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Abstract—In recent research, hyper-heuristics have attracted
increasing attention among researchers in various fields. The
most appealing feature of hyper-heuristics is that they aim to
provide more generalized solutions to optimization problems
by searching in a high-level space of heuristics instead of
direct problem domains. Despite the good generalities of hyper-
heuristics, the design of more general search methodologies
is still an emerging challenge. Evolutionary multitasking is a
relatively new evolutionary paradigm that attempts to solve
multiple optimization problems simultaneously. It exploits the
underlying similarities among different optimization tasks by
allowing the transmission of information among them, thus accel-
erating the optimization of all tasks. Inherently, hyper-heuristics
and evolutionary multitasking share similarities in three ways.
(1) They both operate on third-party search spaces. (2) High-
level search methodologies are universal. (3) They both conduct
cross-domain optimization. To integrate their advantages, i.e., the
knowledge-transfer and the cross-domain optimization abilities
of the evolutionary multitasking and the search in the heuristic
spaces of hyper-heuristics, in this paper, a unified framework of
evolutionary multitasking graph-based hyper-heuristic (EMHH)
is thereby proposed. To assess the generality and effectiveness
of EMHH, the integration of the population-based graph-based
hyper-heuristics with the evolutionary multitasking for solving
exam timetabling and graph-coloring problems, separately and
simultaneously, is studied. The experimental results demonstrate
the effectiveness, efficiency, and increased generality of the
proposed unified framework compared with single-tasking hyper-
heuristics.

Index Terms—Hyper-heuristics, evolutionary multitasking,
exam timetabling, graph coloring.

I. INTRODUCTION

META-heuristics have shown to be highly effective in
solving various combinational optimization problems

[1], [2]. They quite often concern one particular problem,
however, tend to perform poorly on other problems or even
other instances of the same problem. The performance of these
approaches also strongly depends on domain-specific knowl-
edge and expertise such as complicated parameter tunings [3]–
[5]. Such tailor-made settings limit the generality of meta-
heuristics, making them expensive to develop and adapt to
other problems.
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Motivated by this, more recent research concerns general-
ized and adaptive algorithms [6]. Hyper-heuristics, which are
heuristics that choose heuristics, can be regarded as such
general algorithms [3], [6]–[10]. Instead of searching directly
in the solution space like meta-heuristics, hyper-heuristics
work at the higher-level search space of a set of low-level
heuristics. The goal is to solve the problem at hand by
selecting existing low-level heuristics or generating new low-
level heuristics. The only requirement for developing a hyper-
heuristic for a problem is a set of low-level heuristics that are
easy-to-implement and a problem-specific objective function.
These are used at the low-level in hyper-heuristics which are
general addressing different problems.
After the term was first proposed in [4], hyper-heuristic
approaches have been successfully used to solve a range of
combinational optimization problems, such as Boolean satis-
fiability problems [11], [12], vehicle routing problems [13],
[14], packing problems [15], [16], educational timetabling
problems [9], and many more [8], [10]. The search space
of hyper-heuristics either comprises of existing low-level
heuristics or a set of components and operators that are used
to construct low-level heuristics. Based on these properties,
hyper-heuristics can be categorized into heuristic selection
and heuristic generation hyper-heuristics, respectively [17].
Heuristic selection hyper-heuristics select a given set of low-
level heuristics to construct or improve solutions; while heuris-
tic generation hyper-heuristics generate new heuristics using
a given set of components and operators. Furthermore, in
both of the heuristic selection and heuristic generation hyper-
heuristics, constructive and perturbative low-level heuristics
can be used to build solutions step by step; or modify
and improve complete solutions. This paper concerns a new
framework of selection constructive hyper-heuristic.
The paradigm of evolutionary multitasking optimization
(EMO) was first proposed in [18] for solving multifacto-
rial optimization (MFO) problems, which are categorized as
the third category of optimization problems besides single-
objective and multi-objective optimization problems. EMO
has been successfully extended since then to several domains
including continuous optimization, discrete optimization, com-
binational optimization, and multi-objective optimization [18]–
[26]. EMO can optimize two or more tasks simultaneously
instead of evaluating every task at each step of evaluation.
Under the assumption that each individual is at least skilled
at one task, the population in EMO is split into different skill
groups. The success of EMO lies in the knowledge transfer
among different skill groups; that is, the genetic experience
within one group can be transferred to other groups, thus to
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accelerate the convergence of all tasks [18], [24]. Moreover,
the computational cost can be greatly decreased compared with
that in solving all tasks separately and sequentially.
Inspired by EMO, a generalized evolutionary multitasking
optimization framework was proposed in [24], where the
knowledge learned from computationally cheap problems is
utilized to assist the optimization of computationally expen-
sive problems via the knowledge transfer mechanism. Li
et al. extended the evolutionary multitasking framework to
a multitasking sparse reconstruction framework for solving
the sparse reconstruction problems [27]. In [28], instead of
performing knowledge transfer implicitly via genetic oper-
ators, a denoising autoencoder was designed to explicitly
transfer the solutions among different tasks. To utilize the
limited resources more efficiently, Gong et al. deigned an
online dynamic resource allocation strategy that can allocate
computational resources to tasks based on their computational
complexities [29]. The literature above extends the origi-
nal EMO in various aspects, including but not limited to
knowledge transfer efficiency, computational efficiency, and its
applications. However, they built on the direct solution space
of the problems, which is still subject to specific problems.
This paper proposes a unified framework of evolutionary
multitasking graph-based hyper-heuristic (EMHH) which in-
herently integrates hyper-heuristics and EMO based on three
synergies between them. Firstly, both of them operate in a
third-party search space rather than the search space of direct
problem solutions. In EMO, variables of different tasks are
mapped into a unified representation, while hyper-heuristics
search in a high-level space of heuristics. Secondly, the high-
level algorithms in hyper-heuristics are equivalent to the
general solvers in EMO. Thirdly, both methodologies concern
cross-domain search, however, with different mechanisms.
Inspired by these synergies and similarities, EMHH combines
their advantages, namely, the knowledge transfer and the cross-
domain search of EMO and the high-level search of hyper-
heuristics, thus to further enhance the generality of EMHH to
a new higher level.
Among the different categories of hyper-heuristics, selection
constructive approaches might be intuitively the easiest to
comprehend. Moreover, application of graph-based hyper-
heuristics to solving educational timetabling problems is one
of the most studied topics [10], [30]. Thus, this paper concerns
the integration of EMO with the population-based graph-based
hyper-heuristics as the precursor of multitasking the hyper-
heuristics. The Carter’s benchmark [31] is used to assess the
effectiveness of the EMHH. In particular, an application on
solving exam timetabling problems (ETTPs) and graph color-
ing problems (GCPs) derived from the Carter’s benchmark,
in separate and simultaneous manners, is investigated. The
experimental results demonstrate that the EMHH provides
superior effectiveness, efficiency, and generality compared
with single-tasking hyper-heuristics, especially the generality
on asynchronous optimization and synchronous cross-domain
optimization. More importantly, the results also reveal that
solutions of different problems or problem instances in higher-
level search spaces may share common structures that could
be reused to reduce the computational cost.

The innovation of this paper is that we introduce for the
first time the concept of evolutionary multitasking into hyper-
heuristics. This leads to the following two contributions: First,
a unified framework, EMHH, is developed integrating coher-
ently two methodologies towards a higher level of generality.
While the existing hyper-heuristics focus on handling one task
at a time, which is still of limited generality, the proposed
EMHH is capable of handling multiple tasks, either intra-
domain or cross-domain, simultaneously, thus to extend the
generality and scope of general algorithms addressing multiple
optimization problems. Moreover, the generality of the concept
of unification in multitasking is extended, i.e., the unified
representation should not be limited to the solution repre-
sentation space. Other unification schemes may be promising
in exploiting the potential of multitasking as well. Second,
this paper aims to explore the underlying communalities
in the selections of heuristics in solving different problems
via evolutionary multitasking with knowledge transfer in the
heuristic space.
The rest of this paper is organized as follows. Section II
introduces the background of graph-based hyper-heuristics
and evolutionary multitasking optimization, followed by the
motivations. The EMHH framework is presented in Section III.
Section IV presents experimental studies on ETTPs and GCPs
and the discussions. The potential applications and future
challenges are also provided in this section. Finally, Section V
concludes this paper and provides directions for future work.

II. BACKGROUND

This section introduces the concept of graph heuristics,
the definition of selection constructive hyper-heuristic, and
the evolutionary multitasking optimization, followed by the
motivations of multitasking the hyper-heuristics.

A. Graph Heuristics

Welsh and Powell [32] established the connection between
timetabling and scheduling problems with the graph coloring,
which subsequently inspired the application of graph heuristics
in solving these problems. Graph heuristics order the vertexes
in a graph according to the difficulties of coloring them
using feasible colors. By representing the events in timetabling
problems as vertices and the edges as clashes between the
events, the timetabling of events with timeslots is transferred to
the problem of assigning vertices with colors. The degree of an
event indicates the number of conflicted events, i.e. two events
share common students. Graph heuristics can then be used to
order the events according to the difficulties of scheduling
them into feasible timeslots.
The following five graph heuristics have been widely used in
timetabling [9], [10], [33].
• Saturation Degree (SD) indicates the number of feasible

timeslots for an event. A smaller SD value indicates
less alternative feasible timeslots for an event, thus more
difficult to schedule it compared with those with more
available timeslots. The smallest SD heuristic selects and
schedules events with the smallest SD value first, after
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which the SD values for the remaining events will be
updated.

• Largest Degree (LD) heuristic selects the event with the
highest degree, i.e. most conflicts.

• Largest Colored Degree (LCD) heuristic selects and
schedules at each step an event with the highest number
of conflicts with those scheduled in the timetable. The
LCD values of the remaining unscheduled events will be
updated afterward.

• Largest Weighted Degree (LWD) indicates the LD
weighted by the number of participants (such as students
in exam timetabling) involved in the conflicted events.
This heuristic selects and schedules the event with the
largest weighted degree at each step.

• Largest Enrollment (LE) heuristic selects and schedules
the event with the largest number of participants involved.

• Random Ordering (RO) randomly selects an event from
the unscheduled set.

The EMHH framework developed in this paper is a selection
constructive hyper-heuristic, which is defined as Definition 1
[10]. In this paper, the low-level construction heuristic set H
in Definition 1 is comprised of the above graph heuristics.
Besides, the EMHH is population-based, i.e. it evolves on a
set of low-level heuristics in a population.
Definition 1: Given a problem β and a set of low-level
construction heuristics H = {h0, h1, . . . , hn} for the problem
domain, a selection constructive hyper-heuristic constructs a
complete solution s for β from its initial state s0 to the
final state s by repeatedly selecting and applying a low-level
heuristic from H to change from one solution state si to the
next si+1.

B. Evolutionary Multitasking Optimization (EMO)

EMO is a new branch of evolutionary algorithms that
was first proposed in [18] for addressing multifactorial
optimization problems defined as Equation (1).

{x1,x2, ...,xK} = argmin{f1(x1),f2(x2), . . . ,fK(xK)}
s.t. xk ∈ Ωk, k ∈ {1, 2, ...,K}

(1)

where K is the number of tasks involved, xk =
(xk,1, xk,2, . . . , xk,Dk) represents a feasible solution for the
k-th task f k, Dk denotes its dimensionality, and Ωk is the
search space.
Compared to multi-objective optimization, there are two major
distinctive features in MFO. Firstly, there exists no dependence
between tasks, i.e. no prior knowledge on the relationship
among the K tasks needs to be identified beforehand, while
tasks in multi-objective optimization conflict explicitly with
each other. Secondly, the variable spaces of K tasks are
heterogeneous, namely, each task is evaluated in its own design
space.
To compare individuals in the population and clarify relation-
ships between individuals and tasks, the following definitions
are proposed in [18] for EMO:
Factorial Rank: The factorial rank rik of individual pi for the
k-th task is the index of pi sorted in ascending order by the

function value fk of the k-th task.
Skill Factor: The skill factor τi of individual pi indicates
the task that pi is most skillful in, i.e. τi = argmink{rik},
k ∈ {1, 2, . . . ,K}
Scalar Fitness: The scalar fitness φi of individual pi is
calculated as φi = 1/min{rik}, k ∈ {1, 2, . . . ,K}.

C. Motivations

Although hyper-heuristics have good generalities by
searching in heuristics space, the current search paradigms
of them still focus on solving isolated problems or isolated
problem domains independently. However, as stated in [20],
the real-world problems seldom exist in isolation, which
unveils the fact that the potential of hyper-heuristics might
be underestimated. EMO has shown to perform well in
solving MFO problems based on the unified representation
and the knowledge transfer mechanism [18]–[29]. It also
shows good generality in handling multiple optimization tasks
simultaneously.
In addition, the direct solutions of different problems usually
have no common structure or connection with each other,
e.g. the two-dimensional timetable compared to the one-
dimensional coloring of a graph. However, the solutions of
these two problems in the heuristic space may share similar
patterns. For example, in [34], it is found that LWD rather
than SD at the early stage of solution construction for ETTPs
tends to generate better solutions.
Given above facts, this paper aims to propose an efficient
hyper-heuristic framework by building the evolutionary
multitasking in the heuristic space. To be specific, on the
one hand, this research combines evolutionary multitasking
with hyper-heuristics to raise the generality of both hyper-
heuristics and evolutionary multitasking to a higher level;
i.e., endow hyper-heuristics the ability to handle multitasking
problems and extend the concepts of unification scheme
in evolutionary multitasking to heuristic space. On the
other hand, the proposed framework aims to investigate
the underlying similar patterns among different tasks in
the heuristic space based on the concept of evolutionary
multitasking and knowledge transfer to facilitate effective
convergence of optimization.

III. THE EVOLUTIONARY MULTITASKING
HYPER-HEURISTIC FRAMEWORK

A. Framework of EMHH

In the unified framework of EMHH shown in Algorithm 1,
each individual is associated with one of the K tasks in the
population to address K tasks simultaneously. In the initial
population on the low-level heuristic space, every individual
is evaluated on all tasks at first according to lines 2-7 in
Algorithm 1. Then in line 8, the factorial ranks and skill factors
are calculated and assigned to all individuals. In the following
generations, individual pi will be only evaluated on the task
indicated by its skill factor τi. Fitness of all other unevaluated
tasks is set to infinite values (i.e. a large enough number).
The offspring in the unified representation thus inherit the skill
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factors from their parents, and the genetic materials of one task
can be transferred to address other tasks during the evolution.
The workflow of EMHH is presented as Fig.1.

Algorithm 1 EMHH
Input:

N: Population size.
K: The number of tasks.
H : A set of low-level construction heuristics.

Output:
The best solutions of all tasks.

1: Initialize population P with randomly generated N low-
level heuristic sequences from H.

2: for i = 1 to N do
3: for k = 1 to K do
4: Construct solution si,k by heuristic sequence pi for

task k.
5: Evaluate si,k for task k.
6: end for
7: end for
8: Initialize skill factor τi of pi, i ∈ {1, 2, . . . , N}. // see

Section II.B
9: while termination criteria are not satisfied do

10: Generate offspring population P ′ using the cross-task
mating operator on P . // see Algorithm 2

11: Evaluate every individual in P ′ on the task indicated
by its skill factor.

12: R = P ∪ P ′.
13: Update scalar fitness of every individual in R.
14: Select the N fittest individuals from R according to the

scalar fitness as the next generation P .
15: end while
16: Output the best solution obtained.

In EMHH, a cross-task mating operator is used to generate
the offspring as shown in Algorithm 2. This follows the same
paradigm as used in [27]. In Algorithm 2, if the selected
parents have identical skill factors such as case 1 in Fig.2,
the offspring generated by crossover and mutation operators
inherent the same skill factors as those of their parents.
Otherwise, the transfer of genetic materials between parents
depending on a predefined probability rmp as shown in lines
5-11 in Algorithm 2 is conducted. As can be seen from
Fig.2, the knowledge transfer among tasks occurs in case 3.
Since the selected parents have different skill factors, each of
their offspring has two alternative skill factors to inherit. This
eventually results in four possible combinations of offspring as
shown in the dashed rectangle of case 3, where all except the
second one have genetic materials transferred. For example,
assume o1 and o2 are derived from pa and pb, respectively,
then in the first combination, o2 inherits pa’s skill factor rather
than pb’s, and it will be evaluated on the task indicated by the
skill factor of pa. Consequently, the genetic materials learned
in optimizing pb’s task is transferred to pa, which will likely
be helpful in transferring the meaningful building-blocks from
one task to the others.

Start

Initialize population by random 
heuristic sequences

Evaluate population in all tasks and 
initialize skill factors

Generate offspring population using 
the cross-task mating

Evaluate offspring population 
according to skill factors

Select population for next round

Termination?

End

No

Yes

Fig. 1. The workflow of EMHH.

Algorithm 2 Cross-task mating
Input:

pa, pb: Randomly selected parents.
rmp: Predefined random mating probability.

Output:
offspring o1, o2.

1: if τa = τb then
2: Crossover and mutation are applied sequentially on pa

and pb to generate o1 and o2.
3: τ1 = τ2 = τa(or τb).
4: else
5: if rand < rmp then
6: Crossover and mutation are applied sequentially on

pa and pb to generate o1 and o2.
7: Randomly assign τa or τb to τ1 and τ2.
8: else
9: Mutate pa to generate o1, τ1 = τa.

10: Mutate pb to generate o2, τ2 = τb.
11: end if
12: end if

B. Solution Representation and Evaluation

The chromosome of the individual is represented as a
sequence of heuristics. Recall that the dimensionalities of the
direct solutions for the K tasks could be different. Denote
Dmax = max{Dk}, k ∈ {1, 2, . . .K}, to be the length
of individual heuristic sequences. Fig.3 shows an example
of how the chromosome of two tasks f1 and f2 with the
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Crossover

Mutation

Mutation

Mutation

Mutation

Crossover Mutation o1

o2

p'a

p'b

o1

o2

o1

o2

Case 1: τa = τb

Case 2: τa ≠  τb and rand ≥ rmp

Case 3:  τa ≠  τb and rand < rmp

Fig. 2. The process of cross-task mating. The light and dark greyed cycles
represent different skill factors.

dimensionality of D1 and D2, where D1 < D2, respectively,
are encoded. Each bit in Fig.3 represents a low-level heuristic.
If the individual pi in Fig.3 is associated with task f1; that is,
the skill factor of pi is τi = 1, then, D1 heuristics selected
from the beginning of pi are employed to construct the solution
for f1, while the remaining D2−D1 heuristics are discarded.
Otherwise, if τi = 2, all heuristics are employed to construct
the solution for f2. The representation for problems with more
than two tasks follows the same scheme. In cases where the
prior experience is unavailable, the representation for different
tasks all starts from the beginning of the chromosome by
default [27].
The heuristic sequence pi itself cannot be evaluated directly
without associating it with a specific task or problem; that
is, the fitness of a heuristic sequence depends on the quality
of the solution constructed by pi. For example, in the exam
timetabling problem, every heuristic in the heuristic sequence
is used to schedule one or several exams. The heuristic is
scanned one by one in the heuristic sequence pi. At each
construction step, the first unused heuristic hi in the heuristic
sequence pi is employed to select and then schedule the exams.
After a complete solution s is constructed, its soft constraint
penalty cost φ(s) is calculated and is used as the objective
value of the heuristic sequence pi.

Fig. 3. An example of solution representation.

IV. A STUDY ON EXAM TIMETABLING AND GRAPH
COLORING PROBLEMS

In this section, the performance of EMHH is evaluated
on two to five-task intra and cross-domain MFO problems
generated by 16 Carter exam timetabling benchmarks and
their corresponding graph coloring problem variants. The
effectiveness, efficiency, and generality of EMHH on solving
both intra-domain and cross-domain problems are analyzed.
Note that a task in EMHH represents an instance of ETTPs
or GCPs in the following context unless otherwise stated.

A. Test problems

ETTPs involve assigning a given number of examinations
to a set of predefined timeslots subject to certain constraints
[7]. The constraints can be classified into two categories,
namely, hard and soft constraints. Solutions that satisfy all hard
constraints are called feasible solutions. Soft constraints are
generally used as criteria in evaluating the quality of feasible
solutions. In real cases, both hard and soft constraints vary
from institutions to institutions. The most common constraints
in ETTPs are listed as follows:
(1) Student conflict: students cannot have more than one exam

in one timeslot (hard constraint).
(2) Room capacity: the total number of students assigned

cannot exceed the room capacity in one timeslot or session
(hard constraint).

(3) Exam distribution: exams of one student should be as
spread as possible in the timetable (soft constraint).

Three variants of ETTPs, namely, the graph coloring prob-
lem, uncapacitated exam timetabling problems (uETTPs), and
capacitated exam timetabling problems (cETTPs), have been
studied in the existing literature.
• GCPs aim to find the smallest number of colors for

all vertices without conflicts; that is, adjacent vertices
are assigned different colors. An ETTP degrades to a
graph coloring problem if only constraint (1) is taken
into considerations [7], [35].

• In uETTPs, the room capacity constraint is relaxed,
and the objective is to minimize the violation of con-
straint (3). A penalty wt = 25−t, t ∈ [1, 5] oc-
curs if two exams of a student are assigned t times-
lots apart [7]. The objective value is calculated as
φ = Total penalty/Number of students where the
total penalty is the summation of penalty caused by
all students. This objective represents a preference to
timetables where each student’s exams distribute as sparse
as possible.

• In contrast to uETTPs, in cETTPs, restrictions of room
capacities apply per timeslot [36], [37] or per session
[35]. The objective of cETTPs is to minimize the number
of students sitting two exams consecutively during one
day [36], and it can also be extended to overnight cases
[35], [37].

In this paper, we employ version I, II and IIc (the corrected
version II) Carter benchmarks summarized in [7] as the test
sets of uETTPs and GCPs. A brief summary of the properties
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of these benchmarks can be found at http://www.cs.nott.ac.uk/
∼pszrq/data.htm and Table SI in the Supplementary Material.
A modified penalty w′t of uETTPs as shown in Equation (2)
is adapted, where a large penalty occurs for each pair of
conflicting exams. The resulting search space of the proposed
algorithm thus contains infeasible solutions; however, the
fitness landscape becomes connected. The greedy strategy in
[5] and [34] is used to choose timeslots for the selected exams.

w′t =

{
25−t, t ∈ [1, 5]

10000, t = 0
(2)

For the GCPs, the direct use of the number of colors in the
objective function is very likely to form a fitness landscape
with large plateaus, thus, it is difficult to distinguish different
solutions with the same number of colors. In this paper, we
modified the evaluation function in [5] to include two measures
on the coloring, namely, the coloring sum as used in [5] and the
cube of the number of colors used. Coloring sum is calculated
as the sum of the product of the size and color index of each
color class that comprises of a set of vertices with the same
color. Thus, this new evaluation function not only considers
the number of colors but also the size of color classes.

B. Genetic Operators
In [34] and [38], it is shown that the heuristics at the later

stage of solution construction tend to make less difference in
the quality of solutions. To dynamically allocate the compu-
tational resource in EMHH, an adaptive one-point mutation
operator shown in Algorithm 3 is used to firstly modify early
parts of heuristic sequences and then extend to later parts along
with the evolution. |p| represents the length of individual p.
As a result, the earlier heuristics in the heuristic sequences
have more chances to evolve towards proper hybridizations.
The uniform crossover [39] is used in EMHH.

Algorithm 3 Adaptive one-point mutation
Input:

p: Parent heuristic sequence.
gen: Current generation.
G: Total number of generations.

Output:
o: Offspring.

1: mLength = max(1, |p| ·gen/G). // Decide the mutation
part in p, i.e. p(1) ∼ p(mLength).

2: pm = 1/mLength. // Probability of mutation.
3: o = p.
4: for each position i = 1 to mLength do
5: if rand < pm then
6: //rand ∈ (0, 1) is a random real number.
7: randomly change o(i) to another heuristic.
8: end if
9: end for

10: return o.

C. Experimental Setup
In this paper, only Saturation Degree (SD) and Largest

Weighted Degree (LWD) are employed as the candidate

heuristics in EMHH. According to [31], [33], [40], SD out-
performs other graph heuristics when being used alone, and
showed to be effective in [34] when hybridized with LWD.
Each of the graph heuristics will schedule two events as in
[33] to construct the solutions.
In EMHH, the population size is set to 30 and the total number
of generations is set to 100. The single-tasking optimization
form, named SOHH, is developed with every setting identical
with EMHH, except that only one task is optimized.
The predefined probability rmp controls how often the evolved
knowledge is transferred among different tasks in EMHH. As
suggested in [25], rmp should be close to 1 if prior knowledge
that handling tasks are correlated exists; otherwise, a small
rmp value is proper. In the literature, there exists no effective
measurement between uETTP instances due to the difficulty in
assessing their similarity. In a set of preliminary experiments,
the range of rmp is set to [0.1, 1] with an increasing step
of 0.1 to examine the impact of rmp on the performance of
the EMHH for solving three MFO problems (hec92, hec92
II), (hec92, sta83), and (hec92, tre92). The average results
from 30 independent runs as plotted in Fig. 4 show that
EMHH achieved relatively good performance on both tasks
in (hec92, hec92 II) and (hec92, tre92) with rmp = 0.8, and
the performance on (hec92, sta83) is less sensitive to the
settings of rmp. We therefore set rmp to 0.8 in the remaining
experiments.
All algorithms were implemented in C++ using Visual Studio
2017. Experiments were conducted on a desktop with Intel
Core i7-3820 CPU (3.60GHz) 16.0 GB memory and 64-bit
Windows 10. Average results are obtained over 30 independent
runs of the algorithms.

D. Experimental Results

An additional five sets of experiments have been conducted
to evaluate the EMHH framework. The first three experiments
demonstrate the effectiveness, efficiency and generality of
asynchronous optimization of EMHH for intra-domain prob-
lems. The fourth set of experiments presents the generality
of EMHH in addressing cross-domain optimization problems.
The generality of EMHH is further examined on problems with
over two tasks in the fifth set of experiment. Finally, compar-
isons between EMHH and other existing hyper-heuristics are
presented.

1) Comparison between EMHH and SOHH on uETTPs:
At first, we set K to 2, thus in total 120 MFO problems are
created from the 16 Carter exam timetabling benchmarks. The
average, best fitness values, and standard deviations obtained
by EMHH and SOHH are presented in Table I, where F1
and F2 represent the objective value of the two tasks (f1,
f2) in an MFO problem, respectively.For example, in the first
MFO problem (car91, car92), F1 and F2 denotes the objective
value for task f1 (car91) and f2 (car92), respectively. Unless
otherwise stated, Fx represents the objective value of the task
fx, x = 1, ...,K, in the following context. The Wilcoxon
rank-sum test with 95% confidence level is conducted between
results of EMHH and SOHH. In Table I, the significantly better
results are highlighted in grey, and better results are in light
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(a) (hec92,hec92 II) (b) (hec92,sta83) (c) (hec92,tre92)

Fig. 4. The impact of different probabilities rmp in EMHH.

grey. The detailed p and h values are provided in Table SIII in
the Supplementary Material, where h = 1 or p < 0.05 denotes
a significantly better performance at the confidence level of
95%. Table II compares the results of EMHH and SOHH listed
in Table I using three indicators defined as follows:

• All-win: if the results on both tasks, i.e. F1 and F2
in an MFO problem, obtained by approach A are all
significantly better than approach B, the count of all-wins
for A is increased by one.

• One-win: if approach A achieves a significantly better
result on one of the two tasks, and better, worse or equal
results on another task than B, then the count of one-wins
for A is increased by one.

• Tie: otherwise, increase the tie count by one.

The comparison results show that EMHH is highly effective
against SOHH on uETTPs. It outperformed SOHH on 43 MFO
problems, achieved significantly better results for one of the
two tasks than SOHH on 63 MFO problems, and performed
similarly on 13 MFO problems. SOHH only won on one
MFO problem in terms of the one-win indicator. Moreover,
the results demonstrate that multitasking works effectively in
the low-level heuristic space. In summary, EMHH is shown to
be an effective hyper-heuristic framework in solving uETTPs.

2) Comparisons between EMHH and SOHH on Computa-
tional Costs: Compared with SOHH under the same parameter
settings, the number of evaluations in EMHH can be reduced
to almost 1/K of that in SOHH. In EMHH, each individual is
only evaluated on one of the K tasks indicated by its skill fac-
tor, which eventually leads to the reduction of computational
costs. As the baseline, Table III presents the average time used
by SOHH for solving the 16 uETTP instances. To demonstrate
the efficiency of EMHH, the average computational costs for
solving all MFO problems comprising of the instance lse91
and other 15 instances are presented in Fig.5. For comparison,
SOHH is used to solve both single tasks sequentially in these
MFO problems (i.e. the average time consumed by the first
and second tasks is denoted as SO-F1 and SO-F2 in Fig.5,
respectively). Instance lse91 consumes median average time
according to Table III; thus, the performance of EMHH on
multitasking lse91 with other instances consuming longer and
shorter time can be clearly presented.
In most of the cases shown in Fig.5, the time consumed by

Fig. 5. Time comparison between SOHH and EMHH for MFO problems.

EMHH is around half of that by SOHH. Moreover, EMHH sig-
nificantly reduces the time consumed by the first task, namely,
instance lse91, which represents the expensive computational
task in an MFO. Note that the orders of tasks in an MFO
do not affect the performance of EMHH, here we subject
the expensive computational task to f1 for demonstration
purposes. We can conclude that EMHH works more efficiently
in the low-level heuristic space than SOHH in solving uETTPs.
The same conclusion can be drawn from the time comparisons
of other instances shown in Fig.S1 of the Supplementary
Material.

3) Generality on Asynchronous Optimization: Results in
Table II indicate that in the low-level heuristic space, the
solutions for different instances may share some commonly
evolved knowledge. Although the direct solutions of timetables
for different instances could be highly distinctive, the low-
level heuristic sequences used to construct them may possess
similar structures, which subsequently infers that the heuristic
sequences obtained in solving one task could be reused for
solving other tasks. To verify this, another set of experiments is
conducted, where at first a single task is optimized by SOHH,
then after a number of iterations the second task is inserted
into the evolution, thus the paradigm turns into EMHH for
the remaining generations. Based on the average time shown
in Table III, the instance hec92 consumes relatively less time
compared with other instance, and therefore is processed first
as task f1 to save computational resources. All parameters are
kept unchanged and the second task is serted after half of the
total generations.
As can be seen from Table IV, compared with SOHH, EMHH
achieved significantly better results on f2 in ten, better results
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TABLE I
THE MINIMUM, MEAN AND STANDARD DEVIATIONS OBTAINED BY EMHH AND SOHH ON THE UETTPS.

MFOs EMHH SOHH MFOs EMHH SOHH MFOs EMHH SOHH MFOs EMHH SOHH
F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2

car91
car92

5.14 4.27 5.18 4.31 ear83
hec92

35.88 11.68 36.62 11.69 hec92
tre92

11.65 8.55 11.69 8.78 lse91
ute92

11.39 27.31 11.65 28.31
5.22 4.39 5.26 4.41 36.75 11.99 37.12 12.12 11.98 8.79 12.12 8.88 11.68 28.31 11.85 28.75
0.04 0.04 0.04 0.04 0.54 0.16 0.25 0.27 0.18 0.08 0.27 0.06 0.16 0.31 0.16 0.14

car91
ear83

5.15 36.07 5.18 36.62 ear83
hec92 II

35.79 11.63 36.62 11.67 hec92
uta92

11.5 3.38 11.69 3.39 lse91
yor83

11.18 39.65 11.65 41.05
5.22 36.98 5.26 37.12 36.64 12.01 37.12 12.1 11.93 3.43 12.12 3.43 11.68 41.8 11.85 42.87
0.03 0.51 0.04 0.25 0.4 0.2 0.25 0.29 0.28 0.02 0.27 0.02 0.19 0.71 0.16 2.91

car91
ear83 IIc

5.15 39.21 5.18 39.51 ear83
kfu93

35.9 15.09 36.62 15.37 hec92
uta92 II

11.63 3.37 11.69 3.35 rye93
sta83

9.32 158.83 9.34 169.77
5.23 40.74 5.26 41.13 36.75 15.57 37.12 15.68 11.99 3.41 12.12 3.41 9.57 159.36 9.55 169.86
0.03 0.93 0.04 1 0.5 0.16 0.25 0.15 0.23 0.02 0.27 0.03 0.09 0.38 0.08 0.09

car91
hec92

5.19 11.66 5.18 11.69 ear83
lse91

35.49 11.07 36.62 11.65 hec92
ute92

11.55 27.9 11.69 28.31 rye93
sta83 IIc

9.44 34.25 9.34 34.26
5.22 11.95 5.26 12.12 36.84 11.7 37.12 11.85 12.02 28.4 12.12 28.75 9.6 34.65 9.55 34.99
0.03 0.15 0.04 0.267 0.57 0.18 0.25 0.16 0.26 0.24 0.27 0.14 0.08 0.18 0.08 0.22

car91
hec92 II

5.11 11.62 5.18 11.67 ear83
rye93

35.68 9.43 36.62 9.34 hec92
yor83

11.6 40.21 11.69 41.05 rye93
tre92

9.3 8.61 9.34 8.78
5.22 11.97 5.26 12.1 36.8 9.57 37.12 9.55 12.01 41.74 12.12 42.87 9.59 8.78 9.55 8.88
0.04 0.19 0.04 0.29 0.51 0.08 0.25 0.08 0.22 0.55 0.27 2.91 0.09 0.08 0.08 0.06

car91
kfu93

5.16 15.07 5.18 15.37 ear83
sta83

36.01 158.56 36.62 169.77 hec92 II
kfu93

11.58 15.22 11.67 15.37 rye93
uta92

9.43 3.4 9.34 3.39
5.23 15.52 5.26 15.68 36.91 159.5 37.12 169.86 12.02 15.6 12.1 15.68 9.57 3.43 9.55 3.43
0.03 0.21 0.04 0.15 0.54 0.49 0.25 0.09 0.21 0.16 0.29 0.15 0.08 0.01 0.08 0.02

car91
lse91

5.14 11.23 5.18 11.65 ear83
sta83 IIc

35.9 34.06 36.62 34.26 hec92 II
lse91

11.62 11.18 11.67 11.65 rye93
uta92 II

9.45 3.37 9.34 3.35
5.23 11.69 5.26 11.85 36.84 34.64 37.12 34.99 11.98 11.57 12.1 11.85 9.6 3.41 9.55 3.41
0.03 0.23 0.04 0.16 0.44 0.23 0.25 0.22 0.21 0.2 0.29 0.16 0.08 0.02 0.08 0.03

car91
rye93

5.18 9.4 5.18 9.34 ear83
tre92

35.31 8.62 36.62 8.78 hec92 II
rye93

11.5 9.35 11.67 9.34 rye93
ute92

9.37 27.8 9.34 28.31
5.23 9.57 5.26 9.55 36.78 8.81 37.12 8.88 11.99 9.59 12.1 9.55 9.59 28.42 9.55 28.75
0.03 0.08 0.04 0.08 0.48 0.08 0.25 0.06 0.23 0.09 0.29 0.08 0.09 0.24 0.08 0.14

car91
sta83

5.19 158.66 5.18 169.77 ear83
uta92

35.64 3.38 36.62 3.39 hec92 II
sta83

11.63 158.57 11.67 169.77 rye93
yor83

9.44 41.03 9.34 41.05
5.23 159.31 5.26 169.86 36.81 3.42 37.12 3.43 11.95 159.33 12.1 169.86 9.58 42.33 9.55 42.87
0.03 0.48 0.04 0.09 0.38 0.02 0.25 0.02 0.19 0.42 0.29 0.09 0.07 2.04 0.08 2.91

car91
sta83 IIc

5.16 34.24 5.18 34.26 ear83
uta92 II

35.71 3.38 36.62 3.35 hec92 II
sta83 IIc

11.63 33.81 11.67 34.26 sta83
sta83 IIc

158.68 34.37 169.77 34.26
5.23 34.65 5.26 34.99 36.79 3.41 37.12 3.41 12.06 34.61 12.1 34.99 159.3 34.74 169.86 34.99
0.03 0.19 0.04 0.22 0.52 0.02 0.25 0.03 0.23 0.26 0.29 0.22 0.29 0.17 0.09 0.22

car91
tre92

5.17 8.61 5.18 8.78 ear83
ute92

36.19 27.23 36.62 28.31 hec92 II
tre92

11.53 8.62 11.67 8.78 sta83
tre92

158.5 8.62 169.77 8.78
5.24 8.8 5.26 8.88 36.77 28.31 37.12 28.75 11.98 8.83 12.1 8.88 159.24 8.8 169.86 8.88
0.03 0.09 0.04 0.06 0.33 0.35 0.25 0.14 0.17 0.07 0.29 0.06 0.39 0.06 0.09 0.06

car91
uta92

5.12 3.39 5.18 3.39 ear83
yor83

35.82 40.65 36.62 41.05 hec92 II
uta92

11.38 3.39 11.67 3.39 sta83
uta92

158.59 3.4 169.77 3.39
5.22 3.42 5.26 3.43 36.65 41.78 37.12 42.87 11.99 3.43 12.1 3.43 159.36 3.43 169.86 3.43
0.04 0.02 0.04 0.02 0.49 0.62 0.25 2.91 0.24 0.02 0.29 0.02 0.34 0.02 0.09 0.02

car91
uta92 II

5.17 3.38 5.18 3.35 ear83 IIc
hec92

39.58 11.56 39.51 11.69 hec92 II
uta92 II

11.6 3.38 11.67 3.35 sta83
uta92 II

158.77 3.37 169.77 3.35
5.23 3.41 5.26 3.41 40.71 11.96 41.13 12.12 11.95 3.42 12.1 3.41 159.26 3.42 169.86 3.41
0.03 0.02 0.04 0.03 0.78 0.21 1 0.27 0.2 0.02 0.29 0.03 0.4 0.02 0.09 0.03

car91
ute92

5.16 27.66 5.18 28.31 ear83 IIc
hec92 II

39.41 11.63 39.51 11.67 hec92 II
ute92

11.48 27.42 11.67 28.31 sta83
ute92

158.6 27.26 169.77 28.31
5.22 28.25 5.26 28.75 40.47 11.99 41.13 12.1 11.99 28.32 12.1 28.75 159.17 28.15 169.86 28.75
0.04 0.3 0.04 0.14 0.77 0.22 1 0.29 0.21 0.34 0.29 0.14 0.38 0.35 0.09 0.14

car91
yor83

5.18 41.06 5.18 41.05 ear83 IIc
kfu93

39.41 14.99 39.51 15.37 hec92 II
yor83

11.58 40.52 11.67 41.05 sta83
yor83

158.73 40.71 169.77 41.05
5.23 41.98 5.26 42.87 40.42 15.58 41.13 15.68 11.96 41.85 12.1 42.87 159.42 41.93 169.86 42.87
0.03 0.43 0.04 2.91 0.67 0.18 1 0.15 0.16 0.5 0.29 2.91 0.41 0.65 0.09 2.91

car92
ear83

4.32 35.5 4.31 36.62 ear83 IIc
lse91

39.36 11.4 39.51 11.65 kfu93
lse91

14.79 11.24 15.37 11.65 sta83 IIc
tre92

34.05 8.66 34.26 8.78
4.4 36.62 4.41 37.12 40.87 11.68 41.13 11.85 15.54 11.62 15.68 11.85 34.64 8.79 34.99 8.88
0.03 0.48 0.04 0.25 2.65 0.15 1 0.16 0.24 0.17 0.15 0.16 0.23 0.08 0.22 0.06

car92
ear83 IIc

4.3 38.99 5.18 39.51 ear83 IIc
rye93

39.37 9.31 39.51 9.34 kfu93
rye93

15.1 9.44 15.37 9.34 sta83 IIc
uta92

33.74 3.4 34.26 3.39
4.38 40.74 5.26 41.13 40.65 9.56 41.13 9.55 15.58 9.59 15.68 9.55 34.65 3.43 34.99 3.43
0.04 1.25 0.04 1 1.17 0.09 1 0.08 0.19 0.07 0.15 0.08 0.25 0.02 0.22 0.02

car92
hec92

4.33 11.57 4.31 11.69 ear83 IIc
sta83

39.51 158.71 39.51 169.77 kfu93
sta83

15.23 158.53 15.37 169.77 sta83 IIc
uta92 II

34.28 3.38 34.26 3.35
4.39 11.94 4.41 12.12 41.31 159.41 41.13 169.86 15.57 159.38 15.68 169.86 34.66 3.42 34.99 3.41
0.03 0.22 0.04 0.27 2.44 0.38 1 0.09 0.18 0.32 0.15 0.09 0.19 0.01 0.22 0.03

car92
hec92 II

4.35 11.63 4.31 11.67 ear83 IIc
sta83 IIc

39.25 34.43 39.51 34.26 kfu93
sta83 IIc

15.31 34.2 15.37 34.26 sta83 IIc
ute92

34.08 27.32 34.26 28.31
4.39 11.93 4.41 12.1 40.16 34.7 41.13 34.99 15.58 34.63 15.68 34.99 34.64 28.2 34.99 28.75
0.03 0.2 0.04 0.29 0.61 0.17 1 0.22 0.16 0.2 0.15 0.22 0.27 0.35 0.22 0.14

car92
kfu93

4.31 15.2 4.31 15.37 ear83 IIc
tre92

39.29 8.69 39.51 8.78 kfu93
tre92

15.37 8.6 15.37 8.78 sta83 IIc
yor83

34.21 40.72 34.26 41.05
4.39 15.6 4.41 15.68 40.78 8.8 41.13 8.88 15.6 8.81 15.68 8.88 34.69 41.95 34.99 42.87
0.04 0.16 0.04 0.15 1.04 0.06 1 0.06 0.14 0.1 0.15 0.06 0.22 0.57 0.22 2.91

car92
lse91

4.34 11.3 4.31 11.65 ear83 IIc
uta92

38.94 3.39 39.51 3.39 kfu93
uta92

15.13 3.39 15.37 3.39 tre92
uta92

8.6 3.38 8.78 3.39
4.39 11.62 4.41 11.85 40.22 3.43 41.13 3.43 15.59 3.42 15.68 3.43 8.8 3.43 8.88 3.43
0.03 0.13 0.04 0.16 0.71 0.02 1 0.02 0.17 0.02 0.15 0.02 0.07 0.02 0.06 0.02

car92
rye93

4.35 9.43 4.31 9.34 ear83 IIc
uta92 II

39.52 3.36 39.51 3.35 kfu93
uta92 II

15.26 3.37 15.37 3.35 tre92
uta92 II

8.58 3.39 8.78 3.35
4.39 9.61 4.41 9.55 40.4 3.41 41.13 3.41 15.59 3.41 15.68 3.41 8.81 3.41 8.88 3.41
0.03 0.08 0.04 0.08 0.68 0.02 1 0.03 0.14 0.02 0.15 0.03 0.1 0.02 0.06 0.03

car92
sta83

4.35 158.56 4.31 169.77 ear83 IIc
ute92

39.03 27.64 39.51 28.31 kfu93
ute92

15.23 27.74 15.37 28.31 tre92
ute92

8.66 27.23 8.78 28.31
4.4 159.33 4.41 169.86 40.47 28.37 41.13 28.75 15.6 28.41 15.68 28.75 8.8 28.24 8.88 28.75
0.03 0.35 0.04 0.09 0.71 0.3 1 0.14 0.15 0.31 0.15 0.14 0.09 0.36 0.06 0.14

car92
sta83 IIc

4.32 34.3 4.31 34.26 ear83 IIc
yor83

39.39 40.16 39.51 41.05 kfu93
yor83

15.08 41.11 15.37 41.05 tre92
yor83

8.67 40.66 8.78 41.05
4.38 34.65 4.41 34.99 40.46 41.78 41.13 42.87 15.57 41.85 15.68 42.87 8.8 41.69 8.88 42.87
0.03 0.17 0.04 0.22 0.59 0.6 1 2.91 0.19 0.45 0.15 2.91 0.07 0.48 0.06 2.91

car92
tre92

4.29 8.63 4.31 8.78 hec92
hec92 II

11.5 11.51 11.69 11.67 lse91
rye93

11.3 9.44 11.65 9.34 uta92
uta92 II

3.38 3.37 3.39 3.35
4.39 8.8 4.41 8.88 11.91 11.95 12.12 12.1 11.63 9.57 11.85 9.55 3.43 3.41 3.43 3.41
0.04 0.08 0.04 0.06 0.21 0.19 0.27 0.29 0.2 0.08 0.16 0.08 0.02 0.02 0.02 0.03

car92
uta92

4.32 3.39 4.31 3.39 hec92
kfu93

11.69 15.05 11.69 15.37 lse91
sta83

11.2 158.52 11.65 169.77 uta92
ute92

3.39 27.88 3.39 28.31
4.38 3.43 4.41 3.43 11.99 15.54 12.12 15.68 11.56 159.29 11.85 169.86 3.43 28.26 3.43 28.75
0.03 0.02 0.04 0.02 0.2 0.17 0.27 0.15 0.17 0.39 0.16 0.09 0.02 0.24 0.02 0.14

car92
uta92 II

4.32 3.37 4.31 3.35 hec92
lse91

11.68 11.29 11.69 11.65 lse91
sta83 IIc

11.21 34.14 11.65 34.26 uta92
yor83

3.39 39.59 3.39 41.05
4.38 3.41 4.41 3.41 12.05 11.61 12.12 11.85 11.65 34.68 11.85 34.99 3.43 42.13 3.43 42.87
0.04 0.02 0.04 0.03 0.22 0.16 0.27 0.16 0.18 0.18 0.16 0.22 0.02 2.22 0.02 2.91

car92
ute92

4.33 27.69 4.31 28.31 hec92
rye93

11.59 9.36 11.69 9.34 lse91
tre92

11.19 8.64 11.65 8.78 uta92 II
ute92

3.37 27.5 3.35 28.31
4.39 28.29 4.41 28.75 11.99 9.59 12.12 9.55 11.06 8.08 11.85 8.88 3.42 28.28 3.41 28.75
0.04 0.34 0.04 0.14 0.22 0.1 0.27 0.08 0.16 0.07 0.16 0.06 0.01 0.31 0.03 0.14

car92
yor83

4.33 40.99 4.31 41.05 hec92
sta83

11.49 158.61 11.69 169.77 lse91
uta92

11.33 3.38 11.65 3.39 uta92 II
yor83

3.37 40.62 3.35 41.05
4.39 41.86 4.41 42.87 12.07 159.35 12.12 169.86 11.66 3.43 11.85 3.43 3.41 41.7 3.41 42.87
0.03 0.43 0.04 2.91 0.27 0.46 0.27 0.09 0.2 0.03 0.16 0.03 0.02 0.41 0.03 2.91

ear83
ear83 IIc

35.44 39.38 36.62 39.51 hec92
sta83 IIc

11.45 34.28 11.69 34.26 lse91
uta92 II

11.31 3.34 11.65 3.35 ute92
yor83

27.2 40.45 28.31 41.05
36.58 40.11 37.12 41.13 12.05 34.72 12.12 34.99 11.67 3.41 11.85 3.41 28.27 41.95 28.75 42.87
0.56 0.62 0.25 1 0.21 0.2 0.27 0.22 0.2 0.03 0.16 0.03 0.36 0.7 0.14 2.91
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TABLE II
STATISTIC COMPARISONS BETWEEN EMHH AND SOHH ON RESULTS IN

TABLE I.

All-win One-win Tie
EMHH SOHH EMHH SOHH 1343 0 63 1

in three, and equal result in one test case, respectively; while
SOHH obtained a better result in only one test case. Although
the second task is introduced halfway in the evolution, EMHH
still outperformed SOHH. This demonstrates that the low-
level heuristic sequences learned from optimizing hec92 are
applicable to other instances, i.e. the solutions of different
uETTP instances in the low-level heuristic space may share
some common structures or knowledge. Moreover, EMHH is
capable of retaining such knowledge in the low-level heuristic
space via the knowledge transfer scheme, showing a higher
level of generality on asynchronous optimization.

4) Generality on Synchronous Cross-domain Optimization:
To examine the generality of EMHH on synchronous cross-
domain optimization, 16 MFO problems are created, with
each consisting of a uETTP task and its graph coloring
problem variant. All parameters used in this subsection are
consistent with the above experiments. The comparison results
between EMHH and SOHH on solving these cross-domain
MFO problems and their single-objective optimization vari-
ants, respectively, are presented in Table V.
As can be seen from Table V, for nine instances, significantly
better results on uETTPs are obtained by solving the MFO
problems by EMHH than solving tasks independently by
SOHH. For the rest of the instances, EMHH achieved better
results in five of them and equal results with the SOHH in the
two other instances. For all the graph coloring variants, both
approaches obtained the same best results except for instance
yor83, where the performance of EMHH is slightly more
robust than that of SOHH. To conclude, the results in Table V
demonstrate a high generality of EMHH on synchronous cross-
domain optimization. Moreover, in the low-level heuristic
space, like the graph heuristic space here, the solutions for
different problems, such as uETTPs and GCPs, may share
some common structures evolved by solving the companion
tasks in MFO. Therefore, the knowledge in the solutions
of heuristic space obtained from optimizing in one domain
could be utilized by other domains, which could reduce the
computational cost significantly, and more importantly, may
accelerate the convergency of optimization problems in every
domain.

5) Generality on problems with over two tasks: In order
to further evaluate the generality of EMHH, experiments on
problems with over two tasks are conducted in this subsection.
The test set includes a) six three-task problems and two five-
task problems, with all uETTP tasks; and b) two four-task
cross-domain problems with two uETTP tasks and two GCP
tasks. Tables SIV, SV, and SVI in the Supplementary Mate-
rial present the three-task, four-task, and five-task test sets,
respectively. The design of these test sets is to cover problems
with tasks of various scales, i.e., dimensions. For example,

the scales of tasks in Set 1 are close with each other, while
the middle-scale task tre92 in Set 2 and large-scale instances
task car91 in Set 3 are of even larger differences among tasks
in these two sets. We keep all parameters consistent with the
above experiments, and 30 independent runs are conducted
for each test set. The experimental results on Set 1-6, Set 7-
8, and Set 9-10 are shown in Table SVII, SVIII, and SIX,
respectively, in the Supplementary Material.
As can be seen from Tables SVII, the proposed EMHH
outperforms SOHH in all three-task test sets, except that in
Set 5 the SOHH obtains better average objective value in f1.
The results shown in Tables SIX also demonstrate that EMHH
can still perform better than SOHH on five-task test sets.
Moreover, from Table SVIII we can see that EMHH performs
equally with SOHH on GCPs but slightly better than SOHH on
uETTP tasks. Given that the total generations used in EMHH
and SOHH are identical, the average computational resource
allocated to each task in three, four, and five-task problems in
EMHH is only one-third, a quarter, and one-fifth, respectively,
of that used in SOHH. Based on these observations, we can
conclude that the proposed EMHH still has good generality
on problems with more than two tasks.

6) Comparisons of EMHH with other hyper-heuristics:
The above comparisons can be regarded as the compari-
son between the conventional evolutionary algorithm (EA)-
based and the multitask EA-based hyper-heuristics. In this
subsection, we compare our approach with other state-of-
the-art hyper-heuristics in the literature on both uETTPs and
GCPs. The chosen comparing algorithms include selection
constructive hyper-heuristics that work on graph heuristics
and were evaluated on Carter benchmarks. The comparisons
on uETTPs and GCPs are provided in Tables VI and VII,
respectively. Note that this comparison is just to provide an
overall performance evaluation on the proposed method from
another point of view. There might be other indicators or
criteria which may provide comparisons on different aspects
of the algorithms.
Table VI presents the comparisons between EMHH and the se-
lected algorithms. For a better understanding the performance
of EMHH, three indicators are used in the last three columns
of Table VI. fi−min−min refers to the best of the minimum
objective value obtained by EMHH in solving intra-domain
MFO problems that consist of pure uETTP tasks shown in
Table I for each instance. fi−avg−min represents the average
of the minimum objective value of each instance in solving
these MFO problems. The minimum objective value produced
by EMHH in solving the cross-domain MFO problems, i.e.
problems that comprise of uETTP and GCP tasks are denoted
as fc−min. In the last two rows of Table VI, average ranks over
all instances (INS (16)) and instances excluding the ear83 IIc,
hec92 II, sta83 IIc, and uta92 II (INS (12)) for all compared
algorithms based on their best performance are provided. Due
to lacks of competitive algorithms in the existing literature,
the INS(16) ranks in Table VI are provided particularly for
the convenience of future comparisons. Details of the ranks
for each compared algorithm on each instance can be found
in Table SII in the Supplementary Material.
From Table VI, we can see that EMHH achieves the 2nd
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TABLE III
AVERAGE TIME CONSUMED BY SOHH IN SOLVING CARTER BENCHMARKS (IN MINUTES).

Instance sta83 IIc hec92 II sta83 hec92 ear83 IIc yor83 ear83 ute92
Av. Time 1.03 1.09 1.36 1.62 2.04 2.64 3.48 4.42

No. of exams 138 80 139 81 189 181 190 184
Instance tre92 lse91 kfu93 rye93 car92 uta92 II uta92 car91
Av. time 10.77 13.99 26.08 51.52 85.69 95.86 111.49 112.46

No. of exams 261 381 461 486 543 638 622 682

TABLE IV
COMPARSIONS BETWEEN EMHH AND SOHH, WHERE IN EMHH THE SECOND TASK IS TRIGGERED IN LATE GENERATIONS.

MFOs EMHH SOHH p-value MFOs EMHH SOHH p-value MFOs EMHH SOHH p-valueF2 F2 F2 F2 F2 F2

hec92
car91

5.19 5.18
1.49E-04 hec92

kfu93

15.05 15.37
2.38E-03 hec92

tre92

8.55 8.78
2.58E-065.22 5.26 15.54 15.68 8.79 8.88

0.03 0.04 0.17 0.15 0.08 0.06

hec92
car92

4.33 4.31
8.13E-03 hec92

lse91

11.29 11.65
5.46E-06 hec92

uta92

3.38 3.39
5.35E-014.39 4.41 11.61 11.85 3.42 3.43

0.03 0.04 0.16 0.16 0.02 0.02

hec92
ear83

35.88 36.62
2.21E-03 hec92

rye93

9.36 9.34
6.57E-02 hec92

uta92 II

3.37 3.35
8.48E-0136.75 37.12 9.59 9.55 3.41 3.41

0.54 0.25 0.1 0.08 0.02 0.03

hec92
ear83 IIc

39.58 39.51
9.19E-02 hec92

sta83

158.61 169.77
2.95E-11 hec92

ute92

27.9 28.31
5.53E-0840.71 41.13 159.35 169.86 28.4 28.75

0.7 1 0.46 0.09 0.24 0.14

hec92
hec92 II

11.51 11.67
7.98E-02 hec92

sta83 IIc

34.28 34.26
7.73E-06 hec92

yor83

40.21 41.05
7.29E-0311.95 12.1 34.72 34.99 41.74 42.87

0.19 0.29 0.2 0.22 0.55 2.91

TABLE V
THE MINIMUM, AVERAGE AND STANDARD DEVIATIONS FOR

CROSS-DOMAIN MFO PROBLEMS.

MFOs EMHH SOHH MFOs EMHH SOHH
F1 F2 F1 F2 F1 F2 F1 F2

car91
car91

5.17 30
31

5.18 30
31

rye93
rye93

9.45 21
22

9.34 21
225.23 5.26 9.59 9.55

0.03 0.04 0.08 0.08

car92
car92

4.32 29
30

4.31 29
30

sta83
sta83

158.54 13
13

169.77 13
134.38 4.41 159.35 169.86

0.03 0.04 0.35 0.09

ear83
ear83

35.96 22
23

36.62 22
23

sta83 IIc
sta83 IIc

34.16 35
35

34.26 35
3536.91 37.12 34.64 34.99

0.71 0.25 0.22 0.22

ear83 IIc
ear83 IIc

39.02 23
24

39.51 23
24

tre92
tre93

8.61 20
20

8.78 20
2040.19 41.13 8.81 8.88

0.61 1 0.07 0.06

hec92
hec92

11.52 17
18

11.69 17
18

uta92
uta92

3.4 31
31

3.39 31
3112.05 12.12 3.43 3.43

0.26 0.27 0.02 0.02

hec92 II
hec92 II

11.43 17
18

11.67 17
18

uta92 II
uta92 II

3.36 30
31

3.348 30
3111.93 12.1 3.41 3.41

0.23 0.29 0.02 0.03

kfu93
kfu93

15.15 19
19

15.37 19
19

ute92
ute92

27.59 10
10

28.31 10
1015.58 15.68 28.17 28.75

0.16 0.15 0.29 0.14

lse91
lse91

11.26 17
17

11.65 17
17

yor83
yor83

40.7 20
20

41.05 20
2111.67 11.85 42.04 42.87

0.21 0.155 0.67 2.91

and 6th place out of 14 competitors based on fi−min−min

and fi−avg−min regarding the INS (12) ranks, respectively.
This indicates that the EMHH attains competitive results
on the intra-domain MFO problems. Particularly, given that
EMHH optimizes multiple instances in a single run, the results
strongly demonstrate a high generality of EMHH. Besides,

EMHH ranks the 9th place based on fc−min in Table VI,
and from Table VII one can verify that it obtains compet-
itive results on GCPs as well. Thus, the proposed EMHH
has better generality than existing hyper-heuristics given the
competitive results and its capability of tackling instances from
different problem domains simultaneously, which has not been
addressed by other hyper-heuristics in the literature.

E. Preliminary Discussions

To analyze the reason for the success of the EMHH, the
landscape of the heuristics search space consists of sequences
of graph heuristics for the tested problems should be analyzed
first. In previous work [34], the trends of hybridizing LWD
with SD in the obtained best heuristic sequences for both
uEPPTs and GCPs were statistically analyzed. The visualized
results indicated that the best heuristic sequences vary signif-
icantly among different instances whether from the same or
different problem domain. However, the overall trend is that
they employ more LWD in the early stages of the solution
construction than in the later stages. This phenomenon can
be treated as a similar pattern of different problems in the
heuristic space. Thus, one of our conjecture of the reason for
the success of the EMHH is that the knowledge transfer mech-
anism in it can promote the exchange of the learned patterns
among tasks, which eventually facilitate the convergence of
all tasks.
Furthermore, according to [38], the landscape of the heuristics
search space for uETTPs has following features: big valley
structure, large number of local optima, high ruggedness,
wide plateaus, shallow valleys, and positional bias. Based on
these features, it can be inferred that search methodologies
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TABLE VI
COMPARISONS BETWEEN EMHH AND A SELECTION OF ALGORITHMS ON UETTPS.

Instance Asm04 Asm07 Asm09 Bur07 Pil07 Pil09a Pil09b Qu09a Qu09b Sab12 Qu15 EMHH
fmin fi−min−min fi−avg−min fc−min

car91 5.29 5.19 5.29 5.36 – 4.97 – 5.3 5.11 5.14 4.95 5.11 5.15 5.17
car92 4.56 4.32 4.54 4.53 – 4.28 – 4.7 4.32 4.7 4.09 4.27 4.32 4.32
ear83 37.02 36.16 37.02 37.92 36.74 36.86 37.39 35.54 35.56 37.86 34.97 35.31 35.75 35.96

ear83 IIc – – – – – – – – 39.38 – – 38.94 39.31 39.02
hec92 11.78 11.6 11.78 12.25 11.55 11.85 11.43 11.78 11.62 11.9 11.11 11.45 11.59 11.51

hec92 II – – – – – – – – 11.5 – – 11.39 11.57 11.43
kfu93 15.81 15.03 15.8 15.2 14.22 14.62 – 15.09 15.18 15.3 14.09 14.79 15.14 15.15
lse91 12.09 11.35 12.09 11.33 10.9 11.14 – 12.71 11.32 12.33 10.71 11.07 11.26 11.26
rye93 10.35 9.75 10.38 – 9.35 9.65 – – – 10.71 9.2 9.3 9.39 9.45
sta83 160.42 158.64 160.42 158.19 158.22 158.33 158.38 159.2 158.88 160.12 157.64 158.5 158.62 158.54

sta83 IIc – – – – – – – – 34.32 – – 33.74 34.16 34.15
tre92 8.67 8.47 8.67 8.75 8.48 8.48 – 8.67 8.52 8.32 8.27 8.55 8.62 8.61
uta92 3.57 3.52 3.57 3.88 – 3.4 – 3.32 3.21 3.88 3.33 3.38 3.39 3.4

uta92 II – – – – – – – – 3.45 – – 3.34 3.37 3.36
ute92 27.28 27.55 28.07 28.01 26.65 28.88 27.31 30 28 32.67 26.18 27.2 27.52 27.59
yor83 40.66 39.25 39.8 41.37 41.57 40.74 39.96 40.24 40.71 40.53 37.88 39.59 40.54 40.7

INS (12) 9.5 6.3 10.2 10.5 5.1 6.5 5.8 9 6.6 10.3 1.2 3.6 6.3 6.9
INS (16) – – – – – – – – 3.8 – – 1 3.3 2.3
“–” indicates that the corresponding instances are not tested or the calculation of that value is nonsense. The solutions that are compared against our approach on
uETTPs include:
Asm04: Fuzzy combinations of two ordering criteria [41].
Asm07: Fuzzy combinations of multiple ordering criteria [42].
Asm09: Asm04 with turning [43].
Bur07: Tabu search [33].
Pil07: A genetic programming-based hyper-heuristic [44].
Pil09a: Four hierarchical combination of heuristics [45].
Pil09b: A genetic programming hyper-heuristic to evolve functions of low-level heuristic and logical operators [46].
Qu09a: Four local search [47].
Qu09b: An adaptive hybridization of heuristics [34].
Sab12: A graph coloring constructive hyper-heuristics where the hybridizations of four heuristic sequence are utilized to order exams [48].
Qu15: EDA-based hyper-heuristic [5].

TABLE VII
THE MINIMUM NUMBER OF COLORS FOUND BY EMHH AND THE

SELECTED ALGORITHMS.

car91 car92 ear83 ear83 IIc hec92 hec92 II kfu93 lse91
Qu09 30 29 22 – 17 – 19 17
Qu15 28 27 22 – 17 – 19 17

EMHH 30 29 22 23 17 17 19 17
rye93 sta83 sta83 IIc tre92 uta92 uta92 II ute92 yor83

Qu09 – 13 – 20 31 – 10 19
Qu15 21 13 – 20 29 – 10 18

EMHH 21 13 35 20 31 30 10 20
“–” indicates that instances are not tested. Bold values represent the best
solutions among all competitors, and the optimal results are underlined.
The solutions that are compared against our approach on GCPs include:
Qu09b: An adaptive hybridization of heuristics [34].
Qu15: EDA-based hyper-heuristic [5].

that work in the search space under discussion may easily
get stuck in local optima, especially considering that there
are wide plateaus in the search space. Therefore, we suspect
part of the superiority of EMHH is that it can promote the
diversity of the heuristic sequences via knowledge transfer
mechanism, thus improving the possibility of jumping out of
the local optima. To verify this conjecture, we have observed
the best 10 heuristic sequences for all the instances based on
the results of EMHH and SOHH from Table I. The MFO
problem (ear83, sta83) is selected as the representative due
to the significant distinction between their best 10 heuristic
sequences. The selected heuristic sequences of ear83 and sta83
are shown as Fig.S2. From Fig.S2 (a) and (b) we can see
that the left 3 heuristics in selected heuristic sequences of
ear83 and sta83 are obviously different. Therefore, EMHH

intuitively would suffer from negative transfer. However, Table
I shows that EMHH achieves significantly better results than
SOHH in both tasks. Furthermore, from Fig.S2 we can see
that results obtained by EMHH are clearly closer to the best
10 heuristic sequences than that obtained by SOHH. Namely,
SOHH is stuck in local optima while EMHH successfully
escaped benefiting from the knowledge transfer mechanism.
Note that in [26] the similar conjecture has been made in the
permutation-based encoding search space, but the verification
was not provided. Last but not the least, there may be negative
transfers [18] in the process of knowledge transfer, as in the
cases of MFO problems that including rye93, where SOHH
achieved better results than EMHH on rye93.

F. Potential Applications and Future Research Challenges

Other educational timetabling problems, besides
examination timetabling studied in this paper, are possible
applications that require multitask hyper-heuristics. Another
scenario is the problem of cloud services, where the server
is likely to face concurrent service requests from multiple
customers. The optimization of these requests might have
different scales or even belong to different domains. In
this regard, the multitask hyper-heuristics present likely an
appropriate approach that can provide good services with
a reduced computational cost from the multitasking and
knowledge transfer schemes. In addition, the applications of
hyper-heuristics as presented in [10], such as vehicle routing
problems, nurse rostering problems and packing problems
might also be potential applications.
As mentioned in the Introduction, hyper-heuristic can
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be classified into four categories, namely, selection
constructive/perturbative, generation constructive/perturbative.
This paper concerns the selection constructive hyper-heuristic
as the precursor of extending the hyper-heuristics into
multitasking scheme. Thus, extensions of other traditional
hyper-heuristics remain to be studied. Here, we point
out several challenges that one may encounter in these
extensions. First, the design of the unified representation.
Although so-called low-level heuristics constitute the search
space of hyper-heuristics, they are domain-specific; that is,
the graph heuristics used to solve educational timetabling
problems might not be suitable to solve other combinational
problems. Thus, careful attention should be paid for the
design of the unified representation when handling problems
with very distinct heuristics. Moreover, much effort is
needed on multitasking hyper-heuristics that combine
different categories of them; for example, selection and
generation constructive hyper-heuristics. Second, the design
of efficient knowledge transfer schemes is challenging as well.

V. CONCLUSION

In this paper, a unified framework of evolutionary multitask-
ing graph-based hyper-heuristic (EMHH) is proposed, where
the concept of evolutionary multitasking and graph heuristics
are used as the high-level search methodology and low-level
heuristics, respectively. The EMHH has been evaluated on
uncapacitated exam timetabling and graph coloring problems.
Given that the purpose of this paper is to propose a new
hyper-heuristic framework instead of competing with certain
algorithms on specific problems, we found the obtained results
encouraging.
In conclusion, the superiorities of the proposed EMHH com-
paring with the conventional single-tasking hyper-heuristic are
two-fold: (1) It raises the generality of both hyper-heuristic
and evolutionary multitasking to a higher level; i.e., extend
the generality of hyper-heuristics in addressing multiple opti-
mization problems and the scope of unification in evolutionary
multitasking. (2) The EMHH is more effective and efficient.
To be specific, on one hand, it can take advantages of the
commonalities among tasks to facilitate the convergence of
the algorithm. On the other hand, the search biases provided
by different tasks via the knowledge transfer mechanism can
promote the diversity in the heuristic space, thus improving
the global search ability of the EMHH.
In the future, we will investigate the performance of EMHH on
other problem domains. The properties of common structures
of solutions in high-level space need to be further examined.
The design of more effective mechanisms to adapt the reusable
knowledge from one domain to other domains could be
another interesting future research direction.
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