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Abstract—Over the years, various sophisticated deep learning
algorithms have surfaced for multivariate time series classifica-
tion (MTSC), notably the dual-network-based model. This model
comprises two parallel networks tailored to time series data:
one for local feature extraction and the other for global relation
extraction. However, effectively integrating these dual networks
poses a significant challenge. To address this, we propose a
knowledge aggregation transformer network (KATN) for MTSC.
KATN, composed of four aggregation transformer blocks, ex-
tracts abundant regularizations and connections hidden within
the data. Each block incorporates a modified residual network
(MResNet) for local feature extraction and a multi-head attention
network for global relation extraction. Initially, the block merges
MResNet’s output feature with that of the multi-head attention
network through an additive operation. Subsequently, it aligns
features with a fully connected (i.e., dense) layer and activates
neural units using the Gaussian error linear unit function.
This strategic feature aggregation allows for capturing long-
range dependencies among multiple variables in multivariate
time series data. Experimental results demonstrate that KATN
significantly outperforms 6 state-of-the-art transformer variants,
achieving a ‘win’/‘tie’/‘lose’ record of 9/6/15 and securing the
lowest AVG rank score. Furthermore, when evaluated against
18 existing MTSC algorithms across 13 UEA datasets, KATN
consistently delivers superior performance, attaining the lowest
AVG rank score among all compared methods.

Index Terms—Data Mining, Deep Learning, Feature Aggrega-
tion, Multivariate Time Series Classification, Transformer

I. INTRODUCTION

MULTIVARIATE time series data has been widely ap-
plied in a variety of domains, e.g., heart failure risk

analysis [1], industrial activity recognition [2], rumor detection
[3], and anomaly detection [4], [5]. Different from image,
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text, and video data, multivariate time series consist of se-
quential data points that are organized chronologically and
correspond to multiple time-dependent variables, incorporating
both local and global patterns. An algorithm designed for
multivariate time series classification (MTSC) aims to extract
distinct local and global features from each univariate time se-
ries (UTS) while simultaneously identifying interconnections
among these UTS sequences [6].

In recent times, deep learning (DL) models have garnered
significant interest within the MTSC community. These al-
gorithms effectively model the internal data representation
hierarchy, capturing the inherent connections among represen-
tations [6], [7], [8]. Single-network-based and dual-network-
based models are two popular DL-based streams for MTSC.
A single-network-based model generally employs a unified
(frequently hybridized) network architecture to perform both
feature extraction and the identification of relationships within
the data. For instance, He et al. [9] presented a general neural
network model based on convolutional filtering, called Rel-
CNN, to extract both local and global features in time series.
Ma et al. [10] introduced a robust generation time series
method, called AJ-RNN, which employs an adversarial joint-
learning structure combined with recurrent neural network
(RNN). Chen et al. [11] devised a paralleling attention struc-
ture that gracefully integrates two class of attention variants
for MTSC. Chen et al. [12] put forward TAR-GAN, a rule
mining-based approach that employs the generative adversarial
technique to search useful shapelets of time series. On the
other hand, a dual-network-based model usually comprises two
parallel networks: one dedicated to extracting local features
and the other aimed at capturing global relationships. The
local feature network typically employs convolutional neural
networks (CNNs) to discern local patterns, while the global
relation network, commonly based on RNNs or attention-
based networks, is responsible for uncovering connections
among the extracted representations. Notable dual-network-
based models includes the robust temporal feature network
(RTFN) containing a temporal feature network and a long
short-term memory (LSTM)-based attention network [13],
LSTM-fully convolutional network (LSTM-FCN) consisting
of LSTM-based network and FCN [14], residual attention net
(ResNet-Transformer) composed of a residual network and a
transformer-based network [15], robust semisupervised model
(SelfMatch) comprising a residual network and an LSTM-
based attention network [16], and densely knowledge-aware
network (DKN) consisting of a residual multi-head convolu-
tional network and a transformer-based network [17]. Unlike
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single-network-based models, dual-network-based algorithms
account for the characteristics of multivariate time series
data, employing a divide-and-conquer approach to achieve
commendable performance across various time series prob-
lems. However, dual-network-based algorithms may face the
following two challenges:

• Most dual-network-based algorithms use the concatena-
tion feature aggregation method to integrate the output
feature of the local feature network with that of the global
relation network before reaching the final prediction
layer. Nevertheless, this method may lead to an inade-
quate alignment between diverse feature types extracted
by these two distinct networks. In particular, the lack of
interaction between different feature types extracted at
lower levels impedes the relationship exploration among
various variables within multivariate time series data.

• As known, a learning model’s performance usually hinges
on quality of the semantic information extracted from
lower and higher levels within the representation hier-
archy [18], [19]. Thus, for an arbitrary dual-network-
based model, enhancing the aggregation between features
derived from the local feature network and those from
the global relation network at each level significantly
enriches the extracted semantic information, consequently
enhancing the model’s performance.

Recently, a number of researchers have focused their efforts
on aggregating features across various dimensions, enhance
model’s performance in diverse computer vision (CV) tasks
[20]. Some studies considered the attention method into
CNNs to combine the features on both spatial and channel
dimensions, such as dual-attention network [21] and SCA-
CNN [22]. Dosovitskiy et al. [23] proposed a spatial self-
attention module to enhance long-range dependencies between
image pixels. Chen et al. [24] devised Mixformer based on
channel attention to fuse spatial and channel information in
vision tasks. Chen et al. [25] developed a dual aggregation
transformer network based on spatial window and channel-
wise self-attention for image super-resolution. However, unlike
CV, the feature aggregation methods in time series exhibit
notable limitations, listed below.

• Unlike image data, multivariate time series entails a
sequence of chronologically arranged data points linked
to several time-dependent variables. Thus, outstanding
feature aggregation methods used in CV may not be
directly transferable or suitable for time series domain.

• Currently, a significant gap exists in tailored methodolo-
gies capable of deeply integrating distinct feature types,
e.g., local and global patterns, to capture long-range de-
pendencies among multiple variables within multivariate
time series data. This limitation is prominent in most
dual-network-based algorithms, particularly in efficiently
hybridizing the local feature network with the global
relation network.

To overcome the limitations above, we propose a knowledge
aggregation transformer network (KATN) for MTSC. Different
from most of the dual-network-based algorithms combining
disparate feature types at higher levels through concatenation,

KATN deeply aggregates various feature types within each
level. This aggregation can enrich the semantic information
substantially, thereby effectively extracting long-range depen-
dencies among multiple variables in multivariate time series
data.

Our primary contributions are outlined below.
• This paper designs a deep feature aggregation network for

MTSC, called KATN. KATN comprises four aggregation
transformer blocks adept at amalgamating various feature
types at lower and higher levels, exploring abundant reg-
ularizations and connections within the data, as depicted
in Fig. 1.

• In each aggregation transformer block, a modified resid-
ual network (MResNet) and a multi-head attention net-
work are responsible for local feature and global rela-
tion extraction, respectively. The block uses an additive
operation to connect the output feature of MResNet
with that of the multi-head attention network. A fully
connected (i.e., dense) layer is employed for feature
alignment. Meanwhile, this block activates neural units
via the Gaussian error linear unit (GeLU) [26] function.

• The experiments demonstrate that in comparison to 6
state-of-the-art (SOTA) transformer algorithms, KATN
achieves 9 wins, 6 ties, and 15 losses, along with
the lowest AVG rank score of 2.400. Moreover, KATN
surpasses 18 existing MTSC algorithms based on both
‘win’/‘tie’/‘lose’ metrics and AVG rank, as measured
by top-1 accuracy. Specifically, among the 30 datasets,
KATN secures victory in 13, achieving the lowest
AVG rank score of 4.167.

The paper’s structure for the remaining sections is: in
Section II, we review the SOTA methods in MTSC and
transformer-based algorithms, highlighting their strengths and
limitations. Section III introduces the proposed KATN frame-
work, elaborating on its architecture and core components.
Following this, Section IV discusses the experimental setup,
results, and comparative analysis. Finally, Section V concludes
the paper by summarizing key findings and outlining potential
future directions.

II. RELATED WORK

This section reviews a number of MTSC and transformer
algorithms.
A. MTSC Algorithms

Traditional and DL-based algorithms are two main streams
for MTSC.

1) Traditional Algorithms: Distance- and feature-based ap-
proaches are two typical representatives of traditional al-
gorithms for MTSC [6], [11]. The classical distance-based
method employs nearest neighbor (NN) and dynamic time
warping (DTW) to measure the similarities between spatial
features in the data, such as, dependent DTW, adaptive DTW,
and independent DTW [27]. The ensemble learning algorithm
with DTW and NN has been developed to address various
time series problems, e.g., the elastic ensemble approach [28],
collective of transformation-based ensemble (COTE) method
[29], hierarchical voting COTE (HIVE-COTE) [30], improved
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Fig. 1. Overview of KATN. The proposed KATN consists of four aggregation transformer blocks for local feature and global relation extraction in multivariate
time series. We visualize the representations learned by each network block in the KATN, where the top picture visualizes the heatmap representation of
each network layer. From these heatmaps, a noticeable pattern emerges: as the network’s depth increases, samples sharing similar characteristics tend to
cluster together more prominently. Note: Xi, i = 1, 2, ..., N , is the i-th input sample, where N represents the number of input samples. Oj

i , i = 1, 2, ..., N ,
j = 1, 2, 3, 4, denotes the i-th output feature vector of j-th aggregation transformer block, while Oi stands for the i-th output feature vector of KATN.

meta HIVE-COTE (HIVE-COTE 2.0) [31], and explainable-
by-design ensemble approach [32].

Feature-based algorithms concentrating on mining the repre-
sentative features from the input. For instance, Li et al. [33] in-
troduced an efficient shapelet-based discovery approach called
bspcover to construct a collection of high-quality shapelets.
Baldán and Benı́tez [34] proposed an interpretable represen-
tation approach to handle a variety of MTSC applications.
Shifaz et al. [35] devised a scalable and accurate forest
method, namely TS-Chief, to achieve excellent performance
on various time series tasks. The pattern similarity method
[36], hidden-unit logistic model [37], time series forest [38],
online rule-based classifier learning [39], autoregressive tree-
based ensemble [40], bag of symbolic Fourier approximation
symbols [41], WEASEL+MUSE [42], and fuzzy cognitive
map [43] are all feature-based.

2) DL-based Algorithms: DL-based algorithms aim to
model the internal data representation hierarchy, mining the
inherent connections among representations [6]. Single- and
dual-network-based models present research streams [7], [8].
The flexible multi-head linear attention (FMLA) [44], In-
ceptionTime [45], dynamic temporal pooling network [46],
fully-convolutional network [47], DA-Net [11], multi-process
collaborative architecture [48], TAR-GAN [12], Rel-CNN [9],
shapelet-neural network [49], AJ-RNN [10], deep contrastive
representation learning with self-distillation [50], reservoir
computing [51] , ROCKET [52], dynamic graph attention
autoencoder [53], dynamic component alignment [54], echo
state network [55], and MiniROCKET [56] are well known
single-network-based models. On the other hand, typical dual-
network-based models include ResNet-Transformer [15], Self-
Match [16], DKN [17], LSTM-FCN [14], SelfMatch [16],
robust neural temporal search (RNTS) [57], perceptive and
lightweight capsule models [58], and attentional prototypical

network (TapNet) [59].

B. Transformer Algorithms

Since 2017, the Transformer model has gained popularity
across various domains, such as time series, CV, natural
language processing, and information retrieval, due to its
capability to capture relationships among features at diverse
positions [60]. The self-attention based transformer [61] serves
as a trailblazer in the realm of transformers, with numerous
enhanced transformer architectures emerging in this domain.
For instance, to reduce the self-attention complexity in both
time and space, Wang et al. [62] introduced Linformer based
on linear attention. Liu et al. [63] proposed a hierarchical
transformer using shifted windows to model different image
scales. Ding et al. [64] presented a simple and effective dual
attention transformer to capture global context while main-
taining computational efficiency. Li et al. [65] put forward a
dilated convolutional transformer-based generative adversarial
network for time series anomaly detection. The transformer
with spatial self-attention [23], DKN [17], Mixformer [24],
FMLA [44], dual aggregation transformer [25], intention-
aware dynamic transformer [66], dynamic graph transformer
[67], and temporal graph transformer [68] are typical trans-
former models.

III. THE PROPOSED KATN

This section first introduces the structure of KATN and its
key components. Then, it describes the loss function.

A. Overview

KATN comprises four aggregation transformer blocks re-
sponsible for amalgamating various feature types at lower
and higher levels, mining abundant relationships and rules
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Fig. 2. Architecture of aggregation transformer block. This block integrates a modified residual network (MResNet) with a multi-head attention network in
parallel. Similar to the vanilla ResNet [47], MResNet mainly consists of three 1-dimensional convolutional layers. However, MResNet adopts the attention-
based method to combine the output features from these convolutional layers. Rather than the typically used rectified linear unit (ReLU) function, MResNet
uses the Gaussian error linear unit (GeLU) [26] function for neural unit activation. The multi-head attention network consists of natt attention modules
mining relationships among features across diverse locations. Note: “MatMul” denotes the matrix multiplication operation. “Conv x 8” is a 1-dimensional
convolutional layer with a kernel size of 8. “BatchNorm” and “LayerNorm” are the batch normalization and layer normalization operations, respectively. Oj−1

i

and Oj
i are the input and output feature vectors of the j-th aggregation transformer block, j = 1, 2, 3, 4, associated with the input sample, Xi, i = 1, 2, ..., N ,

where N represents the number of input samples. In particular, Oj−1
i = Xi, when j = 1.

hidden in multivariate time series. The structure of KATN is
shown in Fig. 1. Within each aggregation transformer block,
MResNet and the multi-head attention network handle local
feature and global relation extraction, respectively. This block
connects the output feature of MResNet with that of the multi-
head attention network using additive feature aggregation.
It employs a fully connected (i.e., dense) layer for feature
alignment. Neural units are activated by the GeLU function.

B. Aggregation Transformer

Each aggregation transformer block adeptly combines lo-
cal patterns from MResNet and global patterns from the
multi-head attention network, capturing extensive dependen-
cies among multiple variables within multivariate time series
data. The architecture of an aggregation transformer block is
depicted in Fig. 2.

Let Xi, i = 1, 2, ..., N , denote the i-th input sample, where
N represents the number of input samples. Given input, Xi,
Oj−1

i and Oj
i are the input and output feature vectors of the

j-th aggregation transformer block, j = 1, 2, 3, 4, respectively.
Note that Oj−1

i is equal to Xi, when j = 1.

1) MResNet: Similar to the vanilla ResNet [47], MResNet
primarily comprises three 1-dimensional convolutional layers.
But, MResNet employs an attention-based approach to in-
tegrate the output features from these convolutional layers.
Different from ResNet that typically adopts the rectified linear
unit (ReLU) function, MResNet utilizes GeLU activation for
neural units.

Let Oj
i,CN1, Oj

i,CN2, and Oj
i,CN3 be the output feature vec-

tors of three 1-dimensional convolutional layers in MResNet,
respectively. These vectors are defined as:

Oj
i,CN1 = GeLU(BN(Conv(Oj−1

i )))

Oj
i,CN2 = GeLU(BN(Conv(Oj

i,CN1)))

Oj
i,CN3 = BN(Conv(Oj

i,CN2))

(1)

where, Conv(), BN(), and GeLU() are the 1-dimensional
convolution, batch normalization, and GeLU functions, respec-
tively.

MResNet transforms the output feature vectors, namely
Oj

i,CN1, Oj
i,CN2, and Oj

i,CN3, from three 1-dimensional con-
volutional layers to an output vector, Oj

i,MRN , by an attention-
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TABLE I
OVERVIEW OF 30 UEA MULTIVARIABLE TIME SERIES BENCHMARK DATASETS. NOTES: AUDIO SPECTRA (AS), ELECTROCARDIOGRAM (ECG),

ELECTROENCEPHALOGRAM (EEG), HUMAN ACTIVITY RECOGNITION (HAR), AND MAGNETOENCEPHALOGRAPHY (MEG).

Dataset Index Dataset Name Dimensions SeriesLength TrainSize NumClasses TestSize Type
AWR ArticularyWordRecognition 9 144 275 25 300 Motion
AF AtrialFibrillation 2 640 15 3 15 ECG
BM BasicMotions 6 100 40 4 40 HAR
CT CharacterTrajectories 3 182 1422 20 1436 Motion
CK Cricket 6 1197 108 12 72 HAR

DDG DuckDuckGeese 1345 270 50 5 50 AS
EW EigenWorms 6 17984 128 5 131 Motion
EP Epilepsy 3 206 137 4 138 HAR
EC EthanolConcentration 3 1751 261 4 263 HAR
ER ERing 4 65 30 6 270 Other
FD FaceDetection 144 62 5890 2 3524 EEG/MEG
FM FingerMovements 28 50 316 2 100 EEG/MEG

HMD HandMovementDirection 10 400 160 4 74 EEG/MEG
HW Handwriting 3 152 150 26 850 HAR
HB Heartbeat 61 405 204 2 205 AS
IW InsectWingbeat 200 30 30000 10 20000 AS
JV JapaneseVowels 12 29 270 9 370 AS
LIB Libras 2 45 180 15 180 HAR

LSST LSST 6 36 2459 14 2466 Other
MI MotorImagery 64 3000 278 2 100 EEG/MEG

NATO NATOPS 24 51 180 6 180 HAR
PD PenDigits 2 8 7494 10 3498 EEG/MEG

PEMS PEMS-SF 963 144 267 7 173 EEG/MEG
PS PhonemeSpectra 11 217 3315 39 3353 AS
RS RacketSports 6 30 151 4 152 HAR

SRS1 SelfRegulationSCP1 6 896 268 2 293 EEG/MEG
SRS2 SelfRegulationSCP2 7 1152 200 2 180 EEG/MEG
SAD SpokenArabicDigits 13 93 6599 10 2199 AS
SWJ StandWalkJump 4 2500 12 3 15 ECG
UW UWaveGestureLibrary 3 315 120 8 320 HAR

based approach. Oj
i,MRN is defined in Eq. (2).

Oj
i,MRN = GeLU(Oj

i,CAF +Oj
i,CN3) (2)

where,

Oj
i,CAF = Softmax(

Oj
i,CN1 · (O

j
i,CN2)

T√
dj,ki,MRN

) ·Oj
i,CN3 (3)

where, (Oj
i,CN2)

T and dj,ki,MRN stand for the transpose and
dimension of Oj

i,CN2, respectively. Softmax() outputs the
mathematical possibilities of a give vector.

2) Multi-head attention: The multi-head attention network
is composed of natt attention modules designed to mine
relationships among the features across diverse locations.
In the j-th aggregation transformer block, attention module,
Attentionj,k

i , k = 1, 2, ..., natt, maps a query, Queryj,ki ,
and a connection of key-value pairs, Keyj,ki -V aluej,ki , to an
output, Oj,k

i,att. O
j,k
i,att is defined as:

Oj,k
i,att = Softmax(

Queryj,ki · (Keyj,ki )T√
dj,ki,MHA

) · V aluej,ki (4)

where, (Keyj,ki )T and dj,ki,MHA represent the transpose and
dimension of Keyj,ki , respectively.

Let Oj
i,MHA denote the output feature vector of the multi-

head attention network in the j-th aggregation transformer
block. Oj

i,MHA is calculated in Eq. (5).

Oj
i,MHA = CONCAT ([Oj,1

i,att, O
j,2
i,att, ..., O

j,natt

i,att ]) (5)

where, CONCAT () is the concatenation function.

The final feature aggregation within each aggregation trans-
former block is realized through a structured fusion of local
and global feature representations. Specifically, the local pat-
terns, denoted as Oj

i,MRN , capture short-range dependencies
and contextual semantics through a hierarchical convolutional
process enhanced by internal attention mechanisms. In paral-
lel, the global relationships captured by the multi-head atten-
tion output Oj

i,MHA encode long-term temporal dependencies
and inter-variable interactions across the entire time window.

To merge these complementary representations, we adopt
an additive feature fusion strategy:

Oj
i = LN(GeLU(Dense(Oj

i,MHA +Oj
i,MRN ))) (6)

where, Oj
i represent the output feature vector of the j-th

aggregation transformer block. LN() and Dense() present the
layer normalization and fully-connected (i.e., dense) functions,
respectively.

This formulation ensures that both modalities contribute
jointly to the final feature space, while the dense layer per-
forms dimensional alignment and nonlinear transformation.
The subsequent GeLU activation introduces smooth nonlinear-
ity, and the layer normalization stabilizes the learning process
by preventing internal covariate shift.

As the aggregation transformer blocks are stacked hierar-
chically, the output of each block Oj

i becomes the input to the
next, progressively enriching the feature hierarchy. Ultimately,
the last aggregation block outputs a comprehensive representa-
tion that integrates multi-scale dependencies—both local and
global—across time and variables. This final representation
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Algorithm 1 Training and Inference Procedure of KATN
Input: D = (Dtrain,Dval,Dtest); ▷ Training, validation,

and test sets.
Output: Ŷ ; ▷ Predicted labels produced by KATN.

1: Randomly initialize model parameters θ0;
2: for m = 1 to EPS do ▷ EPS: number of training

epochs
3: Begin Forward Pass:

Feed each training sample Xi ∈ Dtrain through the
KATN architecture (Fig. 1), consisting of four sequential
aggregation transformer blocks.

4: for j = 1 to 4 do ▷ Each block performs local-global
feature fusion

5: Obtain Oj
i,CN1, Oj

i,CN2, and Oj
i,CN3 via Eq. (1);

6: Compute attention-weighted local feature: Oj
i,CAF

using Eq. (3);
7: Fuse local output: Oj

i,MRN = GeLU(Oj
i,CAF +

Oj
i,CN3) via Eq. (2);

8: For each head k, compute global attention: Oj,k
i,att

using Eq. (4);
9: Concatenate heads: Oj

i,MHA via Eq. (5);
10: Aggregate local-global features: Oj

i =
LN(GeLU(Dense(Oj

i,MHA +Oj
i,MRN ))) via Eq. (6);

11: end for
12: End Forward Pass
13: Begin Loss Computation:

Using Eq. (7), evaluate the objective:

L = − 1

N

N∑
i=1

yi log(Oi) + ϵ∥θ∥22

14: End Loss Computation
15: Begin Parameter Update:

Perform gradient descent:

θm = θm−1 − η∇θm−1
L(θm−1)

where η is the learning rate.
16: End Parameter Update
17: if m > 1 then
18: Evaluate model on Dval to monitor generalization.
19: end if
20: end for
21: Begin Inference:

Deploy trained model on Dtest to generate final predic-
tions Ŷ .

22: End Inference

is then passed to the classification head for downstream
prediction.

C. Loss Function

The loss function of KATN, denoted as L, is formulated
using the cross-entropy method. It quantifies the disparity
between the ground-truth labels and the predicted vectors, as

expressed in Eq. (7).

L = − 1

N

N∑
i=1

yilog(Oi) + ϵ||θ||22 (7)

where, Oi stands for the i-th output feature vector of KATN.
yi is the i-th ground truth label. θ denotes the KATN’s
parameters. ϵ represents the coefficient of ||θ||22 (i.e., L2

regularization). Following [13], [16], we set ϵ = 0.0005 in
this paper. The implementation details of the proposed KATN
framework are formally outlined in Algorithm 1, which pro-
vides a step-by-step description of its computational workflow.

IV. PERFORMANCE AND EVALUATION

This section begins by detailing the experimental setup,
including performance metrics and ablation study analysis.
Subsequently, it evaluates the performance and computational
efficiency of KATN through comprehensive experiments. The
section concludes with an in-depth representation visualization
analysis to further illustrate the practical applicability of the
proposed method.

A. Experimental Setup

1) Dataset Description: As suggested in [11], [13], [14],
[32], [34], [40], we use the University of East Anglia (UEA)
multivariate time series archive in 2018 [69] for algorithmic
performance evaluation. This archive covers a range of cate-
gories, varying from 2 to 39, with time series lengths ranging
from 8 to 17,984. It includes data from 7 application scenarios,
such as human activity recognition and motion analysis. Table
I shows more details about the UEA archive.

TABLE II
HYPER-PARAMETER SETTINGS OF FOUR AGGREGATION TRANSFORMER

BLOCKS.

Aggregation Transformer
No. natt

MResNet’s
Channels

Dense Layer’s
Units

1 8 128 128
2 8 128 128
3 16 256 256
4 16 256 256

2) Implementation Details: The hyper-parameters for the
four aggregation transformer blocks are summarized in Table
II. For optimization, we employ the Adam Optimizer with
the following configurations: a momentum term of 0.95, an
initial learning rate of 0.001, and a decay value of 0.9.
All experiments are performed on a computational platform
running Ubuntu 18.04 OS and Python 3.6, powered by an
Nvidia RTX 2080Ti GPU, Tensorflow 1.18, and an AMD
R5 1400 CPU with 32GB RAM. To illustrate the training
dynamics of KATN, Fig. 3 visualizes the loss curves across
multiple datasets, including CharacterTrajectories, Cricket,
FaceDetection, Heartbeat, LSST, PenDigits, PhonemeSpectra,
SpokenArabicDigits, and StandWalkJump.
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(a) CharacterTrajectories

(d) Heartbeat

(g) PhonemeSpectra

(b) Cricket

(e) LSST

(h) SpokenArabicDigits

(c) FaceDetection

(f) PenDigits

(i) StandWalkJump

Fig. 3. Training loss values obtained during training on the CharacterTrajectories, Cricket, FaceDetection, Heartbeat, LSST, PenDigits, PhonemeSpectra,
SpokenArabicDigits, and StandWalkJump datasets.

B. Performance Metrics

To validate the effectiveness of the proposed KATN, two
commonly used metrics, ‘win’/‘tie’/‘lose’ and AVG rank, both
based on the top-1 accuracy, are considered. As suggested in
[6], [7], [10], [11], [13], [14], [46], for any MTSC algorithm,
the ‘win’, ‘tie’, and ‘lose’ scores indicate on how many
datasets an algorithm performs better than, equivalent to,
or worse than compared algorithms, respectively. The ‘best’
score represents the sum of the ‘win’ and ‘tie’ scores of the
algorithm. In addition, similar to prior studies in [6], [7],
[13], [14], [15], [16], [46], [57], [59], we use AVG rank,
which distinguishes between different algorithms based on the
Wilcoxon signed-rank test with Holm’s alpha correction at a
significance level of 5%.

C. Ablation Study

To comprehensively validate the design choices of the
proposed KATN model, we conduct an integrated ablation

study encompassing both hyper-parameter sensitivity analysis
and architectural component dissection. This dual-perspective
analysis enables a rigorous examination of KATN’s robustness
and design effectiveness across 30 UEA benchmark MTSC
datasets. Specifically, we partition the study into two subparts:
(1) hyper-parameter sensitivity, focusing on structural config-
uration choices; and (2) architectural component analysis, iso-
lating key modules to quantify their individual contributions.

1) Hyper-parameter Sensitivity Analysis: We begin by eval-
uating the impact of critical structural hyper-parameters that
were systematically optimized during model development.
This includes (i) the number of aggregation transformer
blocks, and (ii) the activation function employed within each
block. These parameters fundamentally affect the model’s
representation capacity, learning dynamics, and overall expres-
sivity.

a) Effect of aggregation transformer depth: The number
of aggregation transformer blocks determines the hierarchical
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TABLE III
TOP-1 ACCURACY RESULTS WITH DIFFERENT AGGREGATION

TRANSFORMER BLOCKS ACROSS 30 UEA BENCHMARK DATASETS.

Dataset
Index KATN-(1) KATN-(2) KATN-(3) KATN KATN-(5)

AWR 0.953 0.970 0.993 0.993 0.993
AF 0.333 0.400 0.467 0.533 0.533
BM 1.000 1.000 1.000 1.000 1.000
CT 0.741 0.935 0.951 0.993 0.986
CK 0.917 0.958 0.986 1.000 1.000

DDG 0.600 0.560 0.600 0.660 0.680
EW 0.527 0.727 0.684 0.733 0.733
EP 0.935 0.935 0.986 0.913 0.913
EC 0.321 0.349 0.372 0.399 0.411
ER 0.778 0.822 0.907 0.956 0.968
FD 0.518 0.528 0.614 0.664 0.664
FM 0.500 0.570 0.590 0.620 0.610

HMD 0.270 0.392 0.649 0.688 0.688
HW 0.192 0.294 0.287 0.320 0.320
HB 0.724 0.717 0.761 0.762 0.762
IW 0.228 0.302 0.491 0.515 0.567
JV 0.941 0.949 0.978 0.968 0.968

LIB 0.478 0.744 0.772 0.839 0.839
LSST 0.337 0.456 0.652 0.407 0.407

MI 0.530 0.600 0.580 0.620 0.630
NATO 0.850 0.889 0.900 0.889 0.889

PD 0.970 0.977 0.977 0.982 0.982
PEMS 0.832 0.888 0.939 0.953 0.953

PS 0.288 0.325 0.466 0.366 0.466
RS 0.796 0.829 0.914 0.875 0.875

SRS1 0.805 0.805 0.839 0.908 0.908
SRS2 0.511 0.550 0.561 0.600 0.600
SAD 0.872 0.953 0.963 0.983 0.983
SWJ 0.267 0.400 0.426 0.600 0.600
UW 0.759 0.868 0.868 0.881 0.897
Win 0 0 4 2 7
Tie 1 1 3 17 17

Lose 29 29 23 11 6
Best 1 1 7 19 24

Mean Accuracy 0.626 0.690 0.739 0.754 0.761

depth at which multi-scale temporal and cross-view dependen-
cies are extracted. To investigate its effect, we construct five
model variants with increasing aggregation depth:

• KATN-(1): employs a single aggregation transformer
block.

• KATN-(2): integrates two aggregation transformer
blocks.

• KATN-(3): integrates three aggregation transformer
blocks.

• KATN: the default version of our model, comprising four
aggregation transformer blocks.

• KATN-(5): extends the model to five aggregation trans-
former blocks.

The experimental results, summarized in Table III, reveal a
consistent trend: increasing the number of transformer blocks
yields progressively better classification accuracy, particularly
for complex datasets such as InsectWingbeat. For instance,
KATN-(5) achieves the highest accuracy across several chal-
lenging benchmarks, confirming the benefit of deeper aggre-
gation in modeling intricate temporal patterns.

Nevertheless, the performance gain between KATN-(5) and
the default KATN is marginal, with a mean accuracy im-
provement of only 0.007 across the 30 UEA datasets. Further-
more, the parameter count increases substantially from 3.368M
(KATN) to 4.814M (KATN-(5)) on InsectWingbeat. This
observation reveals a point of diminishing returns, wherein
additional blocks yield negligible performance improvements
while incurring higher computational costs. Thus, the default

TABLE IV
TOP-1 ACCURACY RESULTS WITH DIFFERENT ACTIVATION FUNCTIONS

ACROSS 30 UEA BENCHMARK DATASETS.

Dataset
Index ReLU Leaky ReLU EReLU PReLU GeLU

AWR 0.987 0.993 0.993 0.987 0.993
AF 0.400 0.467 0.467 0.467 0.533
BM 1.000 1.000 1.000 1.000 1.000
CT 0.979 0.983 0.997 0.983 0.993
CK 0.986 1.000 0.986 0.993 1.000

DDG 0.620 0.640 0.640 0.600 0.660
EW 0.712 0.712 0.733 0.727 0.733
EP 0.935 0.935 0.935 0.952 0.913
EC 0.349 0.352 0.352 0.372 0.399
ER 0.933 0.933 0.933 0.919 0.956
FD 0.631 0.614 0.634 0.664 0.664
FM 0.590 0.600 0.600 0.610 0.620

HMD 0.662 0.662 0.650 0.650 0.688
HW 0.308 0.310 0.320 0.320 0.320
HB 0.727 0.771 0.765 0.724 0.762
IW 0.491 0.515 0.515 0.515 0.515
JV 0.941 0.978 0.965 0.941 0.968
LIB 0.833 0.833 0.833 0.850 0.839

LSST 0.389 0.416 0.407 0.421 0.407
MI 0.590 0.610 0.630 0.610 0.620

NATO 0.900 0.872 0.872 0.872 0.889
PD 0.977 0.980 0.980 0.981 0.982

PEMS 0.930 0.930 0.953 0.953 0.953
PS 0.342 0.339 0.359 0.315 0.366
RS 0.856 0.856 0.868 0.803 0.875

SRS1 0.874 0.889 0.841 0.853 0.908
SRS2 0.533 0.533 0.533 0.500 0.600
SAD 0.972 0.963 0.978 0.980 0.983
SWJ 0.427 0.400 0.533 0.400 0.600
UW 0.869 0.859 0.903 0.881 0.881
Win 1 1 3 3 13
Tie 1 4 6 6 9

Lose 28 25 21 21 8
Best 2 5 9 9 22

Mean Accuracy 0.725 0.731 0.739 0.728 0.754

configuration with four aggregation transformer blocks is
adopted as it offers a desirable balance between accuracy and
efficiency.

b) Effect of activation function choice: Activation func-
tions regulate non-linear transformations within each trans-
former block, thus playing a pivotal role in determining the
expressive capacity of the network. To evaluate their effect,
we test KATN under five widely used activation functions:
ReLU, Leaky ReLU, Elastic ReLU (EReLU), Parametric
ReLU (PReLU), and GeLU. The performance results across
the 30 UEA datasets are presented in Table IV.

Among the candidates, GeLU exhibits the most stable
and superior performance, with a ‘win’/‘tie’/‘lose’ count of
13/9/8 and a mean accuracy of 0.754. Its stochastic, smooth
activation profile enhances gradient flow and enables finer
feature selectivity—traits particularly valuable for modeling
highly dynamic multivariate sequences. Consequently, GeLU
is adopted as the default activation function in the final model
architecture.

c) Hyper-parameter synthesis and interpretation: Taken
together, the above analyses suggest that KATN exhibits high
resilience to architectural variations, maintaining competitive
performance across a spectrum of design choices. Although
incremental increases in depth and activation sophistication
do contribute to performance gains, the improvements quickly
plateau as architectural complexity grows. This observation
underscores KATN’s structural efficiency: its default con-
figuration—comprising four aggregation transformer blocks
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TABLE V
TOP-1 ACCURACY RESULTS OBTAINED BY VARIOUS KATN VARIANTS

ACROSS 30 UEA BENCHMARK DATASETS.

Dataset
Index

KATN-w/o-
MResNet

KATN-w/o-
MHA

KATN-w/o-
FC

KATN-
MaMul

KATN-
CONCAT

KATN
-INTERN KATN

AWR 0.973 0.970 0.980 0.953 0.993 0.992 0.993
AF 0.467 0.400 0.500 0.200 0.533 0.467 0.533
BM 1.000 1.000 1.000 1.000 1.000 1.000 1.000
CT 0.986 0.964 0.969 0.931 0.986 0.986 0.993
CK 0.943 0.944 0.986 0.958 0.951 0.986 1.000

DDG 0.520 0.540 0.600 0.600 0.560 0.620 0.660
EW 0.618 0.549 0.727 0.712 0.811 0.847 0.733
EP 0.807 0.666 0.935 1.000 0.979 1.000 0.913
EC 0.332 0.293 0.228 0.487 0.372 0.380 0.399
ER 0.941 0.930 0.930 0.859 0.933 0.981 0.956
FD 0.519 0.519 0.631 0.508 0.631 0.631 0.664
FM 0.560 0.550 0.550 0.570 0.630 0.450 0.620

HMD 0.338 0.278 0.378 0.312 0.662 0.392 0.688
HW 0.451 0.382 0.316 0.308 0.511 0.296 0.320
HB 0.619 0.619 0.727 0.518 0.765 0.771 0.762
IW 0.327 0.128 0.100 0.491 0.362 0.595 0.515
JV 0.918 0.924 0.949 0.941 0.930 0.989 0.968
LIB 0.889 0.833 0.817 0.806 0.900 0.878 0.839

LSST 0.548 0.456 0.337 0.265 0.347 0.456 0.407
MI 0.510 0.510 0.530 0.550 0.570 0.550 0.620

NATO 0.822 0.850 0.900 0.839 0.872 0.850 0.889
PD 0.939 0.973 0.969 0.831 0.948 0.965 0.982

PEMS 0.874 0.705 0.959 0.994 0.930 0.522 0.953
PS 0.215 0.104 0.247 0.269 0.325 0.292 0.366
RS 0.796 0.868 0.809 0.823 0.879 0.868 0.875

SRS1 0.843 0.771 0.874 0.724 0.913 0.874 0.908
SRS2 0.533 0.483 0.500 0.494 0.533 0.522 0.600
SAD 0.963 0.967 0.979 0.959 0.963 0.729 0.983
SWJ 0.426 0.200 0.400 0.267 0.533 0.333 0.600
UW 0.872 0.881 0.833 0.684 0.897 0.916 0.881
Win 1 0 1 2 5 6 10
Tie 1 1 1 2 3 2 3

Lose 28 29 28 26 22 22 17
Best 2 1 2 4 8 8 13

AVG rank 4.833 5.383 4.283 5.183 2.867 3.333 2.117

and GeLU activation—not only delivers a robust accuracy-
complexity trade-off but also demonstrates the model’s scal-
ability and generalization stability under diverse task condi-
tions.

2) Architectural Component Analysis: Beyond hyper-
parameters, we assess the significance of core architectural
modules through controlled ablations. This includes the multi-
head attention mechanism, MResNet backbone, the fully con-
nected projection layer, and the feature aggregation strategy.

a) Impact of multi-head attention and MResNet: We
begin by evaluating the respective contributions of the multi-
head attention module and the MResNet backbone. To this
end, we examine two reduced variants of KATN:

• KATN-w/o-MHA: a variant in which the multi-head
attention mechanism is removed.

• KATN-w/o-MResNet: a variant excluding the MResNet
component.

The performance comparison, presented in Table V, reveals
that the complete KATN architecture surpasses KATN-w/o-
MHA on 27 datasets and outperforms KATN-w/o-MResNet on
26. These results highlight the complementary roles of global
attention and local convolution in capturing temporal dynamics
across varying scales. The attention mechanism enables the
model to uncover long-range dependencies that are often
elusive to convolutional filters, whereas MResNet preserves
local continuity essential for fine-grained pattern recognition.

Despite the gains in accuracy, these modules introduce
distinct computational costs. As summarized in Table VI, the

average CPU inference time across the 30 UEA benchmark
testing datasets increases from 90.773s (without MHA) and
75.423s (without MResNet) to 106.620s in the full model. This
increase, however, is offset by substantial performance bene-
fits, illustrating that the integration of attention and residual
learning yields a synergistic effect critical to robust MTSC.

b) Effectiveness of fully connected layer: To assess the
necessity of the fully connected (dense) layer employed within
each aggregation transformer block, we introduce a variant
termed KATN-w/o-FC, in which this layer is eliminated.
The fully connected layer serves to harmonize the latent
spaces of MResNet and the attention mechanism by projecting
heterogeneous features into a unified representation space.

As indicated in Table V, the absence of the fully connected
layer results in degraded performance on 28 out of 30 datasets,
demonstrating that direct feature fusion without alignment
significantly impairs the model’s ability to integrate local and
global information. In particular, the fully connected layer
mitigates semantic incompatibility between disparate feature
sources, thereby enabling coherent and discriminative joint
representations.

The computational overhead of incorporating the fully con-
nected layer is minimal. Based on evaluations on the 30 UEA
benchmark testing datasets in Table VI, the average CPU in-
ference time increases marginally from 101.716s to 106.620s.
Given its role in facilitating effective cross-modal integration,
this cost is well-justified by the substantial accuracy gains.

c) Effectiveness of additive feature aggregation: To in-
vestigate the impact of the feature fusion strategy within each
aggregation block, we compare KATN with three alternative
aggregation designs:

• KATN-MatMul: KATN with multiplicative feature aggre-
gation, as shown in Fig. 4 (a).

• KATN-CONCAT: KATN with concatenation feature ag-
gregation, as depicted in Fig. 4 (b).

• KATN-INTERN: KATN with interactive feature aggrega-
tion, as detailed in Fig. 4 (c).

The quantitative results in Table V demonstrate that KATN,
utilizing additive aggregation, achieves superior accuracy on
26, 18, and 20 datasets when compared to KATN-MatMul,
KATN-CONCAT, and KATN-INTERN, respectively. These
outcomes underline the advantage of additive fusion, which
offers a lightweight yet semantically balanced integration
of local and global descriptors without exacerbating feature
dimensionality or causing representational entanglement.

The efficiency comparisons on the 30 UEA benchmark test-
ing datasets further reinforce the merits of this design. Accord-
ing to Table VI, KATN records an average CPU inference time
of 106.620s, whereas KATN-MatMul and KATN-CONCAT
require 108.602s and 111.526s on CPU, respectively. Notably,
KATN-INTERN incurs a prohibitive cost of 663.790s due
to its intricate feature interaction operations. These findings
suggest that although alternative schemes may enable more
complex representation interactions, they do so at the expense
of efficiency and, in many cases, accuracy.

Moreover, while concatenation increases feature dimension-
ality and often causes dominance of one representation stream
over another, multiplicative and interaction-based approaches
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TABLE VI
COMPARATIVE EVALUATION OF VARIOUS KATN VARIANTS: PARAMETERS, FLOATING POINT OPERATIONS (FLOPS), AND INFERENCE TIME ACROSS 30

UEA BENCHMARK TESTING DATASETS.

c

Dataset
Index

Parameters (M) FLOPs (M) With GPU (s) With CPU (s)
KATN-w/o-
MResNet

KATN-w/o-
MHA

KATN-w/o-
FC

KATN-
MaMul

KATN-
CONCAT

KATN
-INTERN

KATN KATN-w/o-
MResNet

KATN-w/o-
MHA

KATN-w/o-
FC

KATN-
MaMul

KATN-
CONCAT

KATN
-INTERN

KATN KATN-w/o-
MResNet

KATN-w/o-
MHA

KATN-w/o-
FC

KATN-
MaMul

KATN-
CONCAT

KATN
-INTERN

KATN KATN-w/o-
MResNet

KATN-w/o-
MHA

KATN-w/o-
FC

KATN-
MaMul

KATN-
CONCAT

KATN
-INTERN

KATN

AWR 1.556 3.447 3.749 3.915 4.079 4.243 3.915 3.098 6.893 7.492 7.820 8.147 8.475 7.820 0.837 1.737 2.129 2.514 2.312 2.307 2.365 4.148 4.345 6.675 7.263 7.807 8.258 7.288
AF 1.122 3.009 3.307 3.473 3.637 3.801 3.473 2.230 6.017 6.608 6.936 7.264 7.591 6.936 0.899 1.617 2.096 2.410 2.240 2.217 2.303 3.134 1.465 4.012 4.259 4.412 4.487 4.294
BM 0.735 2.625 2.925 3.091 3.255 3.419 3.091 1.456 5.248 5.843 6.171 6.499 6.827 6.171 1.012 1.800 2.197 2.527 2.346 2.306 2.287 0.783 0.817 1.245 1.450 1.494 1.557 1.465
CT 1.563 3.451 3.749 3.915 4.079 4.243 3.915 3.112 6.899 7.492 7.820 8.148 8.475 7.820 1.355 2.082 2.842 3.242 3.144 3.141 3.059 24.919 23.803 38.671 41.984 45.669 47.082 42.040
CK 4.310 6.199 6.500 6.666 6.830 6.993 6.666 8.606 12.397 12.993 13.321 13.648 13.976 13.321 2.038 1.860 3.263 3.711 3.487 3.658 3.472 40.906 10.411 47.877 48.711 50.090 50.455 48.801

DDG 1.664 4.410 5.396 5.562 5.726 5.890 5.562 3.314 8.819 10.786 11.114 11.441 11.769 11.114 0.869 1.680 2.091 2.459 2.326 2.240 2.216 2.393 2.131 3.693 4.007 4.132 4.299 4.007
EW 23.652 25.542 25.842 26.008 26.172 26.336 26.008 47.290 51.082 51.678 52.005 52.333 52.661 52.005 27.061 28.061 30.237 30.248 31.299 32.342 30.242 1652.679 1683.679 1655.823 1765.859 1805.226 18335.343 1714.426
EP 0.842 2.730 3.028 3.195 3.358 3.522 3.195 1.670 5.458 6.051 6.378 6.706 7.034 6.378 0.823 1.693 2.067 2.408 2.234 2.256 2.228 3.423 3.089 5.215 5.653 5.996 6.265 5.731
EC 2.424 4.312 4.610 4.777 4.940 5.104 4.777 4.834 8.622 9.215 9.542 9.870 10.198 9.542 8.502 3.435 10.442 11.328 10.886 11.285 10.936 63.831 319.303 364.998 370.722 371.831 379.556 365.158
ER 0.731 2.620 2.919 3.085 3.249 3.413 3.085 1.449 5.238 5.832 6.159 6.487 6.815 6.159 0.773 1.646 1.968 2.343 2.219 2.164 2.143 1.537 1.960 2.692 3.018 3.263 3.405 3.058
FD 0.735 2.713 3.084 3.250 3.414 3.578 3.250 1.456 5.424 6.161 6.489 6.817 7.144 6.489 1.162 2.592 3.077 3.542 3.382 3.376 3.294 12.177 18.271 23.343 26.309 28.141 30.402 26.189
FM 0.669 2.573 2.885 3.051 3.215 3.378 3.051 1.325 5.145 5.763 6.091 6.418 6.746 6.091 0.778 1.928 2.220 2.633 2.416 2.402 2.399 0.795 0.872 1.281 1.518 1.527 1.605 1.492

HMD 1.044 2.936 3.239 3.405 3.569 3.732 3.405 2.075 5.871 6.471 6.799 7.127 7.454 6.799 0.915 1.694 2.193 2.586 2.305 2.337 2.389 5.362 3.156 7.085 7.614 7.860 8.511 7.488
HW 1.643 3.530 3.829 3.995 4.159 4.323 3.995 3.272 7.059 7.652 7.980 8.307 8.635 7.980 1.029 1.809 2.334 2.698 2.565 2.608 2.518 11.346 11.713 18.117 19.785 21.156 22.663 19.785
HB 0.868 2.793 3.121 3.287 3.451 3.615 3.287 1.722 5.584 6.236 6.564 6.892 7.219 6.564 1.163 1.813 2.400 2.901 2.611 2.760 2.626 14.146 8.062 18.446 19.470 20.468 21.259 19.443
IW 0.788 2.802 3.202 3.368 3.532 3.695 3.368 1.563 5.602 6.397 6.725 7.052 7.380 6.725 1.823 2.976 3.604 4.147 4.086 4.142 3.973 22.839 45.243 52.325 59.520 64.721 70.945 58.800
JV 0.702 2.596 2.899 3.065 3.229 3.393 3.065 1.391 5.190 5.792 6.120 6.448 6.775 6.120 0.788 1.893 2.247 2.597 2.415 2.403 2.418 0.991 1.300 1.781 2.044 2.139 2.251 2.038

LIB 0.803 2.690 2.989 3.155 3.319 3.482 3.155 1.593 5.379 5.971 6.299 6.626 6.954 6.299 0.777 2.085 2.397 2.834 2.647 2.551 2.594 0.924 1.131 1.595 1.785 1.925 1.972 1.793
LSST 0.762 2.651 2.951 3.118 3.281 3.445 3.118 1.509 5.301 5.897 6.224 6.552 6.880 6.224 0.999 2.417 2.777 3.155 3.003 3.043 3.021 4.543 7.126 8.731 9.755 10.636 11.665 9.739

MI 2.198 4.125 4.455 4.621 4.785 4.949 4.621 4.383 8.248 8.904 9.231 9.559 9.887 9.231 9.813 3.105 11.633 12.403 12.008 12.098 11.979 55.249 364.838 400.940 401.547 411.080 411.922 401.517
NATO 0.720 2.621 2.931 3.097 3.261 3.425 3.097 1.426 5.241 5.855 6.183 6.511 6.838 6.183 0.824 2.133 2.728 2.770 2.681 2.596 2.583 0.981 1.210 1.703 1.964 2.039 2.183 1.964

PD 0.651 2.538 2.836 3.002 3.166 3.330 3.002 1.288 5.074 5.666 5.994 6.322 6.649 5.994 0.863 1.760 2.120 2.526 2.296 2.326 2.289 1.451 2.561 3.074 3.503 3.734 4.107 3.542
PEMS 1.381 3.883 4.673 4.839 5.003 5.167 4.839 2.747 7.764 9.340 9.667 9.995 10.323 9.667 0.959 1.794 2.170 2.592 2.384 2.354 2.358 2.722 3.221 4.771 5.215 5.399 5.655 5.195

PS 2.802 4.694 4.997 5.163 5.327 5.491 5.163 5.590 9.387 9.988 10.316 10.644 10.971 10.316 2.604 2.856 4.417 5.121 5.113 5.113 4.833 76.478 114.812 65.669 122.520 131.358 138.352 122.553
RS 0.663 2.553 2.853 3.019 3.183 3.347 3.019 1.313 5.104 5.700 6.028 6.355 6.683 6.028 0.771 1.840 2.157 2.582 2.290 2.331 2.303 0.715 0.817 1.236 1.406 1.471 1.554 1.406

SRS1 1.091 2.981 3.281 3.447 3.611 3.775 3.447 2.169 5.960 6.556 6.884 7.212 7.539 6.884 3.069 2.302 4.584 5.116 4.876 4.946 4.816 93.561 28.337 113.075 115.190 118.958 121.737 115.397
SRS2 1.223 3.113 3.414 3.580 3.744 3.908 3.580 2.432 6.225 6.822 7.149 7.477 7.805 7.149 3.196 2.165 4.643 5.109 4.903 4.927 4.879 93.087 24.760 109.694 113.140 114.206 115.660 111.667
SAD 0.874 2.768 3.072 3.238 3.402 3.566 3.238 1.735 5.535 6.138 6.466 6.794 7.121 6.466 1.114 2.550 2.696 3.731 3.026 3.281 2.958 13.828 18.121 24.018 27.228 31.094 32.038 26.956
SWJ 2.552 4.440 4.739 4.905 5.069 5.233 4.905 5.089 8.878 9.472 9.800 10.127 10.455 9.800 2.315 1.815 3.593 4.046 3.935 3.769 3.755 39.236 6.520 43.599 43.812 45.386 44.418 44.005
UW 1.276 3.164 3.463 3.629 3.793 3.956 3.629 2.539 6.326 6.919 7.247 7.574 7.902 7.247 1.138 1.890 2.507 2.892 2.814 2.726 2.650 14.513 10.104 20.085 21.805 22.574 24.085 21.352

Average Value N/A N/A 2.676 2.968 4.194 4.639 4.475 4.533 4.396 75.423 90.773 101.716 108.602 111.526 663.790 106.620
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Fig. 4. Differences between three feature aggregation methods.

introduce nonlinear complexity that may impair stable gra-
dient propagation and semantic interpretability. In contrast,
the additive scheme promotes interpretable and structurally
simple integration, preserving the intrinsic characteristics of
each feature type while enabling effective temporal reasoning.

3) Summary of Ablation Insights: The ablation findings
collectively demonstrate that KATN’s performance is under-
pinned by both careful hyper-parameter selection and well-
integrated architectural components. The depth and activation
function directly affect representation richness and conver-
gence dynamics, while attention, residual learning, and pro-
jection layers jointly support hierarchical temporal model-
ing. Feature fusion via additive integration further balances
complexity and expressivity. Overall, the default KATN con-
figuration reflects a principled balance between empirical
performance and architectural parsimony.

D. Experimental Analysis
This section studies the performance of KATN on 30 UEA

datasets.
1) Comparison with SOTA transformer algorithms: To ex-

plore the performance of KATN, we compare it with 6 SOTA
transformer algorithms, including:

• VanTrans: the vanilla transformer network adapted to
MTSC [61].

• SwinTrans: the hierarchical transformer network using
shifted windows adapted to MTSC tasks [63].

• Linformer: the transformer network based on line atten-
tion adapted to MTSC tasks [41].

• FMLA: the transformer network using flexible multi-head
linear attention for MTSC [44].

• DualAggTrans: the dual aggregation transformer network
adapted to MTSC tasks [25].

• DualAttTrans: the dual attention transformer adapted to
MTSC tasks [64].

Table VII shows the top-1 accuracy results obtained
by various transformer algorithms on 30 UEA benchmark
datasets. One can easily find that KATN outperforms 6
SOTA transformer algorithms since it achieves the high-
est ‘win’/‘tie’/‘lose’ score, namely 9/6/15, and the lowest
AVG rank value, namely 2.400. This is because KATN deeply
aggregates various feature types within each level, mining
abundant local features and global relations in the given
multivariate time series.
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TABLE VII
TOP-1 ACCURACY RESULTS OBTAINED BY VARIOUS TRANSFORMER

VARIANTS ACROSS 30 UEA BENCHMARK DATASETS.

Dataset
Index VanTrans SwinTrans Linformer FMLA DualAggTrans DualAttTrans KATN

AWR 0.973 0.980 0.987 0.992 0.993 0.993 0.993
AF 0.467 0.467 0.467 0.533 0.467 0.467 0.533
BM 1.000 1.000 1.000 1.000 1.000 1.000 1.000
CT 0.966 0.970 0.997 0.979 0.989 0.986 0.993
CK 0.943 0.958 0.958 0.986 0.986 0.951 1.000

DDG 0.540 0.580 0.600 0.620 0.660 0.640 0.660
EW 0.618 0.847 0.489 0.954 0.733 0.628 0.733
EP 0.807 0.978 0.971 0.979 0.935 1.000 0.913
EC 0.332 0.228 0.323 0.380 0.352 0.372 0.399
ER 0.400 0.930 0.859 0.981 0.933 0.933 0.956
FD 0.519 0.583 0.556 0.631 0.634 0.631 0.664
FM 0.560 0.460 0.530 0.550 0.600 0.630 0.620

HMD 0.338 0.284 0.378 0.392 0.650 0.662 0.688
HW 0.451 0.187 0.357 0.511 0.320 0.294 0.320
HB 0.619 0.727 0.751 0.771 0.765 0.765 0.762
IW 0.327 0.100 0.208 0.362 0.515 0.595 0.515
JV 0.918 0.778 0.965 0.965 0.989 0.930 0.968

LIB 0.889 0.817 0.850 0.850 0.878 0.833 0.839
LSST 0.548 0.652 0.568 0.643 0.407 0.347 0.407

MI 0.510 0.500 0.590 0.550 0.630 0.620 0.620
NATO 0.822 0.800 0.850 0.850 0.850 0.872 0.889

PD 0.939 0.939 0.980 0.965 0.980 0.948 0.982
PEMS 0.874 0.959 0.751 0.522 0.953 0.930 0.953

PS 0.215 0.247 0.175 0.292 0.359 0.325 0.366
RS 0.796 0.809 0.868 0.868 0.823 0.829 0.875

SRS1 0.843 0.771 0.652 0.874 0.841 0.913 0.908
SRS2 0.533 0.450 0.550 0.522 0.533 0.600 0.600
SAD 0.963 0.979 0.983 0.959 0.978 0.963 0.983
SWJ 0.426 0.267 0.400 0.333 0.533 0.533 0.600
UW 0.872 0.728 0.894 0.916 0.903 0.897 0.881
Win 0 2 1 5 3 3 9
Tie 1 1 2 2 3 4 6

Lose 29 27 27 23 24 23 15
Best 1 3 3 7 6 7 15

AVG rank 5.483 5.500 4.500 3.467 3.167 3.483 2.400

2) Comparison with existing MTSC algorithms: To exam-
ine the performance of KATN, we compare it with 18 existing
MTSC algorithms, listed below.

• MLP: the multi-layer perceptron model applied to MTSC
tasks [47].

• FCN: the fully convolutional network model applied to
MTSC tasks [47].

• ResNet: the residual neural network model applied to
MTSC tasks [47].

• InceptionTime: the neural network model based on In-
ception blocks applied to MTSC tasks [45].

• Three distance-based baseline algorithms: EDI , DTWI ,
and DTWD [6].

• WM: the statistical feature selection approach based on
bag-of-pattern (WEASEL+MUSE) [42].

• CBOSS: the contractable approximation symbols method
using bag of symbolic Fourier [41].

• MLCN: the multivariate LSTM-FCN [14].
• TSF: the time series forest approach for MTSC [38].
• TapNet: the attentional prototype network model that

gracefully embeds traditional classification and DL-based
methods [59].

• XEM: the explainable-by-design ensemble method based
on boosting-bagging and bias-variance [32].

• CMFM+SVM: the complexity measure-and-feature ap-
proach combined with SVM applied to MTSC tasks [34].

• MiniROCKET: the transform approach using fast deter-
ministic technique, an improved version of ROCKET

[56].
• DA-Net: the dual attention-based network model that

deeply incorporates squeeze-excitation and sparse atten-
tion variants [11].

• Conv-GRU: the convolutional network model combined
with gated linear unit structures [70].

• DKN: the densely knowledge-aware network [17].
Table VIII presents the top-1 accuracy results for the various

MTSC algorithms evaluated. KATN outperforms all other
algorithms, achieving a ‘win‘/‘tie‘/‘loss‘ score of 6/7/17, and
securing the lowest AVG rank score of 4.167. DKN follows
closely behind, ranking second in both the ‘best‘ metric and
AVG rank. MiniROCKET ranks as the second-best algorithm
according to the ‘best‘ metric, while XEM achieves the third-
best position in terms of AVG rank. In contrast, MLP delivers
the poorest performance among the algorithms tested.

The following provides an explanation for the results pre-
sented above. KATN effectively combines the local patterns
extracted by MResNet and the global patterns extracted by
the multi-head attention network, capturing long-range de-
pendencies across multiple variables. DKN facilitates the
transfer of knowledge between lower- and higher-level se-
mantic information, effectively regularizing the model and
contributing to its strong performance. MiniROCKET, on
the other hand, employs simple linear classifiers alongside
randomly initialized convolutional kernels to capture multi-
scale subsequence features in time series, which enhances its
efficiency in time series classification. XEM employs explicit
boosting-bagging techniques and addresses the bias-variance
trade-off, effectively uncovering potential correlations across
different dimensions. In contrast, MLP, characterized by a
shallow neural network structure, fail to mine the inherent
relationships within the data, especially the interconnections
among variables.

E. Computational Complexity Assessment
Based on the guidelines outlined in [71], we conduct

a comprehensive comparison between the proposed KATN
model and 13 representative DL algorithms in terms of
parameter count, FLOPs, and inference time, using the 30
UEA benchmark testing datasets as the evaluation foundation.
These comparative methods consist of six transformer-based
models, namely VanTrans [61], SwinTrans [63], Linformer
[41], FMLA [44], DualAggTrans [25], and DualAttTrans [64],
as well as seven MTSC baseline models. The baseline group
includes four single-network-based methods—InceptionTime
[45], ResNet [47], MLP [47], and FCN [47]—and three dual-
network-based architectures—TapNet [59], MLCN [14], and
DKN [17]. The aggregated results of this comparison are
summarized in Table IX.

A close examination reveals that transformer-based models
generally impose substantially higher computational complex-
ity. Across the 30 UEA benchmark testing datasets, most
transformer variants exhibit larger parameter counts and higher
FLOPs than the seven MTSC baseline models. The proposed
KATN, while demonstrating robust representational capacity,
presents a relatively high computational footprint on the ma-
jority of datasets, with only DualAggTrans and DualAttTrans
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TABLE VIII
TOP-1 ACCURACY RESULTS OBTAINED BY VARIOUS MTSC ALGORITHMS ACROSS 30 UEA BENCHMARK DATASETS.

Dataset
Index MLP FCN ResNet Inception

Time EDI DTWD DTWI CBOSS WM TSF Mini
ROCKET XEM TapNet MLCN CMFM

+ SVM
Conv-
GRU DA-Net DKN KATN

AWR 0.043 0.823 0.943 0.897 0.970 0.987 0.980 0.990 0.993 0.953 0.992 0.993 0.987 0.957 0.973 0.973 0.980 0.993 0.993
AF 0.400 0.200 0.200 0.267 0.267 0.220 0.267 0.267 0.267 0.200 0.133 0.467 0.333 0.333 0.267 0.467 0.467 0.467 0.533
BM 0.875 1.000 1.000 1.000 0.676 0.975 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.875 0.975 1.000 0.925 1.000 1.000
CT 0.056 0.741 0.977 0.935 0.964 0.989 0.969 0.986 0.990 0.931 0.065 0.979 0.997 0.917 0.970 0.966 0.998 0.986 0.993
CK 0.111 0.917 0.958 0.958 0.944 1.000 0.986 N/A 0.986 N/A 0.986 0.986 0.958 N/A 0.958 0.943 0.861 0.951 1.000

DDG 0.360 0.600 0.600 0.560 0.275 0.600 0.550 0.480 0.575 0.460 0.650 0.375 0.575 0.380 0.420 0.540 0.520 0.560 0.660
EW 0.233 0.684 0.833 0.727 0.549 0.618 N/A 0.511 0.890 0.712 0.954 0.527 0.489 0.330 0.847 0.811 0.489 0.628 0.733
EP 0.312 0.935 0.964 0.935 0.666 0.964 0.978 0.979 0.993 1.000 1.000 0.986 0.971 0.732 0.978 0.978 0.883 0.979 0.913
EC 0.300 0.349 0.317 0.321 0.293 0.323 0.304 0.304 0.316 0.487 0.380 0.372 0.323 0.373 0.228 0.332 0.338 0.372 0.399
ER 0.159 0.778 0.907 0.822 0.133 0.133 0.133 0.919 0.133 0.859 0.981 0.200 0.133 0.941 0.930 0.400 0.874 0.933 0.956
FD 0.565 0.518 0.534 0.528 0.519 0.529 N/A 0.513 0.545 0.508 0.631 0.614 0.556 0.555 0.583 0.640 0.648 0.631 0.664
FM 0.510 0.510 0.460 0.500 0.550 0.530 0.520 0.519 0.540 0.562 0.450 0.590 0.530 0.580 0.460 0.580 0.510 0.600 0.620

HMD 0.216 0.270 0.216 0.392 0.278 0.231 0.306 0.292 0.378 0.312 0.392 0.649 0.378 0.544 0.284 0.338 0.365 0.662 0.688
HW 0.038 0.192 0.382 0.294 0.200 0.286 0.316 0.504 0.531 0.191 0.511 0.287 0.357 0.305 0.187 0.451 0.159 0.231 0.320
HB 0.665 0.724 0.716 0.717 0.619 0.717 0.658 0.564 0.727 0.518 0.771 0.761 0.751 0.458 0.727 0.746 0.624 0.765 0.762
IW 0.104 0.491 0.231 0.302 0.128 N/A N/A N/A N/A N/A 0.595 0.228 0.208 N/A 0.100 0.208 0.567 0.362 0.515
JV 0.114 0.941 0.924 0.949 0.924 0.949 0.959 N/A 0.978 N/A 0.989 0.978 0.965 N/A 0.778 0.991 0.938 0.930 0.968
LIB 0.078 0.478 0.844 0.744 0.833 0.870 0.894 0.894 0.894 0.806 0.878 0.772 0.850 0.850 0.817 0.889 0.800 0.900 0.839

LSST 0.326 0.337 0.232 0.290 0.456 0.551 0.575 0.458 0.628 0.265 0.643 0.652 0.568 0.390 0.652 0.548 0.560 0.347 0.407
MI 0.530 0.590 0.560 0.530 0.510 N/A N/A 0.390 0.500 0.550 0.550 0.600 0.590 0.510 0.500 0.512 0.500 0.620 0.620

NATO 0.167 0.900 0.878 0.889 0.850 0.883 0.850 0.850 0.883 0.839 0.928 0.916 0.939 0.900 0.800 0.916 0.878 0.872 0.889
PD 0.211 0.970 0.973 0.977 0.973 0.977 0.939 0.939 0.969 0.831 0.965 0.977 0.980 0.979 0.665 0.939 0.980 0.948 0.982

PEMS 0.340 0.832 0.828 0.888 0.705 0.711 0.734 0.730 N/A 0.994 0.522 0.942 0.751 0.745 0.959 0.874 0.867 0.930 0.953
PS 0.414 0.466 0.466 0.466 0.104 0.151 0.151 0.151 0.190 0.269 0.292 0.288 0.175 0.151 0.247 0.215 0.093 0.525 0.366
RS 0.276 0.796 0.836 0.829 0.868 0.803 0.842 0.854 0.914 0.823 0.868 0.941 0.868 0.856 0.809 0.888 0.803 0.879 0.875

SRS1 0.686 0.805 0.761 0.805 0.771 0.775 0.765 0.765 0.744 0.724 0.874 0.839 0.652 0.908 0.771 0.843 0.924 0.913 0.908
SRS2 0.456 0.511 0.511 0.561 0.483 0.539 0.533 0.533 0.522 0.494 0.522 0.550 0.550 0.506 0.450 0.566 0.561 0.600 0.600
SAD 0.108 0.729 0.932 0.872 0.967 0.963 0.959 N/A 0.982 N/A 0.100 0.973 0.983 N/A 0.979 0.963 0.980 0.963 0.983
SWJ 0.200 0.267 0.133 0.133 0.200 0.200 0.333 0.333 0.333 0.267 0.333 0.400 0.400 0.400 0.267 0.426 0.400 0.533 0.600
UW 0.131 0.497 0.759 0.544 0.881 0.903 0.868 0.869 0.903 0.684 0.916 0.897 0.894 0.859 0.728 0.919 0.833 0.897 0.881
Win 0 0 0 0 0 1 0 0 1 2 4 1 1 0 0 2 2 2 6
Tie 0 1 1 1 0 1 1 1 2 2 2 3 2 0 1 1 0 4 7

Lose 30 29 29 29 30 28 29 29 27 26 24 26 27 30 29 27 28 24 17
Best 0 1 1 1 0 2 1 1 3 4 6 4 3 0 1 3 2 6 13

AVG rank 15.817 11.717 11.183 10.667 13.467 10.900 11.700 11.983 8.200 12.833 6.717 6.333 7.917 11.500 11.767 7.250 9.933 5.900 4.167

(a) t-SNE on the Epilepsy dataset (b) t-SNE on the UWaveGestureLibrary dataset (c) t-SNE on the RacketSports dataset

(e) KATN with t-SNE on the UWaveGestureLibrary dataset (f) KATN with t-SNE on the RacketSports dataset(d) KATN with t-SNE on the Epilepsy dataset

Fig. 5. Visualization of representations learned by t-SNE and KATN with t-SNE on the Epilepsy, UWaveGestureLibrary, and RacketSports datasets.

incurring greater complexity. This outcome reflects a deliber-
ate architectural trade-off, where KATN prioritizes expressive
temporal-spatial modeling while accepting a moderate increase
in computational cost to enhance its modeling effectiveness.

The computational burden becomes more evident when
assessing CPU-based inference efficiency. Across the 30 UEA
benchmark testing datasets, all transformer variants, including
KATN, exhibit substantially longer CPU inference times com-
pared to the seven MTSC baseline models. For instance, the
slowest MTSC baseline method, DKN, achieves an average
inference time of 15.004s, whereas the fastest transformer

model, Linformer, still requires 83.859s. This pronounced
disparity highlights the considerably higher deployment cost
associated with transformer architectures, particularly in CPU-
limited environments.

Focusing specifically on GPU inference time across the
same testing datasets, the differences among the seven trans-
former variants become marginal. For instance, Linformer
achieves the shortest GPU average inference time (3.766s),
while DualAttTrans incurs the highest (4.714s). This narrow
variance suggests that GPU parallelism effectively mitigates
the architectural overhead of transformers to a large extent.
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TABLE IX
COMPARATIVE EVALUATION OF VARIOUS ALGORITHMS: PARAMETERS, FLOPS, AND INFERENCE TIME ACROSS 30 UEA BENCHMARK TESTING

DATASETS.

Metric Method AWR AF BM CT CK DDG EW EP EC ER FD FM HMD HW HB IW JV LIB LSST MI NATO PD PEMS PS RS SRS1 SRS2 SAD SWJ UW Avergae Value

Parameter
(M)

MLP 1.162 1.143 0.804 0.785 4.099 182.079 54.456 0.813 3.130 0.635 4.967 1.203 2.504 0.743 12.855 2.707 0.680 0.554 0.617 96.503 1.117 0.515 69.841 1.715 0.594 3.191 4.535 1.111 5.503 0.978

N/A

FCN 0.292 0.282 0.286 0.285 0.287 1.658 0.286 0.283 0.283 0.285 0.427 0.309 0.290 0.286 0.342 0.486 0.293 0.284 0.288 0.345 0.305 0.283 1.267 0.296 0.286 0.286 0.287 0.294 0.284 0.284
InceptionTime 1.596 1.589 1.591 1.593 1.592 2.062 1.591 1.590 1.590 1.590 1.639 1.598 1.592 1.594 1.610 1.660 1.594 1.591 1.593 1.611 1.597 1.590 1.928 1.599 1.591 1.590 1.591 1.594 1.590 1.590

ResNet 1.240 1.229 1.234 1.233 1.235 2.777 1.234 1.231 1.231 1.232 1.393 1.259 1.239 1.233 1.297 1.458 1.242 1.231 1.235 1.301 1.255 1.230 2.337 1.244 1.234 1.234 1.235 1.243 1.232 1.231
MLCN 0.386 0.367 0.331 0.326 0.754 25.934 7.199 0.327 0.623 0.306 1.111 0.421 0.556 0.322 1.972 0.923 0.327 0.294 0.309 12.684 0.404 0.288 10.883 0.463 0.304 0.636 0.810 0.384 0.929 0.349
TapNet 2.926 3.143 2.876 2.928 3.446 5.706 12.033 2.924 3.715 2.856 3.137 2.893 3.038 2.919 3.142 3.239 2.857 2.851 2.853 4.477 2.890 2.827 4.861 2.982 2.840 3.281 3.414 2.893 4.099 2.984
DKN 1.651 1.700 1.568 1.620 1.870 3.371 6.149 1.592 1.987 1.561 1.654 1.566 1.649 1.625 1.681 2.005 1.576 1.571 1.579 2.348 1.588 1.551 3.210 1.731 1.550 1.766 1.833 1.598 2.178 1.628

VanTrans 1.713 1.487 1.299 1.708 3.086 3.648 12.757 1.348 2.139 1.294 1.493 1.297 1.459 1.748 1.443 1.598 1.291 1.327 1.312 2.112 1.317 1.251 2.969 2.339 1.263 1.477 1.544 1.378 2.204 1.565
SwinTrans 1.420 1.196 1.006 1.417 2.794 2.799 12.465 1.057 1.848 1.003 1.143 0.995 1.165 1.457 1.127 1.225 0.996 1.037 1.020 1.796 1.017 0.960 2.279 2.045 0.971 1.185 1.251 1.083 1.913 1.274
Linformer 1.591 1.367 1.178 1.589 2.965 2.971 12.636 1.228 2.019 1.174 1.315 1.167 1.336 1.629 1.299 1.397 1.168 1.208 1.191 1.967 1.188 1.132 2.450 2.216 1.142 1.356 1.423 1.254 2.084 1.446

FMLA 1.903 1.677 1.489 1.898 3.276 3.838 12.947 1.538 2.329 1.484 1.683 1.487 1.649 1.938 1.633 1.788 1.481 1.517 1.502 2.302 1.507 1.441 3.159 2.529 1.453 1.667 1.734 1.568 2.394 1.755
DualAggTrans 4.158 3.717 3.334 4.159 6.909 5.805 26.251 3.438 5.020 3.328 3.493 3.294 3.648 4.239 3.531 3.611 3.309 3.398 3.361 4.864 3.340 3.246 5.082 5.407 3.263 3.691 3.823 3.482 5.148 3.872
DualAttTrans 4.353 3.914 3.530 4.356 7.105 5.445 26.447 3.635 5.217 3.525 3.632 3.481 3.843 4.436 3.704 3.726 3.502 3.596 3.557 5.036 3.529 3.443 4.880 5.601 3.459 3.887 4.019 3.675 5.345 4.069

KATN 3.915 3.473 3.091 3.915 6.666 5.562 26.008 3.195 4.777 3.085 3.250 3.051 3.405 3.995 3.287 3.368 3.065 3.155 3.118 4.621 3.097 3.002 4.839 5.163 3.019 3.447 3.580 3.238 4.905 3.629

FLOPs
(M)

MLP 2.321 2.283 1.604 8.194 1.566 364.155 108.909 1.622 6.257 1.266 9.930 2.402 5.004 1.482 25.707 5.410 1.357 1.105 1.230 193.002 2.230 1.026 139.679 3.426 1.184 6.378 9.066 2.219 11.003 1.953
FCN 0.588 0.568 0.576 0.578 0.574 3.319 0.576 0.570 0.570 0.572 0.858 0.621 0.584 0.575 0.688 0.975 0.590 0.571 0.579 0.694 0.613 0.569 2.537 0.595 0.576 0.575 0.578 0.592 0.572 0.571

InceptionTime 6.097 7.544 5.723 10.799 5.995 102.146 88.135 6.046 11.979 5.529 8.051 5.820 7.524 5.895 12.953 6.919 5.467 5.443 5.454 63.759 5.779 5.297 43.417 6.641 5.401 9.386 10.863 5.889 15.495 6.475
ResNet 4.119 4.097 4.106 4.108 4.103 7.192 4.107 4.099 4.099 4.102 4.424 4.156 4.115 4.105 4.232 4.555 4.121 4.100 4.109 4.239 4.148 4.099 6.312 4.127 4.106 4.106 4.108 4.124 4.101 4.100
MLCN 0.772 0.734 0.662 1.508 0.652 51.868 14.390 0.653 1.246 0.612 2.221 0.842 1.111 0.644 3.943 1.846 0.653 0.588 0.618 25.368 0.807 0.576 21.766 0.926 0.608 1.272 1.620 0.768 1.857 0.697
TapNet 5.872 6.306 5.772 6.911 5.876 11.432 24.087 5.868 7.450 5.732 6.294 5.806 6.095 5.858 6.305 6.499 5.734 5.722 5.727 8.975 5.799 5.673 9.743 5.984 5.700 6.583 6.849 5.806 8.219 5.988
DKN 3.230 3.386 3.120 3.703 3.180 6.723 12.279 3.168 3.959 3.102 3.298 3.122 3.283 3.174 3.352 3.978 3.122 3.096 3.114 4.685 3.155 3.071 6.397 3.353 3.084 3.522 3.655 3.164 4.343 3.230

VanTrans 3.419 2.966 2.590 3.410 6.165 7.290 25.507 2.689 4.271 2.581 2.979 2.587 2.911 3.490 2.878 3.190 2.575 2.647 2.617 4.217 2.626 2.495 5.931 4.671 2.519 2.947 3.081 2.749 4.401 3.123
SwinTrans 2.833 2.386 2.006 2.828 5.581 5.592 24.924 2.107 3.690 1.999 2.280 1.985 2.324 2.908 2.249 2.445 1.986 2.067 2.033 3.585 2.027 1.915 4.551 4.083 1.935 2.363 2.496 2.160 3.819 2.542
Linformer 3.176 2.728 2.349 3.171 5.924 5.934 25.266 2.450 4.032 2.342 2.623 2.327 2.666 3.251 2.591 2.787 2.328 2.410 2.376 3.927 2.370 2.257 4.893 4.426 2.277 2.705 2.839 2.502 4.162 2.884

FMLA 3.799 3.346 2.970 3.789 6.545 7.669 25.887 3.068 4.650 2.961 3.358 2.966 3.290 3.869 3.258 3.569 2.954 3.027 2.996 4.596 3.006 2.875 6.310 5.051 2.898 3.326 3.461 3.129 4.781 3.503
DualAggTrans 8.306 7.422 6.657 8.306 13.807 11.600 52.491 6.864 10.028 6.645 6.975 6.577 7.285 8.466 7.050 7.211 6.606 6.785 6.710 9.717 6.669 6.480 10.153 10.802 6.514 7.370 7.635 6.952 10.286 7.733
DualAttTrans 8.695 7.818 7.050 8.701 14.199 10.878 52.884 7.259 10.423 7.039 7.253 6.951 7.674 8.861 7.397 7.442 6.993 7.180 7.103 10.061 7.046 6.876 9.749 11.190 6.906 7.762 8.027 7.338 10.680 8.127

KATN 7.820 6.936 6.171 7.820 13.321 11.114 52.005 6.378 9.542 6.159 6.489 6.091 6.799 7.980 6.564 6.725 6.120 6.299 6.224 9.231 6.183 5.994 9.667 10.316 6.028 6.884 7.149 6.466 9.800 7.247

With GPU
(s)

MLP 0.038 0.026 0.027 0.068 0.047 0.477 0.521 0.030 0.052 0.034 0.600 0.029 0.033 0.055 0.149 2.235 0.038 0.031 0.125 0.463 0.032 0.097 0.645 0.325 0.032 0.057 0.054 0.129 0.028 0.045 0.217
FCN 0.973 0.976 0.759 0.937 0.859 0.837 2.033 0.834 1.406 0.837 1.099 0.806 0.814 0.844 0.904 1.355 0.815 0.851 0.974 1.032 0.875 0.966 0.871 1.152 0.808 1.267 1.022 1.165 0.878 0.920 0.996

InceptionTime 1.099 1.004 1.165 1.334 1.121 1.083 4.047 2.375 1.917 1.189 1.884 1.171 1.053 2.533 1.165 2.085 1.107 1.093 1.484 1.384 1.121 1.140 1.675 2.573 1.143 1.478 1.275 1.984 1.078 1.206 1.532
ResNet 0.977 0.935 0.961 1.221 0.965 0.934 4.041 0.926 2.099 0.887 1.483 1.054 0.934 1.034 1.000 1.861 1.027 1.127 1.350 1.310 1.117 0.954 1.000 1.890 1.004 1.490 1.176 1.856 0.960 1.142 1.290
MLCN 3.383 13.993 2.583 4.306 27.072 6.138 5.569 4.606 4.360 1.863 2.496 1.609 2.946 3.700 2.686 2.208 1.508 1.535 1.769 7.708 1.604 1.022 3.986 1.098 1.240 1.992 2.567 2.729 1.640 0.908 4.028
TapNet 1.019 0.871 0.874 1.444 1.047 10.093 6.298 0.946 2.512 0.923 2.408 1.073 0.969 1.105 1.328 4.037 1.020 1.005 1.257 1.786 1.128 0.966 8.306 2.113 0.958 1.883 1.358 1.599 1.000 1.278 2.087
DKN 1.284 1.159 1.292 1.406 1.245 2.131 3.398 2.435 1.777 1.306 2.721 1.302 1.155 2.601 1.309 10.324 1.226 1.248 1.696 1.592 1.245 1.306 3.058 3.128 1.252 1.494 1.349 1.975 1.193 1.293 1.997

VanTrans 2.095 2.071 2.488 2.699 3.358 2.059 21.048 2.046 11.255 2.159 3.113 2.142 2.124 2.262 2.410 3.380 2.147 2.250 2.580 12.681 2.270 2.101 2.348 4.275 2.062 4.744 4.799 3.530 3.668 2.408 3.952
SwinTrans 2.085 2.216 2.319 2.855 3.466 2.058 19.745 2.032 11.626 2.437 3.251 2.079 2.123 2.282 2.415 3.164 2.109 2.189 2.496 12.363 2.209 2.061 2.521 4.561 2.029 4.890 4.985 3.463 3.742 2.539 3.944
Linformer 2.037 2.012 2.283 2.689 3.205 2.017 20.880 2.099 9.876 2.339 3.029 2.081 2.076 2.158 2.350 3.054 2.070 2.170 2.493 11.118 2.182 2.117 2.472 4.125 2.039 4.329 4.371 3.111 3.878 2.325 3.766

FMLA 2.164 2.139 2.570 2.788 3.469 2.127 21.742 2.113 11.626 2.230 3.215 2.213 2.194 2.337 2.490 3.492 2.218 2.325 2.665 13.100 2.344 2.171 2.425 4.416 2.130 4.900 4.957 3.647 3.789 2.488 4.083
DualAggTrans 2.354 2.277 2.509 3.160 3.585 2.258 31.232 2.288 11.500 2.177 3.463 2.514 2.381 2.595 2.682 5.071 2.460 2.689 3.139 12.582 2.704 2.372 2.391 5.075 2.378 5.088 5.085 3.231 3.842 2.737 4.594
DualAttTrans 2.339 2.296 2.631 3.165 3.588 2.265 32.655 2.271 12.025 2.179 4.131 2.545 2.345 2.592 3.025 4.475 2.469 2.650 3.101 12.642 2.669 3.292 2.385 5.130 2.373 5.070 5.084 3.101 4.157 2.765 4.714

KATN 2.365 2.303 2.287 3.059 3.472 2.216 30.242 2.228 10.936 2.143 3.294 2.399 2.389 2.518 2.626 3.973 2.418 2.594 3.021 11.979 2.583 2.289 2.358 4.833 2.303 4.816 4.879 2.958 3.755 2.650 4.396

With CPU
(s)

MLP 0.180 0.170 0.181 0.180 0.181 0.228 0.254 0.181 0.188 0.180 0.248 0.179 0.184 0.180 0.201 0.475 0.182 0.172 0.204 0.242 0.177 0.183 0.287 0.270 0.181 0.178 0.183 0.201 0.173 0.175 0.207
FCN 0.344 0.113 0.079 1.802 0.655 0.614 16.242 0.240 3.095 0.168 2.243 0.085 0.257 0.951 0.731 5.913 0.128 0.102 0.716 2.484 0.113 0.265 0.880 4.831 0.081 1.829 1.462 1.695 0.311 0.737 1.639

InceptionTime 2.401 0.664 0.423 13.598 4.454 0.992 121.256 1.630 23.553 1.091 11.129 0.456 1.710 6.569 4.083 26.891 0.748 0.610 4.535 15.697 0.665 1.570 1.572 33.786 0.451 13.475 10.735 11.059 2.097 5.357 10.775
ResNet 2.081 0.567 0.318 11.820 3.948 1.243 116.298 1.405 20.842 0.948 10.462 0.361 1.470 6.058 3.915 26.804 0.623 0.553 4.133 13.973 0.549 1.444 1.941 31.775 0.363 11.873 9.400 10.024 1.829 4.736 10.059
MLCN 2.804 12.259 1.872 5.730 24.642 5.954 123.254 3.790 36.196 1.186 4.601 0.849 7.733 3.445 5.227 12.372 0.941 0.723 1.800 14.536 0.918 0.640 9.118 18.253 0.678 20.370 12.150 3.166 2.356 8.250 11.527
TapNet 2.778 0.682 0.377 15.934 5.345 10.929 143.189 1.837 27.686 1.187 16.999 0.560 1.974 7.839 5.617 54.096 0.801 0.591 5.464 19.352 0.778 1.808 10.974 42.985 0.407 15.889 12.593 13.381 2.409 6.164 14.354
DKN 1.980 0.726 0.577 9.958 3.470 12.249 85.752 1.400 17.034 1.056 21.503 0.611 1.465 4.982 3.341 185.656 0.804 0.682 3.457 11.533 0.744 1.401 22.076 24.887 0.569 9.949 7.950 8.224 1.767 4.307 15.004

VanTrans 5.380 4.123 1.168 38.482 53.356 3.625 1285.177 4.593 427.210 2.424 16.277 1.148 6.839 16.930 19.055 33.758 1.407 1.572 5.670 472.960 1.408 2.126 4.208 107.070 1.190 125.848 122.685 19.012 53.548 18.232 95.216
SwinTrans 5.069 4.164 1.144 30.910 53.011 3.308 1266.689 4.395 423.553 1.951 14.849 1.094 7.098 14.023 18.399 27.767 1.336 1.272 5.145 482.600 1.345 1.836 3.769 95.385 1.034 129.769 120.393 17.453 50.656 18.287 93.590
Linformer 4.401 3.496 1.134 26.107 42.417 3.039 1274.977 3.813 336.504 1.851 13.263 1.111 5.730 12.014 14.918 26.087 1.292 1.220 4.896 382.955 1.359 1.811 3.451 79.582 1.021 96.233 96.864 16.734 41.749 15.737 83.859

FMLA 5.557 4.259 1.207 39.751 55.117 3.745 1327.587 4.745 441.307 2.504 16.814 1.185 7.064 17.488 19.684 34.872 1.454 1.624 5.857 488.568 1.454 2.196 4.347 110.604 1.230 130.001 126.733 19.639 55.315 18.833 98.358
DualAggTrans 7.770 4.595 1.479 45.499 52.576 4.290 1800.423 6.046 408.678 3.192 27.959 1.537 8.167 21.365 20.908 63.946 2.107 1.880 10.468 434.299 2.042 3.701 5.640 132.678 1.455 125.220 120.761 29.381 47.144 23.063 113.942
DualAttTrans 7.974 4.628 1.520 46.092 53.064 4.364 1896.345 6.167 401.186 3.257 28.957 1.561 8.201 21.689 21.166 68.017 2.144 1.914 10.689 435.991 2.099 3.786 5.844 135.441 1.465 126.157 121.964 29.466 47.536 23.437 117.404

KATN 7.288 4.294 1.465 42.040 48.801 4.007 1714.426 5.731 365.158 3.058 26.189 1.492 7.488 19.785 19.443 58.800 2.038 1.793 9.739 401.517 1.964 3.542 5.195 122.553 1.406 115.397 111.667 26.956 44.005 21.352 106.620

(a) Input heatmap on the Epilepsy dataset (b) Input heatmap on the UWaveGestureLibrary dataset (c) Input heatmap on the RacketSports dataset

(d) Output heatmap on the Epilepsy dataset (e) Output heatmap on the UWaveGestureLibrary dataset (f) Output heatmap on the RacketSports dataset

Fig. 6. Input and output heatmaps of KATN on the Epilepsy, UWaveGestureLibrary, and RacketSports datasets.

Nevertheless, the variation in CPU inference time among
transformer models remains considerable. KATN, in particular,
ranks third in CPU inference time, performing slightly faster
than DualAggTrans and DualAttTrans, yet significantly slower
than Linformer, FMLA, and VanTrans. This performance gap
is primarily attributed to KATN’s complex feature fusion
strategy and temporal modeling architecture, which, while
enhancing representational expressiveness, introduce greater
computational overhead under serial processing conditions.

In conclusion, the evaluation across the 30 UEA benchmark

testing datasets demonstrates that transformer-based models,
including KATN, exhibit strong learning capacity but incur no-
table costs in inference efficiency, particularly on CPU. KATN
navigates this trade-off by delivering competitive performance
with a manageable computational footprint relative to other
transformer-based models, although it remains more resource-
intensive than simpler architectures.

F. Representation Visualization Analysis

To rigorously examine the expressive capacity of KATN, we
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Fig. 7. Visualization of temporal receptive field expansion across aggregation transformer blocks in KATN on the Epilepsy dataset. This figure illustrates the
hierarchical evolution of temporal activation patterns as input signals propagate through KATN’s aggregation transformer blocks. The color intensity represents
the normalized variance of feature responses at each time step, where warmer hues indicate time regions of greater importance for seizure characterization.
The effective activation widths for blocks 1 to 4 are measured as 81, 95, 137, and 143 time steps, respectively, under a threshold of 0.5. This gradual increase
reflects the model’s ability to integrate information over progressively extended temporal ranges. By capturing both fine-grained local variations and long-range
dependencies, KATN enables more comprehensive temporal reasoning, which is essential for accurately identifying complex seizure dynamics in multivariate
time series.

perform a two-dimensional projection of its high-dimensional
latent features using t-distributed stochastic neighbor embed-
ding (t-SNE) [72], a nonlinear manifold learning method
well-suited for visualizing complex feature spaces. As shown
in Fig. 5, this projection enables a comparative analysis of
embeddings across the Epilepsy, UWaveGestureLibrary, and
RacketSports datasets. Notably, the embeddings produced by
KATN exhibit more distinct and tightly grouped clusters than
those derived from t-SNE applied directly to raw features. This
improvement is particularly salient in the UWaveGestureLi-
brary dataset (Figs. 5(b) and 5(e)), where intra-class cohesion
and inter-class boundaries are clearly delineated—reflecting
the model’s ability to extract semantically aligned, task-
relevant representations.

To complement this analysis, we present the input and
output heatmaps in Fig. 6, which illustrate how KATN hi-
erarchically refines temporal features across successive layers.
These visualizations reveal a selective enhancement of salient
dynamics while diminishing the influence of spurious or
redundant patterns, thereby improving representational com-

pactness and class separability.
Beyond these spatial representations, we further investigate

KATN’s capacity for modeling long-range temporal dependen-
cies—an essential trait for MTSC tasks involving delayed or
distributed temporal cues, such as seizure recognition. Fol-
lowing the methodology in [73], we visualize the progressive
expansion of temporal receptive fields across the model’s
four aggregation transformer blocks on the Epilepsy dataset
(Fig. 7). The heatmaps, constructed via normalized feature
variance at each time step, highlight regions with heightened
predictive relevance, with warmer tones indicating greater
salience.

A clear hierarchical pattern emerges: as the depth of the
network increases, so too does the temporal span of effective
activation. Specifically, the receptive fields expand from 81
time steps in the first transformer block to 95, 137, and 143 in
subsequent layers, using a fixed salience threshold of 0.5. This
progressive broadening indicates a gradual shift from localized
temporal processing toward integration of extended temporal
contexts. The integration of multi-head self-attention with
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MResNet facilitates adaptive focusing on temporally distant
yet semantically correlated events. Meanwhile, the additive
feature aggregation design enables the seamless fusion of
temporal information across multiple scales.

Through this multi-stage refinement, KATN constructs a
temporally expressive representation space that unifies short-
term cues and long-term dependencies. Such hierarchical mod-
eling is essential for uncovering complex, non-local patterns in
real-world time series. The observed temporal activation dy-
namics thus provide compelling evidence of KATN’s ability to
internalize and operationalize long-range temporal structures,
enhancing its utility for challenging tasks such as epileptic
event detection.

V. CONCLUSION

The proposed KATN incorporates four aggregation trans-
former blocks, each merging the local patterns extracted by
MResNet with the global patterns derived from the multi-
head attention network. These blocks are able to capture
intricate long-range dependencies prevalent among multiple
variables. Through extensive experiments, KATN demon-
strates its superiority over 6 SOTA transformer algorithms, i.e.,
VanTrans, SwinTrans, Linformer, FMLA, DualAggTrans, and
DualAttTrans, in terms of ‘win’/‘tie’/‘lose’ and AVG rank.
Furthermore, when compared to 18 MTSC algorithms on
30 UEA datasets, KATN is winner of 13 datasets, attaining
an AVG rank score of 4.167. These results signify KATN’s
promising potential in addressing various MTSC applications
in real-world applications.

While KATN offers significant benefits, it also presents
challenges, particularly due to its resource-intensive nature,
which may hinder practical deployment. To mitigate this,
we plan to incorporate network compression techniques, re-
ducing computational complexity by eliminating redundant
nodes. Additionally, we aim to improve the model’s robustness
through automatic hyper-parameter optimization, exploring
methods such as grid search, random search, and Bayesian
optimization to identify optimal configurations for diverse
datasets and applications. Furthermore, we intend to leverage
neural architecture search to optimize both hyper-parameters
and the network architecture in an integrated manner, ensuring
enhanced performance and adaptability.
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