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Abstract—This paper proposes a semi-supervised contrastive
capsule transformer method with feature-based knowledge distil-
lation (KD) that simplifies existing semisupervised learning (SSL)
techniques for wearable human activity recognition (HAR), called
CapMatch. CapMatch gracefully hybridizes supervised learning
and unsupervised learning to extract rich representations from
input data. In unsupervised learning, CapMatch leverages the
pseudo-labeling, contrastive learning (CL), and feature-based KD
techniques to construct similarity learning on lower- and higher-
level semantic information extracted from two augmentation
versions of the data, ‘“weak” and “timecut”, to recognize the
relationships among the obtained features of classes in the
unlabeled data. CapMatch combines the outputs of the weak-
and timecut-augmented models to form pseudo-labeling and thus
CL. Meanwhile, CapMatch uses the feature-based KD to transfer
knowledge from the intermediate layers of the weak augmented
model to those of the timecut augmented model. To effectively
capture both local and global patterns of HAR data, we design
a capsule transformer network consisting of four capsule-based
transformer blocks and one routing layer. Experimental results
show that compared with a number of state-of-the-art semi-
supervised and supervised algorithms, the proposed CapMatch
achieves decent performance on three commonly used HAR
datasets, namely, HAPT, WISDM, and UCI_HAR. With only
10% of data labeled, CapMatch achieves F’ values of higher
than 85.00% on these datasets, outperforming 14 semi-supervised
algorithms. When the proportion of labeled data reaches 30%,
CapMatch obtains F; values of no lower than 88.00% on the
datasets above, which is better than several classical supervised
algorithms, e.g., decision tree and KNN.

Index Terms—Capsule Network, Contrastive Learning, Human
Activity Recognition, Knowledge Distillation, Semi-supervised
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I. INTRODUCTION

UMAN activity recognition (HAR) identifies people’s

actions based on their observations and environmental
surroundings [1]. HAR has been widely used in various
real-world domains, such as electroencephalography (EEG)
analysis [2]], gesture detection [3]], and healthcare system [4].
With the prevalence of mobile devices, e.g., smartphones and
watches, wearable HAR data collection has become accessible
and convenient. Thus, wearable sensor-based HAR has grown
into one of the mainstream research topics in HAR [5]]. Wear-
able HAR data is a series of time-ordered data points collected
by wearable sensor(s), e.g., triaxial accelerometer owns thee
sensors producing X-, Y-, and Z-axis data simultaneously.
Such a series is associated with a single or multiple time-
dependent variables, i.e., univariate and multivariate [6]. A
HAR algorithm captures the local and global patterns from a
given time series, e.g., those associated with one variable and
those across multiple variables [7]], [8].

Over the years, a large number of algorithms have been
developed to address wearable sensor-based HAR problems,
mainly through traditional and deep learning techniques [5],
[6], [7]. Traditional algorithms are usually statistical or ma-
chine learning method based, which focus on capturing shal-
low features from HAR data. For example, Zhu and Sheng [9]]
introduced a hierarchical hidden Markov model for context-
based recognition. Chen ef al. [10] proposed a HAR system
with coordinate transformation and principal component anal-
ysis (PCA) and online support vector machine (SVM). In
contrast, deep learning ones are able to extract the intrinsic
connections among representations by constructing the internal
representation hierarchy of data [11], e.g., Al-qaness et al.
[12] designed a multilevel residual network with attention
for HAR feature extraction. Xia et al. [13] put forward a
multiple-level domain adaptive learning model that used a
single inertial measurement unit sensor to obtain accurate
activity recognition. Shu et al. [14]] presented a graph long
short-term memory (LSTM)-in-LSTM method for group ac-
tivity recognition, where person-level actions and group-level
activity were modeled simultaneously. Unfortunately, all the
algorithms above heavily relied on labeled data that usually
consumed an incredible amount of human resource cost for
raw data annotation.
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Semi-supervised learning (SSL) leverages a small amount
of labeled data to capture features from a dataset with a
large amount of unlabeled data [15]. To mitigate the de-
pendency on labeled data, SSL-based HAR has attracted
increasingly more research interests. The SSL algorithms for
HAR can be roughly classified into three categories: graph-
based, self-labeled, and self-supervised. Graph-based algo-
rithms use graph techniques to learn the similarity between
the feature maps obtained from the HAR data, e.g., the
multi-graph-based SSL [16], shared structure discovery SSL
[17], and dynamic graph-based SSL [18]. Self-labeled ones
usually adopt a supervised classifier to label instances with the
unknown class without any specific input data suppositions,
mainly relying on two methods: co-training [[19], [20]] and self-
training [21]], [22], [23]]. Self-supervised algorithms consider
a model’s class prediction as a pseudo label of the training
object, e.g., SelfHAR [24], CSSHAR [25], and ColloSSL
[26]. In summary, the algorithms above usually use one
or two of the four main SSL techniques, namely, entropy
minimization, consistency regularization, pseudo-labeling, and
generic regularization. Unfortunately, most SSL algorithms for
HAR ignore integration of these techniques and thus have
limited ability to capture rich representations from the data.

Recently, algorithms hybridizing multiple SSL techniques
have become prevalent in the semi-supervised image classi-
fication community. For example, MixMatch used a single
loss to integrate the entropy minimization, consistency reg-
ularization, and generic regularization [27]]. ReMixMatch was
an improved version of MixMatch, with distribution alignment
and augmentation anchoring as two additional techniques [J28]].
FixMatch took the advantages of ReMixMatch and pseudo-
labeling to capture sufficient representations from input data
[29]. Zhang et al. [30] integrated curriculum pseudo-labeling
into FixMatch to form FlexMatch for semi-supervised image
classification.

The ensemble algorithms above, e.g., FixMatch and its vari-
ants (e.g., FlexMatch), usually consist of supervised learning
based on a small amount of labeled data and unsupervised
learning based on a large amount of unlabeled data. Their
performance heavily depends on the representation learning
on the unlabeled data, where lower- and higher-level semantic
information is of significant importance [31]]. However, most
of the ensemble algorithms only emphasize the similarity
learning on higher-level semantic information, ignoring the
importance of lower-level semantic information on representa-
tion learning, which limits their ability of extracting abundant
representations from unlabeled data. For example, the similar-
ity learning in FixMatch only combines the output extracted
from “weak” data and that from “strong” data through pseudo-
labeling, where “weak” and “strong” are two augmentation
versions of the same data. Indeed, the performance of an
algorithm is heavily dependent on the quality of lower- and
higher-level semantic information obtained from the data
through instance-level representation learning [31)]. Therefore,
it is crucial for an SSL algorithm to enhance its similarity
learning on both lower- and higher-level semantic information,
which ensures the algorithm’s performance in unsupervised
learning.

Recently, feature-based knowledge distillation (KD), an
effective form of similarity learning on lower-level semantic
information, has emerged. This technique enables knowledge
flow between the intermediate layers of a teacher and those of
a student, helping the student obtain decent performance on
instance-level representation learning [32]]. On the other hand,
contrastive learning (CL), a popular self-supervised learning
method, studies the similarity between different views from
the same sample and the similarity between the views from
different samples, which improves the quality of the learned
representations and thus provides rich semantic information
for downstream tasks [33]].

On the other hand, most SSL algorithms for HAR, e.g.,
ActSemiCNN [22], CSSHAR [25]], and ColloSSL [26], usually
use neural networks to capture features from the input. Neural
networks, however, easily cause potential information loss of
entities/objects due to the intrinsic translation invariance, e.g.,
Maxpooling. To overcome the drawback above, Sabour et al.
[34] introduced a capsule network (CapNet) with dynamic
routing mechanism to obtain entities’ semantic information,
e.g., location and orientation. It was reported that CapNet
was quite effective in mining sufficient lower- and higher-level
semantic information.

Based on FixMatch, we introduce the feature-based KD,
CL and capsule-based methods to design a semi-supervised
contrastive transformer capsule model for wearable HAR,
called CapMatch. This model gracefully integrates supervised
and unsupervised learning to mine rich representations from
partially labeled data. Like most supervised capsule algorithms
[35], [36], [37], CapMatch guides the prediction vectors to-
wards the corresponding ground labels on the labeled data.
On the other hand, CapMatch leverages data augmentation,
pseudo-labeling, CL, and feature-based KD techniques to rec-
ognize the relationships among the features of classes obtained
from the unlabeled data. CapMatch generates different views
of the same sample by two data augmentation methods, namely
“weak” and “timecut”. Similarity learning on the lower- and
higher-level semantic information extracted from the two types
of augmented data is established in unsupervised learning.
Meanwhile, CapMatch uses feature-based KD to transfer
knowledge from the intermediate layers of weak-augmented
model to those of the timecut-augmented model. The overview
of CapMatch is shown in Figure [T}

Our significant contributions are summarized below.

e« We propose a capsule transformer network with four
capsule-based transformer blocks and one routing layer as
the CapMatch’s feature extractor in Figure [T} Unlike the
vanilla transformer [38]], the capsule-based transformer
block considers the interaction rules among capsules,
helping CapMatch mine abundant valuable connections
and regularizations from the HAR data, e.g., the length of
each capsule’s vector is the capsule’s entities’ probability.

o CapMatch applies the pseudo-labeling, CL, and feature-
based KD techniques to constructing similarity learning
on the lower- and higher-level semantic information ex-
tracted from the weak and timecut versions of input data,
resulting in high-quality feature extraction performance.
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o Experimental results show that CapMatch outperforms
14 SSL algorithms on three widely used HAR datasets:
the smartphone-based recognition of human activities and
postural transitions dataset (HAPT), wireless sensor data
mining (WISDM), and University of California Irvine
(UCI) HAR using smartphones (UCI_HAR) when the
labeled data takes up 10%, 20%, and 30% of the training
data, respectively. In particular, CapMatch overweighs
a few supervised algorithms on these datasets in terms
of F value, e.g., decision tree and k-nearest neighbor
(KNN), when the labeled data account for 30% of the
training data.

The rest of the paper is organized as follows. Section II
reviews the related work. Section III describes the CapMatch’s
overall structure and its components. Section IV analyzes the
experimental results, and Section V draws the conclusion.

II. RELATED WORK

This section reviews the existing studies on wearable HAR,
capsule network, CL, and KD.

A. Wearable HAR Algorithms

There have been many algorithms for addressing various
wearable sensor-based HAR problems. These algorithms are
either traditional or deep learning based [5]], [6]], [7]. Tradi-
tional algorithms usually use statistical or machine learning
methods to mine shallow features from HAR data, such as
PCA, SVM, KNN, Bagging, logistic regression (LR), Bayes
algorithm, J48, Markov regression, collaboration algorithm,
logic-based reasoning, and Fuzzy algorithm [9], [10], [39],
(401, [41], [42].

On the other hand, deep learning algorithms can extract not
only the shallow features but also the intrinsic regularizations
and connections hidden in the data [[11f]. For example, Ravi
et al. [43] introduced a temporal convolutional model for
activity recognition on low-power smartphones. Zhang et al.
[44] proposed a multi-head convolutional attention network
to capture multi-scale features from HAR data. Besides, the
stacked denoising autoencoder [45], graph-based LSTM-in-
LSTM [14]], multilevel residual network with attention [12]],
kernel density estimation-based model [46], Lego CNN [47],
deformable convolutional network [48]], multiple-level domain
adaptive learning model [49], selective kernel convolution
[50], and CNN-LSTM-based model [51]] are all well-known
HAR algorithms based on deep neural networks.

B. Capsule Network

Capsule network was developed to solve the problem of
information loss of entities/objects due to translation invari-
ance, e.g., Maxpooling [34]. In just a few years, capsule-based
models have attracted increasingly more research efforts. For
example, Chen et al. [35]] proposed a contemporary novel
neural network capsule architecture with multi-dimension and
abundant spatial information for fault diagnosis. Feng et al.
[36] presented a dual-routing capsule graph neural network
to capture temporal and spatial features from video data.

Xiao et al. [37] devised a multi-process collaborative capsule
architecture for multi-scale feature extraction on time series
classification. Saad and Chen [52] designed an efficient cap-
sule network for Seismic Phase prediction. Sun et al. [53] put
forward a capsule and gate recurrent unit network to recognize
human activities.

C. Contrastive Learning

As one of the most effective representation learning tech-
niques, CL is committed to exploring the differences between
different views from the same sample and the significant
differences among different samples, providing sufficient rep-
resentations for downstream tasks [33]. He er al [54] in-
troduced an unsupervised visual learning algorithm with a
momentum encoder, called MoCo, to explore the relation-
ships among different samples. Based on MoCo, Chen et
al. [55] designed a simple method called SimCLR to learn
the representations from antagonistic pairs. Han et al. [56]
proposed an unsupervised structure-adaptive graph CL method
that explored saliency regularizations and relationships from
the input data. On the other hand, CL has been widely applied
to tackle various real-world problems. For instance, Feng
et al. [57] adopted a CL-based monocular object detection
model to distinguish 3-dimensional objects. In [|58]], an intra-
and inter-Slice CL network was used to address OCT fluid
segmentation problems. In [59]], a CL-based joint learning
framework was applied to accurate COVID-19 identification.
In [60]], a contrastive SSL method was utilized to capture the
representations from remote sensing data. With the help of
CL, pre-trained language models accelerated their fine-tuning
phase and improved their generalization abilities [[61]. Liu et
al. [62] devised a contrastive self-supervise learning method
for anomaly detection. Yu er al. [63] designed a weakly
supervised CL framework with domain adaptation for vehicle
reidentification.

D. Knowledge Distillation

KD, one of the most popular regularization techniques,
encourages knowledge transfer from a cumbersome network
(i.e., teacher) to a lightweight one (i.e., student). According to
the knowledge form, researchers roughly divide the existing
KD algorithms into three categories: response-based, feature-
based, and relation-based [32]]. The response-based method
transfers the knowledge from the output (i.e., logits) of a
teacher to that of a student [64]. For example, Feng et al.
[65] introduced a resolution-aware KD method to transfer
high-level semantic information to low-level one. In [66],
an expert embedding KD method was used to enhance the
knowledge capacity during the knowledge transfer process. In
[67], a collaborative KD algorithm was utilized to improve the
accuracy of image classification.

The feature-based method enables knowledge sharing be-
tween intermediate layers of a teacher and its student instead
of output-to-output. Since the pioneering work FitNet [68]],
a considerable amount of feature-based studies have been
conducted to solve various application tasks. For instance,
Zhang et al. [69]] designed an effective KD method based on
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Fig. 1. The overview of CapMatch. The capsule transformer network consists of four capsule-based transformer blocks and a routing layer.

layer-calibration and task-disentangle distillation for remote
sensing. Hao et al. [70] presented a collaborative data-free
framework with multi-level feature sharing for multi-scale
feature extraction. Different from response- and feature-based
methods, the relation-based method pays more attention to
capturing the relationships among layers in the student and
teacher models. Yu et al. [71]] devised a relation-based met-
ric learning model to improve the quality of image feature
embedding. Guo ef al. [72] introduced a multi-level attention-
based KD approach to capture potential correlations between
the teacher and student models. In [[73]], a cross-layer mutual
distillation method enabled sufficient knowledge from the
teacher to the student, improving the feature extraction ability
of the student model.

III. CAPMATCH

This section first overviews the CapMatch’s structure. Then
it describes the problem formulation, capsule-based trans-
former, routing, data augmentation, CL, feature-based KD, and
loss function one by one.

A. Overview

CapMatch contains supervised and unsupervised learning
processes, as shown in Figure [l The capsule transformer
network, composed of four capsule-based transformer blocks
and one routing layer, is the model’s feature extractor. Cap-
Match guides the prediction vectors towards the corresponding
ground labels by a margin loss function on the labeled data in

the supervised learning process. On the other hand, CapMatch
leverages data augmentation, pseudo-labeling, CL, and feature-
based KD techniques to recognize the relationships among
the features of classes obtained from the unlabeled data in
the unsupervised learning process. Two data augmentation
methods, namely “weak” and “timecut”, are used to generate
different views of the same sample. CapMatch establishes
similarity learning on the lower- and higher-level semantic
information extracted from the weak and timecut versions of
the data to enhance the instance-level representation learning
in unsupervised learning. To be specific, CapMatch not only
allows the weak-augmented artificial labels to supervise the
timecut-augmented prediction vectors by a margin loss func-
tion but also combines the outputs of the weak- and timecut-
augmented models to form similarity learning by a CL loss
function. Meanwhile, CapMatch promotes the knowledge flow
from the intermediate layers of weak-augmented model to
those of the timecut-augmented model via feature-based KD.

B. Problem Formulation

Assume z; = {{111,...,xg1;)d}, . {{xll,.. xld}} e X
is an arbitrary HAR time-series, where X C R/*? is the
input space, and [ and d denote the length and dimension of
x;, respectively. y; € ) is a categorical variable associated
with z;, where ) is the target space. We aim at training
a prediction model M : X +— ) on an arbitrary dataset,

{Dtrain7Dval7Dtest}' Dtrazn = {Déﬁgm, %L;z‘llin s
Doyai {zs,yi}ivs', and Diegy {zi, yi }iteet are the
data for training, validation, and testlng, respectwely, where
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respectively.

C. Capsule-based Transformer

In the capsule transformer network, four capsule-based
transformer blocks are adopted to capture local and global
patterns of the HAR data, providing rich representations with
routing.

Within the capsule community, there are also some
transformer-based capsule studies. Most of these studies are
primarily based on two methods, one uses the vanilla trans-
former [74], [75]], and the other embeds the dynamic routing
into the transformer to form an embedding transformer [76].
These transformer studies ignore the interaction rules among
capsules, e.g., the length of each capsule’s vector is the
capsule’s entities’ probability, resulting in the absence of
necessary information. To solve the issue above, this paper
design a transformer-based capsule block following the in-
teraction rules among capsules to relate the representations
at different locations of the input data to extract the intrinsic
connections and regularizations among the representations ob-
tained, as shown in Figure@ The multi-head capsule attention,
containing n,; capsule-based attention modules, is the core
of each transformer. Each capsule-based attention module,
e.g., Attention;, transfers a query, Query;, and its key-value
pairs, Key;-Value;, to an output, V. Different from the
vanilla attention [38]], the capsule-based attention considers

1: procedure ROUTING(S;, njter) > N;ier denotes the
number of iterations.
: Initialize weight matrix W;;;
. Set @J‘Z = Wiij and b” =0;
Routing
for n;;., iterations do
Obtain k;; using Eq. (@):
Obtain 9;|; and s; using Eq. (3);
Obtain b; using Eq. (3);
end for
. return v;;
: end procedure

R A A A R o

—_
—_ o

the interaction rules among capsules, e.g., the length of each
capsule’s vector is the capsule’s entities’ probability. V,*** is
defined as:

Query; - KeyiT
Vdi

where, K ele denotes the transpose of Key;, d; is the dimen-
sion of Key;, and ||.|| outputs the length of a given vector.

Let V,,.; be the output of a multi-head capsule attention.
Vinut fuses the ngy capsule-based attention through the CON-
CAT function, fconcqt, to provide sufficient global features.
Vimut is defined in Eq. ().

Vmul = fconcat([vlattv 2att7 ceey Vr;lat,tt]) (2)

| H H - Value; (D
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Fig. 3. Example raw data and its weak- and timecut-augmented data on the WISDM dataset.

D. Routing
Following [34], [35]l, [36], [37], we adopt the routing layer

to promote the interaction among capsules, which helps mine
the relationships among them. Given capsule j, its input s; is
defined in Eq. (3).

55 = ka‘@ju, i = Wijvi 3)

where, the prediction vector, ©;);, is obtained by multiplying
the output of capsule ¢ in the previous layer, v;, by a weight
matrix, W;;. k;; is a coupling coefficient between all capsules
in the current layer and capsule ¢ in the previous layer cal-
culated by a softmax function, fs,ftmaz. through an iterative

routing process , , . k;j is calculated as:
kij = fsoftmax(bij) €]

where, b;; is the log prior probabilities that capsules 7 and
j couple. b;; measures the “agreement” between the current
output v; and the prediction ©;),,, where 9|, is obtained by
capsule ¢ from the previous layer. b;; is defined in Egs. (3)-(7).

bij = bij + v - @j|v (®)]
vj = fsquash(3j> (6)
1
squas = T 0 7
Faash ) = ol T 7

where, v; is output of capsule j by “squashing” its input, s;,
in the current layer. The pseudo-code of Routing is shown in
Algorithm [T}

E. Data Augmentation

Data augmentation is a widely used regularization method to
efficiently improve a model’s robustness in deep learning [27],
(28], [29]. CapMatch leverages two augmentation methods,
namely “weak” and “timecut”, to produce different views from
the same sample as the input in the unsupervised learning
process. Specifically, the weak augmentation is realized via
a jitter-and-scale strategy, e.g., adding the Gaussian function
to the raw data. The timecut version is a modified version of
Cutout that transforms a small piece of the raw unlabeled
data without changing its overall trend. Figure [3] shows an
example of raw data and its weak- and timecut-augmented
data on the WISDM dataset.

F. Feature-based Knowledge Distillation

Feature-based KD encourages knowledge transfer between
intermediate layers of the teacher and student models, improv-
ing the student’s feature extraction ability . Let ije“’l,
ijea’z, Vf’w’?’ and ije“’4 denote the outputs of the four
capsule-based transformer blocks associated with the “weak”
augmented data, z°?, respectively; let Vj“m’l, Vj”m’z, Vj”m’3
and Vjt""’4 be the outputs of the four capsule-based trans-
former blocks associated with the “timecut” augmented data,
™, respectively, in Figure

The proposed KD loss, L p, leverages an Ly loss function
to measure the differences between the features obtained from

m”fe“ and those from m?im. Ly p is written in Eq. @i

4 nunt
1 . I
Lxp = — >N NV tkp = VI Jtkpll3(8)
unt =1 j=1

where, t p is a temperature coefficient to scale the features of
the intermediate layers, which facilitates the knowledge flow
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Algorithm 2 CapMatch

IDPUt: D= (Dtraina Dyais Dtest);
Output: );
1: Initialize model parameters 6;
2: //Training and validation
for ¢ =1 to ne, do
epochs.
4 Feedforward D;,.q;n into CapMatch;
5: Obtain Lk p using Eq. (8);
6: Obtain L, using Eq. (©O);
7
8
9

[95]

> nep 1s the number of training

Obtain L, using Eq. (I0);
Obtain Lcpy using Eq. (TI);
: Obtain L,,s using Eq. (12));

10: Obtain L using Eq. (T3);

11: Update 0; using 0; = 6;_1—nVy,_, L(6;—1); > 1 is the
learning rate, and 6,_; and Vy,_, denote the parameters
and gradient at the (¢-1)-th training epoch, respectively.

12: if 7 > 1 then

13: Validate CapMatch using D,q;
14: end if
15: end for

16: // Testing the model
17: Use the trained model to predict ) of Diey:.

in the intermediate layers. In this paper, we set txp = 1.0
(More details can be found in Section IV.C).

G. Contrastive Learning

As aforementioned, CL distinguishes the similarity between
different views from the same sample and that between the
views from different samples via a CL loss function, Lcy,.
Let V*“ and Vj“m be the outputs of the capsule transformer
network associated with x;-“e“ and l‘;im, respectively. As [56],
(58], [61] suggest, we define Loy, as:

exp(sim (Ve VE™) /tor
ECL = - Z lOg MNunl ( ) - jwea) ti'nz

= Doy 1[m¢j]eacp(szm(Vj ,ViEm) fter)

&)

Naunl

where,
_ p'q
[Iplllall”
and t¢p, is a contrastive coefficient for L. This paper sets

tcr = 1.0 in our experiments (More details can be found in
Section IV.C).

sim(p, q)

H. Loss Function

The loss function, £, includes a supervised loss, L., and
an unsupervised loss, L,,s. As the studies in [34], [35], [36],
[37] suggest, Ls,, uses the margin loss function to measure
the average differences between the ground labels and their
prediction vectors on labeled HAR data. Ly, is written as:

1 Niab
Esu = ;1nax Oam+ - ‘/ilab
= g 2 a0 = V)

+ A1 = yi)maz (0, [[V{*°|| = m™))

where, V;'®? is the output of the proposed capsule transformer
network associated with the labeled data, z!*®, and m*, m~,
and ) are three coefficients for L,,. As the previous studies
suggest [34], [35]], [37]], we set m™ = 0.9, m~ = 0.1, and A
=0.5.

Luns consists of a KD loss function, Lxp, a CL loss
function, Lo, and a confidential marginal loss function,
Lcyr. Similar to FixMatch [29]], CapMatch leverages Vj“’e“
to generate an artificial label associated with Vj“’” when
max(Vj“’ea) > towm, Where tops is a coefficient for Loay.

Lcar is calculated by Eq. (TI):

1 Nunl )
Lom = > (W max(0,m* —[|V}™))
Naunl j=1 (1 1)

+ AL =y )max (0, ||V —m™))

where,
Y = L(max (V") > tear)argmaz(V;),

and argmax(ije“) produces a valid one-hot probability
distribution of ijea. Following [29]], we set tcpr = 0.95.

The unsupervised loss of CapMatch, £,,,s, is defined in Eq.
.

Luns =Lom +Lxp +7LcL (12)

where, 7 is a coefficient of L. Following the previous work
in [78], we set 7 = 0.1.
Thus, the loss function of CapMatch, £, is calculated as:

L= Loup + Luns +€|0]]3

5 (13)
=Loup+Lom +Lxp +7Lcr + €]0]]5

where, 6 represents the model parameters of CapMatch, and e
is a coefficient of ||0||3 (i.e., Ly regularization). Following
[37], we set € = 0.0005 in our experiments. Besides, the
CapMatch’s pseudo-code is given in Algorithm [2}

IV. EXPERIMENTS

This section first describes the experimental setup, per-
formance metrics, hyper-parameter sensitivity, and ablation
study. Then, it verifies the CapMatch’s overall performance
and computational complexity.

A. Experimental Setting

1) Data Description: To evaluate the performance of Cap-
Match, we choose three widely used HAR datasets, as follows:

o HAPT: the smartphone-based recognition of human ac-
tivities and postural transitions dataset (HAPT) [79]] was
collected from 30 volunteers aged 19-48 years. The sen-
sor signals, i.e., accelerometer and gyroscope with noise
filters, were set to sample in fixed-width sliding windows
of 2.56 sec and 50% overlap (128 readings/window).
Each sample is a 561-feature vector with time and
frequency domain variables. This dataset consists of six
basic activities, i.e., standing, sitting, laying, walking,
walking_downstairs and walking_upstairs, and six static
postures, including stand-to-sit, sit-to-stand, sit-to-lie, lie-
to-sit, stand-to-lie, and lie-to-stand.
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TABLE I
DETAILS OF THE THREE HAR DATASETS.
o CapMatch’s
Dataset Sample Rate Activities Classes  Samples Parameter (M)
Walking (Wk), Walking_Upstairs (Wu), Walking_Downstairs (Wd),
Sitting (St), Standing (Sd), Laying (Ly),
HAPT SOHz Stand-to-Sit (DtS), Sit-to-Stand (StD), Sit-to-Lie (StL), 2 10929 2655756
Lie-to-Sit (LtS), Stand-to-Lie(DtL), and Lie-to-Stand (LtD)
Walking (Wk), Jogging (Jg), Upstairs (Us),

WISDM 20Hz Downstairs (Ds), Sitting (St), and Standing (Sd) 6 1098207 1865436

UCI_HAR SOHz Walking (Wk), Walking_Upstairs (Wu), Walking_Downstairs (Wd), 6 10,299 2637324

Sitting (St), Standing (Sd), and Laying (Ly)

o« WISDM: the Wireless Sensor Data Mining (WISDM)
[8O] lab collected the accelerometer data every 50ms,
where the signal sample rate was set to 20Hz. It has
1,098,207 multiple physical activities’ examples with six
attributes: user, activity, timestamp, x-acceleration, y-
acceleration, and z-acceleration. This dataset considers
six activities, namely, walking, jogging, upstairs, down-
stairs, sitting, and standing.

o UCI_HAR: the human activity recognition using smart-
phones dataset [81]] in the University of California Irvine
Machine Learning Repository (UCI_HAR) was collected
from 30 volunteers aged 19-48 years. Each volunteer who
wore a smartphone (Samsung Galaxy S II) on his/her
waist performed six activities: walking, walking_upstairs,
walking_downstairs, sitting, standing and laying. The 3-
axial linear acceleration and 3-axial angular velocity at a
constant rate of SOHz were used, and the signal sample
rate was set to 20Hz.

The summary of the three datasets is shown in Table [l

2) Data Preprocessing: As suggested by [5], [6], [7], [9],
[10], this paper adopts the fixed time window method to
effectively fuse the activity data collected by different sensors,
in which each sensor eliminates the interference caused by
noise and obtains the frequency of stable sampling and stable
data via filtering technologies, such as low-pass, Kalman, and
wavelet filters. Meanwhile, the sequence data collected within
a fixed time window can carry much adequate and valuable
information about activities and is usually regarded as the input
of a HAR algorithm. Let D, represent the data collected from
the sensor at the i-th timestamp, and L be the size of the fixed
time window. The sequence data collected in the fixed time
window, Seg;, is defined as:

Squ = [DiaDi+17"'7Di+L—1]7 j = 1a27 "'7Ns€q (14)

where, N, is the number of the sequence data.

3) Data Partition: As the previous studies suggest [5],
(e, [71, [44], (450, [46l, 471, 48], [49], [50], each given
dataset is divided into two parts with a ratio of 7:3. For all
supervised and semi-supervised algorithms for comparison, the
first part is divided into training and validation sets with a
ratio of 8:2, while the second one is regarded as the testing
set. For supervised algorithms, the data partition process is
over. For semi-supervised algorithms, the training set of the
first part is further split into labeled and unlabeled data, where
unlabeled data are those with labels removed. Like [82], [83]],

[84]], the ratio of labeled data to the whole training data,
= # (s.t., Nyap <K Nypy), is from 0.1 to 0.3, i.e.,

r =
r € {0.1,0.2,0.3}. On the other hand, all semi-supervised
and supervised algorithms are verified by the same testing set.

TABLE I
HYPER-PARAMETER SETTINGS OF THE FOUR CAPSULE-BASED
TRANSFORMER BLOCKS.

Fully-connected

Transformer No. layer’s units ngtt  Dropout Value
1 48 8 0.5
2 96 8 0.5
3 144 8 0.5
4 192 8 0.5

4) Implementation details: The hyper-parameter settings of
the four capsule-based transformer blocks are given in Table[l]
This paper uses RMSPropOptimizer as the optimizer, with the
momentum term, initial learning rate, and decay value set to
0.9, 0.001, and 0.9, respectively. We conduct the experiments
with a computer with Ubuntu 18.04 OS, an Nvidia GTX
1080Ti GPU with 11GB, and an AMD R5 1400 CPU with
16G RAM.

B. Performance Metrics

As suggested in [S]], [6], [7], [12], [44], [45], we use two
commonly used metrics, i.e., Accuracy and F-measure, in
performance comparison. These metrics are defined as:

tp+tn

Accuracy = x 100%
Y wrtnt ot fn ¢
o Precision x Recall
'™ Precision + Recall (15)
t
Precision = —2— % 100%
tp+ fn
tp
Recall = x 100%
tp+itn

where, tp and tn are the numbers of true positive and negative
samples, respectively. fp and fn represent the numbers of
false positive and negative samples, respectively.

C. Hyper-parameter Sensitivity

We study the influence of hyper-parameter settings on
the performance of CapMatch on the HAPT, WISDM, and
UCI_HAR datasets.
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®HAPT = WISDM = UCI_HAR

®HAPT = WISDM = UCI_HAR

®HAPT = WISDM = UCI_HAR

0.1 0.5 1.0 txp

(c)r=03

2.0

1.0 5.0

(b)r=02

20 50 tp

=HAPT =WISDM = UCI_HAR = HAPT =WISDM = UCI_HAR

87
86 | 88
S
) g9t
Ss4 | S
- ~g6 |
83 | =
ol 85 |
81
0.1 05 1.0 2.0 50 Ik 0.1 05
(@) r=0.1
Fig. 4. [ results with different ¢ ;- p values when r = 0.1, 0.2, and 0.3.
®HAPT = WISDM = UCI_HAR
87 89
86 33
85
2 B
S 84 S
ey 186
o 85
81 84
0.1 0.5 10 20 50 to 0.1 0.5
(a)r=0.1
Fig. 5. Fj results with different ¢ 7, values when r = 0.1, 0.2, and 0.3.

1) CapMatch with different t x p values: txp is a tempera-
ture coefficient to scale the features of the intermediate layers,
which facilitates the knowledge flow in the intermediate layers.
As shown in Figure 4] 1.0 is the best setting for ¢ p because
it helps CapMatch to obtain the highest F; value on each HAR

0.1 0.5 1.0

(©)r=03

2.0 5.0

1.0
(b)r=02

20 5.0

shows the F) results obtained by CapMatch with different KD
losses on three HAR datasets when r = 0.1, 0.2, and 0.3. Lo
performs better than the other 3 losses. Hence, we choose the
L5 loss to promote the knowledge transfer within the model.

dataset. TABLE IV
2) CapMatch with different tcr, values: toy is a threshold — Fi RESULTS OBTAINED BY SEVEN CAPMATCH VARIANTS WHEN 7 = 0.1,
value for CapMatch to learn the similarity between different 0.2, AND 0.3.
views from the same sample. Figure |§| shows the F) re- . Method HAPT WISDM UCLHAR
sults obtained by CapMatch with different ¢ty (i.e., top € CapMatch w/o Routing | 7823 £ 1.13  75.05 £ 0.79 76.13 £ 1.62
{0.1,0.5,1.0,2.0,5.0}) values on three HAR datasets when r CapMatch wio CL | 8422 £ 1.12 84.15+£0.76  84.33 £ 1.58
. CapMatch w/o FKD 8398 + 1.16 83.29 +0.74 83.53 £+ 1.57
= 0.1, 0.2, and 0.3. When tcr, = 1.0, CapMatch achieves the | o1 | CapMach w RKD | 8479 + 124 8479 + 0.68  84.85 + 1.26
highest Fj result on each dataset. That means tcr, = 1.0 helps VanMatch 84.37 i 1.04  84.68 i 0.73 8497 £ 1.35
. . . . . EmbMatch 84.62 + 1.17 85.03 £ 0.59 85.02 + 1.25
CapMatch mine rich connections and regularizations from the CapMatch 2550 & 106 S$632 & 082 8633 &+ 1.73
HAR data. CapMatch w/o Routing | 81.21 £ 1.35 81.99 £ 0.46  82.56 £ 1.45
CapMatch w/o CL 84.85 + 1.14 8492+ 048 8576 + 1.22
TABLE III CapMatch w/o FKD 85.03 = 1.16  85.00 & 0.53  85.97 £+ 1.17
F'1 RESULTS OBTAINED BY CAPMATCH WITH DIFFERENT KD LOSSES 0.2 CapMatch w RKD 86.03 + 124 8649 + 0.62 86.33 + 1.73
WHEN r = 0.1, 0.2, AND 0.3. ABBREVIATIONS: L1 — L1 Loss, CE — VanMatch 86.45 £ 1.17 87.03 £0.78 8792 £ 125
CROSS ENTROPY, Lo — Lo LOSS. EmbMatch 8572 £ 129 8692 £0.63 86.29 + 1.27
CapMatch 87.00 & 1.01 88.23 048 88.89 + 1.36
r Dataset L1 Lo KL CE CapMatch w/o Routing | 82.88 + 1.17 8293 £ 0.56 83.75 £ 1.15
HAPT 8504 £ 1.I5 8559 £1.06 8542 £ 1.12 8469 £ 1.04 CapMatch w/o CL 8503 £ 1.16  84.02 £ 056 8595+ 1.19
0.1 | WISDM | 84944+ 079 86324 0.82 8499 4+ 085 84.52 4 0.86 CapMatch w/o FKD 86.39 + 132 86.92 + 0.63  88.05 £+ 1.23
UCI_HAR | 85.81 + 158 8633+ 1.73 8532+ 1.58 8598 4 1.65 0.3 CapMatch w RKD 86.89 + 1.27 87.94 £0.56 8826 + 128
HAPT | 8589 £ 1.24 87.00 £ 1.01 8601 £ 1.13 8559 £ 1.23 VanMatch 87.00 + 1.01 8825 +£0.57 8892+ 1.34
02 | WISDM | 86.83 +052 8823+ 048 87.17 4+ 056 8536 + 0.63 EmbMatch 87.34 + 1.08 88.69 &= 0.68 89.17 &+ 1.17
UCI_HAR | 87.03 £ 1.26 8889 4+ 136 87.84 + 1.28 86.86 & 1.16 CapMatch 88.00 = 1.03  89.14 + 0.89  90.02 + 1.21
HAPT | 8658 £ 1.19 88.00 £ 1.03 8659 £ 1.18  85.89 & 1.24
03 | WISDM | 87.224+0.68 89.14 + 0.89 8802 + 0.69 87.03 + 0.58
UCI_HAR | 88.57 + 128 90.02 + 121 8894 & 125 87.84 + 1.28

3) CapMatch with different KD losses: 1t is crucial to
choose an appropriate KD loss function to measure the knowl-

D. Ablation Study

We investigate the effects of different components on Cap-

edge difference between a teacher and its student. Table [l Match on three HAR datasets.
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1) Effectiveness of Routing: To verify the contribution of
routing on CapMatch, we compare it with CapMatch without
the routing mechanism (called CapMatch w/o Routing) on
three HAR datasets. Table shows the Fj results obtained
by different CapMatch variants on three HAR datasets when r
= 0.1, 0.2, and 0.3. One can easily see that the routing mech-
anism significantly improves the performance of CapMatch
on Fj. That is why CapMatch outperforms CapMatch w/o
Routing on each dataset.

2) Effectiveness of Contrastive Learning: To study the
impact of CL on CapMatch, we compare it with CapMatch
without contrastive learning (called CapMatch w/o CL) on
three HAR datasets. As shown in table CapMatch results
in a higher F; value on each dataset since CL helps enhance
the quality of the representations learned by quantifying the
differences between different views of the same sample.

3) Effectiveness of Feature-based Knowledge Distillation:
To explore the effects of the feature-based KD on CapMatch,
we compare it with two variants on three HAR datasets, listed
below.

e CapMatch w/o FKD: CapMatch without feature-based
KD.
e CapMatch w RKD: CapMatch with response-based KD
[32].
One can observe that CapMatch overweighs CapMatch w/o
FKD and CapMatch w/o RKD in terms of F; measure because
the feature-based KD improves knowledge transfer between
intermediate layers of the model.
4) Effectiveness of Capsule-based Transformer: To inves-
tigate the effects of capsule-based transformer on CapMatch,
we compare it with two variants:

e VanMatch: CapMatch with each capsule-based trans-
former block replaced with the vanilla transformer block
[74], [75].

o EmbMatch: CapMatch with each capsule-based trans-
former block replaced with the embedding transformer
block [76]].

As shown in table [V] CapMatch outperforms VanMatch
and EmbMatch on each dataset because the capsule-based
transformer block relates the capsules at different locations,
being able to mine rich connections and regulations hidden in
HAR data.

In summary, routing, CL, feature-based KD, and capsule-
based transformer are all essential components for CapMatch.

E. Experimental Analysis

To evaluate the performance of CapMatch, we compare it
with 14 SSL algorithms against F} value, as follows:

e DTW-D: a modified dynamic time warping algorithm for
HAR [84].

o Self-labeled SVM: a modified self-labeled algorithm with
SVM for HAR [85].

o Self-labeled Clustering: a modified self-labeled algorithm
with clustering for HAR [85]].

e SSSL: a combination of the shapelet method and pseudo-
labeling for HAR [83].

o SelfHAR: a self-supervised learning algorithm for HAR
[24].

e SSRCA: a semi-supervised recurrent convolutional atten-
tion algorithm for HAR [19].

e UDA: based on data augmentation and consistency regu-
larization with the proposed capsule transformer network
(see Figure (1) as its feature extractor [86].

e En-Co-Training: an SSL algorithm with co-training for
HAR [20].

e Sparse-Coding: a sparse-coding SSL framework for HAR
[87].

e SSCLHAR: a contrastive SSL algorithm for HAR [25]].

o ActSemiCNN: an active semi-supervised CNN for HAR
[22].

e MixMatch: a modified MixMatch [27] adapted to HAR,
with the proposed capsule transformer network (see Fig-
ure [I) as its feature extractor.

o FixMatch: a modified FixMatch [29] adapted to HAR,
with the proposed capsule transformer network (see Fig-
ure (1) as its feature extractor.

o FlexMatch: a modified FlexMatch [30] adapted to HAR,
with the proposed capsule transformer network (see Fig-
ure [T) as its feature extractor.

Table [V] shows the F} results with various SSL algorithms
with different r values on three HAR datasets. One can easily
observe that CapMatch performs the best among all compared
SSL algorithms on each dataset, e.g., CapMatch obtains the
highest F value on the WISDM dataset when r = 0.1, namely
86.32%. FlexMatch takes the second position while DTW-D
leads to the worst performance. The F} value of CapMatch is
at least 1.3% higher than that of FlexMatch in average with
three datasets considered.

The following explains our observations above. Based on
the capsule transformer structure, CapMatch gracefully hy-
bridizes pseudo-labeling, CL, and feature-based KD, being
able to capture as many intrinsic connections among the
obtained representations of classes in the unlabeled data
as possible. Thanks to the consistency regularization and
curriculum pseudo-labeling techniques, FlexMatch can mine
valuable information from the unlabeled data and achieves
decent performance regarding F; value on three HAR datasets.
On the other hand, DTW-D cannot explore rich features and
regularizations from the unlabeled data via the DTW technique
only.

Second, to study the impact of r on the performance
of CapMatch, this paper shows the F} results obtained by
CapMatch with » = 0.1, 0.2, and 0.3 on three HAR datasets
in Figure [l With more labeled data, more additional prior
knowledge is brought to CapMatch, helping it mine richer
relationships and regularizations from the data. That is why the
CapMatch’s performance is gradually enhanced as the amount
of labeled data increases.

Finally, we compare CapMatch with » = 0.3 with 16
supervised algorithms on three HAR datasets and collect the
F results in Table These supervised algorithms can be
classified into traditional and deep learning algorithms, listed
below.

o Traditional Algorithm:
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TABLE V
F1 RESULTS OBTAINED BY VARIOUS SSL ALGORITHMS WITH DIFFERENT 7 VALUES ON THREE HAR DATASETS.
r Author Method HAPT (%) WISDM (%) UCI_HAR (%)
Chen et al. [84 DTW-D 73.55 + 1.41 74.25 4+ 0.59 74.68 + 1.45
Self-labeled SVM 78.35 £ 129 77.25 + 0.78 76.40 £ 1.52
Zhou et al. Self-labeled Clustering | 81.08 & 1.23 7534 + 036 79.32 & 1.03
Han er al. [83] SSSL 80.95 +£ 1.27 8092 4+ 0.52 81.95 + 1.47
Tang et al. [24] SelfHAR 83.71 £ 1.15  82.29 4 0.65 82.02 £ 1.22
Chen er al. [[19)] SSRCA — — 81.43

0.1 Xie et al. IE:E UDA 81.21 = 1.35 80.93 £+ 0.73 81.94 £ 1.26
Guan er al. [20] En-Co-Training 75.15 £ 1.28  77.12 £ 0.58 79.26 + 2.04
Bhattacharya et al. Sparse-Coding 76.65 &+ 1.25  75.93 4+ 0.68 76.20 + 2.15
Khaertdinov et al. Iﬁ SSCLHAR 82.74 £ 1.09 81.99 £+ 0.46 83.32 £ 1.42
Bi et al. | ActSemiCNN 83.54 £+ 1.12  83.19 £ 0.59 82.99 + 1.39
Berthelot er al. | MixMatch 82.02 £+ 1.21 82.72 £ 0.73 83.24 £ 1.06
Sohn et al. FixMatch 83.25 £ 1.13  84.02 £ 0.56 84.71 £+ 1.18
Zhang et al. ng FlexMatch 83.98 + 1.21 84.12 + 0.61 84.99 + 1.01
Ours CapMatch 85.59 + 1.06  86.32 £+ 0.82 86.33 £+ 1.73
Chen et al. DTW-D 74.05 + 1.39  75.07 &+ 0.64 75.23 4+ 1.83
Zhou et al Self-labeled SVM 79.11 £ 1.18  78.81 + 0.59 79.93 £ 1.16
: Self-labeled Clustering | 81.94 4+ 1.22  78.33 4+ 0.49 80.01 £+ 1.20
Han er al. [83] SSSL 81.44 +£ 1.58 81.79 4+ 0.55 82.56 + 1.45
Tang et al. [24] SelfHAR 84.23 + 129 83.11 4 0.58 83.01 £+ 1.14

Chen er al. [[19)] SSRCA — — —
0.2 Xie et al. Isﬁ UDA 81.99 £+ 1.19  81.54 4+ 0.49 82.88 £+ 1.35
Guan et al. I@I En-Co-Training 76.23 + 1.23 76.97 £+ 0.58 77.09 £+ 1.25
Bhattacharya et al. | Sparse-Coding 7722 + 1.19  76.69 4+ 0.62 77.99 + 1.19
Khaertdinov et al. SSCLHAR 83.39 + 1.24 82.89 + 0.54 84.68 + 1.21
Bi et al. | ActSemiCNN 8497 + 1.32  84.87 £ 0.52 84.03 £ 1.22
Berthelot er al. | MixMatch 8344 4+ 1.20 83.93 £+ 0.49 84.87 £+ 1.17
Sohn et al. FixMatch 8495 £+ 1.18 85.92 4+ 0.53 85.76 £ 1.22
Zhang et al. [30] FlexMatch 8539 &£ 1.26  86.52 £+ 0.53 86.32 £ 1.08
Ours CapMatch 87.00 £+ 1.01 88.23 £+ 0.48 88.89 £+ 1.36
Chen et al. DTW-D 7592 + 1.22  76.12 4+ 0.49 76.22 4+ 1.19
Zhou et al Self-labeled SVM 80.01 + 1.12  79.94 £+ 0.71 80.59 + 1.23
: Self-labeled Clustering | 82.77 4+ 1.20  79.83 4+ 0.48 80.93 £ 1.19
Han er al. [83] SSSL 8297 £ 1.15 8293 4+ 0.66 83.11 + 1.17
Tang et al. [24] SelfHAR 85.02 + 1.08 84.44 + 0.52 83.75 £ 1.15

Chen er al. [[19] SSRCA — — —
0.3 Xie et al. Iiiﬁ UDA 82.88 £+ 1.17  82.22 4+ 0.68 83.33 £+ 1.19
Guan et al. I@I En-Co-Training 77.58 £+ 1.18 77.59 £+ 0.53 77.96 + 1.24
Bhattacharya et al. | Sparse-Coding 79.01 + 1.07  78.09 + 0.65 79.25 + 1.17
Khaertdinov et al. SSCLHAR 8443 +£ 1.13  83.99 £+ 0.53 85.05 + 1.19
Bi et al. | ActSemiCNN 85.83 £ 1.18  86.03 £ 0.60 85.83 £ 1.09
Berthelot er al._[27] MixMatch 85.03 £ 1.16  84.92 4+ 0.48 85.97 £ 1.17
Sohn et al. FixMatch 86.02 £+ 1.07 86.97 & 0.35 87.13 £+ 1.18
Zhang et al. [30] FlexMatch 86.35 £ 1.18  87.33 &+ 0.54 88.19 £ 1.05
Ours CapMatch 88.00 + 1.03  89.14 4+ 0.89 90.02 + 1.21

=HAPT =WISDM = UCI HAR dom Forest,'and Dec'1s1on Tre?e (301. N
91 — J48: a machine learning algorithm based on decision
90 tree using iterative Dichotomiser [7].

89 |
é’ss .
$87
86
85 |
83
0.1 0.2 0.3

Fig. 6. F1 results obtained by CapMatch with » = 0.1, 0.2, and 0.3 on three
datasets.

— primary machine learning algorithms: SVM, K-
Nearest Neighbor (KNN), GradientBoosting, Ran-

o Deep Learning Algorithm

— Stacked Denoising Autoencoder: a stacked denoising
autoencoder method based fully-connected neural
networks for HAR [43]].

— IDCNN: a one-dimensional CNN model for HAR
[44].

— 2DCNN: a two-dimensional CNN model for HAR
[44]).

— Multi-head Convolutional Attention: a multi-head
feature network integrating multi-head CNN and
attention for HAR [44].

— CNNLSTM: a cascading model based on CNN and
LSTM for HAR [51]).
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TABLE VI
F; RESULTS OBTAINED BY CAPMATCH WITH 7 = 0.3 AND 16 EXISTING SUPERVISED ALGORITHMS ON THREE HAR DATASETS.
Training Scheme Method HAPT (%) WISDM (%) UCI_HAR (%)
Semi-superved Learning CapMatch with r = 0.3 88.00 £ 1.03  89.14 £ 0.89 90.02 £+ 1.21

SVM 94.14 88.26 94.00
KNN 87.01 82.29 90.00
Supervised Learning GradientBoosting 90.00 79.71 93.90
(Traditional Algorithms) Random Forest 83.74 82.38 90.17
Decision Tree 72.52 73.17 85.86

J48 - 85.21 -

Stacked Denoising Autoencoder - 94.01 -
1DCNN 91.15 92.13 91.72
2DCNN 90.98 91.89 92.60
Supervised Learning Multi-head Convolutional Attention 94.79 95.68 95.40
(Deep Learning Algorithms) CNNLSTM 93.15 94.92 94.89
CNNBILSTM 94.02 95.83 95.37
LegoCNN 94.59 97.31 95.41
Perceptive Extraction Network 95.31 98.97 96.33

Deformable CNN - 99.21 -

Selective Kernel Convolution 96.11 98.13 -

TABLE VII
THE NUMBER OF PARAMETERS AND RUN TIME RESULTS WITH VARIOUS ALGORITHMS ON THREE HAR TESTING DATASETS.
Method 'HAPT ' WISDM . U.CLHAR '
Parameters (M) With CPU (s) With GPU (s)|Parameters (M) With CPU (s) With GPU (s)|Parameters (M) With CPU (s) With GPU (s)

SVM — 0.2974 — — 5.8365 — — 0.2059 —

KNN — 1.2254 — — 9.4432 — — 0.9346 —

BAGGING — 1.8502 — — 6.2953 — — 1.1045 —

Random Forest — 3.6834 — — 9.2659 — — 3.4596 —
Multilayer Perceptron 0.167468 1.4246 0.2123 0.089638 7.3983 1.1658 0.164396 1.0758 0.1964
IDCNN 0.923217 16.2392 2.2394 0.772960 19.0011 8.2335 0.920145 15.2322 2.1262
2DCNN 1.158791 33.8867 3.0015 1.124334 21.7324 7.8746 1.155719 31.6259 2.8849
LSTM 1.367559 5.2358 1.4599 0.204324 16.8543 5.0002 1.364487 3.1376 0.9435
CNNLSTM 2.916935 38.8235 8.2305 2.837317 69.6823 17.2398 2913863 37.7875 7.0921
Multi-head Convolutional Attention|  2.899985 36.9934 6.9611 2771270 22.3498 11.8345 2.896913 35.8435 5.8934
Perceptive Extraction Network 0.822983 9.0021 1.6789 0.223558 17.9467 7.4801 0.819911 7.4029 1.4934

Deformable CNN — — 6.640000 — — — — —

Adaptive Deep Network — — 5.591000 — — — — —

Selective Kernel Convolution — — 0.360000 — — 0.45 — —

Shallow CNNs — — — — — 0.341 — —
CapMatch 2.655756 34.0248 5.1223 1.865496 21.8735 9.4529 2.637324 32.3743 4.9345

— CNNBiILSTM: a cascading model based on CNN and
BiLSTM for HAR [51].

— LegoCNN: a lightweight CNN model based on Lego
filters for HAR [47]].

— Perceptive Extraction Network: a perceptive extrac-
tion network integrating a feature network and a
relation network in parallel for HAR [6].

— Deformable CNN: a learning model based on de-
formable CNN for HAR [48].

— Selective Kernel Convolution: a multi-branch CNN
model based on selective kernel convolution for HAR
[50].

All semi-supervised and supervised algorithms are verified
by the same testing datasets. One can easily see that Cap-
Match performs worse than all deep learning-based supervised
algorithms but it performs better than several traditional su-
pervised algorithms. To be specific, CapMatch outperforms
KNN, Random Forest, and Decision Tree on HAPT, performs
the best on WISDM, and performs better than Decision Tree
on UCR_HAR. For example, the F} value of CapMatch is
89.14% while that of KNN is 82.29% on the WISDM dataset.

Therefore, CapMatch has the potential to address various
SSL tasks in the HAR domain. Besides, to visualize the
performance of CapMatch with r = 0.3 for each class of
activity on each dataset, we show its confusion matrices on
three datasets in Figure [7] One can see that CapMatch with
r = 0.3 performs the best on the UCI_HAR dataset, as the
accuracy of each class activity exceeds 80%. On the HAPT
dataset, CapMatch with » = 0.3 performs the worst because it
cannot mine rich features from the short event data with few
labels, resulting in poor performance in short events, e.g., Lie-
to-Stand (Ltd) and Sit-to-Lie (StL). Overall, CapMatch with r
= 0.3 performs well in most of the activity categories on three
datasets, demonstrating its excellent feature extraction ability.

F. Computational Complexity

To evaluate the efficiency of CapMatch, we compare it with
a number of machine and deep learning algorithms regarding
the number of parameters and run time on three HAR testing
datasets, as shown in Table |V_Hl One can easily observe
that CapMatch is slower than 4 machine learning algorithms,
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Fig. 7. Confusion matrixes of CapMatch with » = 0.3 on three HAR datasets.

including SVM, BAGGING, Random Forest, and KNN. When
compared with deep learning algorithms, CapMatch is faster
than CNNLSTM and Multi-head Convolutional Attention, but
slower than the others.

V. CONCLUSION

CapMatch gracefully integrates supervised learning and
unsupervised learning into the proposed capsule transformer
network, being able to extract abundant representations from
partially labeled HAR data, where pseudo-labeling, contrastive
learning, and feature-based knowledge distillation are adopted
to establish similarity learning on the lower- and higher-
level semantic information extracted. As the feature extractor
of CapMatch, the capsule transformer network can capture
sufficient local and global patterns of HAR data. With 10%,
20%, and 30% of data labeled, CapMatch performs the best
among all compared semi-supervised algorithms on the HAPT,
WISDM, and UCI_HAR datasets. With 30% of data labeled,
CapMatch performs even better than a number of classical
supervised algorithms, achieving an F; value of 88.00% on
HAPT, 89.14% on WISDM, and 90.02% on UCI_HAR. In
particular, on the WISDM dataset, CapMatch outperforms
all classical supervised algorithms for comparison, includ-
ing SVM, KNN, GradientBoosting, Random Forest, Decision
Tree, and J48. That reflects the potential of CapMatch to be
applied to various real-world HAR problems.

CapMatch is not well suited for direct deployment on
lightweight devices to handle real-time HAR tasks. In the fu-
ture, we will consider introducing network pruning techniques
into CapMatch to build a lightweight CapMath for real-time
HAR tasks.
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