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Abstract—Multivariate time series classification (MTSC) based
on deep learning (DL) has attracted increasingly more research
attention. The performance of a DL-based MTSC algorithm is
heavily dependent on the quality of the learned representations
providing semantic information for downstream tasks, e.g., clas-
sification. Hence, a model’s representation learning ability is
critical for enhancing its performance. This paper proposes a
densely knowledge-aware network (DKN) for MTSC. The DKN’s
feature extractor consists of a residual multi-head convolutional
network (ResMulti) and a transformer-based network (Trans),
called ResMulti-Trans. ResMulti has five residual multi-head
blocks for capturing the local patterns of data while Trans has
three transformer blocks for extracting the global patterns of
data. Besides, to enable dense mutual supervision between lower-
and higher-level semantic information, this paper adapts densely
dual self-distillation (DDSD) for mining rich regularizations and
relationships hidden in the data. Experimental results show that
compared with 5 state-of-the-art self-distillation variants, the
proposed DDSD obtains 13/4/13 in terms of ‘win’/‘tie’/‘lose’
and gains the lowest AVG rank score. In particular, compared
with pure ResMulti-Trans, DKN results in 20/1/9 regarding
‘win’/‘tie’/‘lose’. Last but not least, DKN overweighs 18 existing
MTSC algorithms on 10 UEA2018 datasets and achieves the
lowest AVG rank score.

Index Terms—Data Mining, Deep Learning, Knowledge Dis-
tillation, Multivariate Time Series Classification, Transformer

I. INTRODUCTION

MULTIVARIATE time series data has been seen in
various domains, such as electroencephalogram (EEG)

analysis [1], [2], fault diagnosis [3], electrocardiogram (ECG)
identification [4], anomaly detection [5], and mental health
service [6]. Unlike other data, e.g., ImageNet 1 for image
classification, Stanford Sentiment Treebank (SST-2) 2 for

Manuscript received XXX; accepted XX XXX 2023. This work was
partially supported by the National Natural Science Foundation of China
(No. 62172342 and No.62202392), the Natural Science Foundation of Hebei
Province (No. F2022105027), the Natural Science Foundation of Sichuan
Province (No. 2022NSFSC0568, No. 2022NSFSC0944, and No. 2023NS-
FSC0459), and the Fundamental Research Funds for the Central Universities,
P. R. China (Corresponding Author: Huanlai Xing).

Z. Xiao, H. Xing, L. Feng, S. Luo, P. Dai, B. Zhao, and Y. Dai are with
the School of Computing and Artificial Intelligence, Southwest Jiaotong
University, Chengdu 610031, China, with the Tangshan Institute of Southwest
Jiaotong University, Tangshan 063000, China, and with the Engineering
Research Center of Sustainable Urban Intelligent Transportation, Ministry of
Education, China (Emails: xiao1994zw@163.com; hxx@home.swjtu.edu.cn;
fengli@swjtu.edu.cn; sxluo@swjtu.edu.cn; penglindai@swjtu.edu.cn;
cn16bz@icloud.com; 1125105129@qq.com).

R. Qu is with the School of Computer Science, University of Nottingham,
Nottingham NG8 1BB, UK (Email: rong.qu@nottingham.ac.uk)

1https://image-net.org/
2https://nlp.stanford.edu/sentiment/code.html

sentiment classification, and UCF101 3 for video classification,
multivariate time series is a sequence of timely ordered data
points associated with multiple time-dependent variables that
contain both local and global patterns. A multivariate time
series classification (MTSC) algorithm is responsible for cap-
turing the local and global patterns from each univariate time
series (UTS) and discovering the connections among these
UTS sequences, simultaneously [7].

Recently, deep learning (DL) based algorithms have at-
tracted extensive attention in the MTSC community. By ac-
curately modeling the internal data representation hierarchy,
these algorithms can reflect the inherent connections among
representations [7], [8], [9]. DL-based MTSC algorithms can
be roughly divided into two streams: single-network-based and
dual-network-based. A single-network-based model adopts a
single (usually hybridized) network structure for feature and
relation extraction. For example, Lee et al. [10] introduced
a dynamic temporal pooling network to extract high-level
features. Ma et al. [11] proposed an end-to-end adversarial
joint-learning recurrent neural network (AJ-RNN) for feature
extraction. Chen et al. [12] designed a dual-attention network
to discover local and global patterns hidden in data. On the
contrary, a dual-network-based model is usually composed of
two parallel networks, one for local feature extraction and
the other for global relation capture. Convolutional neural
networks (CNNs) are generally adopted for extracting lo-
cal features, while recurrent neural networks (RNNs)- and
attention-based networks are usually used for capturing the
connections among the features extracted. For example, a
robust temporal feature network (RTFN) containing a temporal
feature network and a long short-term memory (LSTM)-
based attention network (LSTMaN) was used for supervised
classification and unsupervised clustering [13]. An LSTM-
fully convolutional network (LSTM-FCN) that combined FCN
and LSTM-based networks in parallel was applied to MTSC
[14]. However, most single- and dual-network-based MTSC
models above lack in-depth self-reflection on their structures,
restricting their ability for representation learning.

Within a representation hierarchy, the quality of the se-
mantic information learned from lower and higher levels
significantly affects a model’s performance [15]. As known,
higher-level semantic information is learned from lower-level
semantic information. On the other hand, almost all the ex-
isting models update their parameters by the backpropagation
(BP) method [16]. Lower-level semantic information is, to a

3http://crcv.ucf.edu/papers/UCF101 CRCV-TR-12-01.pdf
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certain extent, affected by higher-level semantic information.
Thus, lower- and higher-level semantic information learns
from and influences each other during the model learning
process. Efficiently promoting mutual learning between lower
and higher levels, seems a promising solution to enhancing a
model’s performance during learning.

Recently, self-distillation has become one of the main
streams in knowledge distillation (KD). A self-distillation-
based model is a teacher and its own student, promoting
knowledge flow within the model [17]. For example, Zhang et
al. [18] presented an efficient self-distillation method called Be
Your Own Teacher (BYOT) to transfer the output’s knowledge
to each lower-level module. Ji et al. [19] developed a self-
distillation refine approach to promote knowledge flow from
higher to lower levels and enhance the model’s classifica-
tion accuracy. Representative algorithms also include layer-
wise attention self-distillation [20], ensemble self-distillation
[21], transitive self-distillation [21], end-to-end progressive
self-label correction (ProSelfLC) [22]. However, almost all
the existing self-distillation algorithms emphasized knowledge
transfer from higher to lower levels, ignoring the significance
of lower-level semantic information to higher-level semantic
information.

To address the problem above, we propose a densely
knowledge-aware network (DKN) for MTSC. Unlike unidirec-
tional self-distillation methods that enable knowledge transfer
from higher to lower levels, e.g., BYOT and ensemble self-
distillation, DKN adopts densely dual self-distillation (DDSD)
to offer dense mutual learning between lower and higher
levels, efficiently enhancing its representation regularization
ability.

Our major contributions are summarized below.
• This paper designs a dual-network-based feature extrac-

tor for DKN, namely ResMulti-Trans, where a resid-
ual multi-head convolutional network (ResMulti) and
a transformer-based network (Trans) lie in parallel, as
shown in Fig. 1. ResMulti with five residual multi-head
blocks and Trans with three transformer blocks are used
for local and global pattern extraction, respectively.

• Through the DDSD, this paper enables dense mutual
supervision between lower- and higher-level semantic
information, helping DKN mine rich regularizations and
relationships hidden in the data.

• Experiments show that DKN outperforms 18 existing
MTSC algorithms regarding the ‘win’/‘tie’/‘lose’ mea-
sure and AVG rank, where results are based on the
top-1 accuracy. Specifically, DKN wins 10 out of 30
datasets and achieves the lowest AVG rank score, namely
5.550. Our DDSD is better than 5 state-of-the-art self-
distillation variants since it achieves 13/4/13 in terms of
‘win’/‘tie’/‘lose’ and obtains the lowest AVG rank score,
namely 2.250. DKN beats the pure ResMulti-Trans on 21
datasets regarding the top-1 accuracy.

The remainder of the paper is summarized as follow. Section
II reviews a number of existing MTSC algorithms. Section
III overviews the DKN’s structure and introduces its key
components. The experimental analysis and conclusion are
provided and summarized in Sections IV and V, respectively.

II. RELATED WORK

This section reviews some traditional and DL-based MTSC
algorithms.

A. Traditional Algorithms

Distance- and feature-based algorithms are two main re-
search streams for MTSC [7], [12]. Integrating the nearest
neighbor (NN) and dynamic time warping (DTW) is distance-
based, measuring the similarities between spatial features of
data, e.g., DTWA, DTWI , and DTWD [23]. A large number
of DTW-NN-based ensemble algorithms have been developed
for MTSC, e.g, the elastic ensemble (EE) with 11 1-NN-based
elastic distance [24], transformation-based ensemble (COTE)
with 37 NN-based classifiers [25], hierarchical vote collective
of transformation-based ensembles (HIVE-COTE) [26], ran-
dom interval spectral ensemble (RISE) [26], explainable-by-
design ensemble method (XEM) [27], and HIVE-COTE 2.0
[28].

Feature-based algorithms focus on capturing the repre-
sentative features from input data. For example, Baydogan
and Runger [29] introduced a pattern-based representation
method called learned pattern similarity (LPS) for feature
extraction. Shifaz et al. [30] proposed a scalable and accurate
forest algorithm for addressing MTSC problems. Baldán and
Benı́tez [31] presented an alternative representation method
to improve the interpretability of time series. Typical feature-
based algorithms also include the time series forest (TSF)
[32], hidden-unit logistic model (HULM) [33], bag-of-features
structure [34], bag of symbolic Fourier approximation symbols
(BOSS) [35], Contractable BOSS (CBOSS) [35], online rule-
based classifier learning [36], active semi-supervised learning
[37], autoregressive tree-based ensemble approach (mv-ARF)
[38], fuzzy cognitive map [39], and WEASEL+MUSE [40].

B. DL-based Algorithms

DL-based MTSC algorithms are good at modeling an inter-
nal data representation hierarchy, focusing on the inherent rela-
tionships among representations [7]. Single- and dual-network-
based models present research streams [8], [9]. The dynamic
temporal pooling network [10], AJ-RNN [11], DA-Net [12],
InceptionTime [41], FCN [42], ResNet [42], multi-process
collaborative architecture [43], ROCKET [44], shapelet-neural
network [45], deep contrastive representation learning with
self-distillation [46], MiniROCKET [47], echo state network
[48] and reservoir computing [49] are widely recognized
single-network-based models. The well-known RTFN [13],
ResNet-Transformer [50], LSTM-FCN [14], SelfMatch [51],
TapNet [52], and RNTS [53] are all dual-network-based.

III. THE PROPOSED DKN

This section first describes the structure of DKN and its
key components, including the residual multi-head block,
transformer, and densely dual self-distillation (DDSD). Then,
it introduces the loss function.
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Fig. 1. The overview of DKN. The feature extractor, called ResMulti-Trans, consists of ResMulti and Trans. ResMulti has five residual multi-head blocks and
one average pooling layer. Each multi-head block primarily contains five one-dimensional convolutional neural network (Conv1D) modules and one average
pooling layer, where “Conv1D 9x32” denotes a Conv1D with a kernel size of 9 and a channel number of 32. Trans contains three transformer blocks and
one average pooling layer. Note: “Transpose” outputs the transpose of a given matrix and “BN” is the batch normalization module. Let V j,i

out, i = 1, 2, ..., N ,
j = 1, 2, 3, 4, 5, denote the output of the i-th output feature vector of j-th multi-head block after passing the corresponding classifier in ResMulti, where N
is the size of input samples. Let V j,i

out, i = 1, 2, ..., N , j = 6, 7, 8, be the output of the i-th output feature vector of j-th transformer block after passing the
corresponding classifier in Trans. V i

out represents the i-th output feature vector of DKN.

A. Overview

DKN aims to effectively promote the mutual flow between
lower- and higher-level semantic information, extracting rich
regularizations and relationships hidden in the data. The
structure of DKN is illustrated in Fig. 1. ResMulti-Trans is
the extractor of local features and global relations. With five
residual multi-head blocks and one average pooling layer,
ResMulti focuses on extracting local patterns of data, while
Trans, with three transformer blocks and one average pooling
layer, is responsible for discovering global patterns of data. In
addition, DDSD is adopted to provide dense mutual supervi-
sion between lower- and higher-level semantic information,
which enhances the DKN model’s representation learning
ability.

B. Residual Multi-head Block

In ResMulti, the residual multi-head blocks are used to
capture multi-scale local features from the data. To be specific,
each block mainly consists of five one-dimensional convo-
lutional neural network (Conv1D) modules and one average
pooling module, as shown in Fig. 1. Note that the five Conv1D
modules are “Conv1D 5x32”, “Conv1D 7x32”, “Conv1D
9x32”, “Conv1D 11x32”, and “Conv1D 13x32”. Note that
“Conv1D 5x32” represents a Conv1D with a kernel size of

5 and a channel number of 32. An arbitrary Conv1D module
is defined as:

fconv(x) = Wconv ⊗ x+ bconv (1)

where, x stands for the input data. Wconv and bconv are the
weight and bias matrices of Conv1D, respectively.

The residual structure is adopted to avoid the loss of nec-
essary information and gradient degradation during training.
Let Vcnn1, Vcnn2, Vcnn3, Vcnn4, Vcnn5, and Vcnn6 denote
the outputs of “Conv1D 5x32”, “Conv1D 7x32”, “Conv1D
9x32”, “Conv1D 11x32”, “Conv1D 13x32”, and the average
pooling module, respectively. For an arbitrary residual multi-
head block, its output, VResM , is defined in Eq. (2).

VResM = fReLU (fBN (fconcat([Vcnn1, ..., Vcnn6])) + x)
(2)

where, fReLU , fBN , and fconcat are the rectified linear unit
activation (ReLU), batch normalization (BN), and CONCAT
functions, respectively.

C. Transformer Block
In Trans, the three transformer blocks are responsible for

capturing global pattens from the data, where each block
relates the features at different locations of its input [54]. The
architecture of a transformer block is shown in Fig. 2.
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Fig. 2. Architecture of transformer [54] block. Note: “MatMul” is the matrix multiplication operation.

There are natt attention modules in the multi-head attention.
The i-th attention module, Attentioni, maps a query, Queryi,
and a set of key-value pairs, Keyi−V aluei, to an output, V att

i .
V att
i is defined as:

V att
i = fsoftmax(

Queryi ·KeyTi√
di

) · V aluei (3)

where, KeyTi and di are the transpose and dimension of Keyi,
respectively. fsoftmax computes the possibilities of a give
matrix.

D. Densely Dual Self-distillation (DDSD)

The DDSD technique promotes mutual knowledge transfer
between lower- and higher-level semantic information, which
helps regularize the model and improve its representation
learning performance. Its structure is shown in Fig. 1. Let F 1

i ,
F 2
i , F 3

i , F 4
i and F 5

i denote the i-th (i = 1, ..., N ) output feature
vectors of the five residual multi-head blocks in ResMulti,
where N is the number of input samples. Let F 6

i , F 7
i , and

F 8
i be the i-th output feature vectors of the three transformer

blocks in Trans. As suggested in [17], [18], [19], [20], [21],
to match each vector with the output vector of DKN, V i

out,
we associate each feature vector with a specific classifier
consisting of one average pooling layer and one dense module,
denoted by fclass. The dense module in classifier fclass has
C neurons, where C is the number of classes. For an arbitrary
feature vector, F j

i , j = 1, ..., 8, its output after passing the
corresponding classifier, V j,i

out, is defined as:

V j,i
out = fsoftmax(fclass(F

j
i )/T ) i = 1, ..., N, j = 1, ..., 8

(4)
where, T is a temperature scaling parameter. In this paper, we
set T = 1.0 (see Section IV-C).

The loss function of DDSD, LKD, is calculated as:

LKD =
1

N

N∑
i=1

(

8∑
j=1

(fKL(V
i
out, V

j,i
out) + fKL(V

j,i
out, V

i
out))

+

5∑
k=2

k∑
j=1

(fKL(V
k,i
out, V

j,i
out) + fKL(V

j,i
out, V

k,i
out))

+

8∑
k=6

k∑
j=5

(fKL(V
k,i
out, V

j,i
out) + fKL(V

j,i
out, V

k,i
out)))

(5)
where, fKL is the Kullback–Leibler (KL) function.

E. Loss Function

The loss function of DKN, L, consists of a supervised loss,
Lsup, and a DDSD loss, LKD. Like the previous studies in
[17], [18], [19], [20], [21], Lsup is based on the cross-entropy
function that calculates the differences between the ground-
truth labels and their prediction vectors, as written in Eq. (6).

Lsup = − 1

N

N∑
i=1

yilog(V
i
out) (6)

where, yi is the i-th ground truth label.
The loss function of DKN, L, is defined in Eq. (7).

L = µLsup + (1− µ)LKD + ϵ||θ||22 (7)

where, µ is a coefficient reflecting the relative importance
of Lsup over LKD. In this paper, we set µ = 0.9 (more
details are found in Section IV-C). θ is the parameters of
DKN. ϵ represents the coefficient of ||θ||22 (L2 regularization).
Following [13], [51], [53], we set ϵ = 0.0005. The pseudo code
of DKN is shown in Algorithm 1.
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TABLE I
DETAILS OF 30 MULTIVARIATE TIME SERIES DATASETS. ABBREVIATIONS: AS - AUDIO SPECTRA, ECG - ELECTROCARDIOGRAM, EEG -

ELECTROENCEPHALOGRAM, HAR - HUMAN ACTIVITY RECOGNITION, MEG - MAGNETOENCEPHALOGRAPHY.

Dataset Index Dataset Name NumClasses TrainSize SeriesLength TestSize NumDimensions Type
AWR ArticularyWordRecognition 25 275 144 300 9 Motion
AF AtrialFibrillation 3 15 640 15 2 ECG
BM BasicMotions 4 40 100 40 6 HAR
CT CharacterTrajectories 20 1422 182 1436 3 Motion
CK Cricket 12 108 1197 72 6 HAR

DDG DuckDuckGeese 5 50 270 50 1345 AS
EW EigenWorms 5 128 17984 131 6 Motion
EP Epilepsy 4 137 206 138 3 HAR
EC EthanolConcentration 4 261 1751 263 3 HAR
ER ERing 6 30 65 270 4 Other
FD FaceDetection 2 5890 62 3524 144 EEG/MEG
FM FingerMovements 2 316 50 100 28 EEG/MEG

HMD HandMovementDirection 4 160 400 74 10 EEG/MEG
HW Handwriting 26 150 152 850 3 HAR
HB Heartbeat 2 204 405 205 61 AS
IW InsectWingbeat 10 30000 30 20000 200 AS
JV JapaneseVowels 9 270 29 370 12 AS

LIB Libras 15 180 45 180 2 HAR
LSST LSST 14 2459 36 2466 6 Others

MI MotorImagery 2 278 3000 100 64 EEG/MEG
NATO NATOPS 6 180 51 180 24 HAR

PD PenDigits 10 7494 8 3498 2 EEG/MEG
PEMS PEMS-SF 7 267 144 173 963 EEG/MEG

PS Phoneme 39 3315 217 3353 11 AS
RS RacketSports 4 151 30 152 6 HAR

SRS1 SelfRegulationSCP1 2 268 896 293 6 EEG/MEG
SRS2 SelfRegulationSCP2 2 200 1152 180 7 EEG/MEG
SAD SpokenArabicDigits 10 6599 93 2199 13 AS
SWJ StandWalkJump 3 12 2500 15 4 ECG
UW UWaveGestureLibrary 8 120 315 320 3 HAR

Algorithm 1 Procedure of DKN
Input: D = (Dtrain,Dval,Dtest); ▷ Dtrain,Dval

and Dtest are the training, validation, and testing data sets,
respectively.

Output: Y;
1: Initialize the DKN’s parameters, θ0;
2: for i = 1 to Epochs do ▷ Epochs denotes the number

of training epochs.
3: Feedforward Dtrain into DKN;
4: Obtain LKD by Eq. (5);
5: Obtain Lsup by Eq. (6);
6: Obtain the DKN’s loss, L, by Eq. (7);
7: Update θi by θi = θi−1 − η∇θi−1

L(θi−1); ▷
η represents the learning rate. ∇θi−1

and θi−1 are the
DKN’s parameters and gradient at the (i-1)-th training
epoch, respectively.

8: if i > 1 then
9: Validate DKN based on Dval;

10: end if
11: end for
12: Predict Y based on Dtest.

IV. PERFORMANCE AND EVALUATION

This section first introduces the experimental setup, perfor-
mance metrics, hyper-parameter sensitivity, and ablation study.
Then, the DKN’s performance and efficiency are verified.
Finally, the case study is explained.

TABLE II
HYPER-PARAMETER SETTINGS OF THE THREE TRANSFORMER BLOCKS.

Transformer No. natt
Dense Layer’s

units Dropout Value

1 8 64 0.5
2 8 128 0.5
3 8 192 0.5

A. Experimental Setup

1) Dataset Description: As the previous studies [12], [13],
[14] suggested, we adopt the University of East Anglia mul-
tivariate time series archive in 2018 (UEA2018) [55] for
algorithmic performance evaluation. UEA2018, a widely used
MTSC archive, consists of 30 datasets in 7 application scenar-
ios, including audio spectra, human activity recognition, elec-
troencephalogram, meagnetoencephalography, motion, electro-
cardiogram, and others. More details are seen in Table I.

2) Implementation Details: The hyper-parameter settings of
the three transformer blocks are shown in Table II. In this
paper, we adopt the Adam optimizer with its initial learning
rate, momentum term, decay value set to 0.001, 0.9, 0.9,
respectively. We run the experiments using a computer with
Ubuntu 18.04 OS, Python 3.7, an Nvidia GTX 1080Ti GPU
with 11GB, Tensorflow 1.18, and an AMD R5 1400 CPU with
16G RAM.

B. Performance Metrics

To verify the proposed DKN, we consider two commonly
used metrics, namely, ‘win’/‘tie’/‘lose’ and AVG rank, which
are based on the top-1 accuracy. As suggested in [7], [8],
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TABLE III
THE TOP-1 ACCURACY RESULTS WITH DIFFERENT T VALUES ON 30

UEA2018 DATASETS.

Dataset Index T
0.5 1.0 2.0 3.0 4.0 5.0

AWR 0.980 0.993 0.970 0.963 0.953 0.987
AF 0.400 0.467 0.467 0.400 0.333 0.267
BM 1.000 1.000 1.000 1.000 1.000 1.000
CT 0.986 0.986 0.969 0.964 0.979 0.983
CK 0.972 0.951 0.958 0.972 0.986 0.986

DDG 0.500 0.560 0.520 0.480 0.600 0.580
EW 0.550 0.628 0.517 0.618 0.550 0.527
EP 0.964 0.979 0.978 0.964 0.986 0.978
EC 0.304 0.372 0.323 0.293 0.372 0.316
ER 0.919 0.933 0.919 0.919 0.919 0.922
FD 0.629 0.631 0.614 0.629 0.629 0.629
FM 0.590 0.600 0.580 0.580 0.580 0.570

HMD 0.608 0.662 0.541 0.500 0.544 0.544
HW 0.231 0.231 0.231 0.231 0.231 0.231
HB 0.717 0.765 0.717 0.727 0.751 0.751
IW 0.340 0.362 0.360 0.350 0.352 0.360
JV 0.930 0.930 0.930 0.930 0.930 0.930

LIB 0.894 0.900 0.883 0.894 0.883 0.883
LSST 0.391 0.347 0.257 0.333 0.333 0.333

MI 0.590 0.620 0.610 0.600 0.590 0.580
NATO 0.850 0.872 0.883 0.883 0.850 0.850

PD 0.939 0.948 0.939 0.939 0.939 0.911
PEMS 0.745 0.930 0.913 0.913 0.913 0.913

PS 0.421 0.525 0.421 0.425 0.421 0.421
RS 0.868 0.879 0.868 0.868 0.868 0.868

SRS1 0.908 0.913 0.899 0.899 0.908 0.908
SRS2 0.550 0.600 0.533 0.550 0.611 0.533
SAD 0.946 0.963 0.963 0.963 0.963 0.963
SWJ 0.400 0.533 0.500 0.500 0.500 0.533
UW 0.881 0.897 0.894 0.857 0.881 0.894
Win 1 18 0 0 2 0
Tie 5 6 6 5 7 6

Lose 24 6 24 25 21 24
Best 6 24 6 5 9 6

AVG rank 3.950 1.800 4.017 4.017 3.517 3.700

[10], [11], [12], [13], [14], for an arbitrary MTSC algorithm,
its ‘win’, ‘tie’, and ‘lose’ scores reflect on how many datasets
this algorithm is better than, equal to, and worse than the other
algorithms for performance comparison, respectively; its ‘best’
score is the summation of the corresponding ‘win’ and ‘tie’
scores. Like the previous studies in [7], [8], [10], [13], [14],
[50], [51], [52], [53], we use AVG rank to differentiate various
algorithms, where results are based on the Wilcoxon signed-
rank test with Holm’s alpha (5%) correction.

C. Hyper-parameter Sensitivity

We investigate the impact of hyper-parameter settings on
the DKN’s performance on 30 UEA2018 datasets.

1) DKN with different T values: T is the temperature scal-
ing parameter that controls a soft probability distribution over
classes. Table III shows the top-1 accuracy results obtained by
DKN with different T values on 30 datasets. One can easily
find that 1.0 helps DKN achieve the best ‘win’/‘tie’/‘lose’
result, namely 18/6/6, and the best AVG rank value, namely
1.800. That is why we hereafter set T = 1.0 in the experiments.

2) DKN with different µ values: µ is the coefficient that
balances between Lsup and LKD, resulting in low entropy
during training. Table IV shows the top-1 accuracy results
obtained by DKN with different T values on 30 datasets. It
is seen that µ = 0.9 corresponds to the best ‘win’/‘tie’/‘lose’
result, namely 8/14/8, and the best AVG rank value, namely
1.650. That reflects µ = 0.9 is beneficial to the entropy
reduction of DKN.

TABLE IV
THE TOP-1 ACCURACY RESULTS WITH DIFFERENT µ VALUES ON 30

UEA2018 DATASETS.

Dataset Index µ
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

AWR 0.953 0.953 0.970 0.963 0.987 0.987 0.990 0.990 0.993
AF 0.267 0.267 0.267 0.267 0.333 0.333 0.400 0.400 0.467
BM 0.975 0.975 0.975 1.000 1.000 1.000 1.000 1.000 1.000
CT 0.917 0.931 0.931 0.931 0.969 0.969 0.983 0.983 0.986
CK 0.861 0.861 0.861 0.861 0.917 0.917 0.931 0.944 0.951

DDG 0.375 0.375 0.375 0.380 0.380 0.480 0.540 0.560 0.560
EW 0.511 0.511 0.511 0.527 0.527 0.550 0.618 0.626 0.628
EP 0.732 0.732 0.732 0.863 0.863 0.964 0.964 0.979 0.979
EC 0.293 0.293 0.323 0.316 0.323 0.323 0.373 0.372 0.372
ER 0.859 0.881 0.881 0.881 0.919 0.919 0.933 0.941 0.933
FD 0.519 0.529 0.545 0.513 0.555 0.640 0.629 0.629 0.631
FM 0.520 0.530 0.530 0.530 0.540 0.580 0.590 0.620 0.600

HMD 0.378 0.378 0.541 0.541 0.508 0.556 0.649 0.649 0.662
HW 0.191 0.191 0.191 0.191 0.191 0.231 0.231 0.231 0.231
HB 0.564 0.564 0.564 0.619 0.658 0.727 0.717 0.717 0.765
IW 0.228 0.237 0.237 0.237 0.237 0.362 0.362 0.362 0.362
JV 0.778 0.778 0.778 0.800 0.800 0.900 0.968 0.968 0.930
LIB 0.833 0.833 0.833 0.850 0.850 0.870 0.870 0.894 0.900

LSST 0.161 0.265 0.265 0.265 0.265 0.285 0.314 0.352 0.347
MI 0.500 0.500 0.500 0.520 0.540 0.560 0.560 0.600 0.620

NATO 0.800 0.839 0.839 0.839 0.839 0.850 0.850 0.872 0.872
PD 0.892 0.892 0.892 0.892 0.939 0.939 0.951 0.939 0.948

PEMS 0.734 0.734 0.734 0.745 0.745 0.914 0.914 0.930 0.930
PS 0.388 0.388 0.388 0.388 0.288 0.369 0.404 0.418 0.525
RS 0.803 0.803 0.803 0.842 0.842 0.868 0.868 0.854 0.879

SRS1 0.829 0.829 0.829 0.829 0.839 0.840 0.908 0.908 0.913
SRS2 0.483 0.483 0.483 0.483 0.533 0.533 0.533 0.600 0.600
SAD 0.787 0.787 0.787 0.900 0.787 0.900 0.900 0.963 0.963
SWJ 0.333 0.333 0.333 0.333 0.333 0.500 0.533 0.533 0.533
UW 0.868 0.868 0.868 0.869 0.881 0.881 0.897 0.897 0.897
Win 0 0 0 0 0 1 2 3 8
Tie 0 0 0 1 1 2 6 12 14

Lose 30 30 30 29 29 27 22 15 8
Best 0 0 0 1 1 3 8 15 22

AVG rank 8.017 7.533 7.200 6.350 5.367 3.883 2.800 2.200 1.650

3) ResMulti with different multi-head blocks: To study the
effectiveness of different multi-head blocks on ResMulti, we
compare ResMulti with five variants:

• ResMulti-(1): ResMulti with only one multi-head block.
• ResMulti-(2): ResMulti with two multi-head blocks.
• ResMulti-(3): ResMulti with three multi-head blocks.
• ResMulti-(4): ResMulti with four multi-head blocks.
• ResMulti: ResMulti with five multi-head blocks.
• ResMulti-(6): ResMulti with six multi-head blocks.

As shown in Table V, as the number of multi-head blocks
increases, the accuracy of ResMulti becomes higher and
higher. ResMulti with multiple multi-head blocks makes it
easier to mine plenty of multi-scale local features from the
input, e.g., ResMulti-(6) outperforms ResMulti-(1), ResMulti-
(2), ResMulti-(3), ResMulti-(4), and ResMulti on the In-
sectWingbeat dataset.

ResMulti and ResMulti-(6) obtain the same results on
23 datasets. Meanwhile, the mean accuracy of ResMulti-(6)
is only 0.001 higher than that of ResMulti, reflecting that
ResMulti and ResMulti-(6) have similar performance to some
extent. Compared with ResMulti, ResMulti-(6) consumes more
computational resources, e.g., the parameters of ResMulti and
ResMulti-(6) on the EigenWorms dataset are 360,942 and
361,135, respectively. This is why ResMulti uses five multi-
head blocks rather than six.

4) Trans with different transformer blocks: To investigate
the effectiveness of different transformer blocks on Trans, we
compare the proposed Trans with three variants:

• Trans-(1): ResMulti with only one transformer block.
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TABLE V
THE TOP-1 ACCURACY RESULTS OBTAINED BY VARIOUS RESMULTI

VARIANTS ON 30 UEA2018 DATASETS.

Dataset
Index ResMulti-(1) ResMulti-(2) ResMulti-(3) ResMulti-(4) ResMulti ResMulti-(6)

AWR 0.884 0.905 0.934 0.953 0.969 0.973
AF 0.200 0.300 0.300 0.400 0.400 0.400
BM 0.700 0.900 1.000 1.000 1.000 1.000
CT 0.782 0.814 0.868 0.969 0.969 0.969
CK 0.705 0.778 0.827 0.848 0.903 0.903

DDG 0.100 0.200 0.200 0.260 0.320 0.320
EW 0.208 0.317 0.389 0.422 0.518 0.527
EP 0.500 0.528 0.739 0.905 0.920 0.920
EC 0.075 0.203 0.275 0.293 0.316 0.316
ER 0.133 0.133 0.133 0.881 0.881 0.881
FD 0.136 0.238 0.378 0.549 0.555 0.555
FM 0.200 0.320 0.360 0.560 0.580 0.580

HMD 0.270 0.284 0.324 0.378 0.541 0.541
HW 0.080 0.100 0.120 0.160 0.184 0.191
HB 0.199 0.218 0.360 0.502 0.619 0.619
IW 0.008 0.025 0.125 0.200 0.227 0.228
JV 0.458 0.693 0.772 0.817 0.916 0.916

LIB 0.500 0.700 0.727 0.800 0.833 0.833
LSST 0.243 0.275 0.305 0.390 0.408 0.391

MI 0.300 0.380 0.420 0.550 0.570 0.570
NATO 0.400 0.600 0.750 0.800 0.850 0.850

PD 0.500 0.583 0.725 0.826 0.892 0.892
PEMS 0.485 0.522 0.697 0.745 0.745 0.745

PS 0.104 0.104 0.104 0.151 0.288 0.288
RS 0.652 0.652 0.741 0.842 0.842 0.854

SRS1 0.458 0.582 0.696 0.804 0.867 0.867
SRS2 0.300 0.450 0.483 0.494 0.550 0.550
SAD 0.100 0.758 0.805 0.883 0.939 0.946
SWJ 0.267 0.333 0.333 0.400 0.400 0.400
UW 0.500 0.683 0.833 0.833 0.881 0.881
Win 0 0 0 0 1 6
Tie 0 0 1 3 23 23

Lose 30 30 29 27 6 1
Best 0 0 1 3 24 29

Mean Accuracy 0.348 0.453 0.524 0.621 0.663 0.664

• Trans-(2): ResMulti with two transformer blocks.
• Trans: Trans with three transformer blocks.
• Trans-(4): Trans with four transformer blocks.

Table VI shows the top-1 accuracy results obtained by various
Trans variants on 30 datasets. First, Trans-(4) achieves the
best performance, because the four transformer blocks capture
more affluent global relations from the data.

Trans and Trans-(4) result in similar performance on 22
datasets. The average accuracy of Trans-(4) is slightly higher
than that of Trans (about 0.009), showing that Trans and Trans-
(4) have similar performance to some extent. Compared with
Trans, Trans-(4) require more computational resources, e.g.,
the parameters of Trans and Trans-(4) on the EigenWorms
dataset are 4,859,246 and 5,191,429, respectively. This is why
we choose Trans with three transformer blocks rather than
four.

D. Ablation Study

This section evaluates the key components of DKN on 30
UEA2018 datasets.

1) Effectiveness of ResMulti and Trans: To study the ef-
fectiveness of ResMulti and Trans, we compare the proposed
DKN with two variants:

• DKN-w/o-Trans: DKN without the transformer-based
network.

• DKN-w/o-ResMulti: DKN without the residual multi-
head convolutional network.

TABLE VI
THE TOP-1 ACCURACY RESULTS OBTAINED BY VARIOUS TRANS

VARIANTS ON 30 UEA2018 DATASETS.

Dataset
Index Trans-(1) Trans-(2) Trans Trans-(4)

AWR 0.736 0.884 0.953 0.957
AF 0.167 0.267 0.333 0.333
BM 0.676 1.000 1.000 1.000
CT 0.814 0.917 0.931 0.931
CK 0.668 0.827 0.889 0.903

DDG 0.100 0.200 0.380 0.380
EW 0.275 0.330 0.511 0.511
EP 0.500 0.666 0.732 0.883
EC 0.106 0.203 0.304 0.316
ER 0.133 0.133 0.859 0.874
FD 0.238 0.378 0.573 0.573
FM 0.200 0.400 0.550 0.560

HMD 0.270 0.324 0.508 0.508
HW 0.120 0.153 0.191 0.191
HB 0.218 0.502 0.658 0.658
IW 0.125 0.200 0.237 0.237
JV 0.458 0.693 0.768 0.817
LIB 0.400 0.727 0.806 0.806

LSST 0.104 0.226 0.265 0.265
MI 0.300 0.480 0.550 0.550

NATO 0.300 0.600 0.800 0.800
PD 0.538 0.725 0.892 0.892

PEMS 0.339 0.589 0.745 0.751
PS 0.104 0.151 0.269 0.269
RS 0.359 0.741 0.856 0.867

SRS1 0.652 0.771 0.823 0.823
SRS2 0.450 0.494 0.533 0.533
SAD 0.202 0.639 0.787 0.787
SWJ 0.200 0.333 0.400 0.400
UW 0.500 0.700 0.859 0.869
Win 0 0 0 8
Tie 0 1 22 22

Lose 30 29 8 0
Best 0 1 22 30

Mean Accuracy 0.342 0.508 0.632 0.641

Table VII shows the top-1 accuracy results obtained by DKN
and its two variants on 30 datasets. That DKN outperforms
DKN-w/o-Trans on 28 datasets (except BM and LSST) reflects
the effectiveness of Trans, i.e., the three transformer blocks
can mine sufficient global relations from a given input. That
DKN overwhelms DKN-w/o-ResMulti on 29 datasets (except
BM) indicates the effectiveness of ResMulti, namely, the five
residual multi-head blocks can extract abundant multi-scale
local features from the input. With Trans and ResMulti, DKN
is able to capture more high-quality representations and thus
obtains better performance with respect to top-1 accuracy.

2) Effectiveness of DDSD: To study the effectiveness of
DDSD, we compare it with five existing self-distillation vari-
ants, including BYOT, SAD, TSD, ProSelfLC, and SelfRef.
The models for performance comparison are listed below.

• ResMulti-Trans: DKN without DDSD, i.e., the pure
ResMulti-Trans.

• BYOT-ResMulti-Trans: ResMulti-Trans with the best
teacher distillation instead of DDSD [18].

• SAD-ResMulti-Trans: ResMulti-Trans with the layer-
wise attention self-distillation instead of DDSD [20].

• TSD-ResMulti-Trans: ResMulti-Trans with the transitive
self-distillation instead of DDSD [21].

• ProSelfLC-ResMulti-Trans: ResMulti-Trans with the pro-
gressive self-label correction instead of DDSD [22] .

• SelfRef-ResMulti-Trans: ResMulti-Trans with the self-
distillation refine instead of DDSD [19].

The top-1 accuracy results with different DKN variants on 30
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TABLE VII
THE TOP-1 ACCURACY RESULTS OBTAINED BY VARIOUS DKN VARIANTS ON 30 UAE2018 DATASETS.

Dataset Index DKN-w/o-
Trans

DKN-
w/o-ResMulti ResMulti-Trans BYOT-

ResMulti-Trans
SAD-

ResMulti-Trans
TSD-

ResMulti-Trans
ProSelfLC-

ResMulti-Trans
SelfRef-

ResMulti-Trans DKN

AWR 0.973 0.963 0.973 0.980 0.987 0.993 0.990 0.993 0.993
AF 0.400 0.333 0.400 0.400 0.400 0.400 0.400 0.400 0.467
BM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
CT 0.969 0.942 0.982 0.969 0.979 0.983 0.931 0.998 0.986
CK 0.903 0.889 0.944 0.944 0.944 0.944 0.944 0.944 0.951

DDG 0.320 0.420 0.420 0.500 0.520 0.600 0.520 0.540 0.560
EW 0.527 0.511 0.555 0.568 0.549 0.618 0.618 0.626 0.628
EP 0.920 0.883 0.971 0.964 0.986 0.978 0.978 0.979 0.979
EC 0.316 0.316 0.304 0.323 0.323 0.316 0.323 0.316 0.372
ER 0.881 0.874 0.915 0.919 0.930 0.919 0.919 0.930 0.933
FD 0.555 0.573 0.619 0.628 0.640 0.623 0.621 0.624 0.631
FM 0.580 0.570 0.630 0.620 0.580 0.630 0.540 0.590 0.600

HMD 0.541 0.508 0.419 0.481 0.500 0.500 0.481 0.500 0.662
HW 0.191 0.305 0.314 0.191 0.357 0.316 0.286 0.287 0.231
HB 0.619 0.658 0.737 0.727 0.717 0.727 0.727 0.727 0.765
IW 0.228 0.237 0.430 0.316 0.237 0.387 0.359 0.237 0.362
JV 0.916 0.768 0.926 0.928 0.928 0.924 0.926 0.926 0.930
LIB 0.833 0.817 0.850 0.870 0.894 0.870 0.894 0.870 0.900

LSST 0.391 0.265 0.440 0.456 0.575 0.551 0.161 0.265 0.347
MI 0.570 0.560 0.640 0.600 0.610 0.590 0.580 0.590 0.620

NATO 0.850 0.817 0.882 0.850 0.850 0.883 0.850 0.878 0.872
PD 0.892 0.892 0.975 0.939 0.930 0.930 0.939 0.939 0.948

PEMS 0.745 0.758 0.914 0.914 0.914 0.914 0.930 0.930 0.930
PS 0.288 0.269 0.304 0.318 0.418 0.418 0.304 0.439 0.525
RS 0.854 0.856 0.855 0.862 0.868 0.868 0.862 0.868 0.879

SRS1 0.867 0.862 0.884 0.899 0.899 0.908 0.908 0.899 0.913
SRS2 0.550 0.539 0.533 0.539 0.550 0.539 0.600 0.533 0.600
SAD 0.946 0.787 0.979 0.959 0.963 0.986 0.787 0.946 0.963
SWJ 0.400 0.400 0.600 0.533 0.533 0.600 0.533 0.533 0.533
UW 0.881 0.869 0.855 0.881 0.868 0.881 0.869 0.894 0.897
Win 0 0 5 0 4 2 0 1 13
Tie 1 1 1 1 1 2 3 3 4

Lose 29 29 24 29 25 26 27 26 13
Best 1 1 6 1 5 4 3 4 17

AVG rank 7.150 8.050 5.050 4.933 4.267 3.767 5.167 4.267 2.250

datasets are shown in Table VII. First of all, let us compare
DKN and ResMulti-Trans. In terms of ‘win’/‘tie’/‘lose’ and
AVG rank, DKN results in 13/4/13 and 2.250 while ResMulti-
Trans obtains 5/1/24 and 5.050, which demonstrates the ef-
fectiveness of DDSD. To visualize the difference between
DKN and ResMulti-Trans, we show the accuracy plot of DKN
against ResMulti-Trans on the whole UEA2018 archive in
Fig. 3. The results show that DKN obtains ‘win’/‘tie’/‘loss’
in 20/1/9 cases, respectively, illustrating that our DDSD well
regularizes the DKN model and thus greatly improves its
performance on MTSC.

Then, we compare DKN with those ResMulti-Trans models
with other self-distillation techniques. It is no doubt that
DDSD performs significantly better than BYOT, SAD, TSD,
ProSelfLC, and SelfRef, in terms of ‘win’/‘tie’/‘lose’ and
AVG rank. The results, to a certain extent, demonstrate that
our DDSD effectively promotes the mutual knowledge transfer
between lower- and higher-level semantic information, helping
DKN discover abundant representations and regularizations
hidden in data.

E. Experimental Analysis

To study the performance of DKN, we compare it with 18
existing MTSC algorithms:

• Three distance-based benchmark algorithms: EDI ,
DTWI , and DTWD [7], [23].

Fig. 3. Accuracy plot showing the performance difference between DKN and
ResMulti-Trans on 30 UEA2018 datasets.

• WM: the bag-of-pattern based approach with statistical
feature selection, also called WEASEL+MUSE [40].

• CBOSS: the contractable bag of symbolic Fourier approx-
imation symbols method [35].

• MLCN: the multivariate LSTM-fully convolutional net-
work [14].

• RISE: the random interval spectral ensemble algorithm
[26].
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TABLE VIII
THE TOP-1 ACCURACY RESULTS OBTAINED BY VARIOUS MTSC ALGORITHMS ON 30 UEA2018 DATASETS.

Dataset
Index MLP FCN Inception

Time ResNet EDI DTWI DTWD WM CBOSS MLCN RISE TSF TapNet XEM CMFM
+ SVM

Mini
ROCKET DA-Net Conv-

GRU DKN

AWR 0.043 0.823 0.897 0.943 0.970 0.980 0.987 0.993 0.990 0.957 0.963 0.953 0.987 0.993 0.973 0.992 0.980 0.973 0.993
AF 0.400 0.200 0.267 0.200 0.267 0.267 0.220 0.267 0.267 0.333 0.267 0.200 0.333 0.467 0.267 0.133 0.467 0.467 0.467
BM 0.875 1.000 1.000 1.000 0.676 1.000 0.975 1.000 1.000 0.875 1.000 1.000 1.000 1.000 0.975 1.000 0.925 1.000 1.000
CT 0.056 0.741 0.935 0.977 0.964 0.969 0.989 0.990 0.986 0.917 0.986 0.931 0.997 0.979 0.970 0.065 0.998 0.966 0.986
CK 0.111 0.917 0.958 0.958 0.944 0.986 1.000 0.986 N/A N/A N/A N/A 0.958 0.986 0.958 0.986 0.861 0.943 0.951

DDG 0.360 0.600 0.560 0.600 0.275 0.550 0.600 0.575 0.480 0.380 0.220 0.460 0.575 0.375 0.420 0.650 0.520 0.540 0.560
EW 0.233 0.684 0.727 0.833 0.549 N/A 0.618 0.890 0.511 0.330 0.626 0.712 0.489 0.527 0.847 0.954 0.489 0.811 0.628
EP 0.312 0.935 0.935 0.964 0.666 0.978 0.964 0.993 0.979 0.732 0.979 1.000 0.971 0.986 0.978 1.000 0.883 0.978 0.979
EC 0.300 0.349 0.321 0.317 0.293 0.304 0.323 0.316 0.304 0.373 0.445 0.487 0.323 0.372 0.228 0.380 0.338 0.332 0.372
ER 0.159 0.778 0.822 0.907 0.133 0.133 0.133 0.133 0.919 0.941 0.881 0.859 0.133 0.200 0.930 0.981 0.874 0.400 0.933
FD 0.565 0.518 0.528 0.534 0.519 N/A 0.529 0.545 0.513 0.555 0.640 0.508 0.556 0.614 0.583 0.631 0.648 0.640 0.631
FM 0.510 0.510 0.500 0.460 0.550 0.520 0.530 0.540 0.519 0.580 0.581 0.562 0.530 0.590 0.460 0.450 0.510 0.580 0.600

HMD 0.216 0.270 0.392 0.216 0.278 0.306 0.231 0.378 0.292 0.544 0.481 0.312 0.378 0.649 0.284 0.392 0.365 0.338 0.662
HW 0.038 0.192 0.294 0.382 0.200 0.316 0.286 0.531 0.504 0.305 0.359 0.191 0.357 0.287 0.187 0.511 0.159 0.451 0.231
HB 0.665 0.724 0.717 0.716 0.619 0.658 0.717 0.727 0.564 0.458 0.535 0.518 0.751 0.761 0.727 0.771 0.624 0.746 0.765
IW 0.104 0.491 0.302 0.231 0.128 N/A N/A N/A N/A N/A N/A N/A 0.208 0.228 0.100 0.595 0.567 0.208 0.362
JV 0.114 0.941 0.949 0.924 0.924 0.959 0.949 0.978 N/A N/A N/A N/A 0.965 0.978 0.778 0.989 0.938 0.991 0.930

LIB 0.078 0.478 0.744 0.844 0.833 0.894 0.870 0.894 0.894 0.850 0.806 0.806 0.850 0.772 0.817 0.878 0.800 0.889 0.900
LSST 0.326 0.337 0.290 0.232 0.456 0.575 0.551 0.628 0.458 0.390 0.161 0.265 0.568 0.652 0.652 0.643 0.560 0.548 0.347

MI 0.530 0.590 0.530 0.560 0.510 N/A N/A 0.500 0.390 0.510 0.480 0.550 0.590 0.600 0.500 0.550 0.500 0.512 0.620
NATO 0.167 0.900 0.889 0.878 0.850 0.850 0.883 0.883 0.850 0.900 0.800 0.839 0.939 0.916 0.800 0.928 0.878 0.916 0.872

PD 0.211 0.970 0.977 0.973 0.973 0.939 0.977 0.969 0.939 0.979 0.892 0.831 0.980 0.977 0.665 0.965 0.980 0.939 0.948
PEMS 0.340 0.832 0.888 0.828 0.705 0.734 0.711 N/A 0.730 0.745 0.982 0.994 0.751 0.942 0.959 0.522 0.867 0.874 0.930

PS 0.414 0.466 0.466 0.466 0.104 0.151 0.151 0.190 0.151 0.151 0.137 0.269 0.175 0.288 0.247 0.292 0.093 0.215 0.525
RS 0.276 0.796 0.829 0.836 0.868 0.842 0.803 0.914 0.854 0.856 0.895 0.823 0.868 0.941 0.809 0.868 0.803 0.888 0.879

SRS1 0.686 0.805 0.805 0.761 0.771 0.765 0.775 0.744 0.765 0.908 0.840 0.724 0.652 0.839 0.771 0.874 0.924 0.843 0.913
SRS2 0.456 0.511 0.561 0.511 0.483 0.533 0.539 0.522 0.533 0.506 0.483 0.494 0.550 0.550 0.450 0.522 0.561 0.566 0.600
SAD 0.108 0.729 0.872 0.932 0.967 0.959 0.963 0.982 N/A N/A N/A N/A 0.983 0.973 0.979 0.100 0.980 0.963 0.963
SWJ 0.200 0.267 0.133 0.133 0.200 0.333 0.200 0.333 0.333 0.400 0.333 0.267 0.400 0.400 0.267 0.333 0.400 0.426 0.533
UW 0.131 0.497 0.544 0.759 0.881 0.868 0.903 0.903 0.869 0.859 0.775 0.684 0.894 0.897 0.728 0.916 0.833 0.919 0.897
Win 0 0 0 0 0 0 1 1 0 0 0 2 2 1 0 5 3 2 7
Tie 0 1 1 1 0 1 1 2 1 0 1 2 2 4 1 1 2 2 3

Lose 30 29 29 29 30 29 28 27 29 30 29 26 26 25 29 24 25 26 20
Best 0 1 1 1 0 1 2 3 1 0 1 4 4 5 1 6 5 4 10

AVG rank 15.483 11.350 10.267 10.783 13.050 11.317 10.567 7.800 11.583 11.050 11.017 12.567 7.567 5.883 11.433 6.400 9.467 6.867 5.550

• TSF: the time series forest algorithm for MTSC [32].
• MLP: the multilayer perceptron network for MTSC [42].
• FCN: the fully convolutional network for MTSC [42].
• InceptionTime: the Inception-based neural network for

MTSC [41].
• ResNet: the residual neural network for MTSC [42].
• TapNet: the attentional prototype network integrating

traditional and DL approaches [52].
• XEM: the explainable-by-design ensemble method with

the boosting-bagging and bias-variance trade-off ap-
proaches [27].

• CMFM+SVM: the complexity measures and features
method with an SVM classifier for MTSC [31].

• MiniROCKET: the very fast (almost) deterministic trans-
form method [47].

• DA-Net: the dual attention-based network, consisting of
the squeeze-excitation window attention layer and sparse
self-attention within windows layer [12].

• Conv-GRU: the convolutional network with a gated linear
units kernel [56].

The top-1 accuracy results obtained by various MTSC
algorithms are shown in Table VIII. DKN performs the best,
achieving a ‘win’/‘tie’/‘loss’ result of 7/3/20 and the smallest
AVG rank score, namely 5.550. There are mainly two reasons
why DKN has remarkable performance. First, the DKN’s fea-
ture extractor is dual-network-based. ResMulti is responsible
for multi-scale local pattern extraction while Trans takes care
of global pattern extraction. With ResMulti and Trans well de-
signed, the feature extractor provides DKN with sufficient and
well-diversified local and global features. Second, the DDSD

technique strengthens the model’s representation learning abil-
ity and regularizes DKN, by encouraging mutual knowledge
transfer between lower- and higher-level semantic information.
XEM is the second-best algorithm regarding AVG rank. Its ex-
plicit boosting-bagging and bias-variance trade-off techniques
help extract the inherent connections among the dimensions
at different timestamps. MiniROCKET takes the second place
among all compared algorithms according to ‘best’. This is
because MiniROCKET uses simple linear classifiers with ran-
dom convolutional kernels to mine multi-scale representations
from the input. On the other hand, MLP is obviously the worst
benchmark algorithm against ‘win’/‘tie’/‘loss’ and AVG rank
since this multilayer-perceptron-based model often fails to
extract as many promising representations from the data as
possible. Besides, the AVG rank results of various MTSC
algorithms are shown in Fig. 4.

F. Computational Complexity

As suggested in [57], [58], we compare the proposed DKN
with four single-network-based and two dual-network-based
DL models regarding the number of parameters, floating point
operations (FLOPs), and inference time on 30 UEA2018
testing datasets. These four single-network-based models are
MLP [42], FCN [42], ResNet [42], and InceptionTime [41],
while the two dual-network-based models include MLCN [14]
and TapNet [52]. Table IX collects the testing results.

One can easily observe that DKN is slower than the
four single-network-based models on most datasets, while
the opposite situation appears on a few datasets, e.g., the
inference time values of ResNet, InceptionTime, and DKN on
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Fig. 4. AVG rank results of various MTSC algorithms on 30 UEA2018 datasets.

TABLE IX
THE NUMBER OF PARAMETERS, FLOATING POINT OPERATIONS (FLOPS), AND INFERENCE TIME RESULTS WITH VARIOUS ALGORITHMS ON 30 UEA2018

TESTING DATASETS.

Metric Method AWR AF BM CT CK DDG EW EP EC ER FD FM HMD HW HB IW JV LIB LSST MI NATO PD PEMS PS RS SRS1 SRS2 SAD SWJ UW

Parameter
(M)

MLP 1.162 1.143 0.804 0.785 4.099 182.079 54.456 0.813 3.130 0.635 4.967 1.203 2.504 0.743 12.855 2.707 0.680 0.554 0.617 96.503 1.117 0.515 69.841 1.715 0.594 3.191 4.535 1.111 5.503 0.978
FCN 0.292 0.282 0.286 0.285 0.287 1.658 0.286 0.283 0.283 0.285 0.427 0.309 0.290 0.286 0.342 0.486 0.293 0.284 0.288 0.345 0.305 0.283 1.267 0.296 0.286 0.286 0.287 0.294 0.284 0.284

InceptionTime 1.596 1.589 1.591 1.593 1.592 2.062 1.591 1.590 1.590 1.590 1.639 1.598 1.592 1.594 1.610 1.660 1.594 1.591 1.593 1.611 1.597 1.590 1.928 1.599 1.591 1.590 1.591 1.594 1.590 1.590
ResNet 1.240 1.229 1.234 1.233 1.235 2.777 1.234 1.231 1.231 1.232 1.393 1.259 1.239 1.233 1.297 1.458 1.242 1.231 1.235 1.301 1.255 1.230 2.337 1.244 1.234 1.234 1.235 1.243 1.232 1.231
MLCN 0.386 0.367 0.331 0.326 0.754 25.934 7.199 0.327 0.623 0.306 1.111 0.421 0.556 0.322 1.972 0.923 0.327 0.294 0.309 12.684 0.404 0.288 10.883 0.463 0.304 0.636 0.810 0.384 0.929 0.349
TapNet 2.926 3.143 2.876 2.928 3.446 5.706 12.033 2.924 3.715 2.856 3.137 2.893 3.038 2.919 3.142 3.239 2.857 2.851 2.853 4.477 2.890 2.827 4.861 2.982 2.840 3.281 3.414 2.893 4.099 2.984
DKN 1.651 1.700 1.568 1.620 1.870 3.371 6.149 1.592 1.987 1.561 1.654 1.566 1.649 1.625 1.681 2.005 1.576 1.571 1.579 2.348 1.588 1.551 3.210 1.731 1.550 1.766 1.833 1.598 2.178 1.628

FLOPs
(M)

MLP 2.321 2.283 1.604 8.194 1.566 364.155 108.909 1.622 6.257 1.266 9.930 2.402 5.004 1.482 25.707 5.410 1.357 1.105 1.230 193.002 2.230 1.026 139.679 3.426 1.184 6.378 9.066 2.219 11.003 1.953
FCN 0.588 0.568 0.576 0.578 0.574 3.319 0.576 0.570 0.570 0.572 0.858 0.621 0.584 0.575 0.688 0.975 0.590 0.571 0.579 0.694 0.613 0.569 2.537 0.595 0.576 0.575 0.578 0.592 0.572 0.571

InceptionTime 6.097 7.544 5.723 10.799 5.995 102.146 88.135 6.046 11.979 5.529 8.051 5.820 7.524 5.895 12.953 6.919 5.467 5.443 5.454 63.759 5.779 5.297 43.417 6.641 5.401 9.386 10.863 5.889 15.495 6.475
ResNet 4.119 4.097 4.106 4.108 4.103 7.192 4.107 4.099 4.099 4.102 4.424 4.156 4.115 4.105 4.232 4.555 4.121 4.100 4.109 4.239 4.148 4.099 6.312 4.127 4.106 4.106 4.108 4.124 4.101 4.100
MLCN 0.772 0.734 0.662 1.508 0.652 51.868 14.390 0.653 1.246 0.612 2.221 0.842 1.111 0.644 3.943 1.846 0.653 0.588 0.618 25.368 0.807 0.576 21.766 0.926 0.608 1.272 1.620 0.768 1.857 0.697
TapNet 5.872 6.306 5.772 6.911 5.876 11.432 24.087 5.868 7.450 5.732 6.294 5.806 6.095 5.858 6.305 6.499 5.734 5.722 5.727 8.975 5.799 5.673 9.743 5.984 5.700 6.583 6.849 5.806 8.219 5.988
DKN 3.230 3.386 3.120 3.703 3.180 6.723 12.279 3.168 3.959 3.102 3.298 3.122 3.283 3.174 3.352 3.978 3.122 3.096 3.114 4.685 3.155 3.071 6.397 3.353 3.084 3.522 3.655 3.164 4.343 3.230

With GPU
(s)

MLP 0.038 0.026 0.027 0.068 0.047 0.477 0.521 0.030 0.052 0.034 0.600 0.029 0.033 0.055 0.149 2.235 0.038 0.031 0.125 0.463 0.032 0.097 0.645 0.325 0.032 0.057 0.054 0.129 0.028 0.045
FCN 0.973 0.976 0.759 0.937 0.859 0.837 2.033 0.834 1.406 0.837 1.099 0.806 0.814 0.844 0.904 1.355 0.815 0.851 0.974 1.032 0.875 0.966 0.871 1.152 0.808 1.267 1.022 1.165 0.878 0.920

InceptionTime 1.099 1.004 1.165 1.334 1.121 1.083 4.047 2.375 1.917 1.189 1.884 1.171 1.053 2.533 1.165 2.085 1.107 1.093 1.484 1.384 1.121 1.140 1.675 2.573 1.143 1.478 1.275 1.984 1.078 1.206
ResNet 0.977 0.935 0.961 1.221 0.965 0.934 4.041 0.926 2.099 0.887 1.483 1.054 0.934 1.034 1.000 1.861 1.027 1.127 1.350 1.310 1.117 0.954 1.000 1.890 1.004 1.490 1.176 1.856 0.960 1.142
MLCN 3.383 8.993 2.583 4.306 27.072 6.138 5.569 4.606 4.360 1.863 2.496 1.609 2.946 3.700 2.686 2.208 1.508 1.535 1.769 7.708 1.604 1.022 3.986 1.098 1.240 1.992 2.567 2.729 1.640 0.908
TapNet 1.019 0.871 0.874 1.444 1.047 10.093 6.298 0.946 2.512 0.923 2.408 1.073 0.969 1.105 1.328 4.037 1.020 1.005 1.257 1.786 1.128 0.966 8.306 2.113 0.958 1.883 1.358 1.599 1.000 1.278
DKN 1.284 1.159 1.292 1.406 1.245 2.131 3.398 2.435 1.777 1.306 2.721 1.302 1.155 2.601 1.309 10.324 1.226 1.248 1.696 1.592 1.245 1.306 3.058 3.128 1.252 1.494 1.349 1.975 1.193 1.293

With CPU
(s)

MLP 0.180 0.170 0.181 0.180 0.181 0.228 0.254 0.181 0.188 0.180 0.248 0.179 0.184 0.180 0.201 0.475 0.182 0.172 0.204 0.242 0.177 0.183 0.287 0.270 0.181 0.178 0.183 0.201 0.173 0.175
FCN 0.344 0.113 0.079 1.802 0.655 0.614 16.242 0.240 3.095 0.168 2.243 0.085 0.257 0.951 0.731 5.913 0.128 0.102 0.716 2.484 0.113 0.265 0.880 4.831 0.081 1.829 1.462 1.695 0.311 0.737

InceptionTime 2.401 0.664 0.423 13.598 4.454 0.992 121.256 1.630 23.553 1.091 11.129 0.456 1.710 6.569 4.083 26.891 0.748 0.610 4.535 15.697 0.665 1.570 1.572 33.786 0.451 13.475 10.735 11.059 2.097 5.357
ResNet 2.081 0.567 0.318 11.820 3.948 1.243 116.298 1.405 20.842 0.948 10.462 0.361 1.470 6.058 3.915 26.804 0.623 0.553 4.133 13.973 0.549 1.444 1.941 31.775 0.363 11.873 9.400 10.024 1.829 4.736
MLCN 2.804 10.259 1.872 5.730 24.642 5.954 123.254 3.790 36.196 1.186 4.601 0.849 7.733 3.445 5.227 12.372 0.941 0.723 1.800 14.536 0.918 0.640 9.118 18.253 0.678 20.370 12.150 3.166 2.356 8.250
TapNet 2.778 0.682 0.377 15.934 5.345 10.929 143.189 1.837 27.686 1.187 16.999 0.560 1.974 7.839 5.617 54.096 0.801 0.591 5.464 19.352 0.778 1.808 10.974 42.985 0.407 15.889 12.593 13.381 2.409 6.164
DKN 1.980 0.726 0.577 9.958 3.470 12.249 85.752 1.400 17.034 1.056 21.503 0.611 1.465 4.982 3.341 85.656 0.804 0.682 3.457 11.533 0.744 1.401 22.076 24.887 0.569 9.949 7.950 8.224 1.767 4.307

GPU on the EigenWorms dataset are 4.041, 4.047, and 3.398,
respectively. In addition, DKN is faster than MLCN and slower
than TapNet on most datasets. Only on a few datasets does the
opposite happen, e.g., the inference time values of MLCN,
TapNet, and DKN on CPU on the Handwriting dataset are
3.700, 1.105, and 2.601, respectively.

G. Case Study

To better illustrate the concept of “knowledge-aware”, we
visualize the features in DKN on the Epilepsy dataset in Fig.
5. One can observe that lower-level semantic information,
e.g., the output feature of Residual Multi-block 1 in Fig. 5
(b), has extensive feature resolution maps and rich position
information, consisting of features such as contour, edge,
color, texture, and shape. In contrast, higher-level semantic
information, such as the output feature of ResMulti in Fig.
5 (d), is obtained from lower-level semantic information,
which has a more significant perception view, richer combi-
nation information, rougher location information, and better
discrimination ability. Higher-level semantic information can
be well used in downstream tasks, such as classification.
Within a representation hierarchy, the quality of the semantic
information learned from lower and higher levels significantly
affects a model’s performance [15]. Almost all the existing
models update their parameters by the BP method [16]. Lower-
level semantic information is, to a certain extent, affected by

higher-level semantic information. Thus, lower- and higher-
level semantic information learns from and influences each
other during the model learning process. The purpose of the
“knowledge-aware” is to effectively promote the mutual learn-
ing between lower- and higher-level semantic information,
helping the model mine rich regularizations and relationships
hidden in the data.

V. CONCLUSION

The proposed DKN has two crucial components: the dual-
network-based feature extractor and the dense dual self-
distillation (DDSD). In the feature extractor, the ResMulti
network can appropriately mine multi-scale local features,
while the Trans network can reasonably identify the global
relations among the features extracted. The proposed DDSD
can regularize the model and improve its robustness by en-
abling mutual knowledge flow between lower- and higher-level
semantic information. Trough an extensive experimental study,
we observe that DDSD beats BYOT, SAD, TSD, ProSelfLC,
and SelfRef, in terms of ‘win’/‘tie’/‘lose’ and AVG rank.
Besides, DKN wins in 10 out of the 30 UEA2018 datasets and
obtains the smallest AVG rank score, namely 5.550, among
the 19 MTSC algorithms for comparison. The records reflect
that our DKN has excellent potential when addressing various
MTSC problems in the real world.

DKN has limitations. For example, unnecessary distillation
computation in DDSD leads to additional resource consump-
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(a) (b)

(c) (d)

Fig. 5. Visualization of features in DKN on the Epilepsy dataset. (a) Visualization of the input sample; (b) visualization of the output feature of Residual
Multi-block 1; (c) visualization of the output feature of Residual Multi-block 3; (d) visualization of the output feature of ResMulti.

tion. In the future, we will use an improved DDSD with a
voting selection method to eliminate unnecessary distillation
overhead. In the DKN’s training, we adopt the fixed coefficient
to integrate multiple loss functions, causing that parameters
are locally optimized. To address this problem, we will apply
multi-objective optimization to integrate multiple loss func-
tions to gain near-optimal parameters.
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