JOURNAL OF IXTgX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

Ranking-based Self-Supervised Representation
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Abstract—Recently, researchers have achieved significant re-
sults in the skeleton-based action recognition. To better model
the skeleton sequences, we drive the encoder to learn more
discriminative representations in the self-supervised setting. We
find that instead of clustering feature vectors to assign pseudo
labels for samples as in DeepCluster, ranking them is a more
reasonable, reliable, and efficient way to learn more effective
feature representations. With this intuition, we propose a novel
self-supervised learning framework, DeepRank. Specifically, we
rank triplets of skeleton sequences with the ranking labels, ob-
tained from the relative distances among them. Besides, to deeply
mine complementary discriminative information that exists in
different modalities of skeleton sequences, we further propose
Multi-View DeepRank (MV-DeepRank) to enable encoders to
comprehensively learn complementary features from multiple
modalities. Extensive experimental results on the NTU RGB+D,
NTU RGB+D 120, PKU-MMD I, and PKU-MMD 1II datasets
under various evaluation settings demonstrate the generality,
transferability, and superiority of our proposed self-supervised
learning frameworks. Notably, our frameworks surpass the
previous methods that employ the same backbone networks
as ours by at least 1.8% (ST-GCN) and 2.1% (STTFormer)
under the finetuning setting. Additionally, DeepRank gains a
significant advantage on computational complexities, O(1), over
the contrastive learning-based methods, O (batch size), and the
clustering-based methods, O (number of clusters).

Index Terms—Skeleton-Based Action Recognition, Self-
Supervised Learning, Multi-modal Fusion.
I. INTRODUCTION

KELETON-BASED action recognition has attracted

widespread attention from researchers because eliminating
background interference helps the effective learning of ac-
tions. Existing methods often focus on the data representation
learning [1], [2] and the network architecture design [3]-[6]
to perform this task in supervised setting, which still relies
heavily on meticulously annotated training data. This is both
labor-intensive and time-consuming to obtain. Additionally,
limited supervision can lead to overfitting, particularly in
models like transformers, which have weak inductive bias
and high model capacity. These challenges highlight the need
for self-supervised learning approaches for robust skeletal
representations.

In the literature, prevalent pretext tasks originally designed
for image data have been extended to 3D action representa-
tion learning, including reconstruction [7]-[9] and contrastive
learning [10]-[12]. However, when adapting one of the most
representative self-supervised learning approaches, DeepClus-
ter [13], to 3D action representation learning, we found several
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Fig. 1. DeepRank (ours) vs. DeepCluster vs. Triplet Loss. DeepCluster:
These methods usually generate pseudo labels by clustering the extracted
features, and then improve the encoding by pseudo-labeled samples. Deep-
Ranking: Our proposed self-supervised learning framework DeepRank ranks
samples relatively by distances among extracted features to avoid the problem
of empty clusters and imbalance clusters in DeepCluster. Triplet Loss: These
methods construct triplets of samples but impose supervised constraints on
both positive and negative samples.

limitations. Specifically, DeepCluster operates by first extract-
ing features from all samples, clustering them using the K-
means algorithm, assigning pseudo labels to the samples, and
subsequently training the encoder using these (sample, pseudo
label) pairs, as depicted at the top of Fig. 1. The cluster-
ing process introduces challenges, including the potential for
empty clusters, cluster imbalance, and the cumbersome task of
selecting an optimal number of clusters, denoted by n. When
n is too large, reliably classifying samples into specific pseudo
categories is challenging. Also, the encoder may capture
irrelevant features by focusing on trivial differences between
samples in the same categories. Conversely, when n is small,
the pseudo-classification task is oversimplified. The encoder
may be guided to identify commonalities among samples in

0000-0000/00$00.00 © 2021 IEEE



JOURNAL OF IXTgX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

different categories. These issues result in suboptimal pseudo
labels, which, in turn, hinder the training of a discriminative
encoder without additional techniques, such as explicitly con-
straining the number of samples per pseudo-class [10], [13].

Inspired by Gepshtein et al. [14] that people are far better at
making relative judgments than absolute judgments, we trans-
form the absolute judgment in DeepCluster, i.e., classifying
samples into specific pseudo categories, into a relative one
and propose a self-supervised learning framework, DeepRank.
Specifically, we rank triplets of samples and employ the
distance between features as the ranking metric. As shown in
Fig. 1, given a triplet of samples, we rank the two candidates
c1 and ¢» according to their feature distances to the anchor a.

During the ranking process, we have a closer candidate and
a farther one in each triplet. So, there are two categories in
this ranking task, either the first candidate ¢; or the second
candidate ¢, is closer to the anchor a. The certain number of
categories in this task saves us a lot of time and computations
to carry out a lot of experiments to choose an optimal
number of clusters n like DeepCluster (Table VI), and hence
our proposed DeepRank is more efficient. Meanwhile, after
converting the difficult absolute task into a relative ranking
one, we offer a simpler solution. For oversimplified tasks like
judging whether samples are in the same category, relative
ranking them provides nuanced insights, revealing differences
among samples in different categories. Besides, each triplet has
its counterpart one, i.e., switching the position of candidates,
which is classified into the other category. So, we ensure that
each ranking category is non-empty and balanced. Therefore,
the ranking process can produce reliable and high-quality self-
supervisions for our proposed self-supervised learning frame-
work. With such self-supervisions, we can drive the encoder
to learn more effective representations, and thus increase the
performance of downstream tasks, such as skeleton-based
action recognition.

It is worth mentioning that our DeepRank is different from
the triplet loss [15] and the contrastive learning-based methods
[12], [16], [17]. For the triplet loss, it indeed constructs triplets
of samples, but the positive samples must be in the same
categories as the anchors, while the negative ones must be
in different categories from the anchors (as displayed at the
bottom of Fig. 1). Thus, it requires ground-truth labels to train
the encoder in a supervised manner. In contrast, the encoder
of DeepRank is trained in a self-supervised manner. Besides,
since we do not impose restrictions on samples, DeepRank
has more combinations of triplets, i.e., high diversity. For
contrastive learning methods, they would wrongly consider
samples that belong to the same category but are augmented
from different samples as negative pairs, and thus push apart
their features. In contrast, in our framework, samples in the
same categories with the anchor are more likely regarded as
positive ones (closer candidates in triplets) due to the closer
feature distances. Thus, with more accurate self-supervisions,
the pretrained encoders in our self-supervised learning frame-
works can extract more discriminant representations.

Commonly used three modalities of skeleton sequences,
joint, bone, and motion, may be complementary to each other.
For example, both actions “pushing” and “pat on back” put

the hand of one person behind the back of the other person, so
these two actions are similar in the modality of joint. However,
“pushing” is an urgent action while “pat on back” is a gentle
one, so these two actions vary greatly in speed, which means
they are distinct in the modality of motion. To simultaneously
utilize complementary features of different modalities, we fur-
ther propose Multi-View DeepRank (MV-DeepRank). In this
self-supervised learning framework, we design three different
views of ranking tasks, i.e., “self” view, “other” view, and “all”
view, incorporating comprehensive information from various
modalities in diverse ways. Meanwhile, we construct suitable
network architectures for encoders to complementarily learn
from the multi-view ranking task, driving encoders to not only
retain the information hidden in the individual modality but
also master the information across multiple modalities.

To validate the effectiveness of the proposed self-supervised
learning frameworks, we conduct extensive experiments on
four benchmarks, i.e., NTU RGB+D [18], NTU RGB+D 120
[19], and PKU-MMD I and II [20]. Our frameworks achieve
state-of-the-art results under various evaluation settings.

Our contributions can be summarized as follows: 1) To al-
leviate the problems of DeepCluster, we propose a concise, ef-
fective and efficient self-supervised learning framework, Deep-
Rank, to achieve more reliable and robust self-supervisions. 2)
We further propose MV-DeepRank to merge information from
different modalities of skeleton sequences in three distinct
ways, and promote the encoders to capture information across
various views. 3) Comprehensive experiments on four popu-
lar datasets show that the proposed self-supervised learning
frameworks are effective and well-generalized.

II. RELATED WORK
A. Skeleton-Based Action Recognition

Many algorithms have been developed for skeleton-based
action recognition. According to [21], existing works can be
summarized into two main groups: traditional methods based
on hand-crafted features and deep learning-based methods.
Traditional methods [22]-[24] often require a great deal of
prior knowledge to represent skeleton sequences in the form
of useful features like the 3D joint position feature and the
local occupancy pattern [23]. After deep learning prevailed in
computer vision, researchers drove models to automatically
learn effective features from massive data.

Deep learning-based methods can be further divided into
four categories by network architectures [25], i.e., CNN-
based methods, RNN-based methods, GCN-based methods,
and transformer-based methods. CNN-based methods [1], [26],
[27] often focus on the data representation and represent the
skeleton sequences in the form of 2D grid-shape images, e.g.,
Ke et al. [1] represented the relative positions between refer-
ence joints and the other joints over time in different channels
of cylindrical coordinates as images, and utilized CNN to
extract their features. Since the skeleton sequence is sequential
data, it is natural to use RNN-based networks to model it [3],
[28]. Du et al. [3] divided the human skeleton into five body
parts in the spatial domain, concatenated the joints in a body
part of a frame as an input timestep of RNN-based networks,
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and then hierarchically fused features from parts to the whole.
GCN-based methods [4]-[6], [29]-[31] represent the skeleton
sequences in the form of graphs. Typically, ST-GCN [4] used
graphs to record whether the joints are connected or not and
applied graph convolution both in the spatial and temporal
dimensions to extract features. Recently, transformer-based
networks [32], [33] popularized among the computer vision
community and achieved state-of-the-art results over many
kinds of tasks, including the skeleton-based action recognition
task [34]-[36]. For instance, STTFormer [34] split the skeleton
sequences into non-overlapping tuples along the temporal di-
mension, extracted multi-joint representations among adjacent
frames by self-attention modules, and aggregated the features
of tuples. In this paper, both ST-GCN and STTFormer are
chosen as the backbone networks of our framework.

B. Self-Supervised Learning

Self-supervised learning attracts much attention since it
enables feature learning without manual annotations, i.e., it
exploits the information hidden in data (such as context
structure) via well-designed pretext tasks [37]-[39] to enhance
the data representation power of the models. Among all the ef-
fective pretext tasks, generation-based methods and contrastive
learning-based methods are two mainstreams [40], [41].

Generation-based methods [42]-[44] learn features by gen-
erating content for corresponding modalities. Some skeletal
representation learning models leverage on pretext tasks in
the same type to enhance their encoders, like predicting the
future motion [7] and reconstructing the interval frames [8].
Among these methods, masked contents modeling [42] has
been popular recently, which aims to predict specific contents
for masked patches. SkeletonMAE [9] deployed the idea of
Masked Auto-encoder (MAE) [42] on the skeleton sequences,
predicting the joint coordinates of masked regions.

Contrastive learning-based methods [45]-[47] pull the rep-
resentations of positive pairs closer while pushing apart those
negative ones. Similarly, a few models [10]-[12], [17], [48]-
[50] have employed this thought to train their skeletal en-
coders. CrosSCLR [51] trained its encoder on the MoCo v2
[16] framework and fused the information from other modal-
ities to enhance the representation. Compared to deploying
the extracted features of samples in the contrastive loss, CPM
[52] utilized the similarity distribution of the given sample
with regard to all samples in the contextual queue.

The contrastive learning-based methods have common
ground with metric learning methods, e.g., researchers tried to
enhance the feature discrimination power in a self-supervised
manner. Besides treating other samples as negative pairs, Fu
et al. [53] and Pfister et al. [54] ranked images with different
transformations by pairwise ranking loss to preserve intra-class
variance. But these methods still have problems of wrongly
considering samples in the same category but augmented from
different samples as negative ones. TransRank [55] used a
margin ranking loss to predict the confidence score of deciding
the transformation to process a given clip. Carr et al. [56]
simplified the difficult permutation task by ranking the relative
position of the shuffled image patches. All these models rank
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Fig. 2. Details of DeepRank. Given a triplet of skeleton sequences X =
Xa, Xeps Xey ), we feed them into the encoder & to get their features. Then,
we compare the distances between the two candidates and the anchor to get
the ranking label for this triplet. To improve the encoder &, we attach a
classifier C after the encoder & and rank this triplet by predicting its ranking
label. Best viewed in color.

among the views augmented from the same sample. On the
contrary, in our frameworks, skeleton sequences in the same
classes with the anchor, instead of those augmented from the
same sample, are more likely regarded as positive ones (closer
candidates in triplets) due to the closer relative distances
of their features. Thus, with more accurate self-supervisions,
encoders pretrained in our proposed self-supervised learning
frameworks can extract more robust representations. To the
best of our knowledge, our work is the first inter-sample
ranking-based self-supervision approach for skeleton-based
action recognition, which achieves better performance than
existing clustering-based self-supervision methods.

III. PROPOSED DEEPRANK
A. Triplet Generation

Let S be the set of unlabeled skeleton sequences. We first
construct a skeleton sequence triplet dataset D by randomly
sampling skeleton sequences from S,

D ={X = Xa, X¢)» X¢,) 1 VX4, Xy, Xe, € S (1)

where X, € RTo*V0XCo denotes an anchor sequence, and X,
and X, are two candidate sequences. Tp, Vp, and Cp are
the temporal length, the number of joints, and the number
of coordinate channels, respectively. Based on the distance
between the anchor and the candidates, we can divide the
triplets in 9 into two categories. Specifically, for any triplet
of skeleton sequences X = (X4, X¢,, X¢,) € D, we label it by,

01T, if d(Xa, Xey) < d(Xar Xey), )
Y= [0,1]7, otherwise,
d(XaaXck) = 7_:iis(fa’ fck)a ke {1,2}, 3)

where Fgis(+, ) is a distance metric function to measure the
distance between two feature vectors,

fa=8(X,) e R, 4)
for = E(Xe,) e RP™L ke (1,2}, (5)

and & is the skeletal encoder. If the first candidate is closer
to the anchor than the second one in a triplet X in terms of
feature distance, we add X into the first category, and add
it into the second category otherwise, indicating the second
candidate is more similar to the anchor. One can easily find
out that, in contrast with the uncertain number of clusters
during the clustering process (see Fig. 1), there are two certain
categories in our proposed ranking task, making the training
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Fig. 3. Details of MV-DeepRank in the modality of joint. Given a triplet of skeleton sequences X = (X4, X¢,, X¢,), we compute its corresponding three
modalities and separately feed them into their respective encoders. Then, we compare the distances between the two candidates and the anchor to get three
views of the ranking label for this triplet. The “self” view utilizes the information in the self modality. The “other” view combines the information from the
other two modalities. The “all” view integrates relationships among skeleton sequences from all three modalities. To improve the joint encoder &7, we attach
three classifiers after the joint encoder &7 and rank this triplet by predicting the ranking labels of the three views. Best viewed in color.

process more certain. Besides, the numbers of triplets in two
categories are the same (balanced and non-empty), as that
X = (X4, X, X¢,) belongs to one category if and only if its
counterpart X’ = (X, X¢,, Xc,) belongs to the other category.

B. Ranking Learning

With the skeleton sequence triplet dataset O, the skeleton
sequence ranking problem is transformed into a binary classi-
fication task. As Fig. 2 shows, in the ranking learning, a triplet
X is first extracted its feature by the encoder,

8(X) = S(Xa’Xclan) = (S(Xa)a S(Xcl)’ 8(X62))
= (fa’fcwfcz)»

which is then transformed into the predicted label y by a
classifier C containing two fully-connected (FC) layers. The
classifier C concatenates two candidate features with the
anchor feature respectively and feeds them into the first FC
layer. Then, the subtraction of the output intermediate features
is fed into the second FC layer, and finally, the predicted label
is generated by applying a Softmax function, i.e.,

fk = ﬁCo(%OnCHt(fa’ ka)) € R256’ k e {1’ 2}7 (7)
yA = ﬁoftmax(ﬁcl (fl - .fZ)) € RZ’ (8)

where Frc, and Frc, are two FC layers with the size of 512 x
256 and 256 X 2. Fconcat denotes the concatenation operation.
In the training, we adopt the cross-entropy loss,

L(X)=-y  logy. ©)

One can easily find that the proposed framework has a time
complexity of O(1), with a huge advantage over O(n) for
clustering-based methods and O(batch size) for contrastive
learning-based methods, where n is the number of clusters.

(6)

IV. PROPOSED MULTI-VIEW DEEPRANK

Skeleton sequences have three common modalities, i.e.,

M= {¢s, ¢, dm}, (10)

where ¢; denotes the joint modality, which records the 3D
coordinates of human keypoints over time; ¢p represents
the bone modality, capturing the length and direction of
bones by computing the differences between adjacent joints
in each frame; and ¢, refers to the motion modality, which
describes the temporal displacement of joints and is obtained
by applying a temporal difference to joint coordinates. These
three modalities explicitly record the skeletal information from
different perspectives.

We employ three encoders with identical architectures,
denoted as {&7,&8,EM}, to extract features from different
modalities and perform ranking learning separately. It is
worth noting that both the bone and motion modalities are
directly derived from the joint data through simple subtraction
operations. As a result, all three modalities share consistent
data shape, enabling a unified processing pipeline across
modalities.

To reflect the various relationships among the skeleton
sequences, for each modality ¢ € M, we design three views,
ie.,

V:{95900,9A}3 (11)

where g refers to the “self” view, reflecting the implicit rela-
tionships among skeleton sequences in the self modality; 6o
refers to the “other” view, integrating the implicit relationships
among skeleton sequences in the other two modalities; And
04 refers to the “all” view, merging the implicit relationships
among skeleton sequences in all three modalities. To compre-
hensively explore the information from all modalities and learn
a better representation, we propose Multi-View DeepRank
(MV-DeepRank) to explicitly incorporate information from
different modalities and various views. Similarly, it iterates
between two steps: Multi-View Triplet Generation and Multi-
View Ranking Learning.

A. Multi-View Triplet Generation
Given a triplet of skeleton sequences X = (X, X¢,, Xc,)s
we can compute its corresponding three modalities, i.e.,

X? =g, x8,x2), seM. (12)
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In any view 6 € V, we label the triplet X using the ranking

rule similar to that defined in Eq. (2), i.e.,

[1,0]7, if d?(Xg4, Xe,) < d?(Xa, Xe,),

y» = . oo RN
[0,1]7, otherwise,

where d? is metric function to measure the distances between

candidate features and the anchor feature in the view of 6. For

any triplet X¢ = (xZ) ,xg ,x;’;) with modality ¢ € M, in “self”

view, we generate its ranking label y?-% using

d% (X3, X8) = Fas (£, £, (14)
f&=82(X9), (15)
fo=8%x2), kef{l,2) (16)

In “other” view, we generate its ranking label y?%-% using

a% (X9, X8 = > Fal £ £, kef1,2),
@' eM
)

a7

to further widen the gap between the distances of two can-
didates and the anchor, or correct the ranking results from a
single modality, producing a more confident ranking result; In
“all” view, we generate its ranking label y#-94 using

A (X9, X5) = > Fas(fL. £2),

$peM

(18)

to comprehensively integrate clues from all three modalities.

B. Multi-View Ranking Learning

In the multi-view ranking learning, for any triplet X?¢ =
(xf ,xﬁ ,xg) with modality ¢ € M, we predict its three labels
using three classifiers {C?? : ¢ € M,6 € V} in different
views (see Fig. 3). Similarly, each classifier contains two
FC layers and generates the predicted label from the anchor

feature and candidate features, i.e.,

~Z>’9 = ﬁ%’()e(%oncat(ff’ fgc))’ (19)
y\(p,a = %oftmax(ﬂ%lo (f~1¢’0 - ~2¢’9))' (20
The loss is:
L&)=Y 2% LOX) == 37 2% (y*) log*",
oev oev
(21)

where 19 is the weight hyper-parameters of different views.

In our work, DeepRank refers to the joint encoder trained
with ranking labels in the self view. 3s-DeepRank indicates
that the encoders of three modalities are separately trained
with ranking labels in the self view. MV-DeepRank refers to
the joint encoder trained with ranking labels in three views. 3s-
MV-DeepRank indicates that the encoders of three modalities
are trained with ranking labels in three respective views.

C. Discussions on Ranking Labels from Three Views

The ranking labels y#% and y?% are generated by
incorporating information from multiple modalities, and hence
they are different from y?:%s which only considers hidden
clues from the individual modality. To quantify the differences,
we analyze the proportion of ranking labels y /-0 and y#7-%4
that are not equal to y#/+% in the modality of joint. The results
were obtained from randomly sampled 124,992,000 triplets
from NTU RGB+D [18]. As shown in Fig. 4, nearly 28.9%
and 1.1% of ranking labels y#7/-%0 and y#/-%4 are unequal to
y?%7-9s for the same triplet. It is the differences among views
that provide complementary information for each modality.
Otherwise, MV-DeepRank will degrade to DeepRank.

The way of learning complementary information in MV-
DeepRank is similar to Multi-Head Deep Clustering [57],
which separately clusters two modalities of RGB videos,
i.e., audio and RGB frames, and trains their encoders with
clustering self-supervisions in two modalities. Similarly, the
audio and RGB frames from the same video may be clustered
into totally different groups. They believe that the semantic
correlation and the differences between the two modalities
enrich the self-supervised task. Their experimental results
show that this way of self-supervised learning further enhances
the encoders in two modalities. The differences among the
ranking labels from three views indeed help encoders exploit
more complementary and comprehensive information.
other

alll

0 5 10 15 20 25 30 35
Percentage (%)

Fig. 4. The proportion of ranking labels y#7-%0 and y#7-%A that are not
equal to y#7-%s in the modality of joint.

D. Finetuning for Action Recognition

After achieving the rankings, the encoder & could extract
discriminative features for different skeleton sequences. To
perform action recognition, we attach a randomly initialized
linear action classifier Car on top of the self-supervised
pretrained encoder &, with the output dimension matching the
number of action categories in the target datasets. This task is
trained using the standard cross-entropy loss:

Lar(X) = -y 1 log Car(E(X)),

where yar denotes the ground-truth action label. We explore
both semi-supervised and fully-supervised settings for action
recognition training, where both the encoder & and classifier
Car are trained jointly.

During inference, the softmax score of the output of the
action classifier Car is utilized to predict the action label.
In the case of multiple modalities, we first compute bone and
motion data from the given skeleton sequence (i.e., joint data).
Then, the three modalities of data are fed into their respective
well-tuned encoders and action classifiers. Finally, the softmax
scores of all three modalities are summed to generate a fused
score, which is used to predict the final action label.

(22)
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V. EXPERIMENTAL RESULTS
A. Datasets

Experiments are conducted on four popular skeleton-based

action recognition datasets, i.e., NTU RGB+D [18], NTU
RGB+D 120 [19], PKU-MMD I, and PKU-MMD II [20].
NTU RGB+D [18]. It is a large-scale skeleton-based action
recognition dataset, including 56,578 videos from 40 subjects
and 3 cameras, with 60 action categories. Each human body is
represented by 25 joints. Owing to the way of data collection,
the recognition performance is usually evaluated by two pro-
tocols, i.e., 1) Cross-Subject (X-Sub) that splits the data of 40
subjects into training and test set and 2) Cross-View (X-View)
that uses data recorded by two of the cameras as the training
set, while the left one is kept as the test set.
NTU RGB+D 120 [19]. This dataset is extended from the
NTU RGB+D, adding 57,357 more videos and 60 more
actions. So, it contains 113,945 videos with 120 action labels
in total. In addition to different viewpoints and subjects,
this dataset also takes different locations and backgrounds
into account. Similarly, it has two performance evaluation
protocols, Cross-Subject (X-Sub) and Cross-Setup (X-Setup).
PKU-MMD [20]. It is a large-scale dataset for both action
detection and action recognition tasks. The human body is
represented by 25 joints. The dataset consists of two parts,
i.e., PKU-MMD I containing 51 action categories with a total
of about 20000 action instances; and PKU-MMD II containing
41 action categories with a total of about 7000 action instances.
The dramatic changes in the view of PKU-MMD II result in
significant skeleton noise, so it is more challenging to train
and evaluate than PKU-MMD 1. Both parts have the same
evaluation protocols as NTU RGB+D, i.e., X-Sub and X-View.
As the previous works did, we carry the experiments under the
X-Sub evaluation protocols on both parts.

B. Implementation Details

We evaluate the performance of the proposed frameworks
on both ST-GCN [4] and STTFormer [34] (following Skele-
tonMAE [9] for fair comparisons) as encoders. For data
preprocessing and data augmentations, we follow that of [9],
[34]. The code is based on PyTorch and all the experiments
can be conducted on a single A100 40GB GPU.
Self-supervised Pretraining. When pretraining the proposed
frameworks, we follow XDC [57] to fix the ranking labels of
the triplets in 9 and train the encoders until the validation
loss becomes stable. Then, we re-extract the features from the
well-trained encoders to form the new ranking labels in O. The
learning rate is set as 0.1 and 0.01 when separately employing
ST-GCN and STTFormer as encoders. SGD with momentum
of 0.9 and weight decay of 0.0001 is used to optimize our
self-supervised learning frameworks. The batch size is 64, but
it is worth noting that a batch of skeleton sequences can be
combined into P(64,3) = 249,984 triplets for the ranking
learning process. When training MV-DeepRank, we set /lg =
/lg = /lz =1 in our method by experience.

Finetuning. When employing ST-GCN as the encoder, the
finetuning process lasts for 100 epochs with an initial learning
rate of 0.1 (multiplied by 0.1 at epoch 80). When employing

TABLE I
ABLATION STUDY OF NORMALIZATION FOR FEATURE VECTORS IN
DISTANCE METRIC FUNCTION Fps (-, -). THE PERFORMANCE (%) IS
EVALUATED ON THE NTU RGB+D X-SUB DATASET UNDER THE
FINETUNING SETTING. WE BOLD THE BETTER RESULTS IN EACH COLUMN.

Normalization Joint Bone Motion Ensemble
w/o Normalization 88.6 89.4 88.0 91.8
Min-Max Normalization  89.4 89.5 88.0 91.7
L1 Normalization 89.1 89.2 87.7 92.0
L2 Normalization 89.5 89.0 88.5 92.3

STTFormer as the encoder, the finetuning process lasts for
90 epochs with an initial learning rate of 0.1 (respectively
multiplied by 0.1 at epochs 60 and 80) and 5 linearly warm-
up epochs. The skeleton sequences are randomly cropped with
a sampled p € [0.5,1] (fixed to 0.95 during testing), and
then resized to 120 frames. Other hyperparameters follow the
papers of corresponding backbones without any modification.

C. Ablation Study

We first ablate different types of normalization applied to
the feature vectors when calculating the distance between
them in Equation 3, and present the results in Table I.
Specifically, we use the Euclidean distance as the distance
metric functions Fgis(-, ). We apply ST-GCN as the encoder
and finetune it on the NTU RGB+D dataset with the X-Sub
protocol. The ensemble results are obtained by averaging the
predicted results of the three modalities. The results demon-
strate that applying L2 Normalization to the feature vectors
yields the best performance. Specifically, the results for the
joint, motion, and ensemble modalities show improvements of
0.9%, 0.5%, and 0.5%, respectively, compared to the models
without normalization. This indicates that L2 Normalization
effectively captures the similarity between samples. By making
the feature vectors less sensitive to vector magnitudes, 1.2
Normalization is particularly well-suited for high-dimensional
spaces, such as those used for skeletal representations. We
also visualize the joint features extracted by the encoders
trained in DeepRank without normalization (left) and with L2
normalization (right), on NTU RGB+D in Fig. 5. Obviously,
incorporating L2 Normalization results in more discriminative
features. Hence, L2 normalization is adopted as the default for
distance calculations in the subsequent experiments.

Table II explores two more sophisticated classifiers C during
ranking learning. In the first row (denoted as “MLP”), the
classifier consists of two MLP heads, following HiCLR [58].
Specifically, we utilize a shared 2-layer MLP head with
ReLU activation to project the concatenation of the anchor
feature and the candidate features into a latent space. The
two resulting features are then concatenated along the channel
dimension and passed through another shared 2-layer MLP
head (also with ReLU activation) to predict the ranking label.
In the second row (denoted as “ViT”), we follow MAE [42]
and build the classifier as a lightweight Vision Transformer
(ViT) network [33]. Specifically, the anchor and candidate
features are treated as input tokens, each linearly embedded
and augmented with sine-cosine positional embeddings. These
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point to something punch/slap hopping staggering

w/0 Normalization L2 Normalization

Fig. 5. T-SNE visualizations of joint features from encoders trained in
DeepRank without L2 Normalization (left) and with L2 Normalization (right)
for distance calculations.

embeddings are then processed by a standard Transformer
encoder consisting of two identical blocks. Each block has an
embedding dimension of 256, two attention heads in the multi-
head self-attention module, and a hidden dimension of 128 in
the feed-forward network. The output token representations are
averaged and passed through a fully connected layer to predict
the ranking label. Results show that our simple FC classifier
introduced in Section III-B achieves the best performance.
We attribute this to the fact that our task primarily aims to
assist the encoder in learning discriminative representations
of skeleton sequences. Introducing more complex classifiers
appears to introduce additional learning complexity, which
may distract the encoder from its primary objective and
potentially degrade performance.

To separately quantify the improvements brought by the
self-supervisions from different views in MV-DeepRank, we
apply ST-GCN as the encoder and conduct the semi-supervised
learning experiments on the 1% training data of NTU RGB+D
with the X-Sub protocol, following the finetuning setting.
The average performance over five trials is reported in Table
III. We observe that when using self-supervisions from one
single view (the first block), integrating more modalities of
information (the “other” and “all” views) brings improvements
for the joint and bone modalities, compared with only exploit-
ing information from the “self” view. When combining self-
supervisions from multiple views (the second and third block),
the performances of all three modalities and the final ensemble
are further improved, which means self-supervisions from
different views indeed provide complementary information.
Therefore, it is advantageous to train encoders in the multi-
view setting.

TABLE II
ABLATION STUDY OF DIFFERENT CLASSIFIER C. THE PERFORMANCE (%)
IS EVALUATED ON THE NTU RGB+D X-SUB DATASET UNDER THE
FINETUNING SETTING. WE BOLD THE BEST RESULTS IN EACH COLUMN.

Classifier C  Joint Bone Motion Ensemble
MLP 88.2 89.2 88.1 92.0
ViT 88.8 88.5 87.7 92.0
simple FC 89.5 89.0 88.5 92.3

TABLE III
ABLATION STUDY ON SELF-SUPERVISIONS FROM DIFFERENT VIEWS. THE
PERFORMANCE (%) 1S EVALUATED ON THE NTU RGB+D X-SUB UNDER
SEMI-SUPERVISED SETTING (1% TRAINING DATA). WE REPORT THE
AVERAGE OF FIVE RUNS AS THE FINAL PERFORMANCE. THE BEST IN EACH
COLUMN IS BOLDED, AND THE SECOND IS UNDERLINED.

View Modality

self other all Joint Bone Motion Ensemble
v 38.8 32.0 42.8 52.4
v 40.0 353 38.7 50.8
v 407 353 40.5 52.0
v N 423 39.1 43.9 54.3
v v 43.0 36.7 43.6 53.6
v v v 47.7 40.0 47.2 55.6

Fig. 6 visualizes the average cosine distances of all the
skeletal features extracted from different encoders on the
NTU RGB+D dataset. Specifically, we calculate the cosine
distance between every two extracted skeletal features, group
them according to their ground truth action labels, and obtain
the average cosine distance, i.e., each entry (i,j) in the
matrix represents the average cosine distance between skeletal
features in category y; and y;. We have the following obser-
vations. 1) The first matrix shows that the bone encoder can
well distinguish two-person interactions (the last 11 actions)
from single-person actions, showing that even a randomly
initialized encoder exploits some information and reflects the
similarities among the input data. Thus, the initial ranking
labels, derived from com paring feature similarities, are rea-
sonably reliable. After pretraining the encoders in DeepRank,
the bone encoder pretrained on DeepRank (the third one)
pushes further apart different single-person actions (the first
49 actions) compared to the randomly initialized encoder. It
demonstrates that DeepRank can explicitly utilize the different
distances among actions, further enlarge this information, and
thus enhance the discriminative power of the encoder. 2) The
similarity distributions of modality-specific encoders vary af-
ter DeepRank training, as skeleton sequences from different
modalities have different information. For example, the action
“walking towards” is extremely different from other actions
in the modality of joint (the second one), while the other two
modalities (the third and the fourth one) do not display such a
huge difference. This discrepancy among modalities provides
complementary information, enhancing the robustness of our
self-supervision. 3) As shown in the last matrix, the bone
encoder pretrained in MV-DeepRank merges the similarity
distributions of all three modalities, which makes the diagonal
similarity (features in the same categories) more apparent,
i.e., skeleton sequences in the same categories are encoded to
more similar feature vectors. Thus, it is significant to utilize
information from multiple modalities to train the encoders.

D. Comparison with State-of-the-Art Methods

As shown in Table IV and Table V, we conduct finetuning
evaluations on NTU RGB+D and NTU RGB+D 120, respec-
tively. The rows in the table are grouped into five blocks
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Fig. 6. The average cosine distance matrices of all skeletal features on NTU RGB+D. From left to right, the skeletal features are extracted by: a randomly
initialized encoder (in the modality of bone), DeepRank pretrained encoders (separately in the modality of joint, bone, and motion), and MV-DeepRank
pretrained encoder (in the modality of bone). Even a randomly initialized encoder reflects data similarities. DeepRank helps the encoder enlarge these

similarities, and these similarities vary with modalities. MV-DeepRank merges similarities across multiple modalities. Best viewed in color and zoom in.

TABLE IV
COMPARISON OF THE ACTION RECOGNITION ACCURACY (%) WITH OTHER
SELF-SUPERVISED METHODS ON NTU RGB+D. WE BOLD THE BEST
RESULT AND UNDERLINE THE SECOND-BEST ONE IN EACH BLOCK. ‘GEN.’
REFERS TO GENERATIVE PRETRAINING-BASED METHODS. ‘DIS.” REFERS
TO DISCRIMINATIVE PRETRAINING-BASED METHODS.

Method Gen. Dis. Architecture X-Sub X-View
MS2L [7] acMmM™20 v v BiGRU 78.6 -
VPD [59] ECCV’20 N - SeBiReNet - 79.7
MCC [8] 1ccvial v 2s-AGCN 89.7  96.3
Colorization [60] jccvi21 v - 3s-DGCNN  88.0 949
Hi-TRS [61] gcevaa - V' 3s-Transformer 90.0  95.7
HiCLR [58] aaAr23 - V' 3s-Transformer 904  95.7
MCC [8] 1ccvial v v ST-GCN 83.0 89.7
PSTL [62] aaAr23 -V ST-GCN 84.5 920
CPM [52] gcevne -V ST-GCN 84.8 91.1
DeepCluster [13] ECCV’18 - v ST-GCN 89.4 93.0
DeepRank (ours) -V ST-GCN 89.5 938
MYV-DeepRank (ours) - v ST-GCN 89.6 944
CrosSCLR [51] cypr21 -V 3s-ST-GCN 862 925
AIimCLR [63] aaar22 - Vv 3sST-GCN 869 928
PSTL [62] aaAr23 - v 3s-ST-GCN  87.1 939
HiCLR [58] aaAr23 - Vv 3s-ST-GCN  88.3 932
DeepCluster [13] gccveig - Vv 3sST-GCN 921 955
DeepRank (ours) - Vv 3s-ST-GCN 923 959
MYV-DeepRank (ours) - Vv 3s-ST-GCN 92.3  96.2
AIimCLR [63] aaar22 - v STTFormer 839 90.4
CrosSCLR [51] cypre21 - v STTFormer  84.6  90.5
SkeletonMAE [9] \cMEw’23 v - STTFormer  86.6 929
DeepCluster [13] gccveig - v STTFormer 87.9 924
DeepRank (ours) - v STTFormer 899 949
MYV-DeepRank (ours) - v STTFormer  90.0  95.0
DeepCluster [13] gcoveis - v/ 3s-STTFormer 91.8  95.6
DeepRank (ours) - v’ 3s-STTFormer 92.4  96.2
MV-DeepRank (ours) - v/ 3s-STTFormer 924  96.4

according to different backbone networks. The second and
fourth blocks summarize the performance of ST-GCN and
STTFormer using only the joint modality, while the third and
fifth blocks report the ensemble results on these two backbones
across all three modalities. Methods employing other backbone
networks are listed in the first block. Compared to all the
previous methods that employ the same backbone network,
ST-GCN, both DeepRank and MV-DeepRank achieve state-of-
the-art performances. Meanwhile, a consistent improvement

TABLE V
COMPARISON OF THE ACTION RECOGNITION ACCURACY (%) WITH OTHER
SELF-SUPERVISED METHODS ON NTU RGB+D 120. WE BOLD THE BEST
RESULT AND UNDERLINE THE SECOND-BEST ONE IN EACH BLOCK.

Method Gen. Dis. Architecture X-Sub X-Setup
MCC [8] 1ccvai v v 2s-AGCN 813 833
Hi-TRS [61] gcevian - v 3s-Transformer 853 874
HiCLR [58] aaAr23 - v 3s-Transformer 85.6 87.5
MCC [8] 1ceval v v ST-GCN 770  77.8
CPM [52] gcevin -V ST-GCN 784 789
PSTL [62] aaAr23 -V ST-GCN 78.6 789
DeepCluster [13] gccveig - v ST-GCN 83.0 84.0
DeepRank (ours) -V ST-GCN 838 85.0
MV-DeepRank (ours) - v ST-GCN 84.0 85.1
CrosSCLR [51] cvypr21 - v 3s-ST-GCN 80.5 804
AIimCLR [63] aaar22 - v 3s-ST-GCN  80.1 80.9
PSTL [62] aaAr23 - v 3s-ST-GCN  81.3 826
HiCLR [58] aaar23 - v 3s-ST-GCN  82.1 83.7
DeepCluster [13] gccveis - v 3s-ST-GCN 87.3 89.4
DeepRank (ours) - v 3s-ST-GCN 883 89.7
MYV-DeepRank (ours) - v 3s-ST-GCN 882  90.0
AIimCLR [63] apar22 - v STTFormer  74.6 77.2
CrosSCLR [51] cvpr21 - v STTFormer 750 779
SkeletonMAE [9] icMEw’23 v - STTFormer  76.8 79.1
DeepCluster [13] gccviis - v STTFormer  83.2 85.6
DeepRank (ours) - v STTFormer 85.1  86.3
MYV-DeepRank (ours) - v STTFormer  85.4 86.5
DeepCluster [13] gccveis - v 3s-STTFormer 88.1 90.1
DeepRank (ours) - Vv 3s-STTFormer 88.7 90.4
MYV-DeepRank (ours) - Vv 3s-STTFormer 88.8  90.2

is observed when using STTFormer as the encoder owing
to its large number of parameters compared to ST-GCN-
based frameworks. Besides, our STTFormer-based frameworks
surpass SkeletonMAE [9], which also employed STTFormer
as the backbone network, by 2.1%~8.6% on all four protocols.
Notably, our DeepRank consistently outperforms DeepCluster
(with n = 256, which is the optimal number of clusters accord-
ing to Table VI) across all four evaluation protocols on two
datasets. In particular, DeepRank achieves an improvement
of 2% compared to DeepCluster on the NTU RGB+D X-
Sub protocol with STTFormer as the backbone. This further
demonstrates the superior effectiveness of DeepRank.
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TABLE VI
COMPARISON WITH DEEPCLUSTER ON NTU RGB+D X-SUB IN THE
FINETUNING SETTING. DEEPCLUSTER NEEDS INTENSIVE TUNING ON 7.
BESIDES, THE BEST n VARIES WITH MODALITIES, SO THE ENSEMBLE ARE
HARD TO ACHIEVE THE BEST. IN CONTRAST, DEEPRANK OBTAINS
BETTER RESULTS EFFICIENTLY.

Modality

Method Ensemble
Joint Bone Motion
DeepCluster (n = 8) 89.6 88.7 87.8 91.5
DeepCluster (n =16) 89.1 889 87.8 90.7
DeepCluster (n =32) 89.6 88.6 879 92.1
DeepCluster (n = 64) 88.6 88.4 879 92.0
DeepCluster (n = 128) 88.9 89.0  88.1 90.8
DeepCluster (n =256) 89.4 89.0 87.8 92.1
DeepCluster (Avg.) 89.2 88.8 878 91.5
DeepRank (ours) 89.5 89.0 885 92.3

We also group and compare methods in Tables IV and V
by their self-supervised learning strategy. Specifically, they
are categorized into two types: (1) Generative pretraining-
based methods (e.g., SkeletonMAE [9], Colorization [60])
often mask parts of the input and train the model to reconstruct
the missing information (generating content). While these
methods capture the underlying spatio-temporal dynamics of
sequences, they struggle to effectively separate different ac-
tions compared to discriminative methods. (2) Discriminative
pretraining-based methods often generate pseudo-labels and
train models to classify samples. Among them, contrastive
learning approaches [51], [58], [61], [63] define positive and
negative pairs to facilitate action discrimination. However, they
are sensitive to false negatives and prone to overfitting on spu-
rious correlations in the absence of strong data augmentations.
DeepCluster, in particular, relies on clustering for pseudo-label
generation but suffers from issues mentioned in Section I,
resulting in inferior pseudo-labels and less robust discrimina-
tive representations. In contrast, our proposed method achieves
better performance and generates more accurate and balanced
pseudo-labels.

Since the original work of DeepCluster was trained on RGB
images, we re-implement it on the skeleton sequences. For
comprehensive comparisons, we train it by setting various
numbers of clusters n during the clustering process. All the
hyperparameters and the training process are set the same
as ours. From the results in Table VI, DeepRank exceeds
DeepCluster by 0.3%, 0.2%, 0.7%, and 0.8% in the modalities
of joint, bone, motion, and ensemble on average, proving the
effectiveness of DeepRank. One can find that DeepCluster is
sensitive to n and needs careful and intensive tuning. Notably,
large n does not improve performance on this dataset, and
increases the time required for the clustering process. Besides,
the optimal cluster number n varies with modalities, so the
ensemble results of DeepCluster are hard to achieve the best.
That explains why studies like [64], [65] perform tedious ex-
periments to determine the minimum while insensitive number
of clusters on their datasets, which in contrast, underscores the
advantages of ours. Instead, DeepRank does not need such a
parameter tuning and is thus much more efficient.

TABLE VII
COMPARISON OF SEMI-SUPERVISED (10% TRAINING DATA)
PERFORMANCE (%) ON THE NTU RGB+D DATASET. * INDICATES THE
RE-IMPLEMENTED RESULTS IN [9].

Method Backbone X-Sub  X-View
MCC [8] 55.6 59.9
CPM [52] 73.0 77.1
3s-AimCLR [63] 78.2 81.6
35-HiCLR [58] STGEN 796 840
3s-DeepRank (ours) 80.1 83.2
3s-MV-DeepRank (ours) 80.7 84.5
CrosSCLR* [51] 71.0 75.1
AimCLR* [63] 70.2 76.2
SkeletonMAE [9] 73.0 76.9
DeepRank (ours) STTFormer 74.6 78.5
MV-DeepRank (ours) 74.9 78.9
3s-DeepRank (ours) 79.4 83.5
3s-MV-DeepRank (ours) 79.8 83.8

Besides, we visualize the features extracted by the encoder
well-trained in DeepCluster with n = 8 and DeepRank on
NTU RGB+D in the modality of bone (Fig. 7). We randomly
choose one of the clusters grouped by DeepCluster and get
the corresponding ground-truth labels for each sample inside
it. Statistical analysis shows that the two categories with the
highest number of samples in this cluster are “falling down”
and “stand up”. Then, we visualize the samples with these
two ground-truth labels in this cluster using t-SNE. Obviously,
since these samples are clustered into the same group and
assigned the same pseudo label in DeepCluster, their features
are pulled together during the pretraining stage and thus
become indistinguishable. Meanwhile, the features learned
by our framework are still distinguishable across different
categories and more suitable for downstream tasks.

falling down
stand up

Fig. 7. t-SNE visualizations of learned features on NTU RGB+D in
the modality of bone from the encoders trained in DeepCluster (left) and
DeepRank (right). For better visualization, we only visualize the samples
(left) from the two categories with the highest number of samples in a
randomly chosen cluster from DeepCluster (n = 8). The right figure plots
the corresponding features learned by DeepRank.

The semi-supervised results that employ the same backbone
networks as ours are presented in Table VII. Specifically, we
finetune our self-supervised pretrained model with only 10%
training data. When deploying ST-GCN as the encoder, the
proposed MV-DeepRank significantly outperforms the state-
of-the-art models while DeepRank performs nearly the same
as the second. Meanwhile, a large gain is achieved when
deploying STTFormer as the encoder. Compared with the
previous methods [9], [51], [63], both DeepRank and MV-
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TABLE VIII
COMPARISON OF TRANSFER LEARNING PERFORMANCE (%) ON THE
PKU-MMD II DATASET.

Method Pretraining Dataset Backbone

ST-GCN  STTFormer

Supervised - 48.2 55.5

NTU-60 54.7 58.8

DeepRank NTU-120 56.4 58.9

PKUMMD I 55.0 58.5

NTU-60 56.0 59.8

MV-DeepRank NTU-120 55.1 59.1

PKUMMD I 60.1 60.3

DeepRank largely improve the semi-supervised results, veri-
fying the effective representation of our proposed frameworks.

We also evaluate the transferability of the proposed frame-
works in Table VIII. Concretely, we first pretrain the en-
coder on the source datasets, i.e., NTU RGB+D and NTU
RGB+D 120, and then finetune it on the target dataset, i.e.,
PKU-MMD II. Compared to training from scratch, pretrain-
ing brings performance improvements ranging from 6.5% to
11.9% for the downstream task on PKU-MMD II when using
ST-GCN as the encoder. Moreover, compared to our ST-
GCN-based frameworks, STTFormer-based ones exhibit better
performance (+0.2%~4.1%) after large-scale pre-training on
three datasets. The learned representation by our frameworks
is shown transferable and versatile across datasets.

90
CPM(w/0. PM)
74.95

70 69.15 67.82
63.01

CPM DeepCluster DeepRank

3500 52.90

45.29 43.69 Lo
404 - 39.80

2075 3247
| 29.75 29.10
30 26.03

True Positive Rate (%)

1636 15.10

NTU-XSub NTU-XView NTU120-XSub NTU120-XSetup

Fig. 8. Precision of positive instances.

Moreover, following CPM [52], a contrastive learning-based
method with positive sample mining, we evaluate how well the
non-self positives are recognized in DeepRank and DeepClus-
ter. Specifically, for DeepRank, we calculate the precision of
true positives in triplets during one epoch. As for DeepCluster
(with n=256), the most frequent ground-truth label within each
cluster is assigned as its representative label, and we calculate
the proportion of correctly clustered samples accordingly. As
shown in Fig. 8, DeepCluster exhibits a low true-positive
rate, suggesting that the clusters are highly mixed and contain
samples from different categories. Consequently, the pseudo-
labels generated by DeepCluster are of poor quality, which
undermines the effectiveness of self-supervised learning. In
contrast, DeepRank identifies much more true positives than
others, indicating that our self-supervisions are more accurate,

TABLE IX
GENERALIZING DEEPCLUSTER AND DEEPRANK TO THE CIFAR-100
DATASET [67].

Method CIFAR-100 Top-1 Accuracy (%)
DeepCluster (n = 16) 65.4
DeepCluster (n = 32) 65.3
DeepCluster (n = 64) 64.3
DeepCluster (n = 128) 64.8
DeepCluster (n = 256) 64.8
DeepCluster (n = 512) 64.6
DeepCluster (Avg.) 64.9
DeepRank (ours) 66.0

so the learned representations for different classes are discrim-
inative.

Additionally, we demonstrate the generalization capacity
of the proposed self-supervised framework, DeepRank, on
image data. In particular, we pretrain ResNet-18 [66] encoders
using both DeepRank and DeepCluster on the CIFAR-100
dataset [67]. The pretraining and finetuning settings are consis-
tent with those described in Section V-B. The only difference
is in the fine-tuning phase, where the initial learning rate is set
to 0.1 and decayed by a factor of 10 at 50% and 75% of the
total 100 training epochs. The experimental results, presented
in Table IX, demonstrate that DeepCluster requires extensive
tuning of the number of clusters, n, to achieve competitive
performance. In contrast, DeepRank achieves superior results
with greater efficiency.

VI. CONCLUSION

In this paper, we propose a novel self-supervised learning
framework, DeepRank, to better model the skeleton sequences.
Rather than classifying samples into specific pseudo cate-
gories, we rank skeleton sequences according to the distances
among their features. Meanwhile, since different modalities
of skeleton sequences own distinct similarity distributions,
we further devise three diverse views of self-supervisions,
incorporating information from multiple modalities in three
different ways. Then, we explicitly and concurrently super-
vise the encoders with them, encouraging the encoders to
learn the hidden similarity clues more complementarily and
comprehensively. We conduct extensive experiments on four
various benchmarks under three evaluation settings. Visual and
quantitative results show that the proposed frameworks are
robust, general, and effective. We hope this simple but effective
framework can bring more inspiration for future research.
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