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Abstract—Numerous existing deep learning models for time
series classification (TSC) tend to overlook the intricate interplay
between higher- and lower-level semantic information. While the
focus is often on extracting higher-level semantics from lower-
level sources, the reciprocal influence of lower-level information
on higher levels is undervalued. To address this, we propose
an ensemble transitive bidirectional decoupled self-distillation
(ETBiDecSD) method for TSC. ETBiDecSD enhances the ro-
bustness of higher-level semantic information using an average
feature ensemble method to amalgamate the output from each
level. Simultaneously, the integrated features are transmitted
to each lower level through a directional decoupled distillation
structure. Additionally, to promote deep interaction between
higher- and lower-level semantic information, ETBiDecSD in-
troduces a transitive bidirectional decoupled distillation struc-
ture, facilitating the transfer of target-class and non-target-
class knowledge between higher and lower levels. Experimental
results demonstrate that whether a fully convolutional network
(FCN) with four convolutional blocks or InceptionTime with four
Inception blocks is used as the baseline, ETBiDecSD outperforms
a quantity of well-established self-distillation algorithms across
85 widely used UCR2018 datasets, as evidenced by the metrics
‘win’/‘tie’/‘lose’ and avg. rank, which are derived from accuracy
and F scores. Notably, when compared to a non-self-distillation
FCN, ETBiDecSD achieves ‘win’/‘tie’/‘lose’ results of 64/4/17 in
terms of accuracy and 65/4/16 in terms of F; score. Similarly, in
comparison to a non-self-distillation InceptionTime, ETBiDecSD
attains ‘win’/‘tie’/‘lose’ results of 60/12/13 for accuracy and
57/12/16 for F score.

Index Terms—Data Mining, Deep Learning, Knowledge Dis-
tillation, Representation Learning, Time Series Classification

I. INTRODUCTION

IME series data represents a sequential arrangement of
data points correlated with univariate or multivariate
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time-dependent variables. This type of data finds extensive
applications in diverse domains, including stock prediction
[1]], signalized traffic corridor [2], emitter identification [3],
malware traffic classification [4], anomaly detection [5], elec-
troencephalogram analysis [6], and intelligent diagnosis [7].
Effectively capturing both local and global patterns within data
is imperative for the success of any time series classification
(TSC) algorithm across diverse feature types [8]], [9].

Since Wang et al. [10] proposed the multilayer perceptron
(MLP), residual network (ResNet), and fully convolutional
network (FCN) architectures, the TSC community has wit-
nessed the proliferation of numerous deep learning algorithms.
Unlike traditional algorithms, e.g., dynamic time warping
(DTW)-based algorithms [11]], deep learning algorithms pri-
oritize discerning potential connections among representations
through the construction of an internal representation hierarchy
within the data [12]]. Broadly categorized into two design
structures are these algorithms: single-network-based mod-
els and dual-network-based models. A single-network-based
model typically employs a single (often hybridized) network
to capture significant relationships within the internal hier-
archy, such as ConvTimeNet [13|], adversarial joint-learning
algorithm based on recurrent neural network (RNN) [[14f], and
InceptionTime [15]]. Conversely, a dual-network-based model
integrates two concurrent networks: a local-feature extraction
network and a global-relation extraction network. The former,
typically grounded in convolutional neural networks (CNNs),
concentrates on local feature extraction, while the latter is
dedicated to capturing interconnections among the previously
extracted features. The long short-term memory (LSTM)-FCN
with an LSTM-based network and a FCN [16], the robust
neural temporal search network integrating a temporal search
network and an attentional LSTM-based network [[17], and
SelfMatch comprising a ResNet and an attentional LSTM-
based network [18] are paradigmatically categorized as dual-
network-based models.

Nevertheless, a significant shortcoming observed in numer-
ous deep learning models for TSC is their failure to thoroughly
introspect structural complexities. The efficacy of a learning
model often hinges upon the quality of both higher- and lower-
level semantic information within the representation hierarchy
[19]. The derivation of higher-level semantic information from
lower levels is a well-established fact. In updating their param-
eters, learning models typically employ the backpropagation
(BP) method, where the updates at lower levels are affected
by those at higher levels [20]]. In other words, higher-level
semantic information can exert a certain degree of influence



on lower-level semantic information. Consequently, existing
frameworks often fail to simultaneously preserve the richness
of higher-level semantics and reinforce the representational
quality of lower-level features. This limitation results in an
incomplete knowledge transfer process, constraining the depth
of learned temporal dependencies. In addition, the absence
of systematic mechanisms to jointly exploit knowledge from
both target and non-target classes creates a critical bottleneck,
leaving the interplay of these two complementary information
streams largely underexplored. These two issues, i.e., the in-
sufficient bidirectional interaction between hierarchical levels
and the underutilization of non-target class knowledge, form
the central challenges that this work aims to resolve.

Recently, self-distillation has gained extensive traction
within the knowledge distillation (KD) community. Diverg-
ing from other KD methods, e.g., dense cross-layer mutual
distillation [21] and factor transfer distillation [22], requiring
external knowledge introduction, the self-distillation approach
uniquely assigns the model a dual role as both student and
teacher simultaneously. This method aims to uncover the in-
tricate relationships between higher- and lower-level semantic
information within the model, fostering knowledge exchange
within the model itself, ultimately leading to regularization
[23]. For instance, Zhang et al. [24]] introduced a be your own
teacher distillation method, namely BYOT, aiming to transfer
the output level’s knowledge to lower-level output. In [25], a
feature self-distillation refinement approach was designed to
foster the knowledge from the self-teacher network to a refined
classifier network. In [26], a progressive self-label approach,
namely ProSelfLC, was employed to minimize the regular-
ization entropy during knowledge transfer. In [27], two self-
distillation architectures using transitive and densely connected
methods were used to facilitate hierarchical knowledge transfer
within the model. Notably, most self-distillation algorithms
above have several limitations:

o Existing algorithms predominantly focus on a unidirec-
tional flow of knowledge from higher to lower levels
of semantic representation. This approach overlooks the
critical reciprocal influence that lower-level semantic
information can exert on higher-level features. Such an
oversight restricts the potential for a more nuanced un-
derstanding of data, as demonstrated by methodologies
such as BYOT and transitive distillation.

o Furthermore, these frameworks tend to prioritize knowl-
edge associated with target classes, often neglecting
the significant “dark knowledge” inherent in non-target
classes. The effective harnessing of this latent knowledge
is essential for enhancing the overall KD’s efficiency, as it
offers invaluable insights that enrich model training [[28]].

o To mitigate the aforementioned limitations, Xiao et al.
[29] introduced a self-bidirectional decoupled distilla-
tion approach, termed Self-BiDecKD, which promotes
the exchange of semantic information between non-
target and target classes. However, akin to other self-
distillation algorithms, including BYOT and ProSelfL.C,
Self-BiDecKD largely depends on the output layer of
the model as the primary source of higher-level se-

mantic information. This dependency inherently restricts
the richness of the acquired higher-level features. As
indicated by BP principles, the limited richness of higher-
level information can adversely impact the quality of
lower-level semantic representations. Consequently, both
lower- and higher-level semantic information may suffer
in quality, hindering the effective learning of rich repre-
sentations and regularizations from the data.

« Moreover, research into the interplay of knowledge flows
between target and non-target classes in self-distillation
for TSC remains remarkably sparse, highlighting a critical
gap in the literature that warrants further exploration.

To overcome these challenges, we propose an innovative
approach: the ensemble transitive bidirectional decoupled self-
distillation (ETBiDecSD) method for TSC. ETBiDecSD is
specifically designed to (i) enrich higher-level semantic rep-
resentations by integrating multi-level outputs through an
average feature ensemble mechanism, thereby alleviating the
limitations of relying solely on final-layer features, and (ii)
establish a dual-stream distillation strategy that simultaneously
supports directional top-down transfer and transitive bidirec-
tional interaction, ensuring that both target and non-target class
knowledge are effectively exchanged across hierarchical levels.
Through this design, ETBiDecSD directly addresses the dual
challenges of semantic degradation and incomplete knowledge
utilization.

The major contributions of this work are summarized below:

1) To address the insufficient interaction between hierarchi-
cal levels observed in prior methods, we design a transitive
bidirectional decoupled distillation framework. This mecha-
nism enables holistic knowledge circulation between higher-
and lower-level representations, ensuring that both target and
non-target class information are actively leveraged, thereby
enhancing representational richness and learning stability.

2) To mitigate the over-reliance on output-layer features
in existing self-distillation methods, we introduce an average
feature ensemble strategy. By synthesizing intermediate and
higher-level representations, this approach strengthens seman-
tic robustness and preserves diverse temporal cues across
multiple layers.

3) To validate the effectiveness and generality of ET-
BiDecSD, we integrate it with two representative TSC back-
bones (FCN and InceptionTime) and conduct extensive eval-
uations on 85 UCR2018 datasets. The results consistently
demonstrate that ETBiDecSD achieves superior performance
compared to a quantity of state-of-the-art self-distillation base-
lines, underscoring its broad applicability and competitive
advantage in real-world TSC tasks.

This paper proceeds listed below: Section II provides an
extensive review of classical TSC and KD algorithms. Subse-
quently, Section III outlines the ETBiDecSD’s fundamental
components. Finally, the experimental analysis and conclu-
sions are presented in Sections IV and V, respectively.

II. RELATED WORK

This section provides an overview of several existing algo-
rithms in the fields of TSC and KD.



A. Time Series Classification Algorithms

Below, we provide a review of a diverse array of traditional
and deep learning algorithms.

1) Traditional Algorithms: In the realm of TSC, traditional
algorithms predominantly fall into two categories: distance-
based and feature-based methods. Distance-based algorithms
aim to detect notable distinctions between individual samples.
Notable examples of such algorithms include nearest neighbor
(NN) and dynamic time warping (DTW) [[11]. Notable exam-
ples include dependent DTW (DTWp), independent DTW
(DTWry), and adaptive DTW (DTW 4). The integration of
ensemble algorithms based on NN and DTW has gained
traction in TSC, reflecting emerging trends in the field. For
instance, in [30], an elastic ensemble structure integrated 11
classical classifiers, such as time warp with edit and weighted
DTW, for feature extraction. In [31]], a transformation-based
ensemble (COTE) approach incorporated several typical classi-
fiers considering the change and time transformation to address
various TSC challenges. A hierarchical method based on
probabilistic voting with COTE called HIVE-COTE achieves
commendable performance across 85 benchmark TSC datasets
[30]. The two representative distance-based algorithms are im-
proved HIVE-COTE [32], and explainable-by-design ensemble
methods [|33]].

Feature-based models are designed to extract representative
representations from the input data. Such as, in [34]], a model
with hidden-unit logistic was introduced to extract temporal
dependencies within time series data. In [35]], an autoregressive
method based on forest ensemble was used for hierarchical
relation extraction. Baydogan and Runger [36]] designed an
auto-pattern approach to extract local dependencies in the data.
A symbol method using Fourier approximation and bag of
symbolic was presented for spatial feature extraction [37]. To
overcome feature selection and weighting challenges, a word
extraction method with multivariate unsupervised symbols and
derivatives was generated [38]. Wu er al. [39] devised a
cognitive map approach based on fuzzy technique, sparse auto-
encoder, MLP, and high-order cognitive map, for representa-
tion learning in time series. In [40|], an online method based
on rule-based classifier learning was used to mine the connec-
tions in unlabeled multivariate time series. In [41]], a fuzzy-
probabilistic algorithm with representation learning achieved
decent performance on 25 TSC benchmark datasets. Zhang
and Xiao [42] introduced a time series measurement method
with belief Rényi divergence to measure the divergence of time
series divergence. In [43], a order-preserving pattern mining
algorithm was proposed to discover the top-k contrast patterns
as time series shapelets.

2) Deep Learning Algorithms: Designed to construct a
hierarchical data representation, deep learning algorithms aim
to unearth underlying relationships among representations.
Within this framework, two prominent research methodologies
in deep learning are single-network-based and dual-network-
based models. A single-network-based model typically em-
ploys a single (often hybridized) network to capture notable
regularizations within the representation hierarchy. Such as, in
[44], a multi-relationship extraction approach captured time-

series-to-class and inter-time-series relationships, enabling dis-
criminative embeddings. In [45] , a multi-scale capture net-
work was used to capture multi-scale dependencies in time
series. In [46], a feature extraction model based on dual
attention captured local features and global relationships from
the data. A shapelet model with feature embedding searched
discriminative shapelets in time series [47]]. An approach using
random convolutional kernel called ROCKET was introduced
for feature extraction [48]]. Building upon ROCKET, Dempster
et al. [49] introduced an enhanced variant termed Improved
ROCKET (mini-ROCKET) to expedite feature and relation
extraction in time series. Representative single-network-based
models encompass FCN [10], MLP [[10]], InceptionTime [15],
ConvTimeNet [[13[], ResNet [10], learnable dynamic temporal
pooling [50], log-Sigmoid activation-based LSTM [51],
similarity-based self-supervised representation learning model
[52], clustering time series model based on untrained deep
neural networks [53]], dynamic graph attention autoencoder
[54], ROCKET-based ensemble predictor [55], deep con-
trastive representation learning model based on self-distillation
[56], and adversarial joint-learning RNN [14]. Conversely,
in a dual-network-based model, two feature networks are
typically integrated in parallel: one dedicated to local-feature
extraction and the other to global-relation extraction. The
LSTM-FCN [16], RTEN [57], ResNet-Transformer [58|, at-
tentional prototypical network [59], SelfMatch [18]], densely
knowledge-aware network [60], and RNTS [17] are classical
dual-network-based methods.

Numerous deep learning models fail to account for the
dynamic interaction between higher- and lower-level semantic
information within the representation hierarchy. While there
is a strong focus on extracting higher-level semantic infor-
mation from lower-level sources, the reciprocal influence of
lower-level information on higher levels is often neglected.
In practice, higher and lower-level semantic information mu-
tually influence each other during the learning process. To
address this gap, we introduce ETBiDecSD, a model explicitly
designed to enhance and facilitate the deep interaction and
transfer between higher and lower levels.

B. Knowledge Distillation Algorithms

The learning schemes of KD can be broadly categorized
into three main types depending on whether a teacher is
updated simultaneously with a student: offline distillation,
online distillation, and self-distillation [23]].

1) Offline Distillation: The majority of previous KD meth-
ods operate in an offline manner. In vanilla KD [61]], knowl-
edge transfers from a pre-trained teacher to a student in two
stages: (1) the teacher is trained, and (2) it guides the student’s
training. The offline methods mainly focus on improving var-
ious aspects of knowledge transfer, encompassing the design
of knowledge [61]], [[62] and the formulation of loss functions
for matching features or distributions [63], [64]], [65], [66],
[67]. The offline distillation methods typically entail one-way
knowledge transfer and a two-phase training process. However,
they often encounter challenges related to the employment of
a complicated, large-scale teacher model with lengthy training



L ZOTELE » Bidirectional Decoupled Distillation

Average Feature Ensemble

1
- + =
e 3G % - HD-H
1
v v N
IKLI *IKLI‘IKLI *IKLI‘EIK‘LI R S ———— )
v
Classifier 1 Class1ﬁer 2 Clas51ﬁer 3
Target Non-Target Target Non-Target Target Non-Target
t t t t t t
Dense Layer Dense Layer Dense Layer
AveragePool AveragePool AveragePool

i

—{ Stage 1 }——{ Stage 2 }——{ Stage 3 }——{ Stage 4

>
:
S
g
=K

LNdNI

Fig. 1.

Q
12
8
2.
=
@
]
N

.
g =
a -
c z
& g
8 hE

]

<8

Schematic diagram of ETBiDecSD. Schematic diagram of ETBiDecSD. The overall framework illustrates how raw time series are progressively

processed through multi-level feature extraction, ensemble integration, and decoupled distillation to enable refined semantic transfer across different layers.
ETBiDecSD integrates outputs across all levels using the average feature ensemble method to enrich higher-level semantic information, which is then conveyed
to lower levels through directional decoupled distillation. It also employs transitive bidirectional decoupled distillation to enhance semantic exchange between
higher and lower levels for both target and non-target classes. Both directional and bidirectional decoupled distillation approaches utilize the Kullback-Leibler

(KL) divergence function to facilitate interactions between classes. Note:
non-target classes of a given classifier, respectively.

durations. While training the student in offline distillation is
typically efficient under the teacher’s guidance, a capacity
gap persists between the complicated teacher and the simple
student. Consequently, the student heavily relies on the teacher.

2) Online Distillation: To mitigate the drawbacks existed
in offline distillation, online distillation is introduced to bol-
ster the student’s performance, especially in situations where
accessing a high-capacity, high-performance teacher model
is challenging [68]. In online distillation, both the teacher
and student models are updated simultaneously, rendering the
entire KD structure trainable end-to-end. For example, Zhang
et al. |69 introduced a method based on adversarial co-
distillation learning to produce extra diverging image samples.
Kshirsagar and Londhe [70] presented an efficient classifica-
tion method based on convolution and KD for devanagari
script-based P300 speller. Su et al. [71] devised a deep
cross-layer collaborative online distillation learning method
for image recognition. Yang et al. [[72] put forward a mutual
contrastive online distillation learning structure to enhance the
knowledge flow from the large-scale teacher to the small stu-
dent. Su et al. [73|] proposed a synchronous teaching method,
seamlessly integrating online teaching and offline teaching to
facilitate the transfer of rich and comprehensive knowledge to
the student. Online distillation involves a one-phase end-to-end
training approach with efficient parallel computing. However,
existing online methods often face challenges when dealing
with complex teachers in online settings. Therefore, there is
a need for further exploration into the dynamic interactions
between teacher and student models in online scenarios.

3) Self-Distillation: Diverging from the conventional of-
fline and online distillation approaches that necessitate external

‘target’ and ‘non-target’ represent the classification probabilities for the target and

knowledge introduction, self-distillation innovatively endows
the model with a dual role, functioning both as a student
and a teacher. This distinctive methodology seeks to unravel
the intricate relationships between higher- and lower-level
semantic information within the model, promoting internal
knowledge exchange and culminating in effective regulariza-
tion [[74]). The typical self-distillation methods include BYOT
[24], feature self-distillation refinement [25], self attention
distillation [[75]], densely connected distillation [27], ProSelfLC
[26]l, and transitive distillation [27].

Most existing self-distillation algorithms primarily focus
on transferring target-class knowledge between higher and
lower levels in the model. However, these approaches often
neglect the importance of lower-level semantic information
influencing higher-level semantics, as well as the role of non-
target-class knowledge in the overall knowledge flow within
the model. Additionally, there has been limited investigation
into the transfer dynamics of both target-class and non-target-
class knowledge in self-distillation. To address these research
gaps, we propose ETBiDecSD to facilitate deep interaction
between higher- and lower-level target-class and non-target-
class semantic information in the model.

III. METHOD

This section begins by providing an overview of the ET-
BiDecSD architecture and defining the problem formulation.
It concludes with an introduction to two crucial components
(i.e., average feature ensemble and transitive bidirectional
decoupled distillation) and loss function of ETBiDecSD.



A. Overview

ETBiDecSD establishes a holistic workflow that begins
with raw time series input and advances through a four-layer
feature extraction backbone, designed to progressively capture
increasingly abstract temporal patterns. These extracted repre-
sentations are then aggregated by the average feature ensemble
method, producing enriched higher-level semantics that encap-
sulate comprehensive contextual information. Once enriched
features are obtained, they are transmitted to lower levels
via directional decoupled distillation, thereby reinforcing hi-
erarchical information flow and improving the representation
capacity of lower-level layers. To further strengthen this in-
teraction, ETBiDecSD incorporates transitive bidirectional de-
coupled distillation, which enables reciprocal semantic transfer
between higher and lower levels. This dual mechanism ensures
that both target and non-target class probabilities are simulta-
neously refined, promoting balanced and nuanced knowledge
propagation. As summarized in Fig. [T} the entire process
creates a tightly coupled system in which feature extraction,
ensemble integration, and decoupled distillation operate in
concert. By explicitly modeling inter-level dependencies and
facilitating semantic interactions across classes, ETBiDecSD
provides a coherent and systematic approach for enhancing
TSC performance and generalization.

B. Problem Formulation

Let z; {14, 71'l17d}, e {ac;’l, . ,xf}d}} e X
represent the i-th input instance, where X C R!*d gtands for
the input space. The parameters [ and d represent the length
and dimension of x;, respectively. The associated categorical
label of z; is denoted by y; € ), where ) is the target label
space. The goal is to derive a predictive model F : X — Y
using the dataset D = {Ditrain, Dvais Diest - The training
set is Dypgin = {®i, v}, the validation set is Dyq =
{zi,yi}iq", and the testlng set is Dyest = {i, yi fitet. The
cardinalities of the training, validation, and testing sets are
denoted by nyrqins Nvals and ngeq, respectively.

Let Of = [0f,,0!,,...,0! ;] € R™Y, where i =
1,2,...,Nyain, denote the ¢-th output vector of Classifier
t, with ¢ = 1,2,3,4 and C representing the number of
classes. Let Pf = [Pf,, Pl,,...,Pl] € R represent the
classification probabilities for the target classes, and Pt\
[PZ.7\17P1.’\27 .. .,PZ.’\C] € R denote the probabilities for
the non-target classes corresponding to O!. Here, Pifj € P!
and P!, . € Pi\, for j = 1,2,...,C, are as defined in Eq.

. i,\J
t exp(Of’j/T)
VYL eap(O},/T)
Pit\j _ Zri:é,mgéj exp(Of’m/T)
)' >k €zp(0; /T)

where, T' is a temperature scaling coefficient, with a specific
value of T' = 1.0 set for the experiments conducted in this
paper. For a more comprehensive discussion, please refer to
Subsection IV-C.

(D

C. Average Feature Ensemble

Unlike Self-BiDecKD [29]], which connects only the final
layer’s output to lower-level blocks, the average feature ensem-
ble method adopts a more integrative strategy by consolidating
outputs from all levels. This approach enhances the richness of
higher-level semantic information and addresses a significant
limitation of Self-BiDecKD, which risks overlooking valu-
able insights from intermediate layers. By transmitting these
integrated features downward through directional decoupled
distillation, the average feature ensemble method enables a
more thorough extraction of semantic knowledge. This strat-
egy not only cultivates a nuanced understanding within the
model but also facilitates more effective knowledge transfer,
thereby enhancing the overall performance of the proposed
ETBiDecSD. Its structure diagram is presented in Fig. [T}

The average feature ensemble method integrates the output
from each level to improve the robustness of higher-level
semantic information. Let PAFE and PA\F £ present the
classification probabilities of target and non-target classes of
the integrated features related to x;, respectively. They are
defined as:

4
1
AFE __ t
PAE = 1) P
o @
1
AFE _ t
PN =D Pi
t=1

The directional decoupled distillation transfers the inte-
grated features to each lower level in the model. £y is
comprised of a target-class loss, L ppp, and a non-target-
class loss, L' p 7. as computed in Eq. .

Liapp =alyppr + BLYrpNT
3
=ay KL(P,PAP) +BZKL W PAT)

3)
where, « and 3 denote the weights of £% .o and LY g pyrs
respectively. K L() is the Kullback Leibler (KL) loss function.
Following the recommendation from prior studies [28], [29],
we fix a to 1.0. Additionally, guided by the experiments,
this paper sets [ to 1.0. For further details, please refer to
Subsection IV-C.

D. Transitive Bidirectional Decoupled Distillation

The transitive bidirectional decoupled distillation enables
reciprocal knowledge transfer between higher and lower levels,
extracting hidden knowledge from both the target and non-
target classes, as depicted in Fig.

The transitive bidirectional decoupled distillation loss quan-
tifies the disparity between the classification probabilities
of target classes from two specified classifiers, as well as
the difference in the classification probabilities of non-target
classes from the same classifiers. Let L,y represent
the transitive bidirectional decoupled distillation target-class
loss of x;, and Ei;p gpnr denote the transitive bidirectional
decoupled distillation non-target-class loss of x;.



Lipppr is calculated in Eq. (@).

Lrpppr = KL(P}, P?) + KL(P}, B') + KL(P}, P?)
+ KL(P?,P})+ KL(P?,P})+ KL(P}, P})
€]

i : .
L% ppnr is defined as:

Lrppnr = KL(P)\, P}\) + KL(P}\, P}\) + KL(P}\, P}\)

feature ensemble loss, £4rg, and the transitive bidirectional
decoupled distillation loss, L7rppp, as articulated in Eq. @)

Lxp =Lare+ LTBDD

1 Ntrain ; ; (9)
= Z (Lars + LTBDD)

Nitrain i—1

where, L%, and L5, denote the average feature en-

+ K L(P? 0 P} N+ K L(P? \,P VK L(P} A\ P2\) semble and transitive bidirectional decoupled distillation

®)
Lhppp is a comprehensive integration of L4, and
L% 5 pn7e Weighted by their respective coefficients, as defined

in Eq. (6

oD = oLrpppr + BLYepNT (6)

where,  and 3 are the weights of L% 5 and Loppyrs
respectively. In alignment with the preceding discussion in Eq.
, « is fixed at 1.0, while 3 is similarly determined to be
1.0, based on empirical findings. For additional details, please
refer to Subsection IV-C.

E. Loss Function

Like other self-distillation algorithms [24], [25]], [26], [27],
ETBiDecSD employs a fixed coefficient to integrate multiple
loss functions for parameter optimization. The loss function
of ETBiDecSD is primarily divided into two components.
The first is a supervised loss, L,,, which uses ground
truth labels to constrain the predictions of ETBiDecSD. The
second is a KD loss, Lxp, which combines various self-
distillation functions to facilitate deep interaction between
higher- and lower-level semantic information, both for target
and non-target classes, within the model. The ETBiDecSD’s
loss function, £, is defined as:

L =(1 = p)Loup + pLcp + A|0]|2 )

where, p represents a coefficient of £, A is the coefficient of
||0]|3 (i-e., Lo regularization), and 6 denotes the ETBiDecSD’s
parameters. Following [24], [25]], [26], [29], we set u = 0.1
in the experiments. To further understand £, we provide a
detailed description of its two components: the supervised loss
(Lsup) and the KD loss (Lg p) in the following subsections.
1) Supervised Loss: Ly, represents the aggregate super-
vised losses across the four classifiers and the average feature
ensemble. Each supervised loss leverages the cross-entropy
loss function, CE(), which measures the divergence between
the ground truth labels and the predicted outcomes. The
comprehensive definition of L, is provided in Eq. (8).

Ntrain

Z ZCE ' yi) + CE(PATE 4)))
- ®)

Esup

nt'r ain

where, y; is the ground truth label related to x;.

2) KD Loss: The loss function Ly p facilitates a pro-
found interaction between higher- and lower-level semantic
information for both target and non-target classes within the
model. It comprises two distinct components: the average

losses associated with each training instance z;, where ¢ =
1,2,...

s Ntrain.

TABLE I
THE PARAMETER SETTINGS OF FCN.

Stage No.  LayerName  KernelSize  ChannelSize  StrideSize

ConvlD 11 128 1

1 BatchNorm - 128 -
ReLU - - -

ConvlD 13 128 1

2 BatchNorm - 128 -
ReLU - - -

ConvlD 11 256 1

3 BatchNorm - 256 -
ReLU - — -

ConvlD 11 256 1

4 BatchNorm - 256 -
ReLU - — -

TABLE II

THE PARAMETER SETTINGS OF INCEPTIONTIME.

ChannelSize  StrideSize
32 1
32
32
32
32
32

Stage No. LayerName KernelSize
ConvlD
ConvlD
ConvlD
ConvlD
1 ConvlD
ConvlD
Maxpooling1D
BatchNorm
ReLU
ConvlD
ConvlD
ConvlD
ConvlD
2 ConvlD
ConvlD
Maxpooling1D
BatchNorm
ReLU
ConvlD
ConvlD
ConvlD
ConvlD
3 ConvlD
ConvlD
Maxpooling1 D
BatchNorm
ReLU
ConvlD
ConvlD
ConvlD
ConvlD
4 ConvlD
ConvlD
Maxpooling1 D
BatchNorm
ReLU
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IV. PERFORMANCE EVALUATION AND ANALYSIS

This section initially elucidates the experimental setup and
outlines the performance metrics employed. Subsequently, it
delves into the exploration of hyper-parameter sensitivity and
presents the findings of an ablation study. Finally, the section
conducts a comprehensive analysis of the experimental results.



A. Experimental Setup

1) Data Description: Consistent with prior studies [15]],
[47], [48]], [49], we opt for 85 extensively employed datasets
sourced from the UCR 2018 archive [/6]. These datasets
analyzed display a considerable range of characteristics. The
lengths of the time series span from a minimum of 24 to a
maximum of 2709. The number of classes varies significantly
as well, ranging from as few as 2 to as many as 60. Further-
more, they encompass a diverse array of domains, including
motion, electroencephalogram (EEG), and electrocardiogram
(ECG), underscoring their broad applicability and utility in
various research contexts.

2) Baseline: In this paper, we adopt two well-established
baselines: FCN [10] and InceptionTime [15]]. Specifically,
FCN is composed of four convolutional blocks for feature ex-
traction. Each convolutional block consists of a 1-dimensional
convolutional neural network (ConvlD) layer, a batch nor-
malization (BatchNorm) module, and a rectified linear unit
(ReLU) function. The parameter settings of FCN are detailed
in Table [Il On the other hand, InceptionTime comprises four
Inception blocks designed to capture multi-scale dependencies
in time series data. Each Inception block includes five ConvlD
layers and one Maxpooling block in parallel. The parameter
settings of InceptionTime are detailed in Table

3) Implementation Details: In this paper, the BatchNorm
decay value is set to 0.9. To mitigate overfitting during train-
ing, Lo regularization is employed. Additionally, the Adam
optimizer is utilized with an initial learning rate of 0.001, and
both the decay and momentum term values are set to 0.9.

All experiments are run with a computer with Python 3.6,
an AMD central processing unit (CPU) R1400, Pytorch 1.3.1,
32GB memory, an Nvidia graphics processing unit (GPU)
2080Ti, Thop 0.0.31, Scikit-learn 0.24.2, and Numpy 1.16.4.
During the data preprocessing stage, no data augmentation
techniques or specialized preprocessing strategies are applied;
the time series data are directly fed into the model following
standard normalization procedures. In addition, our code is
accessible at https://github.com/xiaozw 1994/ETBiDecSD.

B. Evaluation Metrics

To assess the comprehensive efficacy of ETBiDecSD, we
introduce two distinct metrics: performance metric and effi-
ciency metric. The performance metric is primarily utilized to
gauge the algorithm’s effectiveness in achieving its intended
objectives. Conversely, the efficiency metric is designed to
reflect the operational efficiency of the algorithm, quantifying
the resources expended relative to its performance outcomes.

1) Performance Metrics: To assess the ETBiDecSD’s effec-
tiveness, this study employs two well-established performance
metrics: Accuracy and Fy. Their mathematical definitions are
written below.

Accuracy = Nrp + Nry
Nrp 4+ Npp + Nrn + Npn (10)
F 2 % NTP
1

" 2% Nyp+ Npp + Npw

where, Nyp and Nppy represent the number of true positive
and true negative instances, and Ngpp and Npy stand for the
number of false positive and false negative instances.

Building upon the foundational performance metrics previ-
ously discussed, we introduce two additional refined statistical
metrics: ‘win’, ‘tie’, ‘lose’, and avg. rank. Following estab-
lished methodologies in the literature [[10], [[15[], [16], [17],
[18], [46], [147], [48]], [49]], the metrics ‘win’, ‘tie’, and ‘lose’
quantify the comparative performance of each algorithm by
recording the number of datasets on which it outperforms, ties
with, or underperforms against other algorithms, respectively.
The ‘best’ metric is derived as the sum of the ‘win’ and ‘tie’
values. Further, in alignment with previous studies [10]], [15],
[rel, (171, [18[l, (48], [49], we employ the avg. rank metric
to facilitate comparative analysis of the algorithms based on
their accuracy performance. The avg. rank score is computed
using the Wilcoxon signed-rank test [77], with Holm’s alpha
(5%) correction applied to adjust for multiple comparisons.

2) Efficiency Metrics: When different self-distillation algo-
rithms utilize the same baseline model, the model parameters
and floating point operations (FLOPs) remain unchanged. This
constancy arises because the model parameters and FLOPs are
intrinsically tied to the architecture of the baseline model itself.

Nevertheless, distinct self-distillation algorithms can influ-
ence the training process and resource utilization in various
ways. To effectively compare the efficiency of these self-
distillation algorithms, we introduced four evaluation met-
rics: training time, CPU usage, GPU usage, and memory
usage. These metrics are consistently measured under identical
conditions, including the same training duration, batch size,
and initial values, ensuring the experimental fairness and
reliability, as explained below.

o Training time: The time required to optimize the pa-
rameters of a self-distillation model until satisfactory
performance metrics are achieved.

e CPU usage: This parameter reflects the proportion of
CPU resources consumed by a self-distillation model
during training. It is determined by dividing the CPU
usage of the model by the total CPU capacity.

e GPU usage: This metric indicates the extent of GPU
resources utilized by a self-distillation model during the
training process. It is calculated by the ratio of the GPU
resources occupied by the model to the total available
GPU resources.

e Memory usage: This metric quantifies the memory con-
sumption of a self-distillation model during the training
phase. It is computed as the ratio of the memory usage
of the model to the total available memory.

3) Visual Comparison via Accuracy/Fy Plot: As demon-
strated in previous studies [10[], [15], [16], [17], [18], [46],
[47], 48], [49], we utilize an accuracy/F} plot to illustrate the
performance differences between two algorithms. Each point
in the plot represents the comparative accuracy of algorithms
A and B across various datasets, with the diagonal reference
line y = z indicating equal performance. Points above this
line show that algorithm A outperforms algorithm B, while
those below indicate the opposite. Points on the line reflect
equivalent accuracy.


https://github.com/xiaozw1994/ETBiDecSD

TABLE III
STATISTICAL OUTCOMES OBTAINED FROM DIFFERENT 3 VALUES ACROSS 85 WELL-KNOWN UCR2018 DATASETS.

Baseline Evaluation Metric B
Fundamental Metric | Statistical Metric 0.1 0.5 1.0 2.0 5.0
Best 20 28 39 26 22
Win 10 14 21 9 13
Accuracy Tie 10 14 18 17 9
Lose 65 57 46 59 63
FCN avg. rank 3.7294 2.8706 2.6118 2.8824  2.9059
Best 19 27 38 27 22
Win 9 13 20 10 13
Py Tie 10 14 18 17 9
Lose 66 58 47 58 63
avg. rank 3.8463 29043 2.6425 29123 29315
Best 19 25 36 25 21
Win 9 12 20 11 10
Accuracy Tie 10 13 16 14 11
Lose 66 60 49 60 64
Inception avg. rank 3.9234  2.8126 2.5917 29068 29118
Time Best 18 26 36 25 21
Win 8 12 18 9 12
Py Tie 10 14 18 16 9
Lose 67 59 49 60 64
avg. rank 4.0464  2.8457 2.6222 29370 2.9375
TABLE IV

STATISTICAL OUTCOMES OBTAINED FROM DIFFERENT 1" VALUES ACROSS 85 WELL-KNOWN UCR2018 DATASETS.

Baseline Evaluat‘ion Metr@c ] ] T
Fundamental Metric | Statistical Metric 0.1 0.5 1.0 2.0 5.0
Best 14 24 38 25 15
Win 7 11 21 13 8
Accuracy Tie 7 13 17 12 7
Lose 71 61 47 60 70
FCN avg. rank 43682 3.0251 24313 2.8183 4.1025
Best 14 27 38 27 14
Win 7 13 20 10 5
1 Tie 7 14 18 17 9
Lose 71 58 47 58 71
avg. rank 4.5052  3.0607 2.4599 2.8476  4.1387
Best 13 25 37 24 16
Win 5 12 20 12 8
Accuracy Tie 8 13 17 12 8
Lose 72 60 48 61 69
Inception avg. rank 45293  3.1165 2.4625 2.8834 4.2791
Time Best 13 26 36 25 15
Win 5 12 18 9 7
F Tie 8 14 18 16 8
Lose 72 59 49 60 70
avg. rank 4.6713  3.1531 2.4914 29133 4.3168

To quantify the performance of algorithm A relative to B,
we calculate the ‘win’ value by counting the points above the
y = z line, the ‘tie’ value from points on the line, and the
‘lose’ value from points below it. This visual representation
effectively assesses the relative efficacy of algorithms across
diverse datasets.

C. Hyper-parameter Sensitivity

To analyze the impact of various hyperparameter configu-
rations on ETBiDecSD’s performance, we leverage a compre-
hensive set of 85 UCR2018 datasets.

1) ETBiDecSD with various ( values: As previously men-
tioned, [ represents the weight assigned to the non-target class
loss function. Table [[T]] presents the statistical outcomes from
experiments conducted across 85 widely recognized UCR2018
datasets, evaluating the impact of various 3 values.

The results reveal that a 3 value of 1.0 consistently enhances
the performance of ETBiDecSD in terms of both accuracy and
F score, regardless of whether FCN or InceptionTime is used

as the baseline. Specifically, when InceptionTime is employed
as the baseline, 5 = 1.0 achieves a ‘win’/‘tie’/‘lose’ ratio of
20/16/49 and demonstrates the lowest avg. rank (2.5917) in
terms of accuracy. These findings strongly indicate that g =
1.0 optimizes performance, suggesting its significant value for
a wide range of applications.

2) ETBiDecSD with various T values: T represents the
temperature scaling coefficient used to adjust the prediction
distribution of both the non-target and target classes in each
classifier of ETBiDecSD. Table presents the statistical
outcomes derived from experiments with varying 1" values
across 85 well-established UCR2018 datasets.

Upon evaluating the performance of ETBiDecSD across
different 7" values, it becomes clear that 7" = 1.0 con-
sistently outperforms the other configurations. For instance,
when FCN is used as the baseline and accuracy serves as
the reference metric, 7' = 1.0 achieves the most favorable
‘win’/‘tie’/‘lose’/‘best’ outcomes and also records the lowest
avg. rank. These results underscore the rationale for selecting
T = 1.0, as it delivers the optimal performance across the



TABLE V
STATISTICAL OUTCOMES OBTAINED FROM DIFFERENT pt VALUES ACROSS 85 WELL-KNOWN UCR2018 DATASETS.
Bascline Evaluation Mctr@c _ o
F“‘;Sfm.e“‘al Statistical | ) 02 03 0.4 05 0.6 0.7 0.8 0.9
etric Metric
Best 36 27 18 16 16 4 2 5 4
Win 20 12 8 8 7 7 6 0 1
Accuracy Tie 16 15 10 8 9 7 6 5 3
Lose 49 58 67 69 69 71 73 80 81
FCN avg. rank | 3.4106 3.9433  4.6332 45102 53293 51023 59932 6.2345 6.8324
Best 37 26 18 16 16 3 I 3 3
Win 21 11 8 8 7 6 5 0 0
P Tie 16 15 10 8 9 7 6 5 3
Lose 48 59 67 69 69 72 74 80 82
avg. rank | 3.5247 4.0752 47881 4.6610 55075 52729 6.1936 64430  7.0609
Best 37 28 18 5 4 3 2 5 3
Win 21 13 8 7 6 7 6 0 1
Accuracy Tie 16 15 10 8 8 6 6 5 2
Lose 58 57 67 70 71 72 73 80 82
avg. rank | 3.5002 4.0234 4.6908 4.5663 53956 5.1658 6.0678 63121 69174
Best 36 27 18 5 4 3 10 5 3
Inception Win 20 13 8 7 6 7 5 0 1
Time Fy Tie 16 14 10 8 8 6 5 5 2
Lose 49 58 67 70 71 72 75 80 82
avg. rank | 3.6172  4.1579 4.8477 47190 55760 53385 62707 6.5231 7.1487
n 1.0 a 1.0 s a 1.0
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Fig. 2. Accuracy and F7 score plots highlighting the discernible performance disparity between two given ETBiDecSD variants across 85 well-known

UCR2018 datasets, with the baseline being FCN.

tested scenarios.

3) ETBiDecSD with various (v values: | is a key co-
efficient employed to balance the various loss functions in
ETBiDecSD. Table [V] presents the statistical results from
experiments using different p values across 85 well-known
UCR2018 datasets.

Upon evaluating the performance of ETBiDecSD with vary-
ing p values, it is evident that p = 0.1 yields the highest
‘win’/‘tie’/lose’/‘best’ outcomes and the lowest avg. rank,
outperforming all other configurations. This confirms that p
= 0.1 strikes the optimal balance, enhancing ETBiDecSD’s
performance and making it the most effective setting for the
model.

D. Ablation Study

To assess the crucial components’ efficacy on ETBiDecSD,
we contrast it with three ETBiDecSD variants, detailed below.

o ETBiDecSD w/o DD: ETBiDecSD without the decoupled
distillation.

o ETBiDecSD w/o AFE: ETBiDecSD without the average
feature ensemble.

e ETBiDecSD w/o TBDD: ETBiDecSD without the tran-
sitive bidirectional decoupled distillation.

1) Efficacy of Decoupled Distillation: To assess the efficacy
of decoupled distillation (DD), we compare ETBiDecSD with
ETBiDecSD w/o DD across 85 renowned UCR2018 datasets.
Incorporating DD, while beneficial, introduces additional com-
putational costs. As presented in Table [VI, ETBiDecSD neces-
sitates approximately 21.3471 hours to train on these datasets,
in contrast to 20.2228 hours required by the version without
DD, when the baseline is FCN. Despite this, the integration
of DD significantly enhances model performance, as demon-
strated in Figs. 2] (a)(d) and [3] (a)(d). Specifically, Fig. 3] (a)
shows that ETBiDecSD, with DD, achieves a ‘win’/‘tie’/‘lose’
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Fig. 3. Accuracy and F7 score plots highlighting the discernible performance disparity between two given ETBiDecSD variants across 85 well-known

UCR2018 datasets, with the baseline being InceptionTime.

TABLE VI
STATISTICAL EFFICIENCY OUTCOMES OBTAINED FROM FOUR ETBIDECSD VARIANTS ACROSS 85 WELL-KNOWN UCR2018 DATASETS.

Baseline Efficiency Metric ETBiDecSD w/o DD ETBiDecSD w/o AFE  ETBiDecSD w/o TBDD  ETBiDecSD
Total Training Time (h) 20.2228 19.8356 19.5222 21.3471
FCN Average CPU Usage (%) 21.1249 21.0339 20.8109 22.2994
Average GPU Usage (%) 58.7963 59.3012 58.5698 60.6784
Average Memory Usage (%) 19.5297 19.4473 19.2876 20.1892
Total Training Time (h) 24.6728 23.3664 22.9360 26.0445
Inception Average CPU Usage (%) 21.4622 21.3697 21.1431 22.6554
Time Average GPU Usage (%) 60.8149 60.5582 60.3839 62.8686
Average Memory Usage (%) 20.9606 20.8721 20.6154 21.6684

ratio of 48/14/23 in accuracy compared to its non-DD vari-
ant. This improvement underscores the model’s capability to
utilize both target-class and non-target-class knowledge flows,
thereby capturing complex relationships and latent regularities
within the data. Such findings affirm the substantial perfor-
mance gains attributed to DD, notwithstanding the associated
computational overhead.

2) Efficacy of Average Feature Ensemble: To evaluate the
impact of the average feature ensemble (AFE), we compare
ETBiDecSD with ETBiDecSD w/o AFE across 85 widely rec-
ognized UCR2018 datasets. While integrating AFE introduces
additional computational overhead, as evidenced by increased
CPU and GPU resource utilization in Table [V1] it significantly
enhances model performance. Figs. |Z| (b)(e) and |§| (b)(e)
demonstrate that AFE substantially enriches the higher-level
semantic information within ETBiDecSD. This enhancement
results in notable performance improvements compared to
the model without AFE. Specifically, Figs. [2] (b) and [3] (b)
show that ETBiDecSD with AFE achieves ‘win’/‘tie’/‘lose’
results of 54/19/12 and 43/17/25 in accuracy, respectively,
when evaluated against FCN and InceptionTime baselines.
These results underscore the effectiveness of AFE in capturing
complex data patterns and improving accuracy, despite the
associated increase in computational demands.

3) Efficacy of Transitive Bidirectional Decoupled Distil-
lation: To validate the efficacy of transitive bidirectional
decoupled distillation (TBDD), we compare ETBiDecSD with
ETBiDecSD w/o TBDD across 85 well-known UCR2018
datasets. As detailed in Table the inclusion of TBDD
increases computational resource overhead for ETBiDecSD,
leading to longer training times and higher CPU and memory
usage. However, the integration of TBDD significantly en-
hances the interaction between higher and lower levels within
the model, resulting in improved overall performance. For in-
stance, Figs. |Z| (c) and|§| (c) depict the accuracy of ETBiDecSD
versus ETBiDecSD w/o TBDD, using FCN and InceptionTime
as baselines. ETBiDecSD with TBDD demonstrates superior
performance, achieving ‘win’/‘tie’/‘lose’ results of 46/17/22
and 49/19/17, respectively, compared to its non-TBDD coun-
terpart. These results underscore the effectiveness of TBDD in
fostering deeper interactions within the model, thereby captur-
ing complex data patterns and enhancing accuracy, despite the
associated increase in computational demands.

In summary, while DD, AFE, and TBD introduce signifi-
cant computational overhead to ETBiDecSD, they are crucial
components of the model. Each plays a vital role in addressing
various TSC challenges, enhancing the model’s performance
by capturing complex patterns and improving accuracy. De-
spite the increased resource demands, these components are



TABLE VII
STATISTICAL OUTCOMES OBTAINED FROM SEVERAL WELL-ESTABLISHED SELF-DISTILLATION ALGORITHMS ACROSS 85 WELL-KNOWN UCR2018
DATASETS, WHEN THE BASELINE IS FCN.

Baseline [ damemi‘ﬁ;‘i‘ilc‘m I\gfﬁﬂincal S B(?gkge BYOT  TSD SAD  ProSelfLC  SelfRef ~ ESD  Self-BiDecKD ETBiDecSD
Best 2 1 12 1 15 [ 17 18 3
Win 6 7 5 7 6 7 4 18
Accuracy Tie 6 7 9 8 6 10 14 15
Lose 73 71 73 71 70 73 68 67 52
avg. rank 61588 52059 54882 52529  4.6834 54520  5.2882 3.8471 3.6235
Best 2 14 2 15 14 2 17 19 33
Win 6 7 4 7 6 7 5 18
FCN ) Tie 6 7 1 7 6 10 14 15
Lose 73 71 73 70 71 73 68 66 52
avg. rank 63648 53800 56717 54286 4.8400 56352 5.4650 3.9757 3.7447
Total Training Time (h) 150206 165227 168531 185384  19.6507  20.0438 204446 20.8535 213471
Average CPU Usage (%) 20.1151 203162 20.5194 207246 209318 211412 213526 21.5661 22.2994
Average GPU Usage (%) 583588  58.5339 587095 58.8856  59.0623 592395 59.4172 59.5954 60.6784
Average Memory Usage (%) 187931 189810 19.1708  19.3625  19.4206  19.4789  19.5373 19.5959 20.1892
TABLE VIII

STATISTICAL OUTCOMES OBTAINED FROM SEVERAL WELL-ESTABLISHED SELF-DISTILLATION ALGORITHMS ACROSS 85 WELL-KNOWN UCR2018
DATASETS, WHEN THE BASELINE IS INCEPTIONTIME.

Baseline [ Lvajuation Metrie_______ (IHCE;;Z';EW) BYOT  TSD  SAD  ProSelfLC  SelfRef ~ ESD  Self-BiDecKD ETBiDecSD

Best 13 7 7 % i3 3 20 b7) 3
Win 5 7 5 7 9 6 8 10 20
Accuracy Tie 8 7 9 9 9 7 12 12 15
Lose ) 71 71 ) 67 7 65 63 50

avg. rank 6.3217 50710 55019  5.1282 45634 53882 52559 3.8158 34528
Best 13 7 15 6 17 13 20 3 3
Inception Win 5 7 6 7 8 6 8 11 19
Time A Tie 8 7 9 9 9 7 12 12 15
Lose 7 71 70 69 68 7 65 62 51

avg. rank 6.5331 52406  5.6859 52997 47160 55684 54317 3.9434 3.5683

“Total Training Time () 17,6119 193731 19.7606 217366  23.0408 237320 244440 25.0773 26.0445

Average CPU Usage (%) 18.9896 19.1795 193713 199524 209501  21.1506 21.5827  21.7986 22,6554

Average GPU Usage (%) 59.5388 597174 59.8065 60.0762 603766  60.5577 60.9211 61.1038 62.8686

Average Memory Usage (%) 15.9963 182358 193299 197165 203080  20.8360 209402 21.0030 21.6684

indispensable for effectively solving diverse TSC problems
within ETBiDecSD.

E. Experimental Outcome Analysis and Discussion

To assess the efficacy of ETBiDecSD, we benchmark its
performance against several well-established self-distillation
algorithms across 85 widely recognized UCR2018 datasets.

o Baseline (FCN): the pure FCN without any self-

distillation.

o Baseline (InceptionTime): the pure InceptionTime with-

out any self-distillation.

o TSD: the self-distillation approach based on transitive

technique for time series knowledge transfer [27].

e« BYOT: the be your own teacher distillation approach,

adapted for time series representation learning [[24].
e ProSelfLC: the modified time series end-to-end approach
based on progressive self-label correction [26].

o SAD: the modified time series self-distillation approach
embedding layer-wise attention [75] .

o ESD: the modified time series self-distillation model
integrating ensemble technique [27].

o SelfRef: the effective self-distillation model with feature
refinement, adapted for TSC [25].

o Self-BiDecKD: the self-bidirectional decoupled distilla-
tion approach for TSC [29].

Tables and present the statistical outcomes ob-
tained from several well-established self-distillation algorithms
across 85 well-known UCR2018 datasets, with FCN and

InceptionTime as the baselines, respectively. ETBiDecSD
emerges as the best-performing self-distillation algorithm
among all comparison methods, excelling in both reference
accuracy and Fj score. It achieves the highest ‘win’/‘tie’/
‘lose’/‘best’ values and the lowest avg. rank score. For
instance, with InceptionTime as the baseline, ETBiDecSD
attains a ‘win’/‘tie’/‘lose’/‘best’ ratio of 20/15/50/35 and an
avg. rank score of 3.4528 in accuracy. This exceptional per-
formance is attributed to ETBiDecSD’s effective utilization
of the average feature ensemble, which integrates the output
from each level, thereby enhancing the robustness of higher-
level semantic information. Furthermore, the transitive bidi-
rectional decoupled distillation facilitates deep interaction be-
tween higher- and lower-level target-class and non-target-class
knowledge within the model. Self-BiDecKD follows closely,
employing bidirectional decoupled knowledge distillation to
enhance knowledge transfer within the model and achieving
competitive results in terms of ‘best’ and avg. rank, regardless
of whether the baseline is FCN or InceptionTime. In contrast,
TSD struggles to extract sufficient features through transitive
self-distillation alone, resulting in its comparatively lower
performance among the evaluated self-distillation algorithms.

Then, as demonstrated in Tables[VII|and [VIII] when examin-
ing the resource expenditure of various algorithms, it becomes
evident that ETBiDecSD, which incorporates both an average
feature ensemble and a transitive bidirectional decoupled dis-
tillation module, inevitably incurs higher computational costs.
Specifically, when InceptionTime serves as the baseline, ET-
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BiDecSD requires the longest training duration for 85 datasets
and exhibits the highest CPU, GPU, and memory usage.
Conversely, algorithms that employ a simple self-distillation
module, such as BOYT and TSD, demonstrate significantly
lower computational overhead but at the expense of suboptimal
performance. This clearly illustrates that while ETBiDecSD
delivers notable performance enhancements, it does so with a
corresponding increase in resource consumption.

To comprehensively evaluate the efficacy of ETBiDecSD,
we conduct a comparative analysis against a non-self-
distillation baseline model across 85 well-known UCR2018
datasets. As shown in Tables [VII] and [VIII, ETBiDecSD does
indeed consume more computing resources than the non-
self-distillation baseline model, with increased training time
and higher CPU and GPU usage. However, this increase in
resource expenditure is accompanied by a significant improve-
ment in performance. Fig. [ presents accuracy and F} score
plots, highlighting the performance of ETBiDecSD relative
to the baseline (FCN). When using FCN as the baseline,
ETBiDecSD achieves ‘win’/‘tie’/‘lose’ results of 64/4/17 in
accuracy and 65/4/16 in Fy score. Similarly, as illustrated

in Fig. B] when compared with the InceptionTime baseline,
ETBiDecSD attains ‘win’/‘tie’/‘lose’ results of 60/12/13 in
accuracy and 57/12/16 in F} score. These results demonstrate
that the integration of the average feature ensemble and
the transitive bidirectional decoupled distillation effectively
facilitates deep interaction between higher- and lower-level
semantic information within the model. Such mechanisms
enable ETBiDecSD to extract rich and diverse connections and
regularizations from the data, underscoring its effectiveness
across a wide range of TSC problems.

V. CONCLUSION

This work revisits self-distillation for TSC from the per-
spective of hierarchical semantic interaction rather than archi-
tectural complexity alone. Unlike conventional approaches that
primarily rely on the final output layer as the sole source of su-
pervisory signals, ETBiDecSD explicitly targets two structural
limitations in existing methods: the progressive degradation
of semantic richness across layers and the systematic neglect
of non-target class knowledge. By introducing an average
feature ensemble mechanism, ETBiDecSD reconstructs a more



informative and stable source of higher-level semantics that
integrates multi-level temporal representations. This design
aligns with the intrinsic characteristics of time series data,
where meaningful patterns are distributed across different
temporal resolutions and abstraction depths, rather than being
concentrated at a single terminal layer. Building upon this
enriched semantic foundation, the proposed transitive bidi-
rectional decoupled distillation framework enables structured
knowledge circulation between higher and lower layers while
simultaneously disentangling target and non-target class infor-
mation. This dual-stream interaction reflects a key property of
time series learning: robust temporal understanding emerges
from both discriminative cues and contextual regularities em-
bedded in non-target classes. Empirical results across diverse
UCR2018 datasets consistently validate that reinforcing lower-
level representations with semantically enriched, bidirection-
ally exchanged knowledge leads to more stable optimization
and improved generalization. Collectively, these findings sug-
gest that performance gains stem not merely from additional
supervision, but from a principled reorganization of semantic
flow tailored to the hierarchical and multi-scale nature of time
series data.

While ETBiDecSD achieves competitive performance, its
reliance on multiple distillation objectives with fixed coef-
ficients incurs notable computational overhead. This static
configuration may yield suboptimal synergy among loss terms
and introduces redundant computations. To address this, future
work will explore automated weighting and loss selection
strategies, such as reinforcement learning, to improve effi-
ciency. In addition, we will investigate optimization techniques
including dynamic sampling and knowledge compression to
reduce training costs while preserving semantic fidelity. These
directions aim to enhance the scalability of ETBiDecSD in
resource-constrained scenarios.
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