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THEORETICAL ANALYSIS OF THE KNOWLEDGE
AGGREGATION MECHANISM

In this section, we provide a detailed theoretical analysis of
the knowledge aggregation mechanism within KATN. Unlike
traditional fusion approaches, KATN employs an additive ag-
gregation operation, integrating both local and global represen-
tations in a way that ensures feature-space alignment, gradient
coherence, and enhanced model generalization. By examining
task-oriented loss landscapes, gradient behavior, and the geo-
metric properties of aggregated features, we demonstrate the
superior advantages of KATN in comparison to existing fusion
methods.

A. Feature Aggregation

Let X; € RT*P represent the input multivariate time series
for the i-th sample, where 7' is the number of time steps and D
denotes the number of feature channels. At each transformer
block, the outputs of the MResNet and multi-head attention
network are denoted as:
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where, OZ’ MRy and OZ a4 are the outputs from the MRes-
Net and multi-head attention network, respectively. To ensure
consistency in dimensionality, we impose:
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The aggregated output of the two networks is computed as:
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where, o(-) represents a non-linear activation function (e.g.,
GeLU), and W{lgkg € R4 is a learnable affine projection
matrix. This operation guarantees that the aggregated features

remain aligned within a consistent semantic space.
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B. Gradient Behavior and Optimization Dynamics

A critical aspect of the aggregation mechanism is the
gradient flow, which influences the stability and efficiency of
the optimization process. The gradient of the aggregation loss
L with respect to the aggregated representation Og:ZGG is
expressed as:
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The gradients with respect to the individual representations
are:
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and similarly for Ol MHA:
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These gradient expressions reveal that the shared aggregation
mechanism ensures a smooth and consistent gradient flow
between the branches, mitigating the instability often observed
in multi-branch architectures. In contrast, other fusion methods
may encounter gradient inconsistencies, hindering optimiza-
tion performance.

C. Geometric Regularization

The aggregated features o’ AGG can be conceptualized as
points on a low-dimensional manifold M C R”*?. To ensure
smooth feature learning and avoid overfitting, we introduce
a regularization term to penalize excessive curvature of the
aggregation function:
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The Jacobian of the aggregation operation is given by:
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By ensuring a well-conditioned Jacobian, KATN guarantees
that the aggregated features remain on a smooth manifold,
promoting stable learning dynamics and generalization.

D. Convergence Analysis

We investigate the convergence behavior of the optimization
process. The gradient of the total loss £ with respect to any
parameter 6 € 0 is given by:
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where, the partial derivative gg is:
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Fig. Al. Differences between three feature aggregation methods.
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(b) KATN-CONCAT
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(c) KATN-INTERN

THEORETICAL COMPARISON OF FUSION METHODS

Fusion Method Gradient Flow Expressiveness | Generalization | Computational Cost
KATN Smooth, stable Moderate High Low
KATN-MatMul Risk of vanishing gradients High Moderate Low
KATN-CONCAT Direct but expensive Moderate Moderate High
KATN-INTERN Complex but unstable High Moderate Very High

Assuming that £(0) is smooth and its gradient is L-
Lipschitz continuous:
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the gradient descent algorithm converges at a rate of:
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where, m denotes the iteration index. This convergence is
contingent on an appropriate learning rate and highlights the
tractability of optimizing KATN.
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E. Comparison with Existing Fusion Methods

To assess the efficacy of KATN’s additive aggregation ap-
proach, we compare it with three other fusion variants: KATN-
MatMul, KATN-CONCAT, and KATN-INTERN. These vari-
ants differ in how they combine the outputs of the MResNet
and multi-head attention networks within each transformer
block. The methods are as follows:

o KATN: The additive aggregation approach, where the
outputs from the MResNet and multi-head attention net-
works are summed before being passed through a shared
non-linearity and affine transformation. This ensures sta-
ble gradients, smooth feature alignment, and efficient
optimization.

o KATN-MatMul: The multiplicative aggregation method,
where the outputs from the MResNet and multi-head
attention networks are element-wise multiplied before
passing through the subsequent transformations, as illus-
trated in Fig. (a).

o KATN-CONCAT: The concatenation-based fusion strat-
egy, where the outputs from the two networks are con-
catenated along the feature dimension, as depicted in Fig.
(b).

o KATN-INTERN: The interactive aggregation method,
where the two feature sets interact through a learned

transformation, allowing for complex feature fusion, as
shown in Fig. ©).

Theoretical Analysis and Comparison:

e Gradient Flow:

— In KATN-MatMul, the multiplicative interaction can
lead to vanishing gradients, particularly when the
input features are small.

— KATN-CONCAT ensures direct gradient flow but
increases computational cost due to the higher di-
mensionality of the concatenated features.

— KATN-INTERN offers more flexibility in feature
interaction, but its increased complexity can hinder
efficient optimization.

— KATN, with its additive aggregation, ensures smooth
and stable gradient propagation across both branches,
avoiding the pitfalls of vanishing gradients and com-
putational inefficiencies.

o Expressiveness:

— KATN-INTERN is the most expressive, as it allows
for complex interactions between the features, but at
the cost of higher computational overhead.

— KATN-CONCAT provides moderate expressive-
ness but may face challenges in handling high-
dimensional feature spaces.

- KATN-MatMul, while expressive, suffers from the
risks associated with multiplicative operations.

— KATN, with its additive aggregation, strikes an opti-
mal balance between expressiveness and efficiency,
offering robust feature fusion without unnecessary
complexity.

« Generalization:

— KATN-INTERN has the potential for better general-
ization due to its more flexible feature fusion mech-
anism, though it may overfit in certain scenarios.

— KATN-CONCAT may struggle with overfitting when
the feature space is excessively high-dimensional.



— KATN-MatMul tends to offer moderate generaliza-
tion but is highly dependent on the multiplicative
interaction’s stability.

— KATN, with its efficient aggregation strategy, gener-
alizes effectively across various tasks, ensuring high
performance even in heterogeneous setups.

The comparison between these variants clearly demonstrates
that KATN offers the best balance of efficiency, gradient
stability, and generalization across a range of tasks, as shown
in Table [ATl

In conclusion, KATN’s additive aggregation approach out-
performs other fusion methods in terms of gradient stability,
computational efficiency, and generalization performance. This
makes it the most suitable choice for solving various MTSC
challenges.
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