type 2 that involve
both primary and secondary voltage values, and TREE6 is
type 3 that involves both voltage and phase angle values.
Among them, TREE1-5 and TREE6 consist of 2 and 3
objectives, respectively.

In experiments, the parameters of all algorithms are
consistent with the above. The experimental results are
shown in Table S65 of the Supplementary Material, from
which we can see that LMOEA-LGCS outperforms all
compared algorithms except LMOEA-DS. However, it is
very competitive with LMOEA-DS. Specifically, LMOEA-
LGCS is good at tackling the type 1 case but shows inferior
performance on instances of the other two types that involve
more variety of variables compared with LMOEA-DS. This
indicates that LMOEA-LGCS may still lack the power to
handle interacted decision variables.

Additionally, to verify the effect of different reference
points of HV on the comparisons of different algorithms, we
additionally calculate HV values with reference points as
(1.5,1.5, ...) and (2.0, 2.0, ...) for all TREE instances. Results
are provided in Tables S66 and S67 of the Supplementary
Material, respectively. As can be seen from Table S65, HV
results by using the reference point (1.1,1.1, ...), and Tables
S66 and S67 that for a specific algorithm and an instance,
the larger the reference point, the larger the HV values.
This is consistent with the intuition since larger reference
points mean farther distances to the obtained solutions.
However, different reference points have no significant effect
on comparisons of different algorithms.

6. Conclusions
In this paper, we proposed a learning-guided cross-

sampling methodology and a two-level evolution paradigm
for large-scale multi/many-objective optimization. The learn-
ing procedure learns two NNs, where one learns the vertical

Haofan Wang et al.: Preprint submitted to Elsevier Page 13 of 16



Learning-Guided Cross-Sampling for Large-Scale Evolutionary Multi-Objective Optimization

search directions, and the other learns the horizontal search
directions. Then, in the first level, solutions are sampled along
the learned search directions to enhance both the convergence
and diversity of the population. In the second level, a layered
CSO is employed to optimize the sampled solutions further,
aiming to preserve good diversity.

To validate the effectiveness of the designed algorithm,
extensive comparisons were conducted on three widely-
used LSMOP benchmarks, i.e., the LSMOP, IMF, and UF,
with up to 8000 dimensions and 12 objectives, and a real
case TREE. The statistical results demonstrate that the
proposed algorithm exhibits overall advantages in solving
not only multi-objective problems but also many-objective
problems on a considerably large scale. Additionally, ablation
experiments on verifying various parameter settings, the
effectiveness of dual training datasets, cross-sampling, two-
level paradigm, and NN learning were conducted. Moreover,
we also analyzed the effect of reference points in IGD and HV
metrics and the settings of computational budget on LMOEA-
LGCS’s performance. All those experimental results revealed
that the synergy of the designed components in LMOEA-
LGCS makes it competitive, and its performance is relatively
robust regardless of the variety of computational budget and
evaluation metrics.

Although we employed a layered CSO as a second-
level optimizer to further optimize the sampled solutions
in LMOEA-LGCS, the learning-guided cross-sampling ap-
proach is extendable to existing LMOEAs. Therefore, in
future works, we will focus on embedding the proposed
learning-guided cross-sampling into existing search frame-
works. Moreover, to catch up with the fast development of
Deep Learning (DL), it is urgent to take advantage of either
mature DL technologies or emerging ones like the Large
Language Model (LLM) [62] to promote the practicability
of swarm-based methodologies.
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