
An Investigation Of Case-based Heuristic
Selection For University Timetabling

by Adam Eckersley, BSc

Thesis submitted to the University of Nottingham
for the degree of Doctor of Philosophy,

October, 2004

Contents

1 Introduction 9
1.1 Timetabling . 9

1.1.1 The University Timetabling Problem 11
1.1.2 Examination Timetabling 12
1.1.3 Complexity Issues . 14

1.2 Local Search Meta-heuristics 15
1.3 Aims and motivation . 18
1.4 Layout of the thesis . 19

2 Exam Timetabling survey 22
2.1 Introduction . 22
2.2 Algorithmic techniques . 26

2.2.1 Constraint based methods 26
2.2.2 Graph-based Initialisation and Construction techniques . 32
2.2.3 Local Search Meta-heuristics 39
2.2.4 Evolutionary Methods 56
2.2.5 Multi-criteria approaches 60
2.2.6 Case-based reasoning and hyper-heuristic methods . . . 65

2.3 Results for Benchmark Problems 73
2.4 Conclusions . 79

3 Case based reasoning (CBR) 82
3.1 Introduction to CBR . 82
3.2 CBR and Scheduling . 85

4 Investigating Similarity Measures For Exam Timetabling Problems 90
4.1 The need for a similarity measure 91
4.2 Data sets . 93
4.3 Analysis of Data Sets . 95

4.3.1 Removing redundancy from Data Sets 95
4.3.2 Examining subsets of the Data Sets 98

4.4 Conclusions . 103

5 Using Simulated Annealing to Study the Behaviour of Exam Timetabling
Data Sets 105
5.1 Initialisation heuristics . 106

1

5.2 Experiments using a LD heuristic with randomisation 108
5.3 Experiments using a greedy LD heuristic 114
5.4 Conclusions . 118

6 Analysing Features For Similarity In Examination Timetabling 119
6.1 The requirements of a CBR system 120
6.2 Qualitative analysis of features used within the CBR system . . 122

6.2.1 Number of Students. 122
6.2.2 Number of Events (Exams). 123
6.2.3 Number of Periods. 125
6.2.4 Conflict Matrix Density. 126
6.2.5 Largest Degree. 127
6.2.6 Further Conflict Matrix Measures. 128
6.2.7 Fluidity Analysis . 129
6.2.8 Cliques . 133
6.2.9 Side Constraints & the Objective function. 134

6.3 Conclusions . 136

7 A Variable Neighbourhood Search (VNS) technique for Exam Time-
tabling 138
7.1 The Importance of the Neighbourhood 139
7.2 Variable Neighbourhood Search 141
7.3 VNS for Exam Timetabling . 143

7.3.1 Neighbourhoods used within VNS 145
7.3.2 Variations of VNS for exam timetabling 149

7.4 Results . 153
7.5 Conclusions . 159

8 Combining a Genetic Algorithm with VNS to improve solution qual-
ity 161
8.1 Combining VNS with CBR - the requirements 162
8.2 The GA technique for neighbourhood selection 164

8.2.1 The neighbourhoods 167
8.3 Results . 170

8.3.1 Notes on Results . 173
8.4 Combining VNS-GA with CBR 176

8.4.1 More complex timetabling problems 179
8.5 Conclusions . 183

9 Conclusions and Future Work 186
9.1 Measuring Similarity for CBR 187
9.2 Developing the meta-heuristic technique(s) 189
9.3 Future Work . 192

2

List of Tables

2.1 Graph colouring benchmark data sets - minimum number of pe-
riods reported [45] . 74

2.2 Characteristics of uncapacitated benchmark problems [45] . . . 75
2.3 Selected results from the literature on uncapacitated benchmark

problems from [45] (best results given) 76
2.3 (cont.) Selected results from the literature on uncapacitated bench-

mark problems from [45] (best results given) 76
2.4 Results on Capacitated benchmark problems (set 1) with objec-

tive to minimise occurrences of two consecutive exams in a day
(best results shown) . 78

2.5 Results on Capacitated benchmark problems (set 2) with objec-
tive to minimise occurrences of two exams in consecutive time
slots (best results shown) . 78

4.1 Simple features for benchmark data sets 94
4.2 Features for benchmark data sets based on students and enrolments 95
4.3 Results of simulated annealing applied to three benchmark data

sets with all single enrolment students removed 96
4.4 Percentages and numbers of students in the Base Set, Singleton

Set and Weights Set for benchmark data sets 99

5.1 Results from SA initialised by the same solution each time, using
the standard objective function 109

5.2 Results from SA initialised by the same solution each time, using
the simplified objective function 110

5.3 Results from SA initialised by a different solution each time,
using the standard objective function 110

5.4 Results from SA initialised by a different solution each time,
using the simplified objective function 111

5.5 Results from SA initialised with a greedy LD heuristic and using
the standard objective function 115

5.6 Results from SA initialised with a greedy LD heuristic, using the
simplified objective function 115

6.1 Percentage of total number of exams which never move inx runs
out of 100 of Simulated Annealing using the simple move neigh-
bourhood . 130

3

7.1 Results from the basic VNS meta-heuristic with random and
greedy initialisations . 155

7.2 Results from the VNS with biased neighbourhoods meta-heuristic
with random and greedy initialisations 155

7.3 Ascent-descent Biased VNS compared to results from the litera-
ture (best results given) . 158

8.1 Best results obtained from the VNS-GA algorithm with neigh-
bourhoods given . 172

8.2 Results from VNS comparing all neighbourhoods with the ‘best’
subset of neighbourhoods . 173

4

List of Figures

7.1 The steps of the Basic VNS meta-heuristic 143
7.2 A Kempe chain move before execution 148
7.3 The result of a Kempe chain neighbourhood move 148

8.1 The one-point crossover operator for chromosomes of length 8 . 167
8.2 The steps of VNS-GA procedure 168

5

Abstract

The research presented in this thesis contributes to a larger project to develop

a case-based reasoning (CBR) meta-heuristic selector for exam timetabling prob-

lems. The theory of the CBR system is thatsimilar problems can be solved

equally well by the same technique. Chapter 2 gives a detailed survey of current

techniques applied to exam timetabling to give a good indication of the most

successful current techniques. Chapters 4, 5 and 6 investigate how a measure

of similarity between two exam timetabling problems can be developed so that

this theory holds. The key features of a number of benchmark problems are ex-

amined and the behaviour of the problems when optimised is also considered to

decide which problem features are important.

The other key aspect of the CBR system covered in this thesis is the tech-

niques to be included within the case base. Chapter 7 introduces a variable

neighbourhood search (VNS) technique which proves to be highly successful

on a number of benchmark problems as well as providing a high degree of flexi-

bility. This flexibility is further exploited in Chapter 8 where I propose a variant

of VNS which can simplify the case base, changing the focus slightly. Instead

of retrieving from a selection of different techniques to solve a new problem, the

system will always retrieve VNS, but with a set of neighbourhoods which pro-

vided a successful solution to a similar problem within the case base. Chapter 9

concludes the thesis with a summary of the work and thoughts on how the VNS

technique can be further developed to improve its generality.

6

Acknowledgements

I would like to thank a number of people for their continued support and

assistance throughout the course of my PhD studies. Firstly my supervisors,

Professor Edmund Burke and Dr Sanja Petrovic whose vision has contributed

much to this work and whose support throughout the difficult times of my PhD

has been invaluable. Also many thanks to Professor Peter Cowling (University

of Bradford) and Dr Barry McCollum (Queen’s University of Belfast) for their

advice and input to this project. My work in this thesis has been just one part of

a wider project which would not have been possible without the excellent work

of Dr Rong Qu who carried out much of the remaining work on the project and

whose advice and assistance throughout my work is greatly appreciated.

The ASAP research group at Nottingham has changed beyond recognition

since I joined four years ago. It was a highly successful group when I joined,

but has now developed, under the leadership of Professor Burke, into a thriving

research community at the forefront of many innovative ideas in the field of

optimisation. It has been a great pleasure to work with the ever growing number

of members, both past and present, who have all helped to make the research

group what it is.

I would also like to extend my thanks to the many researchers whose com-

ments and ideas have helped to improve the quality of my work. The time spent

by those referees who gave comments on my papers is much appreciated. In

particular I would like to thank Pierre Hansen, who, without knowing it, inspired

me to many of the ideas in the later chapters of this thesis with his seminar at the

INTROS ’03 workshop in Nottingham.

Finally, but by no means the least I would like to thank my family, the most

important people in my life, for their constant support and advice during all my

studies. My sister, Suzanne, who has always been on hand with helpful advice

7

when needed and to my parents, without whom none of this would have been

possible.

8

Chapter 1

Introduction

1.1 Timetabling

The automated timetabling problem has been studied in various forms for the

last 40 years with a large number of papers published and many applications

developed to solve real life problems in that time.

Timetabling is a very large field covering many different types of problem,

all with their own unique characteristics. Probably the most common type of

timetable is a bus or train timetable. Without these, the whole transport network

would be in chaos so it is easy to see the importance that timetables have in

people’s lives. In these cases, the timetable defines where and when buses, trains

or other types of transport should be. Such a simple looking timetable can be very

complicated to produce for the timetablers though. Train timetablers must take

into account where engines start and finish each day, where and when drivers are

available and how many hours they can work in one shift as well as the obvious

task of trying to cater for the needs of the passengers who will be travelling on

the trains. Similarly bus timetables, although usually less complicated must be

planned so that there is as little dead mileage and lay-over1 time for buses as
1Heredead mileagewould be defined as the distance a bus must travel whilst not in service to

return to a depot or outpost andlay-overis the amount of time a bus spends idle between routes

9

possible and that driver changes can be effected as efficiently as possible. Again

driver hours must be taken into account with no driver being allowed to drive

for more than a certain pre-defined time in any shift. If the driver timetable is

inefficient then the company will have to employ a much larger pool of drivers

than is really necessary meaning that their costs will be much higher. Therefore

the problem of minimising the workforce whilst taking maximum allowed hours

into consideration must be considered in the construction of a timetable.

The above example of transport timetabling shows the main elements of a

generic timetabling problem which is defined in the next paragraph. Whilst this

thesis is concerned with University timetabling, the same key ideas are involved

in all other forms of timetabling. In simple terms, someeventsmust be scheduled

in a certain time and with a number of rules, known as constraints which must

be obeyed either completely or as well as possible.

Timetabling is an example of the larger, more general problem ofscheduling

in which events must be scheduled either in time or place so that a variety of

constraints are met and others are almost met. Wren [106] defines scheduling

as ”the arrangement of objects into a pattern in time or space in such a way that

some goals are achieved, or nearly achieved, and that constraints on the way

objects may be arranged are satisfied or nearly satisfied”. He also makes the

distinction that intimetablingproblems there is not necessarily any allocation of

resources to the events timetabled. In the minimum case, the timetable just states

at what time a given event will happen. In reality however, it is almost always

required to know that there are sufficient resources available for the given event

to take place at a particular time and in some cases exactly which resources are

allocated.

The overview of transport timetabling given above gives a good example of

how the problem of timetabling has many different constraints to be considered.

Some of these constraints, known ashard constraintsmust be satisfied whilst

10

others, known assoft constraintsare required to be satisfied as well as possi-

ble. It is the violation of these soft constraints which determines howgooda

particular timetable is. The definition ofgooddepends entirely on the individual

problem. The evaluation of solution quality is usually done using an objective

function which gives a weighting to each of the soft constraints depending on

their importance. The higher the weight, the more important it is that the con-

straint is satisfied.

The main hard constraint in any timetabling problem is that no resource

must be required to be in two different places simultaneously. In the case of

bus timetabling this means that no one vehicle can be required to perform any

part of two different routes simultaneously; for university timetabling, a student

cannot have two exams at the same time and members of staff and students can-

not be present at two different lectures at any one time. As well as these basic

constraints, individual institutions will have their own particular hard and soft

constraints which they require to be satisfied.

In the remainder of this chapter, the University timetabling problem will be

defined with the more common constraints outlined and various models used to

solve the problem shown. Having defined the problem, the most recent research

conducted in this field will be summarised and discussed in Chapter 2.

1.1.1 The University Timetabling Problem

University timetabling can be divided into two main problem areas, these being

course (or lecture) timetablingandexamination timetabling. The types of prob-

lems these involve are fairly similar, but there are a number of points to note

regarding the differences between timetabling lectures and timetabling exams.

In course timetabling, the purpose is to schedule lectures, seminars, labora-

tory sessions and any other student/teacher activities which may form part of a

11

given course into a weekly pattern. This can be an extremely complex prob-

lem and differs greatly in its requirements depending on the institution. Unlike

exam timetabling, which will be covered in more detail in section 1.1.2, there

is generally strict one to one mapping of events to rooms in course timetabling,

although this is not always the case. This thesis will be focused on the exam

timetabling problem, but a detailed overview of course timetabling and related

work applying case based reasoning to the problem is given by Qu [97]

1.1.2 Examination Timetabling

Whereas in course timetabling the period in which events are to be scheduled is

fixed (usually a week) and this schedule is repeated cyclically, in examination

timetabling a set of exams must all be scheduled within a certain time period

of a few weeks usually and the exact length of the timetable is in general not

essential. The number of examinations to be scheduled varies greatly depending

on the institution.

The examination timetabling problem is concerned with the assignment of a

setE = e1, . . . , en, of exams into an ordered setT = t1, . . . , tm of timeslots

subject to a number of hard and soft constraints. The hard constraints must be

satisfied in order to produce afeasibletimetable, whilst violation of the soft

constraints should be minimised. For some problems, it is not possible to find a

solution which satisfies all hard constraints so in such circumstances these must

be relaxed to soft constraints with a high priority to minimise. The main hard

constraints encountered in practical exam timetabling are:

• No student should be expected to be in two places at once

• There must be sufficient resources available for all exams scheduled in any

given timeslot.

12

• Certain pairs of exams may be subject to precedence constraints or may be

required to take place at the same time as one another

A variety of less common hard constraints may often be in effect at different

institutions depending on the particular needs of the timetabling problem in ques-

tion. Soft constraints vary far more than the hard constraints as these essentially

define what is considered to be a good timetable to give a measure of comparison

amongst feasible timetables. Using a single objective function to minimise, these

soft constraints must all be given a weighting within the evaluation function to

represent their relative importance to the final timetable produced. Using a multi-

criteria approach, values are defined measuring the violation of constraints and

all are considered simultaneously by an algorithm attempting to find a solution

as close as possible to the ideal point in the preference space ([94]) at which all

criteria are satisfied. Some examples of common soft constraints [35] are given

below:

• Time assignment- it may be desired to schedule an exam in a particular

timeslot. Also, many institutions favour exams to be scheduled as close to

the beginning of the timetable as possible, especially the larger enrolment

exams.

• Time constraints between events- an exam may need to be scheduled be-

fore/after another (depending on circumstances this could also be a hard

constraint)

• Spreading events out in time- students should not have exams in consecu-

tive periods and preferably not in the same day

• Resource assignment- it may be desired to schedule an exam in a particular

room

13

Some institutions will also have constraints regarding multiple exams in a

single room or exams split across more than one room as well as a variety of less

common constraints. The number of periods in the timetable can either be fixed

a priori or can often be included as an objective to minimise. This is of course, a

directly conflicting constraint with that of wanting exams to be spread out across

the timetable.

1.1.3 Complexity Issues

As with any scheduling or timetabling problem, there exist two distinct forms of

question to be considered:

1. Is there an acceptable solution according to some particular criteria?

2. Which is the best solution?

Questions of type 1 are known asdecisionproblems where the answer is

always a simple ‘yes’ or ‘no’. Question 2 gives the relatedoptimisationproblem

in which the aim is not only to establish that there is a solution, but also to find

the best possible solution. The definition ofbestdepends on the problem and is

measured by the objective function which must be minimised.

Timetabling problems of these types are known to be NP-complete and NP-

hard respectively as shown by Cooper & Kingston [48]. In basic terms a problem

is either NP-complete (decision problem) or NP-hard (optimisation problem) if

it is very difficult to solve and would take far too long to find the best using

simple exact methods such as evaluating every possible exam timetable. It is

due to the NP-hard nature of this problem that local search meta-heuristics such

as tabu search, simulated annealing and genetic algorithms have been applied

to find good solutions. An in-depth analysis of the literature on these and other

techniques applied to exam timetabling will be given in Chapter 2.

14

1.2 Local Search Meta-heuristics

Local search meta-heuristics are some of the most popular and successful meth-

ods for finding good solutions to NP-hard optimisation problems including that

of examination timetabling. Many of the current best known techniques for

solving exam timetabling benchmark problems fall into this category and are

discussed in more detail in section 2.2.3. This thesis is concerned with the de-

velopment of a case based reasoning system to intelligently select from a variety

of local search techniques, the one best suited to a given problem. Whilst a tech-

nique will work very successfully on one problem, it may be far less successful

on other problems, therefore when given a new problem it is not always obvious

which technique will give best results. The CBR system developed in this project

attempts to eliminate the need for a user to make the decision which technique

to use. Instead the CBR system will match the new problem with one previously

solved and will retrieve the technique which was most successful for that prob-

lem. Whilst the system is not required to be filled exclusively with local search

techniques, these will form the bulk of techniques included. In this section I

give a brief introduction to local search techniques and their application to exam

timetabling problems, defining some of the many terms to be encountered later

in the thesis.

Local search techniques can be considered as methods which iteratively search

through the solution space of a problem, thesolution spacebeing defined as the

set of all possible solutions to the problem. This is done by making small changes

to the current solution at each iteration, with the aim being to minimise (or max-

imise) a given objective function. An initial solution must be constructed to seed

the local search method which may be either feasible or infeasible. Afeasible

solution is one which does not violate any hard constraints whereas aninfeasible

one does. The local search itself may also be confined to the feasible solution

15

space or may be allowed to move into infeasible areas. One major disadvantage

of allowing the search to be conducted only within the space of feasible solu-

tions is that the search space may becomedisconnected, i.e. it will be impossible

for the search to reach certain areas of the solution space. The obvious advan-

tage however is that you are guaranteed a feasible solution (assuming the initial

solution was feasible) and the search can concentrate on minimising the objec-

tive function rather than also eliminating hard constraint violations. Different

local search techniques are defined by the criteria which they use for accepting

or rejecting moves, amovebeing defined as the change from one solution to the

next.

The landscapeof an optimisation problem can be thought of as containing

the solution space of the problem (in the case of exam timetabling this means

every possible assignment of all exams into the given number of timeslots) on

a horizontal plane, with the vertical component at each point being defined by

the objective function evaluation for the given solution. Clearly this is an over-

simplification of the situation since there are in some cases an infinite number

of possible solutions (if we allow a variable number of timeslots) and there is no

obvious way to order all solutions in a two-dimensional plane. However, when

considering a local search meta-heuristic which searches the solution space, we

need only consider those solutions in the neighbourhood of the current solution.

The neighbourhoodof an incumbent solution defines the set of new solutions

to which the search can move with the remainder of the search space excluded.

A neighbourhood is usually defined by some move operator which determines

how the current solution is changed to arrive at a new solution within the neigh-

bourhood. In the case of exam timetabling, the most simple move operator is

that defined by moving a single exam from its current timeslot to a new one and

thus the neighbourhood is defined as all solutions which can be arrived at from

the current one as a result of such a move. Therefore, the landscape around the

16

current solution defined by a given neighbourhood can be more easily visualised

in a three-dimensional space with thedistancebetween any two solutions being

defined by the difference in height given by the objective function.

This leads to two different aspects of local search meta-heuristics to be in-

cluded within the CBR system. The first aspect is the type of algorithm, for

example tabu search or simulated annealing. Different types of local search tech-

niques are usually distinguished by their method of accepting moves which deter-

mines how they navigate around the search space and in particular how they can

escape local minima. A strict descent algorithm only ever accepts moves with a

negative cost (i.e. moves which lead to a better solution with a lower cost) and

therefore terminates when it reaches a local minima where all solutions within

the neighbourhood incur a cost increase. Many other techniques however include

strategies to escape from these local minima to continue the search in other areas

of the solution space.

The second aspect of local search techniques is the neighbourhood they em-

ploy with most using just a single neighbourhood throughout the search. Two

different types of algorithm both using the same neighbourhood will of course

be faced with the same landscape, however different areas of the problem land-

scape will be inaccessible depending on the move acceptance criteria. In the case

of simulated annealing, the whole neighbourhood landscape is potentially acces-

sible with a probabilistic move acceptance criteria making the steep uphill moves

less favourable, whereas in tabu search a tabu list forbids certain solutions, ren-

dering parts of the neighbourhood landscape as inaccessible, but any move to the

accessible parts can potentially be accepted, albeit with thebestmove selected

from the subset tested. On the other hand, two simulated annealing algorithms,

each using a different neighbourhood will be confronted by completely different

neighbourhood landscapes which may have a far larger effect on performance

than the difference between two different local search methods both using the

17

same neighbourhood.

In the early chapters of this thesis, the focus is on the problem features which

make up the problem definition and thus help to define the problem landscape for

a given simple neighbourhood. In Chapters 7 and 8, I focus more on the effect

of the neighbourhood definition by introducing a variable neighbourhood search

(VNS) approach to exam timetabling.

1.3 Aims and motivation

The main aim of this thesis is to contribute to a case based approach to heuris-

tic and meta-heuristic selection for timetabling. As part of a wider project, this

thesis will concentrate on the low-level issues of a case based reasoning system.

In particular, the complex issue of how to measure similarity between two exam

timetabling problems is considered together with related issues concerning the

structure of such problems and their behaviour when optimisation techniques are

applied. As well as studying exam timetabling datasets themselves, a number of

heuristic and meta-heuristic techniques are implemented to further understand

the behaviour of the datasets and ultimately to build up the case base of tech-

niques which can be applied to a wide range of exam timetabling problems. The

case based reasoning (CBR) aspect will be covered within the thesis, but most

elements of its implementation are beyond the scope of this thesis and form the

rest of the project. The work presented in this thesis provides much of the ba-

sis for the low level system elements, working directly on the exam timetabling

problems, whilst other work undertaken elsewhere on the project deals with the

high level workings of the case-based reasoning (CBR) system and the knowl-

edge discovery techniques used to train the case base for higher performance.

Ultimately, the aim of the project as a whole is to develop a case-based reason-

ing system which, when presented with a new timetabling problem, will perform

18

a matching process within the case base to retrieve the most similar problem.

The technique(s) which was most successfully applied to the retrieved problem

will then be applied to the new problem.

The project to which this thesis contributes is motivated by the challenge of

developing systems which are much more general than many of the current tech-

niques applied to exam timetabling, which will often work very well on a spe-

cific problem, but not so well on a different problem. Increasing the generality of

timetabling systems may well come at the cost of slightly lower solution quality,

but the aim is to produce a system which can obtain results on a wide range of

exam timetabling problems which are in the sameball-park as those produced

by techniques designed specifically for individual problems. One of the major

current research areas aiming towards this goal is that of hyper heuristics which

work at a higher level of abstraction than more standard methods which operate

directly on the problem. The aim of a hyper heuristic is to select from a list of

heuristics the best for the current problem or problem state without using any

domain knowledge, only the knowledge passed up to it from each of the low

level heuristics regarding their evaluation when applied to the problem. Case

based reasoning has been successfully applied to a wide variety of problems and

has recently been applied directly to university timetabling problems, but is now

being considered at hyper heuristic level also which is the focus for the work

in this thesis. The work described here will be directed towards a case base

for meta-heuristic selection, providing more complex algorithms than the more

simple low-level heuristics which are often studied in hyper-heuristic systems.

1.4 Layout of the thesis

This chapter has presented an introduction to the general timetabling problem

and to the more specific exam timetabling problem, giving two of the more pop-

19

ular models for the problem as well as a brief discussion on its complexity.

In Chapter 2, a detailed review of the state of the art techniques applied to

exam timetabling is given with the emphasis on those techniques and paper pub-

lished since the survey of Carter & Laporte [43] in 1996.

Chapter 3 gives an overview of the case based reasoning (CBR) methodology

and its application to scheduling problems.

Chapter 4 describes an initial investigation into some of the major features

of exam timetabling problems which may be important to a similarity measure

together with a discussion of how any redundancy in the problem definition must

be removed for the purpose of measuring similarity.

In Chapter 5, I investigate the effect of both the initial solution fed to a local

search meta-heuristic and the objective function used to optimise a problem. In

particular, the behaviour of a number of benchmark datasets with respect to two

objective functions and two methods of initialisation are considered to examine

how these factors affect the similarity between two problems.

Chapter 6 brings together earlier work from Chapters 4 & 5 to give a detailed

analysis of the main features of exam timetabling problems which will be fed into

a knowledge discovery process to determine those most important for measuring

similarity. Simple features together with more complex features and ratios of

pairs of features are all considered.

In Chapter 7, I introduce a variable neighbourhood search (VNS) approach

to exam timetabling which proves to be a simple yet powerful method capable of

matching the results of most state of the art techniques on benchmark problems.

A number of variations to the basic VNS are considered, some of which improve

performance still further whilst others may require more detailed research if they

are to provide improvement.

Chapter 8 extends the work in Chapter 7 by using a genetic algorithm (GA) to

evolve thebestsubset of neighbourhoods to use with VNS for a given problem.

20

The ability to easily add more and more neighbourhoods to VNS means that a

method for choosing the subset which gives best performance on a problem is

important. A discussion of how this approach can be successfully combined with

CBR is also given.

Chapter 9 gives overall conclusions of the work presented in this thesis to-

gether with ideas for future work resulting from the ideas and results presented

in this thesis.

21

Chapter 2

Exam Timetabling survey

2.1 Introduction

Over the last decade, the examination timetabling problem has been studied by

researchers across the world, exploring a wide variety of techniques, many of

which are very recent ideas or techniques which have been successfully ap-

plied in other areas of optimisation and are now being applied to timetabling.

Exam timetabling is a difficult problem which all teaching institutions must con-

tend with, often many times per year - many of these institutions still do their

timetabling mostly by hand, others use a computer to aid the process and an

increasing number now use some form of automated or semi-automated system.

In 1995, Burke et al [19] conducted a survey of exam timetabling in British

universities with three main questions regarding the problem structure at differ-

ent universities, how the problem is currently solved and what qualities make up

a good timetable. Among the fifty six universities who replied to the survey, re-

sponses were very mixed indicating a wide range of different problems needing

to be solved - many institutions had problems accommodating all their exams

in the rooms available, some have large numbers of exams per students where

others have smaller numbers and most had their own differing constraints on the

22

timetable and what is considered asgood. One major finding from the survey

was that just 21 per cent (eleven) of the institutions who responded to the survey

use some form of automated exam timetabling system, some of which still re-

quire a certain amount of manual input and problem specific knowledge. 58 per

cent of the universities use a computer at some stage of the timetabling process,

leaving a surprisingly large 42 per cent who do not use a computer to aid the

timetabling process at all. It was noted that those institutions who do not use

either a computer or the previous year’s timetable to produce the new timetable

can take up to four weeks to produce a timetable. Of those institutions who did

not use any form of automation, four stated that they were considering either a

commercial package or developing their own customised system. With almost

ten years passed since this survey it is likely that many more institutions now use

either a fully or partially automated system for their exam timetabling, but the

results presented in the survey do indicate many problem areas with the automa-

tion of exam timetabling together with the scope for much further research in the

area.

Carter and Laporte [43] produced a survey of the ‘Recent Developments in

Practical Examination Timetabling’ in 1996 which gives a detailed summary of

the research into exam timetabling during the decade succeeding Carter’s 1986

survey [41]. Carter and Laporte divide the papers they report on into four types

- Cluster, Sequential, Generalised Search and Constraint Based methods, giving

conclusions on the success of methods implemented in each of these areas to-

gether with thoughts on future research directions in these areas. In particular,

regarding Generalised Search, encompassing Local Search techniques such as

Tabu Search, Simulated Annealing and Genetic Algorithms, the authors noted

that these techniques are ‘relatively recent innovations in the area of heuristic

search’ and that they provide a very promising area for future research. It was

also pointed out that ‘It is difficult to draw more accurate conclusions without

23

comparisons with other approaches on identical problems to see if the additional

effort produces better quality solutions.’ In this survey I aim to update the find-

ings of Carter and Laporte’s 1996 survey with a strong emphasis on the above

areas. Over the last decade, much of the focus of exam timetabling algorithms

has been in the area of “Generalised Search” and with the availability of a num-

ber of benchmark test problems available12 it is now far easier to compare the

different techniques on a range of different problems to draw conclusions as to

which are better on which type of problems and/or whether the extra time spent

by some algorithms is worthwhile. Of course, some techniques will work very

well on certain problems whilst not on others so there may be a large amount

of problem dependency for many algorithms and there is no guarantee that they

will efficiently solve a new and different problem just because they produce high

quality results on the benchmark data sets.

In 1999, Schaerf [99] published a survey of automated timetabling with the

wider brief of covering all types of educational timetabling. Schaerf gives a

mathematical formulation of the basic search problem together with the related

optimisation problem as well as discussing some of the variants of the prob-

lem. The paper also gives a description of some of the techniques applied to

exam timetabling by different authors up to that time, concluding with com-

ments on possible future research directions. Burke and Petrovic [35] give a de-

tailed account of the recent research directions in automated timetabling which

have been pursued by the ASAP research group at the University of Nottingham

up to 2002. These include heuristic and evolutionary techniques, multi-criteria

approaches and the application of case-based reasoning to utilise previous expe-

rience to solve new timetabling problems. The authors also consider the issue

of diversity and quality in the initialisation process for local search techniques
1ftp://ftp.cs.nott.ac.uk/ttp/Data/
2http://www.or.ms.unimelb.edu.au/timetabling/ttframe.html?ttpublic.html

24

and conclude the paper by discussing promising directions for future research

and work within the group. In 2004, Petrovic and Burke [91] provide a further

survey of work undertaken by the authors and members of their research team,

focusing on the multi-criteria and case-based reasoning approaches studied since

their 2002 survey as well as other relatively recent research directions - meta-

heuristic approaches which are less dependent on parameter settings or which

use parameters useful to real world users out-with the research community and

hyper-heuristics and self adaptive approaches which aim to raise the level of

generality of existing methods. Also presented is an extended classification of

exam timetabling techniques from that presented by Carter and Laporte [43] to

reflect the new techniques developed since that survey was published. Petrovic

and Burke [91] conclude that the development of more general approaches to

timetabling problems is a very challenging goal, but one which could have sig-

nificant impact, allowing systems to be successfully applied to a wider range of

problems. Other recent surveys on automated timetabling include Bardadym [5]

and Burke et al [24].

In this chapter, I aim to update Carter and Laporte’s survey of 1996 [43], re-

porting on the various techniques which have been applied to exam timetabling

in the decade since that survey whilst attempting to answer the questions which

that survey raises, in particular with regard to the comparison of different tech-

niques on the publicly available benchmark datasets. Whilst my aim is to provide

as comprehensive a survey as possible on the papers published in recent years,

I realise that some may have been overlooked since research into examination

timetabling continues to move at pace with new techniques being developed

and applied constantly. Having defined the exam timetabling problem in sec-

tion 1.1.2, in section 2.2 I summarise the papers which have been published and

the techniques applied to exam timetabling, giving conclusions in section 2.4

25

2.2 Algorithmic techniques

2.2.1 Constraint based methods

“All of the papers that we considered for constraint based methods

have been used to solve fairly small problems (around 300 exam-

inations)...In constraint methods, the number of constraints grows

quite quickly as problem size increases (at least as the square), so

it would appear that they may have trouble with large examples in

the range of 1,000 exams. Obviously, this limitation will be reduced

over time.”

Carter & Laporte, 1996 [43]

In the years since Carter & Laporte’s 1996 survey there have been a num-

ber of papers published focusing on constraint-based methods, including Con-

straint Logic Programming (CLP) and a number of other Constraint satisfaction

techniques. Brailsford et al. [8] give an introduction to constraint satisfaction

problems (CSP) with a definition stating that a (finite domain) CSP consists of:

• a set ofvariablesX = x1, . . . , xn;

• for each variablexi, a finite setDi of possible values (itsdomain);

• a set ofconstraintsrestricting the values that the variables can simultane-

ously take.

A CSP is solved to give afeasiblesolution by allocating to each variable a

single value from its domain so that every constraint is satisfied. If no such as-

signment exists, the problem isunsatisfiablewith the given constraints. Brails-

ford et al. [8] also comment that while the usual focus of methods to solve CSPs

26

is on finding afeasiblesolution, such techniques can be adapted to find anop-

timal solutionby introducing an objective variable to represent the objective

function. The constraint on the objective variable is tightened repeatedly until

the problem becomes unsatisfiable, at which point the last solution found is an

optimal solution. The constraints in a CSP are generally expressions based on

the variables, thus reducing the feasible domains of these constrained variables.

Brailsford et. al. go on to describe various search procedures applied by con-

straint programming algorithms as well as methods for formulating problems,

while in Section 7.6 they consider applications to timetabling problems including

that of Nuijten et al. [87] discussed by Carter & Laporte [43]. Also considered

by Carter & Laporte was the Constraint Logic Programming (CLP) technique

applied by Boizumault et al. [7] to solve their examination timetabling problem

at l’Universit́e Catholique de l’Ouest in France where the authors identify twelve

types of constraints, eleven of which are considered to be hard constraints, with

an addedsoftconstraint regarding preferences for which room exams are sched-

uled into. They used the CHIP constraint logic programming language to formu-

late their problem with the twelve types of constraints reduced to five categories

for implementation. Whilst their approach could produce solutions in under a

minute for their problem at hand, the authors did note that when increasing the

size of the problem only the “best-fit decreasing” labelling strategy with room

constraints considered beforehand could produce results with their other tech-

niques tested being unable to solve all instances. The authors conclude that the

use of an intelligent labelling strategy is very important when using CLP.

Philippe David [54] has successfully applied constraint satisfaction tech-

niques to generate exam timetables for theÉcole des Mines de Nantes where one

of the major constraints is that the computing time must be less than one minute

since timetabling is required to be done “on-line”. David’s technique uses an

incomplete assignment algorithm with local repair techniques which the author

27

notes can miss solutions, but to minimise this risk, the program is run a number

of times and some constraints can be relaxed. Each candidate atÉcole des Mines

de Nantes must take a complete examination consisting of four parts: mathemat-

ics, physics & chemistry, foreign language and discussion about a text. Each of

these subjects has its own set of examiners (typically seven examiners per sub-

ject) with foreign language having examiners for each different language and the

exams take place during a day consisting of 15 consecutive periods. The aim of

the problem is to schedule the exams for each day, for every subject assigning ev-

ery candidate to an examiner for one period subject to a variety of constraints - at

most 105 candidates (seven examiners× 15 periods) can be scheduled in a single

day. David [54] presents a formulation of the problem as a CSP model followed

by a description of his assignment algorithm. The algorithm used comprises two

steps, apre-assignmentstep which creates the domains for the examiners, thus

taking into account some of the constraints during domain creation, and a final

assignment step which assigns the candidates to a period for the examiner they

were pre-assigned to. If the final assignment finishes with some domains empty,

but not all candidates assigned, a set of local repair procedures are used to correct

the problem - these involve swapping an already assigned student with one not

assigned having established that both students can then be assigned successfully.

There are five different local repair techniques which are called successively if

the previous one failed to resolve the problem. The complexity of the total algo-

rithm is calculated to beO(n2
cp) wherenc is the number of candidates andp the

number of periods. The technique was run successfully on 50 test problems with

run times of between 0.2 and 7.5 seconds before being applied to the real-life

problems for which a timetable was successfully generated for each of the 13

days with a runtime of under 0.3 seconds, all runs carried out on a SUN SPARC

5 with 32 MB memory. The author concludes that his method of an incomplete

algorithm with local repair techniques rather than the more standard exhaustive

28

search could give interesting results applied to other timetabling problems as

well as being sufficient for the problem atÉcole des Mines de Nantes.

In [104], White classifies the timetabling problem into three classes: school

timetabling, course timetabling and exam timetabling and focuses on the course

timetabling problem, but notes that “the principles of course timetabling can be

used in exactly the same way for other forms of timetabling” and gives a set of

nineteen common constraints (12 hard, seven soft) for course timetabling, many

of which are also applicable to or can be adapted for exam timetabling problems.

White presents a model of the timetabling problem as a CSP with variables to

represent courses (or exams) with room-time pairs forming the domains for these

variables and the a constraintC formed as a conjunction of the sub-constraints.

White considers in his model whether the timeslots should be of fixed or vari-

able length, commenting that the former resembles a bipartite matching while

the latter requires the day to be broken into units of say 0.5 hours which, com-

bined with a room, form the resource units in a formulation akin to job shop

scheduling. When formulating a problem as a CSP, it is important to know the

specific question being asked - White gives four potential problem questions in

increasing order of difficulty, adding that the second is most common in practical

timetabling:

• Is there a solution?

• If there is a solution, what is it?

• How many solutions are there?

• What are all these solutions

The issue of which algorithm to use to solve CSPs is also covered by White [104]

with seven different solvers described and considered for suitability. One of the

29

conclusions of the paper is that constraint satisfaction can provide satisfactory

solutions to a wide spectrum of timetabling problems and is highly flexible.

A relatively recent idea, investigated by Terashima et al. [100] in 1999, is

to combine constraint satisfaction techniques with evolutionary algorithms in a

non-directmanner rather than applying directly to the problem. That is, a Ge-

netic Algorithm (GA) using anon-directchromosome representation can be used

to evolve the configuration of Constraint Satisfaction methods which have a large

variety of options. In their implementation, they use an array of encoded instruc-

tions and parameters for guiding a search algorithm as a chromosome represen-

tation rather than the more common direct representation consisting of an array

of integers representing the position of an exam within a timetable, pointing out

that the direct representation has been found to be quite restrictive. The idea be-

hind the non-direct chromosome representation is that it represents a method for

how to construct a timetable rather than an actual timetable - the chromosome

consisting of ten elements, each representing a different part of the choice of

constraint satisfaction technique. Three strategies are considered, Brelaz, Back-

tracking and Forward Checking, each with a variety of different methods for

variable (exams) and value (timeslot) ordering. Two of the three strategies are

potentially used during the solving process, both represented within the chro-

mosome together with a condition which establishes when the timetable con-

struction process switches from the first strategy to the second. Eight different

variable orderings and nine different value orderings are included, each repre-

sented by an integer in the chromosome representation, together with four dif-

ferent conditions. A partial timetable is constructed using the method encoded

for strategy one, then the timetable is completed using the information encoded

for strategy two which consists of one of the three strategies, a variable ordering

and a value ordering. Experiments were carried out on a number of benchmark

problems with the three main constraints included - clashes, near-clashes and ca-

30

pacity constraints with the near-clashes constraint being represented by a penalty

based on how close two clashing exams were timetabled. In all test problems,

the GA technique found solutions with zero constraint violations regarding hard

clashes and capacity whilst beating other reported strategies on minimising the

near-clashes constraint. The authors propose that the use of non-direct represen-

tations for solving exam timetabling problems seems to be the ‘right direction’

when using GAs, but add that issues relating to the time taken to produce solu-

tions with this method still require further research. A discussion on the use of

direct chromosome representations is given in section 2.2.3.

Another hybrid approach involving constraint programming is that of Anh

& Hoa [3] who use a constraint programming phase to create an initial solution

followed by a simulated annealing (SA) phase to optimise this. The aim of the

authors is to take advantage of the strong points of both techniques, with CP

able to find initial solutions satisfying all hard constraints whilst the SA phase

can work on optimising based on the soft constraints. It is noted that the initial

solution fed to an SA algorithm can be critical to the success of the technique, es-

pecially if, as is common in exam timetabling, the search space is disconnected.

Constraint Programming is seen as a good method to achieve a good initial so-

lution in as little time as possible in order to allow more time for the SA phase.

The method Anh & Hoa use isbacktracking with forward checking(BC-FC), a

technique which looks ahead when assigning a value to a variable and removes

from the domains of “future” variables, any values which conflict with the as-

signment. Performance of the algorithm is improved by using a dynamic vari-

able ordering known asfail first, which selects the next variable as the one with

fewest values remaining in its domain. The second phase of the algorithm uses

Simulated Annealing with a Kempe Chain neighbourhood, a technique which is

discussed further in section 2.2.3. Experimental results on a real data set from

HCMC University of Technology (324 exams, 30 timeslots, 64,000 enrolments)

31

show that the CP phase produces good results in less than two minutes run-

time on a 450 MHz Pentium II PC, while the SA phase is run with a variety

of stopping criteria based on the number of steps, with a runtime of around 50

minutes for 50,000 steps. Compared to a pure constraint programming approach

or graph colouring method on the same data, they conclude that the hybrid tech-

nique takes much more run time, but yields a noticeably better solution for highly

constrained problems. Merlot et al [82] also use Constraint Programming to cre-

ate an initial feasible solution in a three-phase approach covered in more detail

in section 2.2.3.

A Constraint-based approach has been applied to the high school timetabling

(STT) problem by Meisels et. al [81], whilst Cheng et al [47] and Guéret et

al. [62] apply constraint logic programming and Abbas & Tsang [1] constraint-

satisfaction techniques to the course timetabling problem. Whilst applications

on exam timetabling are still being used to solve relatively small problems of

around 350 exams, Cheng et al [47] do test their course timetabling approach

on data with over 2000 courses, indicating that the approach may be feasible for

larger problems in exam timetabling also.

2.2.2 Graph-based Initialisation and Construction techniques

In the survey of Carter & Laporte [43] in 1996, Cluster Methods and Sequential

Methods were two of the four major categories of techniques for solving exam

timetabling problems. In the intervening years, these methods have become less

prevalent as techniques in their own right, but have become very important in

hybrid algorithms, often providing good quality initial solutions to seed a variety

of local search techniques. Here I consider some of the papers recently pub-

lished looking at such initialisation strategies, also encompassing the cluster and

sequential methods.

32

Sequential methods use a sequencing strategy to select the next exam to add

to an initially empty timetable and construct the full timetable by assigning the

exams one at a time to a selected period. Among such construction techniques,

two major aspects are the heuristic used to order the exams and the method for

selecting the period for the chosen exam. Carter et al. [45] compare the following

five heuristic methods for sequencing the exams:

• Largest Degree (LD): Largest number of conflicting examinations - highly

conflicting exams are difficult to schedule later in the construction process

• Saturation Degree (SD): Number of periods in conflict - exams with few

remaining feasible slots should be scheduled sooner to avoid having no

remaining feasible slots for the exam

• Largest Weighted Degree (LWD): Number of students in conflict - similar

to Largest Degree, but where each conflict (edge of the graph) is weighted

by the number of students involved

• Largest Enrolment (LE): Largest number of students enrolled for exam -

exams with high enrolment are often difficult to schedule as they create

many conflicts

• Random Ordering (RO): Select the next exam completely at random -

largely used for comparison purposes with the above techniques.

They also investigate five more strategies defined by first finding the largest

clique in the conflict graph and assigning those exams before continuing with

one of the above procedures. The authors note that whilst this clique initialisa-

tion technique is not of any practical use when applied to random data sets, it

does provide better results when applied to real life problems. This finding is

easily explained by the fact that in a random problem, there is an equal proba-

bility of any two exams clashing with each other so there is no defined clique

33

structure within the graph. In real exam timetabling problems however this is

not the case and major cliques do exist making the clique initialisation strategy

very effective, especially at minimising the number of periods required to sched-

ule all exams - clearly the number of periods required is at least the size of the

largest clique in the problem. Carter et al. [45] also implement a backtracking

strategy to deal with exams which, when selected to be scheduled, clash with

at least one exam in every period of the timetable, this essentially involves un-

doing some assignments already made in order to schedule the new exam. It

was found that the use of such a backtracking method vastly reduces the num-

ber of periods needed for the timetable when compared to a simple sequencing

method without backtracking, thus the authors incorporate backtracking as well

as clique initialisation in all their future tests. A major contribution made to the

exam timetabling community by Carter et al. is the publication of 13 bench-

mark problems (available from ftp://ftp.cs.nott.ac.uk/ttp/Data/) on which to test

different strategies. In [45], the authors first compare the five heuristic strategies

with the aim of minimising the number of periods required to schedule all exams

(graph colouring), then by adding proximity costs (weightings on the edges of

the conflict graph) and fixing the number of periods they tested the five strategies

based on minimising an objective function aimed at spreading clashing exams

around the timetable (examination timetabling). As reported in [43], Carter, La-

porte & Chinneck [44] implemented a system based on the above five heuristic

orderings, also incorporating a “k-opt” improvement phase.

Burke, Newall & Weare [33] investigate issues of quality and diversity when

seeding an evolutionary algorithm using heuristic sequencing strategies. Since

a purely heuristic method would produce an initial population of identical so-

lutions the authors consider two methods for adding a random element to the

procedure - these beingtournament selectionandbias selection. Tournament se-

lection for a given heuristic sequencing involves picking the next exam to sched-

34

ule as the best from a randomly generated subset whereas bias selection picks at

random from the bestn choices. When using a population based methods such

as evolutionary algorithms, it is important to have a certain element of diversity

in the initial population so as to be able to search a wider proportion of the so-

lution space, whilst also retaining a certain level of quality since studies have

shown that randomly initialised Genetic Algorithms (GAs) perform badly when

compared to other methods. Burke, Newall & Weare [33] use three methods for

measuring diversity of solutions produced when adding a random element to a

graph colouring heuristic while testing six different heuristics and three different

tournament sizes. The authors conclude that the use of dynamic orderings such

as Colour Degree3 gives an initial population which is both relatively diverse

and of a high quality. It was also found that such initialisation of a population is

superior to random initialisation both in terms of time and quality, allowing the

evolutionary algorithm to focus on “fine tuning” solutions and optimising more

general side constraints.

In 2001, Carter & Johnson [42] investigated extensions to clique initialisa-

tion techniques which are often used in conjunction with heuristic methods, as

in [45]. The usual method for incorporating a clique initialisation phase is sim-

ply to identify a maximum clique of the problem and assign these exams to the

timetable before using a heuristic sequencing technique to schedule the remain-

ing exams. Carter & Johnson point out that in many real world exam timetabling

problems there are many alternative maximum size cliques as well as a number

of near-maximum sized cliques and “quasi-cliques”. They provide an analysis

of cliques on the eleven of the benchmark problems discussed earlier, reporting

the size of maximum clique and the number of cliques of maximum size in each

problem as well as the total number of exams included in all such cliques. Where
3Colour Degree: Events are ordered by the number of conflicting events already scheduled in

descending order

35

the number of maximum-sized cliques is small and incorporates few exams more

than a single max-size clique, cliques of sizemax− 1 are also considered to be

useful for the initialisation phase. When also taking into account quasi-cliques,

Qk, of degreek which have at mostk edges missing from a full clique, the

number of examinations which can relatively easily be scheduled during a clique

initialisation phase can be increased by up to50%. Three different strategies are

considered:

• Assign all examinations which fall inany maximum clique, rather than

just assigning one maximum clique

• Assign all examinations which fall in either a maximum clique, or a clique

one smaller than the maximum

• Assign all examinations which fall in the largest quasi-clique of degree one

(or possibly two)

Carter & Johnson conclude that the employment of these methods can im-

prove the clique initialisation phase of a construction heuristic by assigning more

of the densely clashing exams before handing over to a sequential heuristic.

Burke and Newall [31] look at methods for adapting the standard heuristic

ordering techniques with the aim of developing approaches with a higher level

of generality. It is widely accepted that a specific technique which works well on

one problem may not work as well as other techniques on a different problem,

so the ability for a method to adapt itself to a given problem is an extremely

useful one, making the choice of heuristic far less important than it currently is.

The method proposed leads to an iterative procedure with a dynamic ordering

arrived at by experience obtained from earlier iterations as to howdifficult a

particular exam is to schedule rather than simply using fixed heuristic-defined

measures. They introduce a “Heuristic modifier” onto an ordering whose purpose

36

is to promote more difficult to schedule exams higher up the order than they

would otherwise be with a given heuristic. Theperceived difficultyof an exame

at iterationi is given by:

difficulty(e, i) = heuristic(e) + heurmodei (2.1)

whereheuristic(e) is the standard heuristic measure of difficulty (e.g. largest

degree) andheurmodei is the heuristic modifier for exame at iterationi. A num-

ber of different methods are considered for when and how to modifyheurmodei

taking into account only hard constraints or also considering soft constraints. The

authors run a range of tests on the real world timetabling problems used by Carter

et al. [45] using two different measures of solution quality - the first involving

proximity costs for clashing exams, but no limit on available seats/rooms, the

second using a limit for the number of available seats in each period together

with a penalty function penalising clashing exams in successive periods with a

large penalty of 5000 for unscheduled exams. A total of 2000 iterations were

used to run most test problems with run times reported and comparisons made

with other reported techniques. The main conclusions of the paper are that ex-

periments have shown the adaptive method to perform very efficiently and com-

petitively on a wide range of problems and is quick and relatively easy to im-

plement. Also that the technique demonstrates robustness shown by a narrow

gap between best and worst results in a wide range of experiments. The adaptive

method has shown to be capable, after a number of iterations, of improving a

bad initial ordering of the exams thus lowering the dependency on the chosen

heuristic in order to produce good results and increasing the level of generality

of the approach.

Also concerned with increasing the level of generality of exam timetabling

techniques to make them more widely applicable, Petrovic et al [95] propose a

37

case-based reasoning technique for initialisation of meta-heuristics. Their tech-

nique uses the Great Deluge (GD) meta-heuristic which will be discussed in more

detail in Section 2.2.3 to perform the local search improvement when seeded with

a good quality initial solution. They consider the Largest Degree, Largest Enrol-

ment, Largest Colour Degree, Largest Weighted Degree and Largest Saturation

Degree sequential heuristics for the initialisation with a number of methods for

enriching these to form a hybrid technique:

• Maximum Clique Detection (MCD) - identify a maximum clique and sched-

ule these exams first (as used by Carter et al [45]

• Adding Random Elements (ARE) - tournament based selection, as used by

Burke et al. [33]

• Backtracking (BT) - rescheduling already scheduled exams when conflict

arises

A Case based reasoning method is used to select amongst these different hy-

brid techniques which is most suitable for a given problem. This is done by

maintaining a case-base of previously solved problems where each case is rep-

resented by a 2-tuple(G,H), G being a graph representation of the problem

andH the sequential heuristic used to produce a good initial solution for GD.

Graph isomorphism techniques are used to match a new problem with one from

the case-base which can then be retrieved and the heuristic applied to the new

problem to initialise Great Deluge. Case retrieval is effected by a two-stage tabu

search approach as described in [93]. Experiments are carried out on a number of

benchmark problems and variations thereof to seed the case-base. The problem

variants were created by either adding or removing a percentage of exams and

students with respect to the benchmark problems used. This resulted in 77 total

cases for the large case base (seven benchmark problems and 70 variations) and

38

42 cases (seven benchmark problems and 35 variations) for the small case base.

An exhaustive set of tests was carried out with all possible sequential heuristics

on each problem with the one which led to the best final solution (after Great

Deluge was applied to the initial solution with 20 million iterations) was stored

in the case base. One of the aims of the paper is to determine whether the size of

the case base has a significant impact on the performance of the case base reason-

ing system with results indicating that a larger case base can lead to better results

at the cost of extra time. The authors demonstrate that the performance of their

technique on benchmark problems is comparable to those of other approaches

with which they compare. In conclusion they stated that their results demon-

strate that knowledge gained in initialising one problem can be used for solving

asimilar timetabling problem, providing a good foundation for the development

of a general CBR system for solving timetabling problems.

2.2.3 Local Search Meta-heuristics

“All of these techniques are relatively recent innovations in the area

of heuristic search...This looks a very promising area for future re-

search. Of course, all of these search algorithms require consider-

able computer time and/or horse power. It is difficult to draw more

accurate conclusions without comparisons with other approaches on

identical problems to see if the additional effort produces better qual-

ity solutions”

Carter & Laporte, 1996 [43]

Local Search techniques perform their search in the solution space of a prob-

lem, having been seeded with an initial solution which may be either feasible or

infeasible. Typically, a local search method with iteratively make small changes

39

to an incumbent solution whilst retaining the majority of the features of the old

solution. These techniques use an objective function to measure the quality of

each solution and use a variety of different methods for deciding whether to ac-

cept amoveor not. A large variety of different local search techniques have

been applied to exam timetabling problems over the last decade with the criteria

for accepting or rejecting moves, defining how the algorithm escapes from lo-

cal minima, being the distinguishing factor between these techniques. The most

common forms of local search include hill climbing (HC), simulated annealing

(SA), tabu search (TS) and genetic algorithms (GAs), but a wide range of other

techniques are also being studied. In section 2.2.4 I will consider genetic algo-

rithms and other population based evolutionary methods in more detail, whilst

in this section focusing on those techniques which work on a single incumbent

solution.

Simulated Annealing

Simulated annealing [71] is a highly popular meta-heuristic which models itself

on the physical process of annealing in which a substance is slowly cooled from

an initial high temperature at which its molecules can move around freely (liquid

state) to a low temperature at which it becomes solid and the molecules have sta-

bilised. In simulated annealing, the temperature determines how likely it is that

a worseningmove will be accepted, with a high temperature giving a high prob-

ability of acceptance and a low temperature causing most worsening moves to be

rejected. The initial temperature,cooling scheduleand finishing temperature are

the three main parameters which control the performance of an SA algorithm as

it optimises an objective function. Numerous authors have successfully applied

this approach to exam timetabling with some of the earlier examples reported

by Carter & Laporte [43]. Here I concentrate mainly on those papers published

post-1996.

40

Thompson & Dowsland [101, 102] considered the effects of different cooling

schedules on the performance of a simulated annealing algorithm, using a two-

phased approach, the first phase finding a feasible timetable, the second using a

more complex neighbourhood structure to optimise based on the secondary ob-

jectives. Their ultimate aim was to identify an adaptive cooling schedule which

could be efficiently used within an existing timetabling system. This technique

has been successfully used by the authors in a timetabling package known as

TISSUE at Swansea University. In 1998, Thompson & Dowsland [103] extend

their work to investigate the robustness of the approach, focusing on the affect

of different cooling schedules and a wider range neighbourhood structures than

was used in [101]. Using eight data sets, exhibiting a range of different features,

they focus on the second phase of their two-phased approach with the first phase

finding feasible solutions relatively easily. A number of different second order

conflicts were considered concerning the proximity of the exams taken by a stu-

dent either within a single day orx exams iny consecutive timeslots. Three

different types of neighbourhoods are investigated:

• Standard neighbourhood - A single exam is moved to a new feasible times-

lot (as used in [101])

• Kempe chain neighbourhood - Two subsets of exams in periodsi andj are

exchanged in such a way that the new timetable is feasible with respect to

the hard constraints. Selecting an exam in periodi to move to periodj will

induce a Kempe Chain as described in [101]

• S-chains - An extension of Kempe chains in whichS periods are chosen

instead of just two as used in the Kempe chain neighbourhood - this is

described further in [103]. For their experiments the authors restrict them-

selves to those chains produced withS = 3

41

Experiments using a very slow cooling rate for all neighbourhoods showed

that the Kempe chain and S-Chain neighbourhoods were clearly superior to the

Standard neighbourhood, but showed little difference between themselves. With

this in mind, the authors restricted further tests to comparing only the Kempe

Chain and Standard neighbourhoods. Further experiments were performed to

test different geometric cooling rates (t → αt, α < 1) with α ranging from 0.6

to 0.99 using a variety of different adaptive cooling schedules. Results indicated

that a value ofα = 0.99 with the temperature being reduced after 5000 iterations

at each level was the best strategy to adopt, with Kempe chain neighbourhoods

again outperforming the Standard neighbourhood leading the authors to conclude

that this neighbourhood combined with a slow cooling schedule would provide

a “robust and flexible approach to the examination scheduling problem.” Fur-

ther analysis is included, looking into why Kempe chain neighbourhoods are so

much better and considering the effect of different sampling techniques, con-

cluding that the method of sampling is also an important factor in solution qual-

ity. Since their work in [101], the nature of the problem at Swansea University

had changed considerably, becoming larger and more tightly constrained due to

modularisation, yet the system described was able to deal effectively with the

changes.

Bullnheimer [10] uses a quadratic assignment problem (QAP) formulation

which is then transformed into a quadratic semi assignment problem as a method

for solving small scale exam timetabling problems using simulated annealing.

The main focus of Bullnheimer’s work is to create a timetable without clashes

which also maximises student study time, introducing a parameter,α which can

be set by the timetabling institution to give more or less emphasis to the spread-

ing of exams. Settingα = 0 takes into account only “back-to-back” conflicts,

whereas higher values ofα put more focus on the spread of exams to maximise

the student’s study time. The exam timetabling problem at the Faculty of Eco-

42

nomics and Management, Otto-von-Guericke-University in Magdeburg consists

of two distinct sets of courses, the largest having 27 exams with 419 students,

the other having 15 exams with 391 students, with three slots on each of 15 days

to schedule the 42 exams. A simulated annealing technique is applied using two

classes of neighbourhood structure: aslot movere-arranges a number of slots

without altering the exam assignments in each slot whilst anexam moveran-

domly picks an exam to move to a randomly chosen slot. The algorithm was

run for a total of 5000 iterations and a number of schedules produced using dif-

ferent values ofα are displayed to demonstrate the ability of the technique and

formulation to produce good solutions. The author concludes that the proposed

QAP-based model combined with simulated annealing is suitable for small scale

problems and can be used for larger problems, broken down into subproblems.

Tabu Search

Tabu Search is a technique similar to simulated annealing, but which uses a dif-

ferent criteria for move acceptance and neighbourhood search. Whereas in simu-

lated annealing, moves are generally selected at random from the neighbourhood,

tabu search performs an exhaustive search of the neighbourhood or a subset of

the neighbourhood, selecting the best move (according the the objective func-

tion) from those considered. If this move improves on the best solution found

so far during the search it is generally accepted unconditionally. However, to

prevent the search from getting stuck in local optima a tabu list is maintained of

previously visited solutions which are not to be revisited within a certain num-

ber of moves. Thetabu tenuredetermines how long a given solution or move

remains tabu. In general it is not feasible to store complete solutions on the tabu

list, it is more usual that an element which was moved recently becomes tabu for

the duration of the tabu tenure.

Di Gaspero & Schaerf [58] propose a family of tabu search methods which

43

they apply to a set of variants of the exam timetabling problem. In addition

to the standard hard constraints that all exams must be scheduled into exactly

one timeslot and no two exams with students in common should be assigned to

the same time slot, the hard constraints they consider are capacity constraints

and pre-assignments & unavailabities. Capacity constraints take into account

the limitations of room sizes and number of rooms for each period whilst pre-

assignments simply represent exams which are fixed into a certain slot and un-

availabilities represent slots which are not possible for a given exam. Three types

of soft constraints are also taken into account and are weighted to contribute to

the objective function to be minimised:

• Second-order conflicts: A penalty is added to the objective evaluation for

each occurrence of a student being assigned exams in consecutive periods

• Higher-order conflicts: A proximity cost,pc(i), is included whenever a

student is assigned to take two exams withini timeslots. This proximity

cost is multiplied by the number of students involved in the two exami-

nations and is defined as in [45]:pc(1) = 16, pc(2) = 8, pc(3) = 4,

pc(4) = 2, pc(5) = 1.

• Preferences: A soft version of pre-assignments and unavailabilities, taking

into account student and teacher preferences as to the scheduling of exams.

Di Gaspero & Schaerf define their search space to include all complete as-

signments of exams to slots including infeasible ones, with the exception that

unavailabilities and pre-assignments are imposed from the start. The search is

guided by a hierarchical objective function which penalises the violation of hard

constraints far higher than that of the soft constraints in a linear combination.

A mechanism for allowing these weights to change during the algorithm’s run-

ning time is also included. The neighbourhood used within the search is the

44

standard neighbourhood as defined earlier, with a single exam being moved to

a new timeslot whilst the inverse of a move, which is added to the tabu list, is

defined to be any move involving that same exam. Only exams which violate

either soft or hard constraints are considered to be moved during the search, with

two different strategies employed for move selection - one being exhaustive, the

other biased towards those exams adding highest penalty with all periods con-

sidered for the new assignment. Two different search techniques are considered,

one focusing more on the hard constraint violations, the other searching for any

form of improvement. Parameters were arrived at after extensive tests and con-

sisted of a tabu tenure varying randomly between 15 and 25 and a stopping cri-

terion based on the number of iterations since the last improvement. Results

are presented for various benchmark problems and compared with the results

of other authors. For a comparison of these results with those of other current

techniques on the uncapacitated benchmarks of Carter at al. [45], please refer to

table 2.3. Di Gaspero [57] discusses a number of improvements to this family

of tabu search algorithms by employing a multi-neighbourhood local search us-

ing two neighbourhoods,recolourandshake, together with perturbations known

askickswhich use compositions of neighbourhoods of relatively long length to

make a single move.

Another tabu search algorithm using a four-phase system and known as OT-

TABU has been implemented by White & Xie [105] to solve the exam timetabling

problem at the University of Ottawa. They use a bin packing style of algorithm

with largest enrolment first exam ordering to create an initial solution which may

be feasible or infeasible. Similar to Di Gaspero & Schaerf [58], they use the stan-

dard move neighbourhood and keep two candidate lists: one containing all exams

in the problem, the other containing only those involved in conflicts. A subset of

the neighbourhood is iteratively explored and the best move is selected, irrespec-

tive of whether it leads to an improvement or not of the current solution. Two

45

forms of memory are used in the tabu search, these being a recency-based short-

term memory and a frequency-based longer-term memory. The former uses a

tabu tenure of nine and adds the move(x, i) to the tabu list whenever a move

(x, i, j) is made wherex is the exam moved,i is its original timeslot andj is

the new timeslot. It is noted that when used in combination with the longer-term

memory, the tabu tenure for the short-term memory is not critical. The longer-

term memory is based on a frequency table which keeps track of whenever an

exam is moved. The purpose of this longer-term memory is to forbid over-active

nodes from moving constantly to help avoid cycling. A method of tabu relaxation

is also included which empties all entries in both tabu lists if no improvement on

the best solution so far has been found after a certain number of iterations. A

four-pass intensification strategy is used to intensify the search in region of the

search space containing the best solution so far obtained. Full details of the OT-

TABU algorithm are given in [105] together with results when applied to the real

life problem at the University of Ottawa which has 771 exams to be assigned

into a timetable of 36 slots with 2200 seats available. In conclusion, the authors

note that tabu search with both longer-term and short-term memory can generate

better solutions on all data sets tested than TS using short-term memory alone

and that the technique successfully avoids cycling during the search. Also they

conclude that the OTTABU four-pass algorithm is an effective mechanism for

controlling intensification and diversification in the search.

Paquete & Sẗutzle [89] use tabu search to solve the examination timetabling

problem using a lexicographic formulation similar to the multi-criteria approaches

I will review in section 2.2.5 in which constraints are prioritised by the user rather

than setting explicit weights within an objective function. Two district strategies

are used, Lex-tie compares solutions based on the objective value of the higher

priority objective whilst Lex-seq takes constraints into account one at a time in

priority order to find a solution satisfying each in turn. The Tabu search algo-

46

rithm used is adapted from one successfully applied to graph colouring problems

and uses a 1-opt neighbourhood (equivalent to the Standard neighbourhood of

Thompson & Dowsland [101] with all pairs of exams and timeslots considered

at each move and the one which maximally reduces constraint violations is cho-

sen. The tabu tenure used is based on the number of constraint violations with a

random integer added. The Lex-seq technique performed better on most datasets

tested when measuring best performance, but using average performance as a

measure, Lex-tie provided more consistent results. One other point of note from

the authors was that as problem size increases, the value of their constantα, used

to weight the contribution of constraint violations to the tabu tenure should also

increase to obtain best performance when using the Lex-seq approach. Whilst

Lex-tie performed less well when constraints became harder the satisfy they con-

clude that the results indicate that a future approach combining both strategies

could prove promising.

Great Deluge

Of the variety of other local search techniques applied to exam timetabling, one

of the most promising has been the Great Deluge (GD) algorithm applied by

Burke & Newall [30] and Burke et al. [12] as part of two different techniques.

In [30], the focus is on the affects of parameters on solution quality when Great

Deluge is applied to a high quality initial solution with the results compared to

those of a simulated annealing algorithm also tuned to give best performance,

using desired initial average probabilities for acceptance of worse moves. The

Great Deluge technique works similarly to simulated annealing, but uses a sim-

pler mechanism for move acceptance with moves again generated at random

from the neighbourhood. Rather than a probabilistic acceptance of moves based

on a cooling schedule, Great Deluge uses a ceiling which starts off equal to the

initial solution multiplied by some factor and is gradually lowered as the search

47

progresses until eventually it will fall below the current solution. All moves from

an incumbent solution which result in a new solution whose valuation by the ob-

jective function falls below the ceiling are accepted and the search is terminated

after 1 million iterations without improvement in Burke & Newall’s implementa-

tion to allow for a hill climbing phase at the end of the search. As a parameter to

the Great Deluge algorithm, the desired number of iterations,N , is input, from

which the rate at which the ceiling is lowered at each iteration is calculated by

dividing this into the initial ceiling to provide the increment. An index of im-

provement is used to measure the performance of the technique with different

values forN over a range of benchmark problems and is calculated by summing

the average percentage improvement (over five runs on each data set) from the

initial solution across all problems. From the experiments performed, the authors

conclude that the initial ceiling should be set as the initial solution multiplied by

a factor of 1.3 and that launching the algorithm for more moves yields greater

improvements. Great Deluge is found to perform better than simulated annealing

and the parameters used for both techniques are observed to have a major effect

on final solution quality. When compared to results from other techniques in the

literature, Great Deluge performs very well, obtaining best known results on a

number of benchmark problems supplied by Carter et al. [45]. These results are

included in table 2.3

In [12], Burke et al. again use simulated annealing and the Great Deluge

(GD) method for comparison as they investigate time-predefined versions of both

techniques on exam timetabling problems. One of the key aims of their work is

to eliminate parameters which are rather abstract (e.g. cooling schedule rate for

simulated annealing or number of generations for a genetic algorithm) and not

easily understandable to a real world user and replace these with just two pa-

rameters, both of which they feel are meaningful and easily understandable for a

user. The two parameters employed by Burke et al. are the computational time

48

for the algorithm and an approximation of the objective function value that would

be desirable. Computational time is clearly a very desirable input parameter as

it allows the user to specify how much time they are willing to spend to find a

solution, whilst an estimate of the desired final solution objective value can be

easily acquired using a fast hill climbing technique. It is logical that the longer

a search is run for, the greater the exploration of the search space and thus the

probability of reaching a good solution is increased. The challenge which the

authors consider is to make the most of all the available computation time so that

the method does not converge too quickly and is allowed to use all the available

time searching the solution space whilst creating a flexible method which can

be used to produce average quality solutions very quickly or high quality solu-

tions in more time. The authors present an approach which determines the rate

at which the GD ceiling should be decreased based on the time allowed and the

estimate of final solution quality and the value of the initial solution and ceil-

ing. This approach allows the algorithm to spend all the allowed time effectively

without the ceiling falling below the current solution too early in the search, thus

preventing further exploration. A large number of experiments are reported with

the overall stated aims as follows:

• To investigate the properties of the time-predefined techniques by gener-

ating “cost progress” diagrams for the search process - these are diagrams

which track the evolution of the cost function.

• To explore the manner in which the prolongation of the search can increase

the quality of solution.

• To evaluate the quality of the results produced by the time-predefined

search in an acceptable time by comparison of its range with the outcomes

of other techniques applied to the same datasets and published in the liter-

ature.

49

Brelaz’ saturation degree graph colouring sequencing algorithm [9] with ran-

dom timeslot assignment is used to create 20 initial solutions from which the

best was chosen to seed the local search techniques. The neighbourhood struc-

ture used was the Standard Neighbourhood described earlier, consisting of all

solutions which can be produced from the current one by reallocating a single

exam to a new timeslot with moves selected at random from the neighbourhood

for each iteration. A large number of observations are reported with respect

to the speed of convergence with cost progress diagrams showing the improve-

ments over time during the run of each algorithm with one of the major features

noted being that time-predefined simulated annealing is much more uncertain

and parameter dependent in its behaviour than the Great Deluge algorithm with

more preliminary work needed to determine the parameters of the search. Re-

garding the trade-off between search time and quality of results, it is reported

that whilst a prolongation of the search time does yield better results, the im-

provement becomes slower later in the search and that the trade-off holds mostly

for “large” exam timetabling problems as expected. Results comparing perfor-

mance of these algorithms to the current state of the art are recorded in table 2.3

and can be seen to compare very favourable with other techniques. Results

of experiments on more advanced problems with more constraints are also in-

cluded in [12] and again compared to those of other techniques in the literature.

Improvements to the time-predefined technique are also discussed with conclu-

sions that the neighbourhood used probably influences results notably and that

the technique is open to different extensions and hybridisations, but overall re-

sults show the technique proposed to be very competitive as well as its numerous

advantages regarding simpler parameters.

50

GRASP

Casey & Thompson [46] present a Greedy Randomised Adaptive Search Proce-

dure (GRASP) technique for solving exam timetabling problems. The specific

problem focused on is that of minimising the proximity of exams in students’

timetables subject to the timetable being clash-free. The GRASP technique is a

two-phase algorithm in which the first greedy phase is used to produce a feasi-

ble, clash-free timetable whilst the second phase concentrates on optimising the

solution based on the objective function. Exams are ordered according to one

of the criteria proposed by Carter et al. [45] for the construction phase with the

next exam to be scheduled being chosen from the topn in the list using a roulette

wheel selection and is assigned to the first available period. If there is no feasible

period, a backtracking technique is employed using a tabu list to prevent cycling

and ensure that a complete feasible timetable is produced. In phase two, exams

are considered in descending order of their contribution to the total cost of the

timetable, with all periods evaluated and the best feasible move is chosen if it

causes a decrease in the cost. This process continues until no further improve-

ment is found within a given cycle limit with the process then returning to phase

1 with a blank timetable. A number of improvements to the simple algorithm are

outlined in an attempt to maximise the performance of the algorithm in a limited

amount of time. These include the use of Kempe chain based neighbourhoods

as used successfully with simulated annealing in [101], including a limited form

of simulated annealing during phase two and the inclusion of a memory function

to allow for diversification of the search. Experiments showed that this mem-

ory should only be included with the construction phase as its inclusion in the

improvement phase prevented the search from attaining high quality solutions.

Reported results on benchmark problems use ten GRASP iterations on a 1000

MHz Pentium computer and use the evaluation function also used by Carter et

51

al. [45]. The Saturation Degree (SD) ordering of exams for Phase 1 was found

to give the best results compared to other strategies whilst Kempe chain based

neighbourhoods were found to perform better than the standard move neigh-

bourhood. Results compared to other reported techniques are again included in

table 2.3.

Hybridised Local Search

One of the more recent research directions is to consider more hybridised local

search algorithms, aiming to take the best ideas from a number of approaches

and combine them into a single successful technique. Merlot et al. [82] present

a three phase hybrid algorithm including constraint programming to produce an

initial solution, simulated annealing to improve solution quality and finally a hill

climbing phase to add further improvement. Their method is applied to the Uni-

versity of Melbourne (∼ 650 exams,∼ 20, 000 students) exam timetabling prob-

lem where it proves to be superior to their previous method and is also applied

to the well known Carter’s [45] benchmark data sets. The constraint program-

ming phase used is similar to that of Boizumault et al. [7] discussed earlier and

is designed to find a feasible solution very quickly with some exams allowed

to remain unscheduled if needed. The simulated annealing phase uses a Kempe

chain neighbourhood similar to that of Thompson & Dowsland [101, 103] with

the difference that moves are selected by picking an exam and a new slot at ran-

dom as oppose to Thompson & Dowsland who select two timeslots at random

before selecting an exam from the first timeslot. A geometric cooling sched-

ule is applied with the temperature being lowered by a factor of 0.999 after ten

iterations at each temperature, from a starting temperature of 30,000. The hill

climbing stage of the algorithm exhaustively searches a smaller neighbourhood

to provide a final improvement phase, considering each exam in turn together

with every other period. Results are included on a number of benchmark datasets

52

- graph colouring, uncapacitated and capacitated with the uncapacitated results

being compared to those of other techniques in table 2.3. The conclusions of the

authors regarding their method are that it performs well in comparison to other

methods on benchmark problems as well as proving superior to their previous

method at the University of Melbourne and also suggest that methods combining

solution construction with local search will be dominant in the future for exam

timetabling problems.

Caramia et al. [40] propose a family of timetabling algorithms based on local

search considering both the minimisation of the number of time slots and the

minimisation of an overall penalty using a fixed number of timeslots. Initially

exams are ordered to be scheduled by their degree in the conflict graph with a

greedy scheduler used to assign exams in turn to the lowest available timeslot

which does not produce a conflict. Following this, apenalty decreaseris used to

try to decrease the overall penalty of the timetable without increasing the number

of slots used, considering each exam in order of non-increasing penalty. Once

no further penalty reduction can be obtained, the greedy scheduler is restarted.

A penalty traderis invoked when no improvement can be found by the greedy

scheduler and the penalty decreaser. This part of the algorithm checks whether

the penalty of the current schedule can be decreased by incrementing the number

of timeslots by one with exams chosen to be moved to the new slot which will

decrease this penalty by the largest amount. When the penalty trader finds a

larger number of timeslots for which the penalty is decreased, the exam priorities,

pi (used for the greedy scheduler) for each exami are re-assigned aspi = 1/ti

whereti is the current slot of exami. Then the greedy scheduler is restarted

with the new exam priorities. A check-pointing scheme is incorporated to avoid

the search getting stuck for long periods of time in particular areas of the search

space. Best results presented on the benchmark data are given in table 2.3 for

comparison with other techniques on problems with a fixed number of timeslots.

53

Results were also reported giving the minimum number of timeslots required

to find a feasible solution with five different strategies evaluated for both sets

of results. Overall the results are extremely competitive on the benchmark data

considered, although no averages across many runs are included.

2003 International Timetabling Competition

One of the notable recent innovations was the 2003 International Timetabling

competition4 organised by the Metaheuristics Network to promote research into

automated methods for timetabling. 20 different problem instances were sup-

plied to competitors with the aim being to develop an algorithm to minimise the

total penalty on each of these problems within a given time limit. Three soft

constraints were included, with any violations of these adding one penalty point

to the total:

• no student has only one event per day

• there are no students that attend an event in the last slot of a day

• no student has to attend more than two events consecutively on one day

Hard constraints which must not be violated were as follows:

• no student attends more than one event at the same time

• the room is big enough for all the attending students and satisfies all the

features required by the event

• only one event is in each room at any timeslot

The problems themselves were reductions from typical course timetabling

problems, but share many features in common with exam timetabling and as such
4http://www.idsia.ch/Files/ttcomp2002/

54

was considered worthy of mention here. The techniques of all the most success-

ful competitors were based on variants of local search, Kostuch [73] favouring

simulated annealing, Cordeau et al. [49] and Arntzen & Løkkentangen imple-

mented a tabu search approach, Bykov [39] used the Great Deluge algorithm

whilst Di Gaspero & Schaerf [59] opted for a three-stage local search technique

including hill climbing and tabu search.

Local Search Conclusions

In conclusion, it is easy to see that a large amount of research has been carried

out in this area since Carter & Laporte’s 1996 survey and much work is still on-

going. Local search meta-heuristics are clearly some of the most successful and

popular approaches to exam timetabling problems with a huge variety of differ-

ent techniques applied and many hybrid methods now being developed which

draw from the best elements of their components to produce an even better al-

gorithm. Many of these techniques do have a lot of parameters, many of which

are not easily understandable to a non-expert and they do unquestionably take

more computational time and/or effort than sequential construction techniques,

but in the area of exam timetabling this increase in runtime is considered accept-

able provided it is within reason since the exam timetabling problem is generally

only solved two to three times per year at most institutions. Some more recent

methods such as those described in [12] now incorporate run time as a param-

eter to the algorithm so that the user can decide for themself how long they are

willing to spend producing a solution and the algorithm uses this to make sure

the search makes the best use of the time allowed. As with most local search

techniques, there is a trade-off between extra solution time and solution quality.

55

2.2.4 Evolutionary Methods

The umbrella term of evolutionary algorithms (EAs) includes a variety of tech-

niques inspired by nature and which make an attempt to simulate naturally occur-

ring processes, usually involving populations of “solutions”. Amongst the most

common EAs are genetic algorithms and ant systems, although ant systems are

yet to be thoroughly investigated as a technique for exam timetabling although

Dowsland et al. [60] have proposed a method for using ant systems to find feasi-

ble solutions based on a graph colouring model. Genetic algorithms and similar

evolutionary algorithms have been applied more widely with Corne et al. [51]

giving an overview of techniques applied up to 1994 and Burke et al. [21, 22]

propose a genetic algorithm for solving university timetabling problems using a

population of always feasible timetables.

Burke et al. [32] use a hybrid method combining an evolutionary algorithm

with local search to produce what is known as amemeticalgorithm. This al-

lows the possible solution space to be reduced to the subspace of local optima

since every member of the population is optimised by the local search, but also

increases the computational time significantly. The problem is represented by a

population of memes, each of which contains information on which exams are

in which room in each period of the timetable. Members of the initial population

are generated using a weighted roulette wheel technique to choose the period in

which to place each exam in order to produce a higher quality yet still diverse

starting population. Light and heavy mutation operators are included, the light

operator moving a number of exams to new feasible periods, the heavy oper-

ator disrupting entire periods. Hill climbing is then applied, taking the exams

in each period in turn and checking all other periods to move an exam to the

period of lowest penalty. The evaluation function penalises unscheduled exams

heavily as well as taking into account the number of conflicts in the timetable

56

between two periods on the same day. Roulette wheel selection is again applied

during the selection process in order to keep a specified population size. The

algorithm was tested on a range of real data including the Nottingham Univer-

sity dataset of 1994/5 which includes 805 exams with 10,034 student conflicts

between them and 7,896 students with 34,265 different enrolments, all exams

must be scheduled into 32 periods with a maximum capacity of 1550 per period.

The memetic algorithm is found to compare favourably to a multi-start random

descent method, finding a solution which does not violate any constraints whilst

the descent method fails to do so even when given a longer time. The technique

performs less well on highly constrained problems as some methods, but shows

promise overall.

In [98], Ross, Hart & Corne carry out an extensive investigation of GAs using

a simple direct representation, showing their weaknesses as well as considering

a number of positive research directions for GAs. In the representation they

use, a timetable is represented as an array ofE exams, with theith number

indicating the timeslot of theith event. A simple penalty function based on

clash violations is used to evaluate the fitness of a chromosome. Some of the

weaknesses of the simple direct representation approach for a GA are exposed

with two specific examples on which the GA performs very badly or fails to find

a feasible solution, even on subproblems of more highly-constrained problems

which it can solve, although it is also pointed out that other methods also struggle

on some of these problems, in particular the ‘sequence of cliques’ class. It is

also found that these GAs perform relatively badly on Carter’s benchmark data

sets [45] due to a failure to co-ordinate different parts of the solution until it is

too late. The authors conclude by suggesting that GAs would be put to better

use searching for a good algorithm to solve a problem rather than acting on the

problem itself, an approach which has been applied in other domains as well

as to timetabling by Terashima et al. [100] who used a GA to evolve constraint

57

satisfaction strategies as discussed in section 2.2.1.

A decomposition approach combined with an evolutionary algorithm is used

by Burke & Newall [29]. They consider the problem with seating capacities

and taking into account both first and second order conflicts, using a penalty of

5000 for any unscheduled exams to discourage incomplete timetables. The set

of exams is decomposed into smaller sets and scheduled in different phases with

earlier sets being fixed in their positions for the later phases. Two options are

considered to get around the problem of this fixing of events making it impossi-

ble to schedule later events: firstly, exam subsets can be created using heuristic

sequencing methods, secondly a form of look ahead can be implemented where

two subsets are optimised at a time, but only one is fixed at the end of the stage.

A population of size 50 is used for all reported experiments with mutation oper-

ators applied followed by hill climbing, using the same technique as discussed

earlier in [32]. In the implementation, the already fixed parts of the timetable

were considered assuper events, i.e. a single event in each period of the table

whose enrolment and clashes is equal to the sum of all events fixed in that period.

Results are presented on 4 benchmark datasets using a variety of different sized

subsets and for each size tests were carried out both with and without lookahead.

Largest degree, colour degree and saturation degree were all tested for the exam

ordering with very varied results produced across the range of datasets tested.

Saturation degree was found to be the most reliable heuristic overall, though not

the best for every problem, whilst a subset size of 50 was found to be most ef-

fective for smaller problems and 100 for larger problems with lookahead used

in both cases. Results are produced in much faster run times than the previous

memetic algorithm approach without decomposition and indicate that combin-

ing heuristic sequencing with evolutionary methods can utilise knowledge of the

problem to produce better solutions than either technique on its own.

Erben [61] uses agrouping genetic algorithm(GGA) based on the grouping

58

character of graph colouring problems to avoid many of the problems of previous

unsuitable encodings for GAs. In this formulation, a chromosome is made up

of groups as genes, with each group representing all the elements of a given

colour in the graph colouring representation. It is on these groups of nodes that

the mutation and crossover operators work with numerous mutation operators

tested and a crossover operator resulting in children containing groups from both

parents as well as some new groups in general. The fitness function used first

calculates the total degree,Dj of each group in the chromosome, then the fitness

(to be maximised) of the chromosomeP with k colour groups is defined as:

f(P) =
1

k
.
k∑
j=1

D2
j

Results are presented for the troublesome “pyramidal chain” and “sequences

of cliques” problems which more standard directly encoded GAs struggle with.

The phase transitions in the latter set of problems and also for “equipartite graphs”

are also located and discussed in detail. The technique is easily adapted to exam

timetabling by considering the solution as asequenceof groups rather than aset

of groups when second order conflicts are to be considered and the fitness func-

tion changed to also include these in its evaluation. Results reported on exam

timetabling datasets are unimpressive compared to the best results of other au-

thors, but it is noted that since the algorithm has simply been adapted from one

developed for graph-colouring problems these results are still quite promising

and the computational expense is relatively low. Regarding parameters for the

GA, it is reported that a population size of greater than 20 does not seem to im-

prove performance significantly whilst the GGA is quite robust with regards to

crossover and mutation rate settings.

59

2.2.5 Multi-criteria approaches

The methods discussed so far generally combine all soft-constraints into a linear

weighted objective function to be minimised (or maximised) during the search.

In multi-criteria approaches, each soft constraint is represented by a criterion

and the search method must deal with a vector of these criteria. The main advan-

tage of multi-criteria approaches is that they do not require explicit weights for

each constraint violation to be balanced against each other in a single objective

function and are thus very flexible.

Burke et al. [11] use a model with just a single hard constraint, common to all

exam timetabling problems, to define a feasible timetable, that being that exams

which are in conflict (have students in common) must not be scheduled in the

same period. Criteria are defined with respect to all other constraints present in a

timetabling problem, each measuring the level of violation of the corresponding

constraint. Using this approach, the list of criteria can easily be added to and

subtracted from for any given problem and the authors present nine of these

criteria, split into three groups:

1. Room capacities

• C1 represents the number of times that room capacities are exceeded.

2. Proximity of exams- criteria concerning the spread of exams across the

timetable

• C2 represents the number of conflicts where students have exams in

adjacent periods on the same day

• C3 represents the number of conflicts where students have two or

more exams in the same day

• C4 represents the number of conflicts where students have exams in

adjacent days

60

• C5 represents the number of conflicts where students have exams in

overnight periods

3. Time and order of exams- criteria concerning inappropriate times or order

of exams for students

• C6 represents the number of times that a student has an exam that is

not scheduled in a time period of the proper duration

• C7 represents the number of times that a student has an exam that is

not scheduled in the required time period

• C8 represents the number of times that a student has an exam that is

not scheduled before/after another specified exam

• C9 represents the number of times that a student has an exam that is

not scheduled immediately before/after another specified exam

The overall aim is to minimise each of the nine criteria, but clearly this is not

strictly possible as some are conflicting and many are of a very different nature.

Weights can be assigned to each of the criteria to show their relative importance

with hardconstraints being given a much higher weighting thansoftconstraints.

A mathematical formulation of the multi-criteria problem is given by the authors

and the criteria space is defined of dimension equal to the number of criteria

with each timetable being represented by a point in the criteria space. Anideal

point is defined in the criteria space which optimises all criteria simultaneously,

but which in reality does not exist in general, therefore the concept of ananti-

ideal point is used. The criteria spaced is then mapped into a preference space

in which the worst value for each criterion,Ck, is mapped onto zero and the best

mapped towk, the weight assigned to criterionk.

An algorithm for heuristic search of the preference space is presented ([11]),

based on compromise programming with solutions measured by their “distance”

61

from the ideal point in the preference space. The proposed algorithm consists

of two phases, the first aims to find a set of high-quality timetables in terms of

each criterion separately which form the initial timetables for the second which

aims to improve the other criteria values in each solution using hill climbing and

heavy mutation operators to explore the neighbourhood of timetables. The final

solution is chosen from the set of timetables produced, with each initial solution

yielding one timetable, as the one closest to the ideal point. Results are given

for the University of Nottingham exam timetabling problem (800 exams, 7896

students, 33997 enrolments) whose characteristics are defined. It is noted that in

most cases the final solution significantly improves the other criteria not taken

into consideration initially at the expense of a slight degradation in the criteria

from that initial solution. The timetabling officer is able to vary the weights on

each criterion to produce different timetables from which the most suitable can

be chosen. In conclusion, their approach is described as giving an insight into

timetabling problems that is not provided by existing approaches, but results

cannot be compared with those of single-cost functions since the evaluations are

incomparable. The multi-criteria approach gives great flexibility for handling

constraints, far more so than is possible with a single objective function.

Multi-objective evolutionary algorithms (EAs) are considered by Pacquete &

Fonseca [88] with an EA based on a direct encoding of the mapping between ex-

ams and timeslots used to minimise violations of each type of constraint as sepa-

rate objectives. They use a Pareto-ranking of the population to assign the fitness

having evaluated each objective individually. The mutation operators considered

are applied with probability based on the level of constraint violation of each

exam, with a constant,β, used to control the level of bias towards those exams

involved in constraint violations. The algorithm is tested on the exam timetabling

problem at the former Unit of Exact and Human Sciences (UCEH) of the Univer-

sity of Algarve (249 exams, 30 time slots) where exams are in groups, typically

62

of 8-10 exams, with rules applied to these. Experiments were run to test a vari-

ety of objectives concerning the comparison of Pareto-ranking to linear-ranking,

independent mutation compared to single-position mutation and the value of the

parameterβ. 10 runs, each of 5000 generations were performed for each test

with a variety of statistical tests performed on the data produced. When assessed

based on solution quality, the Pareto-ranking approach was found to give better

performance than the linear sum of objectives, but little difference was noted

between the two mutation operators whilst significant performance differences

were observed for different values ofβ. When time was considered as an addi-

tional objective it was found that the linear aggregation of objectives was more

effective at minimising constraint violations whilst the Pareto-ranking method

provided better covering of the objective space. Versions of this algorithm have

been in use at UCEH since 1999.

In 2002, Petrovic & Bykov [92] adapted the Great Deluge local search al-

gorithm [12] to apply to multi-objective optimisation with the aim being to find

a solution which dominates a reference solution provided by a user, improving

the values of all objectives by following a search trajectory. A solution is said

to dominateanother solution if the values of all its criteria are superior to those

of the second solution with the set of non-dominated solutions forming a Pareto-

front from which one solution is usually chosen. The trajectory-based approach

presented by Petrovic & Bykov places the reference solution provided by the

user into the criteria space with the trajectory being drawn from there to the

origin and the search algorithm should gradually improve the solution keeping

close to the trajectory line. For the search itself, a random initial solution is used

with the reference solution being used only to define the trajectory for the search.

Initially the search guides the solution towards the trajectory line which it then

follows until it reaches the reference solution and continues until convergence,

whereupon any further solution will clearly dominate the reference solution. Us-

63

ing the Great Deluge algorithm, a weighted sum cost function is applied, but

with weights which vary dynamically as the search progresses. In the example

given of a bi-criteria space with criteriac1 andc2, solutions are accepted if they

fall below the borderline,B, defined by:

B = c1w1 + c2w2

wherew1 andw2 are the weights of the respective criteria. Increasing either

w1 or w2 causes the borderline to rotate, directing the search to focus more on

one criteria. Rather than reducing a level at each step as in the standard Great

Deluge algorithm, their method increases a single weight, leading to a multi-

objective extension of the Great Deluge algorithm. In the bi-criteria case, the

trajectory from the reference point to the origin splits the criteria space into two.

If the current solution is above the line thenw2 will be increased to guide the

search back towards the trajectory, whereasw1 would be increased if the cur-

rent solution is below the trajectory line. Thus the dynamic altering of weights

guides the search along the trajectory line in the direction of the origin. The

method is also extended to a nine-criteria case, the nine criteria being the same

as discussed earlier [11]. Experiments were run with a runtime of 20-25 minutes

which is considered quite acceptable for exam timetabling with the initial refer-

ence solutions provided by those from [11]. Results show that the new solutions

produced dominate the reference solutions on all criteria thus demonstrating the

effectiveness of the variable weight approach to multi-objective timetabling. The

approaches of Burke et al. [11] and Petrovic & Bykov [92] are further discussed

in [35], [75] and [91] together with ideas for further research in the area. [75]

also discusses numerous other applications of multi-objective meta-heuristics in

scheduling and timetabling.

64

2.2.6 Case-based reasoning and hyper-heuristic methods

The case-based reasoning (CBR) methodology [72] has only very recently been

applied to timetabling problems, but provides an interesting research area in the

search for techniques which offer a higher level of generality than many current

exam timetabling methods. Case-based reasoning approaches rely on past expe-

riences rather than a set of rules to help solve new problems. A case-base of these

past experiences is maintained with cases generally indexed by their key features

to enable them to be retrieved when a similar problem is encountered. A case tra-

ditionally consists of a list of feature-value pairs which can easily be compared

across problems to give a measure of similarity with each feature given a weight-

ing in the similarity measure. When presented with a new problem, a case-based

system will match it with the most similar case in the case-base, whose solution

can then be retrieved and applied to the new problem, the assumption in CBR

being that similar problems have similar solutions. In most cases there will also

need to be an adaptation phase in which the solution to the retrieved problem

must be altered in order for it to be applied to the new problem. Petrovic &

Burke [91] note that CBR can have a twofold role in solving timetabling prob-

lems: either as asolution reusetechnique or as amethodology reusetechnique.

Here I consider literature on both of these techniques.

Burke et al. [27] consider that the feature-value pair case representation is

not always sufficient for complex problems such as timetabling and present an

alternative approach using structured cases and attribute graphs. The approach

presented is applied to course timetabling, but can also be adapted to exam

timetabling with the attribute graphs consisting of nodes representing the events,

edges representing conflicts and attributes on both the nodes and the edges which

give further information on the problem structure. This approach allows differ-

ent cases to have different structures unlike the feature-value pairs approach in

65

which all cases must have the same list of features to be compared. The at-

tribute graph representation has many advantages, but also makes the matching

process more complicated, equivalent to a graph isomorphism or sub-graph iso-

morphism problem which is known to be NP-Complete. Adjacency matrices are

used to represent the attribute graphs for the matching process and two attribute

graphs are regarded as similar if they differ by less than a specified threshold

with penalties for any differences between the two graphs. A decision tree stores

cases hierarchically with each case being classified to a node and all nodes below

that node are retrieved as candidates. Once a case has been retrieved, the solu-

tion to the retrieved problem will generally need to be adapted to suit the new

problem and this is done using a graph heuristic method which attempts to min-

imise constraint violations. Burke et al. [28] and Qu [97] discuss this approach

for solution reuse in course timetabling in more detail with an overview of the

system produced given in [91].

As well as being applied directly to problems, CBR can also be used at a

higher level of abstraction as a method to select a heuristic to apply to a new

problem as a hyper-heuristic. A hyper-heuristic can be considered as an auto-

mated approach for choosing heuristics to apply to a problem. Burke et al. [36]

explore this approach for exam timetabling problems. A heuristic developed to

work well on one problem will very often be far less successful when applied to a

different problem, but may be successful on problems or subproblems which can

be regarded as similar to the original problem, thus employing a variation of the

main CBR assumption:similar problems may be solved equally successfully by

the same technique. A case-based hyper-heuristic is presented which constructs

solutions step by step, at each step using the case-base to retrieve the most sim-

ilar case to the current partial solution. The case-base contains a number of par-

tial solutions obtained during problem solving on previous problems with each

case represented this time by a list of feature-value pairs describing the problem

66

characteristics. Four well known heuristics, largest degree, largest degree with

tournament selection, colour degree and saturation degree are included in the

system. The similarity measure used calculates the sum of differences of values

between each pair of features in two cases being compared. The best heuristic

for the retrieved case is applied in the next step of the new solution construction

with the process terminating once a complete solution has been constructed.

Knowledge discovery techniques are applied to discover the most important

features, which can contribute to a good choice of heuristic, to be used within

the case-base. Tabu search is used to carry out the search in the search space of

all possible combinations of features. A number of randomly generated data sets

were used, ranging from 100 to 300 exams, to train and test the performance of

the system. Having identified an initial set of cases for the case-base, these were

then pruned systematically by removing any cases which were not contributing

positively to the performance of the system. Tests were carried out to measure

system performance on both training and test cases with the number of features,

as suggested by the knowledge discovery process, varied between two and 10

and with differing sizes of case base. It was found that the system performs

best with between three and seven features used, with more features detracting

from the performance by diluting the impact of more important features. With

these selected features, approximately nine out of every 10 testing cases obtained

the expected heuristics as pre-calculated to give best performance. Results are

also presented on 100 exam timetabling test problems, randomly generated with

densities ranging from 0.1 to 0.6 in the conflict matrix, and compared to the

performance of each heuristic when applied for the full construction process. The

quality of solutions produced by the CBR heuristic selector was better in almost

all cases, with only the saturation Degree technique providing solutions by itself

which were comparable, but still worse if the right number of features is used

in the CBR system. Petrovic & Burke [91] discuss this method further and give

67

comparisons with a similar method by the same authors which selects a single

heuristic to applied throughout the construction process rather than dynamically

changing heuristics.

Burke et al [37] present a CBR system for heuristic selection based on the

work from [36], for both selecting a single heuristic for course timetabling and

constructive heuristics during the problem solving for exam timetabling prob-

lems. A two-stage knowledge discovery process is used. The first phase of

knowledge discovery finds the best feature vector, the second phase pruning the

source cases by removing those which do not add to the performance of the sys-

tem. Two sets of features are considered for both course and exam timetabling

together with combinations of all these features with results presented on the dif-

ferent feature lists obtained by the knowledge discovery showing system perfor-

mance (as defined above). The feature lists used generally employ combinations

of the eleven features which are not immediately intuitive to the user, but which

were found to give best performance when used together. As reported in [36], be-

tween three and seven features gives best performance of the system. The system

is tested on both randomly generated and real-world exam timetabling problems,

as presented by Carter et al [45]. The authors conclude that the CBR heuristic

selector is highly flexible for use on a wide range of problems and whilst it can-

not compete with techniques devised specifically for these problems, the aim is

to provide a higher level of generality by producing competitive results across a

wide range of problems. Further work is ongoing with CBR selection of meta-

heuristic techniques for exam timetabling problems also being investigated.

Hyper-heuristics are a relatively recent area of research with respect to timetabling

problems, but are now becoming more widely used in the search for more gener-

ality in solution finding techniques. Hyper-heuristics are essentially a heuristic

to choose a heuristic and operate at a higher level of abstraction than many of

the techniques discussed so far which are applied directly to the problem. The

68

use of a genetic algorithm (GA) to evolve constraint satisfaction strategies [100]

was discussed in section 2.2.1, whilst the CBR technique for selecting heuris-

tics discussed in this section is another hyper-heuristic method. Burke et al [25]

have also applied a tabu search hyper-heuristic to nurse-rostering and course

timetabling problems. Here I discuss three further approaches to the hyper-

heuristic idea, the first two using tabu search, the second also considering hy-

brid graph heuristics using CBR whilst the third utilises variable neighbourhood

search (VNS).

Kendall & Hussin [69] present an investigation of a tabu search based hyper-

heuristic for examination timetabling with the aim being to design a generic sys-

tem which can select the most appropriate algorithm for the current instance of

a timetabling problem. The hyper-heuristic is a generic module which works

with a lower level module containing a set of problem-specific heuristics so

that the hyper-heuristic itself has no specific domain knowledge. The hyper-

heuristic module simply selects from a set of low-level heuristics (known as

H1, H2, . . . , Hn) one to apply to the current problem state, the low level heuris-

tic will then return an evaluation of its modification to the solution which is all

information that the hyper-heuristic module receives to make its decisions from

by which to guide the search. An initial solution, produced by a constructive

heuristic, is fed to the system followed by a randomisation step which moves

some exams around to allow for different initialisations. The hyper-heuristic

module uses a tabu list of fixed lengthn equal to the number of low-level heuris-

tics with each tabu entry containing information about each heuristic including

recent change in evaluation function and CPU time taken to run the heuristic as

well as a tabu status to determine how long the heuristic remains tabu. A number

of strategies are identified for considering which heuristic to apply next:

• consider all heuristics

69

• consider all non-tabu heuristics

• consider only heuristics which lead to an improvement

The chosen implementation is a hyper-heuristic with fixed tabu duration (HH-

FTD) where all heuristics are considered and only the heuristics which are non-

tabu and lead to the best improvement are applied. The algorithm iterates for

a fixed time or until no further improvement is reported for a given number of

heuristic calls. The low-level heuristics module is the domain-specific part of

the system, built up from problem-specific heuristics. Each low-level heuristic

changes the current state of the problem to a new state and returns the move and

its evaluation. Four categories of low-level heuristic are considered initially:

• Select and schedule exam - includes heuristics to select and assign an un-

scheduled exam.

• Move exami from locationx to y - includes heuristics to select which

exam to move and where to move it to

• Swap - includes heuristics to choose two exams whose timeslots will be

exchanged

• Remove - selects an exam to be unscheduled

Preliminary results reported are unable to beat the best results from the liter-

ature (see table 2.3) on well known benchmark problems, but can produce good

solutions across the range of problems.

As discussed in section 2.2.2, graph colouring heuristics can be used to pro-

duce fast, good quality solutions to some exam timetabling problems, yet by

themselves they struggle to compete when measured on solution quality with

the local search techniques considered in section 2.2.3. Burke et al [15] aim to

overcome this problem by hybridising two graph colouring techniques, namely

70

saturation degree and largest degree (both defined in section 2.2.2, first using

a tabu-search based hyper-heuristic in a similar way to the technique of [37]

which applied CBR. As in [37], solutions are built up by applying one of the

heuristics at each point of the construction phase to schedule the exams. The

tabu search method searches through the possible permutations of largest de-

gree and saturation degree with a number of mechanisms added to reduce the

size of this search space. Tabu search stores parts of heuristic lists which lead

to infeasible solutions and any heuristic list which includes these combinations

is automatically ignored. At each step of solution construction, five exams are

scheduled using the selected heuristic which significantly reduces the size of the

search space. Finally, the initial heuristic list of tabu search is set as a list of

saturation degree only since it is observed that this heuristic appears far more

often than largest degree. Experiments on random data sets with sizes of 200 or

400 exams and conflict matrix densities of 0.05, 0.15 and 0.25 showed that the

tabu search method outperforms both saturation degree and largest degree when

used purely on their own throughout the whole construction process. Based on

the knowledge discovered from this, another technique is presented, randomly

injecting a fixed percentage (23% here) of largest degree into the heuristic list of

entirely saturation degree. The logic for this is that this is the density of largest

degree found within solutions produced using the tabu search approach. This

new approach operates much faster than the tabu search method as it does not

involve the heuristic search and is more of a pure construction technique com-

bining saturation degree and largest degree in an intelligent manner. Results are,

as expected, not quite as good as using the tabu search approach, but are better

than either saturation degree alone or largest degree alone and with run times

comparable to those methods.

Another method presented in [15] makes use of case-based reasoning (CBR)

to again inject largest degree into a heuristic list of initially only saturation de-

71

gree. The case base stores the heuristics used in different problem solving sit-

uations previously encountered and the new problem is presented to the case-

base at each stage of its construction with the most similar case being retrieved

and the suggested heuristic being applied to the next stage of construction. The

knowledge discovery process is carried out by using the best heuristic lists ob-

tained from the authors’ tabu search approach discussed above. The objective

of this is to discover the most relevant features by which to index cases in the

case base with a feature-value representation used to represent the cases. A list

of simple features, some of which describe the problem itself and others which

describe the current state of the problem solving, together with combinations of

these features are all considered initially. Tabu search is used for discovering

the best feature lists by searching in the space of all possible feature lists with

a move defined by the change of a feature and its weight. Training of the case-

base is carried out in a similar two phase method to that used in [37] with the

set of cases pruned after features have been identified. When tested on four real

world benchmark problems, the CBR approach described shows promising re-

sults when compared to saturation degree alone, but is outperformed in all cases

by the tabu search method for combining largest degree and saturation degree de-

scribed earlier in the paper (and in the above paragraph). Results from the tabu

search technique produce good results close to those of special purpose methods

developed specifically for exam timetabling. As with other hyper-heuristic and

case-based reasoning approaches, the aim of the methods presented in this paper

is not to match the performance of the best techniques, but to increase the level

of generality in the problem solving to allow wider applicability.

Ahmadi et al. [2] propose a perturbation based algorithm to search the space

of parameterised heuristics to select the best heuristic for the current problem.

They present an approach using a weighted decision function for dealing with

violations of all hard and soft constraints which they point out has the draw-

72

back of being highly parametrised. To counter this problem they introduce their

perturbation based heuristic search algorithm to explore the heuristic space and

determine the best parameters. A number of different types of constraints are

taken into account in the weighted decision function including clashing exams,

resource constraints and time windows. Seven types of heuristics for exam, pe-

riod and room selection are considered with variations on each giving a total of

90,750 different combinations of heuristics even before weights and other pa-

rameters are included. The heuristic search algorithm proposed defines a neigh-

bourhood of a heuristich by means of perturbing its parameters which induces a

neighbourhood for the solution produced by the heuristic, in the solution space.

Each heuristic is encoded with a set of parameters which can be perturbed in

a number of ways including altering the heuristic or its weights defining two

types of neighbourhoods which are switched between during the search process

in an approach similar to the variable neighbourhood search (VNS) approach of

Mladenovíc and Hansen [80]. A descent local search is used within a variable

neighbourhood search framework to explore these neighbourhoods. The aim of

the search process is to find near optimal sequences of heuristics in the heuristic

space rather than solutions in the solution space. A variety of experiments are

reported to test the performance of the approach which is found to be robust in

terms of searching the heuristic space from random starts.

2.3 Results for Benchmark Problems

Since Carter & Laporte’s survey of 1996 [43], there has been a wide range of

different techniques applied to a number of variations of the exam timetabling

problem. With a number of benchmark datasets publicly available5 it is now

possible for many of these different techniques to be compared to give a better
5Benchmark data sets used here are available on the web at

http://www.or.ms.unimelb.edu.au/timetabling/ttframe.html?ttpublic.html

73

Number Carter Caramia Merlot
Data of et al. et al. et al.
Set exams [45] [40] [82]

CAR-S-91 682 28 28 30
CAR-F-92 543 28 28 31
EAR-F-83 190 22 22 24
HEC-S-92 81 17 17 18
KFU-S-93 461 19 19 21
LSE-F-91 381 17 17 18
PUR-S-93 2419 35 36 -
RYE-F-92 486 21 21 22
STA-F-83 139 13 13 13
TRE-S-92 261 20 20 21
UTA-S-92 622 32 30 32
UTE-S-92 184 10 10 11
YOR-F-83 181 19 19 23
MEL-F-01 521 - - 28
MEL-S-01 562 - - 31
NOT-F-94 800 - - 23

Table 2.1: Graph colouring benchmark data sets - minimum number of periods
reported [45]

idea of which are the most promising on the given problems.

The most basic timetabling sub-problem is that of graph colouring, where

the objective is simply to minimise the number of periods in a timetable with the

only constraints being that clashing exams must not be scheduled to the same

time slot and all exams must be scheduled. Results from the literature on a

set of graph colouring benchmarks are given in table 2.1. The results obtained

by Carter et al [45], using a variety of heuristic construction techniques with

backtracking, provide best known solutions to the majority of problems, with

Caramia et al [40] matching these results on all problems tested except PUR-S-

93 and obtaining a lower minimum number of periods for the UTA-S-92 data

set.

The most commonly used of these benchmark problems are those of Carter et

al. [45] (see table 2.2) with many researchers applying their techniques to these

74

Data No. of No. of No. of Graph No. of
Set exams students enrolments Density periods

CAR-S-91 682 16925 56877 0.13 35
CAR-F-92 543 18419 55522 0.14 32
EAR-F-83 190 1125 8109 0.27 24
HEC-S-92 81 2823 10632 0.42 18
KFU-S-93 461 5349 25113 0.06 20
LSE-F-91 381 2726 10918 0.06 18
PUR-S-93 2419 30032 120690 0.03 42
RYE-F-92 486 11483 45052 0.07 23
STA-F-83 139 611 5751 0.14 13
TRE-S-92 261 4360 14901 0.18 23
UTA-S-92 622 21267 58979 0.13 35
UTE-S-92 184 2750 11793 0.08 10
YOR-F-83 181 941 6034 0.29 21

Table 2.2: Characteristics of uncapacitated benchmark problems [45]

uncapacitated problems with the aim of minimising the penalty cost per student

for the given objective function which considers proximity costsws for students

having to sit two examss periods apart:w1 = 16, w2 = 8, w3 = 4, w4 = 2

andw5 = 1. Published results on these benchmark problems are included in

tables 2.3.

Across the range of problems, best results come from five different tech-

niques, three of which give best known results to just a single problem whilst

the other two provide best known results on the rest of the problems. The hybrid

approach of Caramia et al. [40] proves to be very successful on the majority of

problems, but struggles to compete on the larger data sets where the adaptive

great deluge technique of Burke & Newall [30] provides the best known results.

Almost all the high quality results reported come from local search techniques

with a variety of different initialisations which can prove equally important as

the local search technique to the solution quality.

Whilst the uncapacitated benchmark problems provide an excellent test bed

for new methods to compare against more established methods on the core prob-

lem of scheduling all exams feasibly, real life problems generally include a num-

75

Carter Caramia Burke & Di Casey & Merlot
Data et al. et al. Newall Gaspero Thompson et al.
Set [45] [40] [30] [57] [46] [82]

CAR-S-91 7.1 6.6 4.6 5.7 5.4 5.1
CAR-F-92 6.2 6.0 4.0 - 4.4 4.3
EAR-F-83 36.4 29.3 36.1 39.4 34.8 35.1
HEC-S-92 10.8 9.2 11.3 10.9 10.8 10.6
KFU-S-93 14.0 13.8 13.7 - 14.1 13.5
LSE-F-91 10.5 9.6 10.6 12.6 14.7 10.5
PUR-S-93 3.9 3.7 - - - -
RYE-F-92 7.3 6.8 - - - 8.4
STA-F-83 161.5 158.2 168.3 157.4 134.9 157.3
TRE-S-92 9.6 9.4 8.2 - 8.7 8.4
UTA-S-92 3.5 3.5 3.2 4.1 - 3.5
UTE-S-92 25.8 24.4 25.5 - 25.4 25.1
YOR-F-83 41.7 36.2 36.8 39.7 37.5 37.4

Table 2.3: Selected results from the literature on uncapacitated benchmark prob-
lems from [45] (best results given)

Petrovic White Burke & Di Gaspero Burke Paquete
Data et al. & Xie Newall & Schaerf et al. & Stützle
Set [93] [105] [31] [58] [12] [89]

CAR-S-91 - - 5.0 6.2 4.8 -
CAR-F-92 - 4.7 4.3 5.2 4.2 -
EAR-F-83 34.5 - 36.2 45.7 35.0 38.9
HEC-S-92 10.9 - 11.6 12.4 10.6 11.2
KFU-S-93 14.8 - 15.0 18.0 13.7 16.5
LSE-F-91 10.6 - 11.0 15.5 10.4 13.2
STA-F-83 159.9 - 161.9 160.8 159.1 158.1
TRE-S-92 8.0 - 8.4 10.0 8.3 9.3
UTA-S-92 - 4.0 3.4 4.2 3.4 -
UTE-S-92 - - 27.4 29.0 25.7 27.8
YOR-F-83 36.7 - 40.8 41.0 36.7 38.9

Table 2.3: (cont.) Selected results from the literature on uncapacitated bench-
mark problems from [45] (best results given)

76

ber of further constraints. In particular, capacity constraints on the number of

students who can sit an exam at any one time are usually defined by the number

of available rooms. Two different objective functions have been used to develop

two sets of capacitated benchmark problems. The first of these concentrates on

minimising the number of students who have two consecutive exams in the same

day, with results from a number of techniques presented in table 2.4. The sec-

ond attempts to minimise the number of students who have exams in consecutive

sessions with a weight of three applied to same-day clashes and a weight of one

applied to overnight consecutive exams, results for these are given in table 2.5.

The capacitated problem has been less well studied at this point in time than

the simpler uncapacitated problem, but with data sets now available which add

constraints to the uncapacitated problems, a number of authors have tested their

techniques on these. From table 2.4, it can be seen that the hybrid technique

of Merlot et al [82], combining constraint programming, simulated annealing

and hill climbing outperforms all other reported techniques on the first set of

capacitated data with much better solutions all round as well as being the first

technique to be fully applied to all available problems.

The second set of capacitated problems has been more widely studied, with

five different techniques from table 2.5 providing best known solutions to at least

one problem. Again, the technique of Merlot et al [82] is the only one to be

applied to all problems and thus results in the majority of best known solutions,

but the multi-criteria approach of Petrovic & Bykov [92] proves very competitive

on the three data sets tested and three other techniques by Burke & Newall [29]

and Burke et al. [12, 34] each provide a best known solution. The multi-stage

evolutionary algorithm of Burke & Newall is particularly effective when applied

to the very large PUR-S-93 data set, largely due to its decomposition method.

With target solutions provided by Merlot et al [82], it is likely that a number of

new techniques will be applied to these data sets in the near future.

77

Time Total Burke Di Gaspero Caramia Merlot
Data Slots Capacity et al. & Schaerf et al. et al.
Set [32] [58] [40] [82]

CAR-S-91 51 1550 81 88 74 31
CAR-F-92 40 2000 331 424 268 158
EAR-F-83 24 350 - - - 564
HEC-S-92 19 650 - - - 184
KFU-S-93 20 1955 974 512 912 247
LSE-F-91 18 635 - - - 259
STA-F-83 13 465 - - - 2063
TRE-S-92 35 655 3 4 2 0
UTA-S-92 38 2800 772 554 680 334
UTE-S-92 10 1240 - - - 377
YOR-F-83 22 300 - - - 418
MEL-F-01 28 3024 - - - 279
MEL-S-01 31 3024 - - - 67
NOT-F-94 23 1550 269 123 - 88
NOT-F-94 26 1550 53 11 44 2

Table 2.4: Results on Capacitated benchmark problems (set 1) with objective to
minimise occurrences of two consecutive exams in a day (best results shown)

Time Total Burke & Burke Burke Burke Merlot Petrovic
Data Slots Capacity Newall et al. et al. et al. et al. & Bykov
Set [29] [34] [31] [12] [82] [92]

CAR-S-91 51 1550 - - - - 812 -
CAR-F-92 36 2000 1665 2218 1775 1506 1744 1522
EAR-F-83 24 350 - - - - 2116 -
HEC-S-92 19 650 - - - - 929 -
KFU-S-93 20 1955 - 3256 - - - -
KFU-S-93 21 1955 1510 - 1422 1321 1082 1262
LSE-F-91 18 635 - - - - 1192 -
PUR-S-93 30 5000 63824 - 97237 - - -
STA-F-83 13 465 - - - - 7688 -
TRE-S-92 35 655 - - - - 143 -
UTA-S-92 37 2800 - 2440 - - 2387 -
UTE-S-92 10 1240 - - - - 2024 -
YOR-F-83 22 300 - - - - 1496 -
MEL-F-01 28 3024 - - - - 1665 -
MEL-S-01 31 3024 - - - - 1104 -
NOT-F-94 23 1550 519 - 545 384 401 326

Table 2.5: Results on Capacitated benchmark problems (set 2) with objective
to minimise occurrences of two exams in consecutive time slots (best results
shown)

78

2.4 Conclusions

The public availability of more and more exam timetabling datasets is allowing

the research community to test the efficiency of different techniques against each

other far more easily now, allowing the development of better and better tech-

niques. However, whilst the successful application of a technique to benchmark

problems provides a strong basis for its further use, it must always be borne in

mind that the ultimate test of any technique is whether it can be implemented

successfully in a robust system capable of solving the real world problem at

hand to a high level of quality. Further to the growing number of benchmark

instances, Kingston [70] has also developed the STTL language for modelling

timetabling problems. The three main aims of format presented are to begeneral,

completeandaccessiblewhich it successfully achieves with an STTL interpreter

also freely available. Whilst relatively few papers appear to have mentioned use

of STTL, it has been used by the author to model number of real world problems

and represents an important contribution to the research community, allowing far

more standardisation of problem definitions.

The most popular methods over the last eight years appear to be those based

on local search techniques with numerous different methods also considered for

initialising these. Many of the more successful techniques now being applied to

the benchmark problems involve hybridisations of a number approaches, aiming

to take the best points from each. This is now one of the major areas of current

research with a large variety of different techniques available to be combined

in numerous different ways to provide improved algorithms. The most success-

ful technique often depends heavily on the specific problem instance in question

however so an algorithm which performs well on some problems may not per-

form as well on others. With this in mind, there has been a growing amount of

research in recent years into systems with a higher level of generality such as

79

hyper-heuristic, case-based reasoning and adaptive techniques which can adapt

themselves to the particular problem being solved or make use of past knowl-

edge which may be of use for solving the new problem. These approaches often

cannot compete on individual problems with specifically designed approaches,

but they do provide a much greater level of generality to produce good quality

solutions across a greater range of problems. This is a relatively recent area of

research, but is moving forward at pace given its attractiveness for real world

problem solving. Techniques which not only can be successfully applied across

a wide range of problem instances, but also involve relatively few parameters or

parameters which a non-expert can easily understand and set are now becoming

very popular.

There are still only a relatively small number of benchmark datasets available

which incorporate more complex constraints, making it difficult to accurately

compare the effectiveness of different techniques when more side-constraints

are included than the benchmark problems considered in table 2.3. However, ta-

bles 2.4 and 2.5 show that techniques are now being applied to those benchmark

problems which have been established. Multi-criteria approaches are becoming

increasingly popular as methods to deal with a larger number of constraints rather

than the more common method of a linear weighted sum in a single evaluation

function to be minimised. Due to their different nature of evaluating solutions,

multi-criteria approaches cannot be easily compared with those which seek to

minimise a single objective function, but have been shown to be successful on

real life problems as well as allowing more flexibility for the user. Many of the

techniques described in this chapter have been developed with a specific problem

in mind whilst others are aimed more at comparing the methodology to others on

benchmark problems. Two further papers not discussed above specifically detail

their implementation and application of techniques to a real world system. Lim

et al [76] present an automated timetabling system for examination scheduling at

80

the National University of Singapore by modelling their problem as a constraint

satisfaction problem (CSP). Dimopoulou and Miliotis apply mathematical pro-

gramming to their system which is in use at the Athens University of Economics

and Business. Both these systems have proved to be very successful on the prob-

lems for which they were developed which is ultimately the most important test

of any technique.

As in Carter & Laporte’s survey [43], I have restricted the scope of this sur-

vey to examination timetabling with a small number of course timetabling pa-

pers included which I consider to demonstrate techniques applicable to exam

timetabling. It is likely that techniques applied in other related areas may be

easily adaptable to exam timetabling, but these are beyond the scope of this sur-

vey. Ho, Lim and Oon [68] give evidence of this fact by applying a technique

more commonly employed on vehicle routing problems to find timetable solu-

tions which maximise paper spread by converting the exam timetabling problem

into a vehicle routing one. Their results indicate that the technique produces very

promising results.

81

Chapter 3

Case based reasoning (CBR)

3.1 Introduction to CBR

Case-based reasoning (CBR) is a methodology which people use in everyday

life without knowing it as such. In simple terms case-based reasoning involves

learning from experiences and keeping these in a case-base so that when pre-

sented with a new problem the case-based reasoner can refer to these past cases

and develop a solution to the new case. In doing so, the case-based reasoner is

looking for the most similar case to compare with the new one. The idea behind

this is that a solution used for a previous similar problem can be used again or

adapted for the current problem. The main assumption underpinning the CBR

methodology is that similar problems have similar solutions. The definition of

similarity forms a key component of any CBR system and is one of the main

issues which can determine the success or failure of the system.

For example, doctors will receive a large number of patients with similar

symptoms, many of whom will have the same medical problem. Rather than

starting from the beginning every time, doctors will remember their previous

cases and will have an advantage in knowing what to look for and how to go

about diagnosing and treating the current patient.

82

Kolodner [72] gives a very in-depth explanation of the key ideas involved in

case-based reasoning together with some of its many applications. Here I will

present a summary of the main concepts of CBR given by Kolodner.

Case-based reasoning can mean adapting old solutions to meet new demands,

using old cases to explain new situations, using old cases to critique new solu-

tions or reasoning from precedents to interpret a new situation or create an eq-

uitable solution to a new problem. A case-based reasoner also learns as part

of its activity. It becomes more efficient and competent as a result of storing

experiences and referring to them in later reasoning.

CBR views reasoning as a process of remembering one or more concrete in-

stances or cases and basing decisions on comparisons between the new situation

and the old one. The use of general knowledge, decomposition and recomposi-

tion are, therefore, not so important. Instead, emphasis is on the manipulation of

knowledge in the form of specific instances. These large “chunks of composed

knowledge” are used as the starting point for the reasoning process.

A case is acontextualisedpiece of knowledge which represents an experi-

ence. Cases in the case library can each teach a lesson which helps to achieve

the goals of the reasoner using it. Cases areindexedby a combination of their

descriptors that predict when the case is most likely to be useful in the future.

Because case-based reasoning involves both reasoning and learning, it is not

enough for a case-based reasoner to end the process once a solution has been

found. Feedback from the solution must be collected in order for the case-based

reasoner to index the new case and learn about how best the used case can be

indexed. Without this learning process, CBR would be too unreliable and bad

solutions may be repeated.

The quality of a case-based reasoner’s reasoning obviously depends on the

experiences it has had previously, its ability to understand new situations in terms

of those old experiences and its skill at adaptation and evaluation. The major

83

processes which a case-based reasoner uses are:

• case storage- The initial case base must be set up with cases indexed by

their key features to facilitate easy case retrieval

• retrieval- When a new problem is presented to the CBR system a matching

process takes place for all cases in the case base with a similarity measure

determining which case(s) in the case base are most similar to the new

problem. The most similar case(s) will then be retrieved to be applied to

the new problem, usually after some form of adaptation

• adaptation- Once a similar case has been retrieved, it is usual that the

solution of the retrieved case must be adapted before it can be applied

to the new problem. Differences will usually exist between the old and

new problems which must be reconciled by some form of repair technique

before the retrieved solution can be applied to the new problem

• criticism - One of the most important parts of any CBR system is the feed-

back or criticism from the choices made in the retrieval process. If the

match was good and the retrieved solution successful on the new problem

the system is successful. However, if the retrieved solution was unsuitable

for the new problem, this information must be fed back into the system and

the retrieved case should be re-indexed accordingly so that it would not be

matched again in the same circumstances.

Case-based reasoning can be applied to a variety of situations ranging from

those in which there is a lot of knowledge to those where very little knowledge

is available. In the latter situation, previous cases are often all that a reasoner has

to work with in solving a new case. There are many advantages to the CBR ap-

proach as it allows the reasoner to propose a solution to a new problem quickly,

84

reason in subject areas which are not well understood and avoid previous prob-

lems. The major disadvantages are all related to bad indexing and use of cases.

If the reasoner just relies on the result of a previous case rather than evaluating

its applicability to a new case, it could provide a very poor solution. Feedback

on the performance of the system is crucial for the learning process in order to

continually improve the way a CBR system works.

CBR can be used on a number of different levels from a fully automated

system down to a machine which just stores cases for a human to refer to in

a similar way to books in a library. It is then up to the human to evaluate the

solution.

3.2 CBR and Scheduling

Applying case based reasoning to timetabling problems is a relatively new idea

and as such there has been relatively little research carried out in this area so far.

However, Burke et al. [27] put forward the case for using CBR in connection

with timetabling. Whilst there has been very little work on CBR in timetabling,

the method has been applied to other scheduling problems in a few cases as dis-

cussed in [27]. In [79], MacCarthy and Jou discuss CBR in connection with

general scheduling problems and review CBR systems which currently deal with

these problems. They point out that so far expert scheduling systems have been

fairly unsuccessful, partly because domain knowledge is not easy to acquire in

scheduling problems and also because it is difficult to find good heuristic approx-

imation techniques which work well on a range of different scheduling problem

types.

MacCarthy and Jou describe the problems encountered in attempting to de-

velop a CBR system for planning and scheduling of large and complex airlift

operations by Koton [74]: “Problems arise due to the failure of the matching

85

process to produce a single good match.” He also mentions Bezirgan’s [6]

discussion on the CBS-1 system for dynamic job-shop scheduling using CBR.

Bezirgan comments that the dispatching rules provided are only elementary and

this may result in infeasibility and the storage of the case base requires a large

amount of memory.

Miyashita and Sycara [84] used CBR for “interactive schedule repair” for a

job shop scheduling approach using constraint directed research. MacCarthy and

Jou [79] give a summary of the system which aims to help the human scheduler

in finding good solutions. The case base has a number of purposes:

• solution generation

• evaluation

• failure avoidance and recovery

• failure explanation

The indexing of cases is done based on abstractions of domain relations and

constraints. Matching of cases is done using a nearest-neighbour method with

each matched case being given a score and the best one used. Evaluations carried

out show that the system works well when tested against a pure constraint-based

approach.

MacCarthy and Jou [79] believe that CBR has a lot to offer in expert schedul-

ing systems and cite a number of reasons:

• Knowledge of relaxation and prioritisation strategies in previous cases

helps to identify conflicts early in the decision making process.

• The case base can store the degree of satisfaction of goals from the user’s

perspective and this knowledge can aid current scheduling practice.

• Context dependent features in dynamic scheduling can be handled by CBR.

86

In a general scheduling problem, there are a number of different areas to

which CBR can be applied. As well as being applied directly to the scheduling

problem, CBR can be used to choose an algorithm, model or heuristic for the

given problem. The main body of this thesis will be concerned with choosing

the best algorithm for a given timetabling problem by comparing the problem

with those in a case base and finding the best match. Once this has been done,

the heuristic or meta-heuristic used to successfully solve the matched problem

from the case base can then be used either directly or after adaptation for the

current problem. The idea being that an algorithm used for one problem should

work well on asimilar problem. Once the algorithm has been chosen and im-

plemented, the other important part of the process is to provide the feedback on

how successful the method was so that the case base can be updated, especially

if the method was very unsuccessful so that the indexing can be changed so the

same match will not be chosen the next time. The case base can also be used for

the purpose of relaxing constraints, prioritising goals and generally re-shaping

the problem. This may be done as a result of the earlier matching process which

provided an algorithm for a similar problem.

In [79], the authors give details concerning problem structure and case struc-

ture for applying CBR to scheduling problems which can be outlined as follows:

A case must contain three attributes -problem instance, action and outcome. The

problem instance is a description of the problem, the action is the method used to

solve the problem and generate a schedule and the outcome covers the expected

and actual results for the schedule produced. The problem instance may include

a lot more detail about allocation of resources, orderings and various other con-

straints as well as the required information such as data, constraints and goals.

Miyashita [83] also comments that CBR “appears to be a natural method for

knowledge acquisition” in scheduling problems due to the interest in capturing

user preferences and situation sensitive knowledge. However he also notes that

87

applying CBR to schedule improvement is a very challenging task. One of the

main issues concerns how a case is defined in the domain of schedule optimisa-

tion and how these cases should be indexed. One answer he proposes to this is to

use the whole schedule as a case with the advantage that the more information is

transferred to the new case, the easier it should be to solve.

In [53], Cunningham and Smyth explore the reuse of cases in job scheduling

problems. They give descriptions of the two main approaches to case-based

scheduling which they have identified in the literature. The first approach is

used by Koton’s SMARTplan of 1989 [74] in which cases are used to propose

preliminary schedules. These are then adapted in order to satisfy the schedule

requirements. The second approach uses cases to adapt schedules which have

been proposed by other methods.

Cunningham and Smyth consider the first of these approaches in their paper

and look at two different modes of reuse. The first being to use single cases as

skeletal solutions, the second being to reuse multiple cases as building blocks

for a desired solution. The authors feel that the building block approach is more

suitable for scheduling because it uses parts of already optimised structures in

the new solution. For the two different methods of CBR, there are similarly two

different approaches to retrieval. The first works to select the single best case

which is to be used as a template for the target solution, the second approach

gathers a collection of solution sequences from various cases, each of which can

be used to produce part of the target schedule.

The system was evaluated with respect to two main issues. One of these

concerned the solution time and solution quality, the other was to see how the

CBR techniques perform as the size of the target problem is increased. The

key points of note were that simulated annealing takes around 30 times longer

than the CBR methods on average, but achieves better results. However, in the

experiments conducted, the CBR solutions where within 102.5% of the SA so-

88

lutions and considerably better than those produced by a Myopic method. The

authors conclude that CBR techniques can produce good quality schedules, but

that schedule adaptation appears to be very problem dependent.

Recent applications of case based reasoning to exam timetabling, which is the

focus of this thesis are covered in section 2.2.6, whilst Qu [97] provides a detailed

discussion of the application of case based reasoning to timetabling problems.

Since this thesis is part of a wider project of applying case based reasoning to

meta-heuristic selection for timetabling problems, the focus of this work will

be largely on the lower level aspects of the system concerning how to measure

similarity between to exam timetabling problems and the development of the

meta-heuristic techniques which will form the basis of the case base. Higher

level CBR issues regarding the structure of the case base, methods of retrieval

and feedback and the knowledge discovery techniques used to train the case base

are beyond the scope of this thesis.

89

Chapter 4

Investigating Similarity Measures

For Exam Timetabling Problems

The work presented in this chapter forms the basis of a paper published in the

Proceedings of The 1st Multidisciplinary International Conference on Schedul-

ing: Theory and Applications, entitledSimilarity Measures for Exam Timetabling

Problems[16]. The aim of this work is to conduct an initial investigation of some

of the main features of benchmark exam timetabling datasets which may be im-

portant for measuring similarity between problems. As well as identifying those

problem features which are important, a key element of this work is to discover

those features which may at first seem important, but are in fact misleading as

indicators of problem difficulty and structure. This work will feed into more

detailed research into similarity measures between exam timetabling problems

presented in Chapter 6 which will form an important element of the final case

based reasoning (CBR) system. The underlying assumption in the CBR system

for this project is thatsimilar problems can be solved equally successfully us-

ing the same method therefore it is crucial to conduct an in-depth study of the

problem structure to identify the key features which will define the termsimilar.

90

4.1 The need for a similarity measure

One of the next major areas for CBR is to work on the level of a hyper-heuristic.

This would select, from a range of previously used heuristics or meta-heuristics,

thebestone to solve a new problem given to the system. The key issue for such

a system is how we define thebestalgorithm to be used for the new problem.

Applying the general theory behind CBR, we assume that an algorithm which

performs well on one problem will also perform well on asimilar problem.

Therefore the main area of consideration is how two problems can be measured

assimilar in such a way that this reasoning holds.

Each case in our case base will consist of a problem definition together with

one or more algorithms used to successfully solve the problem and an indica-

tion of their level of success. A standard format for defining exam timetabling

problems has been developed for use in the system to enable matching of any

two problems to measure their similarity. Once a new problem is presented to

the system, the matching process will retrieve the most similar problem from the

case base along with the most successful algorithm(s) used to solve that prob-

lem. Based on how similar the retrieved case is to the new one, the retrieved

algorithm may be adapted by tuning its parameters in some way or by using a

hybrid of more than one retrieved algorithm.

The development of such a system provides a large number of research areas.

Of these, the biggest is the definition ofsimilarity which is the one considered

here. In this chapter I consider some of the key elements in the definition of an

exam timetabling problem and work towards a definition forsimilarity based on

which features seem to have the biggest effect on how successful an optimisation

algorithm is. Of course, for our purposes, twosimilar timetabling problems

would mean that the same algorithm would be suitable for solving both problems.

Two problems would be dissimilar if a particular algorithm/heuristic worked very

91

well on one problem but not on the other. Essentially this means that two similar

problems should have a similar problem landscape as seen from the point of view

of the algorithm operating on these landscapes.

As discussed in section 1.2, the two main factors which define how a given

local search technique traverses the solution landscape are the neighbourhood

definition and the move acceptance criteria. For the work presented in this chap-

ter, the simple move neighbourhood defined by relocating a single exam to a new

feasible timeslot is considered with a simple simulated annealing (SA) algorithm

used for testing purposes.

Given the nature of the domain in question, there are a countably infinite

number of simple and more complex statistical measures which could be used

to compare the features of two given exam timetabling problems. Many of these

will actually have very little impact on the success of a given algorithm on the

problem, whereas others could be major factors in how well the algorithm navi-

gates the search space to find a good solution. My aim here is to study the struc-

ture of a number of benchmark data sets to examine the contribution of some of

the more likely problem descriptors to problemdifficulty

The main purpose of the experiments reported in this chapter is to eliminate

the features in the problem definition which have no effect on the results of the

SA algorithm and to see how stable the technique is regarding other features - for

instance, how large a change in a particular feature is needed to have a significant

effect on the quality of solution produced.

Due to the complex nature of the problem landscapes involved it is not pos-

sible to produce any concrete, quantitative results regarding exactly which parts

of the problem definition have what effect on the algorithm performance. In-

stead, I aim to acquire as much qualitative information as possible to enable

value judgements on which features to include in a similarity measure and what

type of tolerance to allow for each individual feature in order for two cases to be

92

considered similar based on that feature. It is expected that whilst a large differ-

ence between problems with respect to some features will have relatively little

impact on their similarity, other features will be far less robust with even a small

difference causing a big change in the structure of the problem landscape.

A largest degree graph colouring heuristic with backtracking is used to pro-

vide an initial feasible solution for the SA algorithm which will then only explore

the space of feasible solutions. The SA algorithm used for these experiments se-

lects both exam,e, and period,p, at random, checking whether moving exame

to periodp is a legal move1. If not, a maximum of nine more periods are tested to

find a feasible move, otherwise a new exam is randomly chosen and the process

repeated. This move is then accepted or rejected using the standard probabilistic

acceptance criteria of simulated annealing (see e.g. [67]) with improving moves

always accepted and worse moves accepted with decreasing probability based on

the geometric cooling schedule. The starting temperature and cooling schedule

are initially chosen arbitrarily and tuned based on results.

4.2 Data sets

All tests have been carried out on Carter et al’s benchmark data sets [45] without

any side constraints other than to spread conflicting exams around the timetable.

The objective function used by Carter et al is based only on the sum of proximity

costs as defined below:

ws :=
32

2s
, s ∈ {1, . . . , 5}

wherews is the penalty cost for a student taking two exams scheduleds

periods apart.
1A move which retains the feasibility of the overall timetable

93

Data No. of No. of No. of Graph No. of Exams per
Set exams students enrolments Density periods period

CAR-S-91 682 16925 56877 0.13 35 19.5
CAR-F-92 543 18419 55522 0.14 32 17.0
EAR-F-83 190 1125 8109 0.27 24 7.5
HEC-S-92 81 2823 10632 0.42 18 4.5
KFU-S-93 461 5349 25113 0.06 20 24.3
LSE-F-91 381 2726 10918 0.06 18 21.2
STA-F-83 139 611 5751 0.14 13 10.7
TRE-S-92 261 4360 14901 0.18 23 11.4
UTA-S-92 622 21267 58979 0.13 35 17.8
UTE-S-92 184 2750 11793 0.08 10 18.4
YOR-F-83 181 941 6034 0.29 21 9.0

Table 4.1: Simple features for benchmark data sets

The most obvious problem features are presented in table 4.1, although many

of these are likely to have only a small effect on the performance of optimisa-

tion algorithms. As well as those shown, there are a large number of statistical

measures which can be applied to the data sets in order to determine the distri-

butions of exams and enrolments amongst students. Table 4.2 shows that there

is a wide variation in the average and maximum number of enrolments per stu-

dent and per exam between the different data sets. A statistical analysis of these

enrolments should give an idea as to how well spread they are away from the

average and whether there are any significant anomalies within any of the data

sets. For the purposes of this research, only the mean and modal averages and

standard deviation were calculated for enrolments per student and are included

in table 4.2.

In the rest of this chapter I look in more detail at the student enrolments

themselves and examine the effect they have on the structure of the problem. I

also consider how big an impact the objective function has on these measures of

similarity.

94

enrolments per student % students enrolments
Data (number of students at max/mode) with modal Standard per exam
Set mean max (num) mode (num) enrolment Deviation average max

CAR-S-91 3.36 9 (1) 5 (4569) 27% 1.56 83.40 1385
CAR-S-92 3.01 7 (29) 4 (4168) 23% 1.46 102.25 1566
EAR-F-83 7.21 10 (9) 8 (409) 36% 1.20 44.80 232
HEC-S-92 3.77 7 (1) 5 (1071) 38% 1.43 131.26 634
KFU-S-93 4.70 8 (11) 5 (2515) 47% 1.36 51.67 1280
LSE-F-91 4.01 8 (3) 4 (1638) 60% 0.99 28.66 382
STA-F-83 9.41 11 (209) 9 (239) 39% 1.22 41.37 237
TRE-S-92 3.42 6 (20) 5 (1214) 28% 1.41 57.09 407
UTA-S-92 2.77 7 (23) 4 (4026) 19% 1.50 94.82 1314
UTE-S-92 4.29 6 (20) 5 (1503) 55% 1.01 64.09 482
YOR-F-83 6.41 14 (1) 8 (372) 40% 1.80 31.76 175

Table 4.2: Features for benchmark data sets based on students and enrolments

4.3 Analysis of Data Sets

Initial plans for starting the analysis of the data sets centred around making some

small controlled changes to the existing data sets and running the same algorithm

on the original set and the new set to examine the effects these small changes

have on the running of the algorithm. From this I hoped to draw some conclu-

sions as to whether the change in question had a major effect on the algorithm

and if so, how big a change from the original data set was needed to observe this

change in algorithm performance. In order to do this though, it is required to

examine the impact of these changes on all the various problem descriptors – for

instance, what effect would removing 10 students from a given data set have on

enrolments and the conflict matrix2?

4.3.1 Removing redundancy from Data Sets

The input files for the data sets consist of groups of(student, exam) pairs rep-

resenting one enrolment for a given student. Further enrolments for the same

student are recorded in the same fashion on following lines. It was observed

that in many of the data sets there were a significant number of students who
2The matrix of exams denoting which exams have students in common and therefore clash

with each other

95

Data Students Total Average Standard SA
Set enrolment enrolment Deviation Result

CAR-S-91 16925 56877 3.36 1.57 6.80
CAR-S-91minus 13516 53468 3.96 1.15 6.80

TRE-S-92 4360 14901 3.42 1.41 11.35
TRE-S-92minus 3693 14234 3.85 1.15 11.35

HEC-S-92 2823 10632 3.77 1.44 15.45
HEC-S-92minus 2502 10311 4.12 1.11 15.45

Table 4.3: Results of simulated annealing applied to three benchmark data sets
with all single enrolment students removed

had only one enrolment. These students have no impact on the difficulty of the

exam timetabling problem or its landscape since they are involved in no clashes

and therefore they do not have any effect on the end result – they can sit their

one exam equally easily whenever it is scheduled since capacity constraints are

not included. The firstnewdata sets were then produced by removing all those

students with a single enrolment from the problem and the simulated anneal-

ing algorithm run on this reduced student set. Table 4.3 shows some of the key

statistics of these data sets for three of the benchmark problems and the results

confirm that removing these students has no impact on the final result, as calcu-

lated by dividing the total penalty for the timetable by the number of students3.

The reduced data sets are denoted by adding ‘minus’ to the original data set in

the table.

The main points to note from the results in Table 4.3 are that, whilst remov-

ing a relatively large number of students from the problem (20% in the case of

the CAR-S-91 data set) there is no effect at all on the final timetable produced

by SA. 4 However, it does have a fairly noticeable effect on many of the other

measures which are put forward as being possible factors in a similarity measure

– many of which would be statistical measures based on the number of students
3The results for the reduced sets are calculated by dividing by the number of students in the

equivalent full set to demonstrate that they can be removed from the data set without changing
the problem

4This result is independent of the type of algorithm used

96

or enrolments and ratios involving these two factors. From the point of view

of the algorithm operating on the problems, the CAR-S-91 data set and its re-

duced CAR-S-91minus data set are identical and should therefore be regarded

assimilar from a case based reasoning ‘heuristic selector’ perspective. This re-

sult shows that a fairly detailed analysis of the data sets and what the students in

these data sets actually add to the overall problem is necessary before consider-

ing any measures of similarity between two data sets.

On the face of it, using the measures shown in Table 4.3, the reduced data

sets are not very similar to their equivalent complete sets at all, when comparing

the students, enrolments, average enrolment and the standard deviation of the en-

rolments, yet as has been shown, the reduced sets should be considered identical

to their complete sets from the point of view of selecting an algorithm to solve

the problems. Therefore, if these factors are still to be considered when inves-

tigating measures of similarity, the data sets must be reduced to their minimum

definition by removing any redundancy before comparing them for similarity.

For example, if CAR-S-91minus formed part of a case5 within our case base

and the CAR-S-91 data set were input to the system to find a match, it would be

pre-processed before the matching process to remove the single enrolment stu-

dents, then the CAR-S-91minus case would be retrieved as an exact match and

its corresponding algorithm used to solve the CAR-S-91 set.

This result prompted a variety of further research questions which needed

to be examined further. Amongst these were the questions of how a ‘good’

timetable is defined and whether there is any more redundancy which can be

removed from the data sets before the matching process.

One measure for reporting results for the benchmark data sets isaverage

penalty per studentwhich is calculated by taking the overall penalty for the

whole timetable, defined by the objective function, and dividing by the number
5The best algorithm found to solve this problem forming the other part of the case

97

of students in the data set. However, it can be argued that since 3409 students in

the CAR-S-91 data set are only taking one exam and therefore add no penalty to

the overall timetable, that these students should not be included in theaverage

penalty per studentmeasure. In an extreme case, a data set could contain 50 per

cent of students who take only one exam - in this case, dividing the total penalty

for the timetable by all the students would give a result twice as good as if you

ignore half of the students who add nothing to the “difficulty” of the problem -

yet the timetable itself would be identical in both cases. In itself this is not a

major concern since the results produced for these data sets are only used for the

purposes of comparing different techniques against each other rather than com-

paring absolute results across data sets. These observations did, however lead to

further research into the issue of more redundancy in the data sets.

4.3.2 Examining subsets of the Data Sets

Having removed all the single enrolment students from the data sets and wit-

nessed the impact this had on the results and potential similarity measures, I

looked for any further redundancy within the problem definition for these sets.

The next obvious area to investigate was the issue of repeat students, i.e. two

or more students with the exact same enrolments. These are very common in

real life problems given that students on the same course tend to have many or

all exams in common. In addition to exact repeat students, there are also stu-

dents whose enrolments form a subset of one or more other students. All such

duplicate students were removed from the data set including any students whose

clashes had already been recorded by earlier students. For example, if a student

with enrolmentsa, b andc is followed by three students with enrolments(a, b),

(a, c) and(b, c) respectively, the last three students can all be discarded from the

data set since their clashes were recorded by the first student.

98

Data Total Base Singleton Weights
Set Students Set Set Set

CAR-S-91 16925 8194 (48%) 3409 (20%) 5322 (31%)
CAR-F-92 18419 6195 (34%) 3969 (22%) 8255 (45%)
EAR-F-83 1125 754 (67%) 1 (0%) 370 (33%)
HEC-S-92 2823 444 (16%) 321 (11%) 2058 (73%)
KFU-S-93 5349 1367 (26%) 276 (5%) 3706 (69%)
LSE-F-91 2726 1253 (46%) 99 (4%) 1374 (50%)
STA-F-83 611 150 (25%) 0 (0%) 461 (75%)
TRE-S-92 4360 1924 (44%) 667 (15%) 1769 (41%)
UTA-S-92 21267 7946 (37%) 6181 (29%) 7140 (34%)
UTE-S-92 2750 392 (14%) 79 (3%) 2279 (83%)
YOR-F-83 941 670 (71%) 1 (0%) 270 (29%)

Table 4.4: Percentages and numbers of students in the Base Set, Singleton Set
and Weights Set for benchmark data sets

In removing theseduplicatestudents, it was noted that their absence would

have an impact on the final penalty for the timetable, unlike the removal of the

single enrolment students. The reason for this being that the objective function

used weights all clashes by the number of students involved in the clash so that

clashes with a large number of students are a higher priority to spread well apart

than those with only a few students. Despite this, it was still considered worth-

while to remove them to examine the remaining set. The justification for this

being that while duplicate students do contribute to the problem definition, they

only do so relative to the objective function used to define a good timetable. In

terms of the hard constraints they do not alter the problem and the effect of the

objective function on measuring the similarity of problems can also be consid-

ered now. The results obtained are shown in Table 4.4.

Thesingleton setis the set of single enrolment students removed initially, the

weights setis the set of duplicate students (as defined above) whilst thebase set

is the set of students remaining after all students in both the singleton set and the

weights set are removed. The base set is a (smaller) set of students which define

the conflict matrix since all students removed to the other two sets did not add

to the conflict matrix. Hence, this set of students and their conflicts defines the

99

set of feasible solutions to the larger problem whilst the weights set is so named

because the students in that set simply add weights to the already existing clashes

thus shifting the focus of the optimisation.

One major point to note from the three sets is that whilst the singleton set

can be taken on its own, the base set and the weights set are less easy to split

in a meaningful way since the base set does still include a number of weights

on various edges. This is due to the fact that only students whose entire set of

clashes had already been noted were removed to the weights set, leaving those

who have only some of their clashes already noted to be included in the base set

as their remaining clashes add new information to the set. If any single student

is removed from the base set, the hard constraints on the problem will change

because one or more clashes will be lost. Removing students from the weights

set, whilst keeping the rest for the problem would retain the same basic problem

definition, but will change the weightings and therefore the bias of the clashes.

Using the objective function given by Carter et al [45] it is difficult to use

the information discovered by splitting the data sets up in this way due to the

above mentioned weights included in the base set. However, this splitting up of

the data sets into subsets looked promising as a potentially important factor in

comparing different data sets since the percentage of students forming the base

set varies greatly between data sets - for instance, the fact that only 14 per cent

of the 2750 students in the UTE-S-92 data set are required to define the problem

in terms of feasibility compared to 71 per cent of the 941 YOR-F-83 students is

a significant difference.

As a result of this I considered another objective function to define agood

timetable. From the point of view of a student taking the exams, their criteria

for how important particular clashes are could include a variety of individual

reasons based on how difficult they find certain exams to be, but none of these

can be taken into account in the overall timetable since they are individual pref-

100

erences. However, the number of other students involved in a particular clash

is completely unimportant to any individual student. Whether they are the only

student doing two particular exams or whether there are 100 other students also

taking those two exams does not matter to them and therefore weighting clashes

by the number of students involved in the clash gives a bias in the timetable to-

wards those pairs of exams with many students in common. These exams may

often be easier ones from the point of view of the student having to revise for

and sit the exam. Conversely, exams with relatively few students may be more

specialised and difficult from a student’s perspective - students would need more

intensive revision for such exams if they are scheduled close together. Weight-

ing the former far more than the latter would result in the ‘easier’ exams being

spread well apart for lower overall penalty whilst the ‘harder’ exams for the stu-

dents may be relatively close together since their total penalty in the timetable is

small.

Using this justification I decided that removing all student weightings from

the objective function and weighting clashes purely by the number of periods

apart in the timetable would produce what could be considered a “fair” timetable

from an individual student’s point of view and would vastly simplify the problem

from the point of view of the data sets, meaning that the weights set could be

discarded to concentrate purely on the base sets of students which define the

conflict matrix6.

Experiments carried out on the whole data set and on just the base set of each

data set using such an objective function with no student weightings showed, as

expected, that the results produced (the total penalty for the timetable as defined

by the new objective function) were identical for the full set of students and for

the base set. The conclusion to be drawn from this is that the definition of a
6The weightings included in the base set would also be removed implicitly by the new objec-

tive function

101

goodtimetable can have a huge impact on the relevant statistics of a given data

set. Using the new definition ofgood, the 2750 student UTE-S-92 problem is

identical to the 392 student UTE-S-92 base set problem and therefore, should be

matched as such by the similarity measure.

Further thoughts on the issue of base sets containing weights on various edges

led me to consider further how useful these could actually be in measuring sim-

ilarity between problems. Whilst each student enrolment set produces exactly

one conflict matrix, the reverse is not the case. In fact, if we allow for single

enrolment students, there are an infinite number of student enrolment sets which

will each produce the same conflict matrix (and therefore define the same core

problem, when room capacity constraints are not included). Even without sin-

gle enrolment students, there are many different student enrolment sets of vastly

differing sizes which still produce the same conflict matrix. Of particular note,

the maximum base set to define a given conflict matrix could be that obtained by

creating a new student for every clash in the conflict matrix (if student weights

are included then multiple identical students would be generated for each clash)

- these students would all have exactly two enrolments and uniquely define one

clash each. Clearly this set of students forms a base set since no student could be

removed without altering the conflict matrix.

Of more interest is the concept ofminimumbase set to define a conflict ma-

trix. Theoretically, the original set of students could be removed and replaced by

the smallest possible set of students to define the conflict matrix. This could be

attempted by finding the largest clique in the conflict matrix, assigning all exams

in the clique to a new student and removing all those edges from the graph. Then

continue in this way until all clashes have been assigned to a student.7 It is likely

that an investigation of the sizes and number of cliques within each data set as
7In terms of student numbers, I have not proved that this method would create the absolute

minimum base set, but it would produce at least a close approximation to the minimum, if not
actually the minimum

102

well as their interconnectivity could form an important area of further research

into similarity between problems. Carter and Johnson [42] examine the cliques

and near-cliques of the data sets considered in this chapter in some detail. The

results they present give some important indications regarding aspects of graph

density and frequency of cliques which could prove extremely useful for our

consideration of a similarity measure.

It should be noted, however, that if constraints of the type “no student should

havex exams iny periods” are included to be minimised, the set of actual student

enrolments becomes far more important than to just define the conflict matrix.

As pointed out by Carter & Laporte [43], simply using the student enrolments

to define a conflict matrix loses the potentially important information required to

deal with constraints on the actual students themselves rather than on the exams.

This does not affect the splitting of the actual student sets into base set, weights

set and singleton set as all the student enrolment information is still recorded

by the students in the base set. Considering different student sets which define

the same conflict matrix is purely for the purposes of considering students as a

feature in a similarity measure. For the benchmark problems considered in this

chapter and throughout this thesis, constraints of this type are not included, only

the constraint of spreading clashing exams around the timetable.

4.4 Conclusions

To summarise the main conclusions from the work in this chapter, in order to

use any of the statistical measures produced for a given data set as a measure

of similarity within our CBR system, we must first strip away any redundancy

from the data based on the particular objective function used. Depending on the

objective function, some features may be relatively unimportant and including

these in a similarity measure could result in two problems which are in fact

103

very similar being regarded as totally different. In the case of student numbers,

it is considered that only the minimum base set to define the conflict matrix

would be a worthwhile similarity measure when room capacity constraints are

not included. Experiments have shown that, depending on how you define a

good timetable, the same data set can be split up and stripped down into very

different looking data sets, but which are actually identical for the purposes of

running an algorithm to find the best results.

In Chapter 6, a more in-depth analysis is presented of the various features

to be considered for a similarity measure, although the aim of my investigations

into problem features is to suggest potentially important features, rather than to

decide on the exact features to include in a similarity measure. It is most likely

that ratios of some of the simple features presented here, some of which may

not be immediately intuitive will be most important in a similarity measure. The

features suggested in Chapter 6 together with all ratios between pairs will be fed

into knowledge discovery techniques to determine the actual set of features to be

used within the case base. In Chapter 5, the impact of the objective function on

the performance of the simulated annealing technique will be examined further.

104

Chapter 5

Using Simulated Annealing to

Study the Behaviour of Exam

Timetabling Data Sets

The work presented in this chapter is included in a paper published in the Pro-

ceedings of the Fifth Meta-heuristics International Conference (MIC 2003), en-

titled Using Simulated Annealing to Study Behaviour of Exam Timetabling Data

Sets[17]. This work builds upon the results from Chapter 4 by further consider-

ing the impact of the objective function on the behaviour of a set of benchmark

data sets when optimised using simulated annealing. This is done by considering

two different objective functions based on the same constraints, but with differ-

ing emphasis with the performance of the SA method compared across datasets

and across objective functions. The importance of the initial solution used to

seed the simulated annealing algorithm is also investigated.

105

5.1 Initialisation heuristics

In section 2.2.2, I reviewed a variety of graph-colouring heuristics for solution

construction which can easily be adapted to exam timetabling problems. Many of

these techniques are used for constructing an initial solution to seed a local search

method as discussed in section 2.2.3 with the main criteria for this being that the

construction method used is fast so that computational time can be spent on the

local search. By themselves, fast graph heuristic construction techniques cannot

produce solutions which match those of more sophisticated meta-heuristics on a

majority of problems, therefore in this thesis the focus is on developing a case

base consisting of mainly local search meta-heuristics, from which the best will

be selected for a given problem. However, this does leave the question of how

to initialise each of these different techniques. A range of different construction

techniques to be selected from could be developed with the best combination of

construction technique and local search method being stored for each problem.

Alternatively, a standard initial solution generator could be used to seed all local

search meta-heuristics equally. Also the question of whether these initial solu-

tions must be feasible or whether the local search techniques should search for

feasibility must be considered.

In this work, I choose to use the largest degree (LD) heuristic (defined in

section 2.2.2) to order exams as this is a static ordering which is capable of pro-

ducing high quality results. Carter et al [45] found that the dynamic ordering,

saturation degree (SD), was the most robust of the heuristic orderings tested,

however largest degree often outperformed it based on solution quality. Also,

being a dynamic heuristic, saturation degree tends to take more computational

effort than largest degree as the exam ordering must be recalculated after each

step of the solution construction. Both techniques require some backtracking in

order to produce feasible solutions to some problems, although saturation degree

106

tends to require fewer backtracks due to the fact that it is calculated to sched-

ule exams next which have the fewest available timeslots. For the work in this

chapter and indeed, for ensuing work, I decided that it would be desirable for the

local search techniques to be seeded with a feasible solution and only explore the

search space of feasible solutions to enable them to concentrate on minimising

the violation of soft constraints. Therefore a backtracking method with randomi-

sation is employed with the largest degree heuristic in order to produce feasible

solutions. If the next exam in the ordering cannot be scheduled, some exams

already assigned are moved to different timeslots to create a feasible slot for the

new exam. This technique generally takes fewer than 10 seconds to produce a

feasible solution for any of the benchmark data sets considered.

The other main decision area for a construction heuristic is the choice of

time slot to assign the next exam in the ordering to. In this chapter I consider

two different approaches to this to compare their effect on the results produced

by simulated annealing. The first is agreedymethod which chooses the slot with

lowest cost as measured by the objective function, the second method chooses

a feasible slot at random to assign the next exam to. The greedy approach, as

expected, produces higher quality initial solutions and with a lower variation in

quality, whereas the random slot assignment technique creates far more diverse

solutions with a lower average quality. The randomness in the greedy technique

to produce different solutions each run comes from the backtracking algorithm

which chooses exams to re-assign with a degree of randomness.

It is well known that some local search techniques are far more reliant on a

good initial solution than others, therefore it is likely the results of the exper-

iments in this chapter will provide valuable analysis as to which initialisation

technique is favoured by simulated annealing. Clearly the greedy approach is

most likely to yield better results as the initialisation already takes into account

the objective function in the initial exam placings, unlike the random initialisa-

107

tion. However, this may not be the case for all local search techniques. If the

neighbourhood of the local search method ensures that the whole solution space

is collected, then the initial bad placing of a number of exams can be overcome.

However, the simple move neighbourhood used initially with the simulated an-

nealing algorithm does not have this property since it only allows a single exam

to move to a new feasible slot - any exams which clash with exams in every

other period are likely to remain immobile throughout the search process mean-

ing that their initial position in the timetable and relative to each other is crucial.

A neighbourhood which keeps the whole search space connected is therefore a

clear advantage, although such neighbourhoods tend to be more complex and

computationally expensive.

5.2 Experiments using a LD heuristic with randomi-

sation

The first set of experiments conducted uses the LD heuristic with random time

slot assignment. For each data set, 10 runs of simulated annealing were con-

ducted on each of two objective functions for each data set. The two objective

functions used are those considered in Chapter 4, first, the standard objective

function for the benchmark data as given by Carter et al [45] with clashes be-

tween exams weighted by the number of students involved multiplied by the

proximity cost, secondly the simplified objective function which assigned a weight

of 1 to all clashes equally with only the proximity costs defining the solution

quality. The simulated annealing (SA) algorithm is also the same as that used in

Chapter 4.

In Tables 5.1 & 5.2, the same initial solution is used for all 20 runs of SA for

each data set. The first 10 runs (Table 5.1) were optimised using the original ob-

108

Data Initial Percentage Standard Average Final
Set Solution Improvement Deviation Solution

CAR-S-91 160224 22.2% 1.02% 124648
CAR-F-92 141506 24.8% 1.43% 106367
EAR-F-83 63933 11.1% 1.49% 56846
HEC-S-92 53598 22.9% 1.81% 41308
KFU-S-93 190237 47.0% 2.22% 100790
LSE-F-91 56393 20.0% 0.95% 45125
STA-F-83 101100 3.4% 0.68% 97701
TRE-S-92 59256 15.7% 1.54% 49944
UTA-S-92 141809 18.3% 1.02% 115827
UTE-S-92 116735 31.8% 2.44% 79587
YOR-F-83 49698 9.3% 1.04% 45073

Table 5.1: Results from SA initialised by the same solution each time, using the
standard objective function

jective function including student weights for clashes (the Weighted Set), whilst

the second set of 10 runs (Table 5.2) was optimised using the simplified func-

tion. The values given for Initial Solution in Tables 5.1 & 5.2 for a given data set

represent the exact same solution, but measured by the two different functions.

Tables 5.3 & 5.4 show results when a different initial solution is fed to SA

for each of the 20 runs across the two objective functions. Table 5.3 using the

standard objective function, Table 5.4 using the simplified function.

Due to space constraints, some words in Tables 5.3 & 5.4 were abbreviated as

follows: Avg. = Average, Init. = Initial, Soln. = Solution, Imp. = Improvement,

Std Dev = Standard Deviation.

Of course, 10 runs for each data set and optimisation function is not statisti-

cally representative. However, in this initial phase of the research work the aim

was to provide a guideline for further research with more runs in further experi-

ments - on certain data sets a separate 100 runs were conducted to check that the

results from the initial 10 runs give a relatively accurate representation. Also, it

was felt that someone using the CBR system to find a solution to their problem

may not wish to perform 100 runs of the retrieved technique, therefore 10 runs

109

Data Initial Percentage Standard Average Final
Set Solution Improvement Deviation Solution

CAR-S-91 51091 20.0% 0.70% 40873
CAR-F-92 38634 21.6% 0.90% 30289
EAR-F-83 11316 12.3% 1.20% 9924
HEC-S-92 4329 6.5% 1.10% 4048
KFU-S-93 17616 23.8% 0.70% 13423
LSE-F-91 14613 29.5% 1.00% 10302
STA-F-83 6193 25.3% 6.80% 4626
TRE-S-92 16194 19.9% 1.30% 12971
UTA-S-92 41331 25.2% 0.90% 30916
UTE-S-92 8366 22.0% 2.60% 6525
YOR-F-83 13392 10.7% 1.20% 11959

Table 5.2: Results from SA initialised by the same solution each time, using the
simplified objective function

Avg. Avg.
Data Init. Std % Std Final Std
Set Soln. Dev Imp. Dev Soln. Dev

CAR-S-91 152278 3.33% 24.1% 2.22% 115633 3.94%
CAR-F-92 141332 2.95% 23.5% 3.66% 108023 3.09%
EAR-F-83 65586 4.57% 15.0% 3.32% 55676 3.58%
HEC-S-92 55412 8.27% 20.5% 10.13% 43730 3.21%
KFU-S-93 161601 10.77% 36.1% 11.85% 102115 3.89%
LSE-F-91 57986 3.60% 25.2% 4.31% 43362 4.87%
STA-F-83 106717 2.89% 6.40% 1.45% 99887 2.71%
TRE-S-92 58615 3.95% 13.1% 1.71% 50953 3.77%
UTA-S-92 128946 4.06% 20.9% 2.60% 102074 5.61%
UTE-S-92 116636 10.50% 24.1% 6.29% 88041 4.64%
YOR-F-83 50142 2.03% 12.0% 2.98% 44109 3.12%

Table 5.3: Results from SA initialised by a different solution each time, using
the standard objective function

110

Avg. Avg.
Data Init. Std % Std Final Std
Set Soln. Dev Imp. Dev Soln. Dev

CAR-S-91 51589 1.30% 20.7% 1.25% 40908 1.23%
CAR-F-92 38339 1.32% 21.5% 0.93% 30094 1.21%
EAR-F-83 11794 2.21% 14.5% 2.20% 10084 1.32%
HEC-S-92 4425 3.19% 7.0% 3.34% 4114 2.94%
KFU-S-93 17355 1.98% 25.4% 1.62% 12939 1.63%
LSE-F-91 14959 2.02% 30.9% 2.30% 10332 1.50%
STA-F-83 6025 4.18% 18.3% 8.55% 4917 8.95%
TRE-S-92 15749 1.87% 18.9% 3.02% 12775 1.73%
UTA-S-92 41770 1.25% 25.4% 1.81% 31145 0.90%
UTE-S-92 8039 5.19% 25.4% 5.08% 5997 7.02%
YOR-F-83 13270 1.80% 10.8% 2.68% 11832 1.92%

Table 5.4: Results from SA initialised by a different solution each time, using
the simplified objective function

gives a more realistic idea of behaviour. The obtained results do provide some

interesting points for deeper study since the standard deviations will still be of

the same order for a larger number of runs. The results presented for standard

deviation are calculated as a percentage of the average for a given set of results.

It is also worth noting that the initial solution used for each data set in the

first set of experiments may be either good or bad so any absolute analysis of

the percentage improvement from this solution is not worthwhile. This was a

deliberate side effect of using random slot assignment for the initial solution

heuristic. The second set of experiments from 10 different initial solutions each

time aims to overcome any bias from a bad or good initial solution and give some

indication as to the variation of initial solution quality also.

From the results presented in Tables 5.1 & 5.2, it can be seen that in all

but one case, the SA meta-heuristic improves from the same initial solution 10

times to within a standard deviation of just 3% from the average, indicating that

the data sets are relatively stable with respect to SA, i.e. when seeded with the

same initial solution, the results produced are consistent over 10 runs without

111

huge variations. Further tests on two of the data sets, each run 100 times from

the same initial solution show the same level of consistency, indicating a large

degree of dependency of the SA meta-heuristic on the initial solution. The one

exception to this is the STA-F-83 data set when optimised using the simplified

function eliminating student weightings which gives a standard deviation of over

six percent. Referring to Table 5.4, it can be seen that this behaviour is still

apparent when 10 different initial solutions are used, whereas with the standard

objective function, Table 5.3 confirms that this same data set is at least as stable

as the rest.

This suggests that the objective function used to optimise the data set (i.e. the

definition of what a good timetable is) can have a major effect on the consistency

of results produced by the algorithm, indicating that this particular data set is

similar in behaviour to others when using one function, but very different when

using a different function. It can also be noted from Table 5.4 that this data set

shows very different behaviour from the rest when considering the variation of

initial solutions vs final solutions. In most cases the standard deviation of the

initial solutions and final solutions are fairly similar, yet for the STA-F-83 data

set, the SA meta-heuristic introduces a large amount of further variation into the

final solution than was present in the 10 initial solutions. This is largely due

to the unusual structure of this data set compared to others, each student takes

an average of 9-10 exams each and there are a large number of maximum size

cliques in the STA-F-83 data set as will be discussed further in Chapter 6.

From Table 5.3, it can be seen that when a variety of random initial solutions

are used to seed SA, the HEC-S-92 and KFU-S-93 data sets suddenly start to

produce a much wider range of final solutions with standard deviations of the

order of 10 per cent. In the case of the KFU-S-93 data set, it can be seen that the

initial solution used in Table 5.1 was very bad relative to the average initial solu-

tion used in Table 5.3. This, together with the high deviation in initial solutions

112

for this data set helps to explain why the percentage improvements are so varied.

Likewise the HEC-S-92 and UTE-S-92 data sets show a wider range of initial

solutions leading to a wider range of percentage improvements. A further set of

100 runs on the KFU-S-93 and HEC-S-92 data sets confirm this variation with

KFU-S-93 producing both initial solutions and percentage improvements with

standard deviations of over 10 per cent from the average. Despite this though,

the average final solutions produced in Table 5.3 show similar deviations over

all data sets. This indicates that although the initial solutions for some data sets

show a higher variation, simulated annealing flattens this out when producing

the final solutions by improving the worse initial solutions notably more than the

better ones.

Analysis of the individual runs for these data sets shows that in many cases

some of the best final solutions come from the worst initial solutions. This im-

plies that how much the initial solution affects the quality of final solutions pro-

duced by SA depends more on the initial placing of certainkeysolution elements

rather than necessarily giving a lower cost by the objective function. For other

data sets though this is markedly not the case and the better final solutions gener-

ally come from the better initial solutions indicating a much stronger dependence

on having a good initial solution for these data sets in order for SA to perform

well.

Finally, when comparing results across the two objective functions it can

be seen that there are some very striking differences between certain data sets.

Most notably, the HEC-S-92 and KFU-S-93 data sets are improved a great deal

more from all the initial solutions when optimised using the standard objective

function than when optimised using the simplified function. On the other hand,

the LSE-F-91, STA-F-83 and TRE-S-92 data sets show completely the opposite

behaviour and are improved more from an initial solution using the simplified

objective function than the standard objective function. This again indicates that

113

when measuring similarity between two data sets, the objective function used

has a major impact.

5.3 Experiments using a greedy LD heuristic

The results presented in Tables 5.5 & 5.6 were obtained over 100 runs using

the greedy initialisation technique which produces far better initial solutions as

measured by the objective function than the above method, but in doing so takes

away a lot of diversity in initial solutions. As can be seen from the final solutions

produced when using this greedy technique to initialise SA, the results on all data

sets bar one are notably improved from those presented earlier. This confirms

my conclusions from Tables 5.1 & 5.2 that SA relies on being seeded with a

good initial solution in order to produce better results. The main reason for this

being that, using only the simple move neighbourhood which selects an exam

and moves it to a new feasible timeslot, many of the exams in the timetable will

never move at all due to the fact that they clash with at least one exam in every

other period. In the case of the STA-F-83 data set, there are in fact over 37 per

cent of the total exams which never move from their initial positions. In other

cases a far smaller percentage of exams have this total lack of fluidity, but these

exams are still highly significant since they are also the ones adding the highest

penalty to the timetable normally.

For this set of experiments, I used a much higher initial temperature than

previously which meant that to start, the solutions got much worse, but as the

temperature reduced so the cost function dropped back below its initial cost. This

produced more competitive results than when I started with a lower temperature

which did not accept as many uphill moves at the start. One interesting point of

note was that the greedy largest degree heuristic with backtracking (up to two

levels deep) failed to obtain feasible solutions to the HEC-S-92 data set so I

114

Avg. Avg. Avg.
Data Init. Std % Std Final Std
Set Soln. Dev Imp. Dev Soln. Dev

CAR-S-91 102272 2.05% 10.74% 2.37% 91251 1.57%
CAR-F-92 95882 2.97% 10.69% 2.55% 85590 2.36%
EAR-F-83 50922 2.25% 8.35% 2.97% 46705 1.99%
KFU-S-93 93933 6.6% 8.51% 6.04% 85623 2.30%
LSE-F-91 40236 4.39% 9.59% 3.54% 36355 4.40%
STA-F-83 108598 0.03% 5.71% 0.12% 102397 0.12%
TRE-S-92 46005 3.13% 13.63% 3.40% 39702 2.12%
UTA-S-92 83834 3.47% 6.83% 3.62% 78035 2.39%
UTE-S-92 85960 1.05% 7.08% 2.01% 79863 1.67%
YOR-F-83 43043 1.74% 14.18% 2.36% 36931 1.73%

Table 5.5: Results from SA initialised with a greedy LD heuristic and using the
standard objective function

Avg. Avg. Avg.
Data Init. Std % Std Final Std
Set Soln. Dev Imp. Dev Soln. Dev

CAR-S-91 44171 1.20% 18.22% 1.55% 36120 0.81%
CAR-F-92 32981 0.95% 17.51% 1.07% 27205 0.70%
EAR-F-83 11319 1.48% 21.33% 2.84% 8903 2.48%
KFU-S-93 14560 1.32% 15.12% 0.64% 12358 1.34%
LSE-F-91 11681 1.62% 18.96% 2.14% 9465 1.79%
STA-F-83 6420 1.02% 15.91% 0.74% 5398 1.06%
TRE-S-92 14012 1.23% 19.48% 2.02% 11281 1.40%
UTA-S-92 34173 0.68% 17.11% 1.16% 28325 0.99%
UTE-S-92 6246 1.64% 25.65% 7.28% 4641 6.54%
YOR-F-83 12812 1.27% 20.03% 2.25% 10245 1.83%

Table 5.6: Results from SA initialised with a greedy LD heuristic, using the
simplified objective function

115

had to use the random assignment LD heuristic to initialise SA on that data set.

However, despite this, the results produced with the high starting temperature

of these experiments were of a high quality comparable to many current state

of the art techniques. Results from other data sets were far better than when

initialised randomly, but where slightly less competitive with the state of the art

techniques than the HEC-S-92 data set. One of the main reasons for this is that,

despite having a very high conflict matrix density causing the greedy heuristic

to fail, every single exam in the HEC-S-92 data set moved at some point over

100 runs of SA, unlike every other data set, all of which had a number of static

exams. This means that the initial solution is less important for this data set as

thefluidity 1 of exams is higher.

As expected, due to the better initial solution, the overall percentage im-

provement by SA is generally lower than in the previous experiments. However,

in some cases (e.g. YOR-F-83), the better initial solution actually allows the

SA meta-heuristic to improve more on average than it did from the worse ini-

tial solutions used earlier. For this set of experiments I used a different initial

solution in each of the 100 runs since the greedy element of the LD heuristic

causes smaller variation in solutions produced over different runs. In particular,

for the UTE-S-92 data set, where the random heuristic was producing initial so-

lutions with a standard deviation of 10% from the average, the greedy heuristic

produces more consistent results than on most other data sets. Again the STA-

F-83 data set shows slightly unusual behaviour and in fact on this data set, the

greedy heuristic performs very badly compared to the random one - it produces

relatively bad initial solutions and with almost no variation. This also leads to

the SA meta-heuristic performing worse when initialised this way than randomly

because of the lack of fluidity in this data set. Of all the data sets studied here,
1fluidity being the level of movement of the exams within the timetable when simulated

annealing is run

116

STA-F-83 is by far the most dependent on its initial solution with at least 37

per cent of its exams not moving from their initial positions during Simulated

Annealing. The KFU-S-93 data set again gives the widest variation in initial

solutions, despite these all being far higher quality than those given by the ran-

dom LD heuristic in Table 5.3. Again, this variation tends to be carried through

into the SA phase with 6 per cent standard deviation from average percentage

improvement for KFU-S-93 compared to around half this on many other data

sets.

The average final solution produced in these 100 runs has a lower deviation

than when SA was initialised with the random LD heuristic, but the quality of

solutions in all but one case is much higher. This indicates that when initialised

with a good solution, SA consistently produces good quality solutions on these

data sets, whereas when worse initial solutions are used, not only does the final

solution quality suffer, but the consistency of SA is also lessened. However

it should be noted that, as discussed in section 1.2 this may well have more

to do with the neighbourhood used that the simulated annealing method. If a

neighbourhood which allows the search space to remain connected is used then

simulated annealing would perform better from a bad solution.

When optimised using the simpler objective function (Table 5.6) excluding

any student weights from the edges of the graph, the behaviour of data sets is

more similar to that shown in the previous set of experiments. Initial solutions

are again better and also slightly less varied, but both the percentage improve-

ment and the final solution of data sets follows the same trend as when SA is

initialised randomly. The UTE-S-92 data set again has a far higher deviation

than the other data sets. The STA-F-83 data set however behaves completely dif-

ferently to earlier with very low deviation across final solutions and percentage

improvements.

117

5.4 Conclusions

To summarise the findings of experiments reported in this chapter, it can be seen

from the results that there are a number of interesting differences in the behaviour

of some of the data sets when compared against each other for the same objective

function and also when compared with the same data set optimised using a dif-

ferent objective function. The implications of this are that the objective function

can play a major role in whether two problems should be considered similar or

not. Clearly it is not possible to measure similarity between two problems with

different objective functions, however results indicate that whilst two data sets

may behave similarly when optimised using one objective function, they behave

completely differently when optimised using a different objective function, even

when the constraints are still the same.

When considering the impact of the initial solution on the performance of the

simulated annealing algorithm, it was found that seeding SA with a bad initial

solution (random initialisation) leads to a bad final solution also when compared

to solutions produced by the greedy initialisation approach. This indicates that

whilst there may be significant difference between the performance of certain

meta-heuristics within a case based reasoning system, it is imperative that these

are well initialised otherwise results will be bad irrespective of the algorithm

when using the simple move neighbourhood. The issue of how different neigh-

bourhoods affect the reliance of a technique on its initial solution is considered

in Chapter 7.

118

Chapter 6

Analysing Features For Similarity

In Examination Timetabling

The work presented in this chapter is based on a paper accepted for the PATAT

2004 (Practice and Theory of Automated Timetabling V) conference in Pitts-

burgh, August 2004 which is to appear in the conference proceedings, entitled

Analysing Similarity in Examination Timetabling[18]. This Chapter aims to

draw together work from the previous chapters together with further work to

give an analysis of main features of exam timetabling problems which will be

fed into a knowledge discovery process to determine the features to be used in

our case based reasoning heuristic and meta-heuristic selector. The actual fea-

tures to be used within the system will most likely be ratios of some of the main

features presented here and by themselves are relatively unimportant since they

will represent just one of many combinations of features each of which give

close to optimal performance for the CBR system. What is important here is that

the initial features to be fed into the knowledge discovery process are carefully

considered and analysed which is the purpose of this work.

119

6.1 The requirements of a CBR system

As discussed earlier in the thesis, the overall aim of this project is to produce

a case-based reasoning (CBR) heuristic/meta-heuristic selector which will in-

telligently choose, from a variety of techniques, the one best suited to a new

problem given to the system. This is done by a matching process which em-

ploys a similarity measure between exam timetabling problems. Within the case

base, each case is made up of a set of feature-value pairs representing a given

problem, together with the heuristic or meta-heuristic technique(s) which give

the best results for that problem. When presented with a new problem, its set of

feature-value pairs is matched with those of all cases within the case-base and

the most similar case(s) will be retrieved. The similarity measure employed will

calculate a weighted sum of the difference in value for each feature between the

two problems under comparison and is shown in equation 6.1:

S(Cx, Cy) = g(
n∑
i=1

hi(|fxi − fyi|)) (6.1)

where:

• n is the number of features in the similarity measure

• fxi andfyi are the values of theith feature of casesCx andCy respectively

• hi(a) := wia
2; wi representing the weight of theith feature

• g(b) := 1/
√
b+ 1

The similarity,S(Cx, Cy), between two cases will be in the interval(0, 1],

with 1 representing two identical cases and results closer to 0 indicating cases

with a low degree of similarity.

Clearly the key elements of this similarity function are the featuresfxi, fyi

of the two problems being compared together with their weights representing

120

the importance of each feature to the overall similarity measure. These features

will each be represented by a numerical value which can easily be compared

to give a difference in value between the same feature (e.g. number of exams)

across the two problems. To decide exactly which features should be used in the

case-base and how to weight them is a near impossible task to perform purely by

hand. Instead, we use knowledge discovery techniques in two stages, as reported

by Burke et al. [37]. An initially large set of features and cases is systematically

trimmed leaving only those cases which contribute positively to the knowledge of

the system and identifying which combinations of features give the best system

performance. In [37], the system performance is measured as being the number

of successful retrievals of one of the best two heuristics as pre-calculated for a

set of training cases and a set of test cases.

Using these knowledge discovery techniques the system can tune the weight-

ings on the features used as well as selecting the best subset of features them-

selves to improve the performance of the case base. Tabu Search and Hill Climb-

ing techniques are both used within the knowledge discovery in [37] to obtain

the best feature vector from the search space of all possible feature vectors.

It was found that the best system performance comes from having a relatively

small number of features within the case-base (usually between three and seven).

Fewer features give too little information from which to accurately measure sim-

ilarity, whilst too many features reduce system performance by diluting the im-

pact of the most important features. Clearly, identifying those problem features

which should be fed into the knowledge discovery process is a key element of

this research. The more features included, the larger the search space becomes

(when including all ratios of pairs of features), hence it is important that features

which are misleading, as discussed in Chapter 4 are excluded and the focus is

put onto far stronger features.

In the following section I examine the initial list of features with which we

121

begin the knowledge discovery process. Ratios between all pairs of features are

also included within the features search space as many of these will provide far

more meaningful measures of similarity than single features. The knowledge

discovery process will return a relatively small list of features considered to be

most important, however in this work the aim is to suggest a wide range of fea-

tures covering as many facets of the problems as possible so as not to miss out

potentially key features.

6.2 Qualitative analysis of features used within the

CBR system

6.2.1 Number of Students

By itself, the number of students within an exam timetabling problem can be

extremely misleading as a measure of problem difficulty and as such it needs to

be carefully considered before being used as a feature. In Chapter 4, I examined

the role of the ‘students’ in the definition of an exam timetabling problem. It is

evident that for real life problems with tight room capacity constraints resulting

in a capacity constraint on each period of the timetable, the number of students

is a crucial factor. However, it was noted that for the problems considered (no

capacity constraints), the number of students was irrelevant. In such cases, the

only role of the ‘students’ is to define the conflict matrix via their enrolments.

Having set up the conflict matrix, anexams x exams size matrix in which

pairs of clashing exams are noted by a 1 with all non-clashing pairs being de-

noted by 0, the students play no further part in the problem and their number is

unimportant. Indeed, there are a huge number of student enrolment sets which

could define exactly the same conflict matrix - of particular note are the set of

students in which every student has just two enrolments and contributes to ex-

122

actly one edge on the conflict graph1. In this case the number of students would

be equal to the number of edges in the conflict graph (with weights on edges

counting as multiple edges). At the other end of the spectrum would be the min-

imum set of ‘students’ which would define the same conflict matrix. This set

would be obtained by assigning the largest clique of exams in the conflict graph

to a student and then continuing, assigning the remaining largest clique to a new

student until all exams and edges are assigned to a student. The relevance of this

as a measure for similarity is considered in section 6.2.8.

In those problems where capacity constraints are included, the number of

students becomes more important, but only as a ratio to the total capacity avail-

able over the period of the timetable and in other ratios concerning enrolments

for individual exams. Purely by itself, the number of students in a problem does

not represent a feature which can contribute to a similarity measure. In problems

where constraints on the students themselves rather than on the exams are con-

cerned, clearly the student set becomes far more important, but again, not simply

the number of students.

6.2.2 Number of Events (Exams)

This is usually reported together with the number of students to give an idea of

the size of a given data set. The exams form the core of the problem, being far

more influential than the student numbers in defining the problem structure. The

exam timetabling problem is concerned, of course, with assigning these exams

to timeslots within a timetable with the main constraint being that two clashing

exams are not scheduled in the same slot. In a graph colouring model of exam

timetabling (see [26]), the exams form the nodes of the graph with the edges,

defined by the student enrolments, representing the conflicts. It is the structure
1The conflict graph is made up of vertices representing the exams in the problem, with an edge

between any two exams which have students in common - the weight on the edge represents the
number of students enrolled to both exams

123

of this graph representation which is one of the key aspects in how well a given

heuristic or meta-heuristic technique will perform when addressing the problem -

the number of nodes in the graph is one of the important aspects of this structure.

The other main aspect is how these nodes are joined together by edges with some

areas forming dense cliques and other areas being relatively sparse in terms of

number of edges. These aspects will be considered further in the section 6.2.8.

As a similarity feature by itself, results from the literature suggest that ‘no. of

exams’ is a simple, yet effective indicator as to the potential best technique. The

Great Deluge technique with adaptive initial solution generation presented by

Burke and Newall [30] provides best known results at the time of writing on the

three largest problems2 from the Carter benchmark data sets [45] (see table 4.1),

each with more than 500 exams. On some of the smaller problems, however, this

technique proves less effective when compared to those of Caramia [40], Merlot

et al. [82] and Casey and Thompson [46] (see table 2.3).

One major area which can be affected by the number of exams in the problem

is the run time of a particular technique. In a majority of cases, more exams in

the problem leads to longer running time of the algorithm or fewer iterations than

would be possible in the same time on a smaller problem. As such, techniques

which can converge to a good result in fewer iterations will have an advantage

on larger problems. Other noteworthy features based on the number of exams

include enrolments per exam and exams per period averages. The number of

enrolments per student also gives a measure of how many exams an average stu-

dent must take. However, as pointed out in Chapter 4 and section 6.2.1, measures

involving the number of students and enrolments can be highly misleading.

In the case of the Carter benchmarks, the STA-F-83 data set has a very large

number of enrolments per student and exhibits very different behaviour from

other problems (see table 4.2). The GRASP technique of Casey & Thomp-
2measured by number of exams

124

son [46] gives a best known solution to this problem which is notably better than

results reported from most other techniques. Clearly there are other factors which

make this problem fairly anomalous amongst the 11 data sets considered how-

ever, as EAR-F-83 and YOR-F-83 also have a relatively large enrolments/student

ratio whilst not exhibiting the same behaviour when addressed.

6.2.3 Number of Periods

The number of periods in a timetable can be either fixeda priori or it may be a

variable to be minimised (as part of the objective function or separately). In this

thesis, I consider the case where the number of periods is fixed. For those prob-

lems in which the number of periods is not fixed, similarity can only be measured

against other problems in which this is also the case. As a feature by itself, the

number of periods assigned to a problem tells us next to nothing since it is only

relevant in conjunction with other features to determine how highly constrained

the problem is. In particular, the average number of exams per period and the

ratio of number of clashes to number of periods may be of importance. Certainly,

the number of exams per period gives a simple measure of one aspect of thedif-

ficulty of the problem and when combined with the conflict matrix density3 this

measure is potentially a very important one. The number of periods used for the

benchmark data sets is slightly higher in each case than the minimum number

of periods found to schedule all the exams in. However, the constraints are still

very high since the objective function used for these problems is concerned with

spreading clashing exams as far apart as possible in the timetable.

Clearly, the more periods available in the timetable over the minimum re-

quired to obtain a feasible solution, the more the exams can be spread out. As

can be seen from table 4.1, the ratio of exams to periods varies hugely between

problems. The main reason for this is the difference in the conflict graphs for the
3discussed in more detail in section 6.2.4

125

problems. More highly conflicting problems will result in a lower exams per pe-

riod average since the large number of conflicts often makes it hard to schedule

all the exams in fewer periods. One of the key strengths of the knowledge dis-

covery techniques we use to select which are the important features is that they

can combine pairs of simple features which we select and chose amongst the

resulting large number of features the most promising feature vector. This may

include combinations of two simple features which we would not have otherwise

considered, especially in the case of ratios involving the number of periods in the

timetable. Reducing the number of periods in a timetable by one could create a

very different problem for which becomes more similar to other problems than

to the original problem with an extra period available. In problems where the

number of rooms forms a tight constraint on the problem, the ratio between ex-

ams per period and the number of available rooms per period will also form an

important characteristic of the problem.

6.2.4 Conflict Matrix Density

The conflict matrix, as defined earlier is anexams x exams size matrix in which

pairs of clashing exams are noted by a 1 with all non-clashing pairs being denoted

by 0. The conflict matrix density gives the ratio of 1’s as a fraction of the total

matrix. Therefore, a high conflict matrix density represents a high probability

of conflict between any two exams. For example, a density of 0.5 implies that

on average each exam will clash with half of the other exams in the problem.

From table 4.1, it can be seen that there is a strong correlation between exams

per period and conflict matrix (graph) density. As mentioned above, this is due to

the fact that a densely conflicting exam graph tends to mean that a higher number

of periods are needed than sparsely conflicting graphs of the same size, therefore

the average number of exams per period is correspondingly lower.

126

The conflict matrix is one of the most important aspects of any exam time-

tabling problem, representing both the hard constraints and some major soft con-

straints. Problems with a very high conflict matrix density, such as HEC-S-92

tend to be more difficult to find feasible solutions to in the first place. Also,

for meta-heuristics which work only in the space of feasible solutions, this can

lead to the search space being very disconnected with respect to certain move

neighbourhoods. This can have a major impact on how successfully a particular

meta-heuristic can traverse the search space to find a high quality solution. Also,

the more disconnected the search space is for a given local search technique, the

more focus is placed on the initial solution that is fed into the local search. While

some techniques are relatively independent of initial solution and can connect the

majority of the search space very effectively, others rely heavily on a good ini-

tialisation. One of the key factors in this is the neighbourhood used within the

local search technique. In section 6.2.7 I examine the issue of a disconnected

search space further.

Conflict matrix density is one of the simplest metrics to be taken from the

conflict matrix and also one of the most effective in measuring problemdiffi-

culty. However, it only gives an average on the percentage of other exams that

each exam will clash with. Two problems with the same conflict matrix density

can still be very different in structure. I discuss below some of the other mea-

sures, which when combined with conflict matrix density, should give a better

indication of problem structure for the purposes of measuring similarity.

6.2.5 Largest Degree

Thedegreeof an exam is defined as the number of other exams in the problem

with which it conflicts through having students in common. One of the most

common graph heuristics for constructing initial solutions for local search tech-

127

niques uses a largest degree ordering of the exams to assign sequentially to the

timetable. In this way, the most conflicting exams are assigned first as these

are deemed to be the most difficult to schedule. The largest degree of an exam

timetabling problem is the largest degree that occurs in any of the exams in the

problem. As another measure to be obtained from the conflict matrix, this gives

us some more information on the problem structure, but by itself of course this

is not enough to be of use. The number of exams of largest degree could provide

useful information, but is in most cases equal to one.

6.2.6 Further Conflict Matrix Measures

Statistical measures resulting from the conflict matrix are of more interest to us

than largest degree as features of the timetabling problem. The density men-

tioned earlier provides an average degree, with the largest degree giving us a

maximum. In order to distinguish between two very different problems of equal

conflict matrix density we need to consider statistical measures such as the vari-

ation in degree from the average and the degree of the exam at different per-

centiles4. We could also consider, as a variation, the number of exams or the

percentage of the total exams whose degree is within a given percentage of the

largest degree. As with all areas of statistical analysis, there are a large number of

different statistical measures we could take based on the structure of the conflict

matrix which could each provide some useful information relevant to measuring

the similarity between two problems. For our work, we will concentrate on just

a small number of these to be fed into the knowledge discovery process.

All of the above statistical measures can, of course, be combined as a ratio

with other features and of particular note would be those ratios to the total num-

ber of periods in the timetable. Also, a relatively simple measure which could

provide useful knowledge is the percentage of the total exams whose degree is
4with exams ordered in decreasing order of degree

128

strictly less than the number of periods. Depending on the neighbourhood used,

exams which clash with another exam in every period of the timetable may be

unable to move within the local search process if the search is conducted within

the set of feasible solutions only. For instance, many techniques successfully

utilise the most simple move neighbourhood which selects a single exam and

moves it to a new period of the timetable, selected either at random or by some

deterministic method. Using this neighbourhood, only those exams which do not

have a clash in every other period of the timetable can be moved which can lead

to a large amount of dis-connectivity in the search space. On the other hand,

using a neighbourhood such as the Kempe chain neighbourhood employed by

Thompson & Dowsland [101] and Casey & Thompson [46] ensures that every

exam within the timetable can move to any other timeslot. In doing so, a series

of other exams will also often have to be exchanged between the two periods in

question. This is investigated further in section 6.2.7.

6.2.7 Fluidity Analysis

In table 6.1 is presented an analysis of the fluidity of the benchmark prob-

lems studied when optimised using simulated annealing with the standard move

neighbourhood5 over 100 runs, each with a different initial solution. The ini-

tial temperature and cooling schedule were set to be extremely high and slow

respectively for these experiments since the aim was to examine how many ex-

ams within the timetable never moved from their initial position as given by the

largest degree construction heuristic presented in Chapter 5. With such a high

temperature and slow cooling schedule, I can say with a relatively high degree

of certainty that any exam which is capable of moving within the neighbourhood

used would do so at some point over the course of the 100 separate runs. Of

course, there will be exams which may have a small window of opportunity to
5as defined in section 2.2.3

129

Data No. of runs in whichx% of exams never moved
Set 100 75-99 50-74 25-49 1-24 0

CAR-S-91 1.17% 3.96% 3.96% 3.81% 10.12% 76.98%
CAR-F-92 3.31% 3.31% 2.76% 3.50% 9.39% 77.72%
EAR-F-83 0.55% 6.63% 0.55% 2.21% 10.50% 79.56%
HEC-S-92 0.00% 1.23% 3.70% 2.47% 50.62% 41.98%
KFU-S-93 1.65% 2.88% 1.44% 3.70% 4.53% 85.80%
LSE-F-91 1.57% 4.99% 1.57% 1.31% 3.15% 87.40%
STA-F-83 37.41% 0.00% 0.00% 3.60% 1.44% 57.55%
TRE-S-92 0.77% 2.68% 0.38% 1.15% 7.66% 87.36%
UTA-S-92 3.05% 5.31% 3.05% 1.93% 7.07% 79.58%
UTE-S-92 6.52% 0.54% 1.63% 1.09% 5.43% 84.78%
YOR-F-83 0.53% 1.58% 0.53% 0.00% 8.42% 88.95%

Table 6.1: Percentage of total number of exams which never move inx runs out
of 100 of Simulated Annealing using the simple move neighbourhood

move in this neighbourhood, when a period briefly becomes available that they

can move to, but given the random nature of the move selection, the exam was

not selected to be moved during this window. However, such exams will be

very few across 100 runs of the algorithm. My main objective was to examine

how different the data sets are with respect to fluidity for this commonly used

neighbourhood.

It is clear that in the case of exams which never move throughout the local

search process, their positioning in the initial solution is crucial to the quality of

the final solution. For the majority of data sets in table 6.1, this percentage of

exams is relatively small and generally below around three per cent. There are

also a relatively small percentage of exams which fail to move in> 75 of the

100 runs. A higher percentage are immobile in< 25 runs, but in most cases

around 80 per cent of the exams in the data sets move at least once in every one

of the 100 runs. Of course, this analysis does not reveal whether many of the

exams moved just once during the local search or whether they moved hundreds

of times, but in this analysis I am mostly interested in the boolean variable of

whether an exam moved at all or not. Whilst nine out of the 11 benchmark data

130

sets presented share fairly similar fluidity analysis which does not add much to

the similarity measurement, two of the data sets exhibit very different behaviour.

Standing out most obviously are the∼ 37 per cent of exams in the STA-F-

83 data set which never move across any of the 100 runs. Also notable is the

fact that there are no exams in the 50-99 group and very few in the 1-49 group.

This indicates that if an exam can move at all in the STA-F-83 data set within

this simple move neighbourhood, it will tend to do so in the vast majority of

runs. Having over one third of its exams immobile relative to this simple move

neighbourhood provides some important clues as to the anomalous nature often

displayed by this data set. The reliance on the initial solution becomes massive

with so many exams being set in the positions that they are originally placed in.

Coupled with the fact that each student takes an average of 9-10 exams and these

are spread across just 13 time slots, it is easy to see why this data set yields a

very high penalty cost for all feasible solutions (see table 2.3).

Those exams which are immobile will, in general, be the ones with the most

clashes and which therefore add the most penalty to the timetable. With this in

mind, one of the reasons I believe Casey & Thompson’s GRASP technique [46]

is so successful on this problem relative to other techniques is the implementa-

tion of the Kempe chain based neighbourhoods. As discussed earlier, the Kempe

chain neighbourhood allows any exam in the timetable to be moved to any other

timeslot whilst always yielding a feasible solution. Using the standard neigh-

bourhood, if the exam,e in timeslot t1to be moved clashes with an exam in

the chosen slot,t2, it cannot be moved there and a new move must be selected.

Kempe chains get around this problem by moving all those clashing exams from

t2 across tot1. Any further clashes induced by this are resolved by moving the

clashing exams across with the original exame to timeslott2, with this process

continuing until the two periods are conflict-free. Due to the fact that all periods

are conflict-free before the first exam is moved, there will always exist a feasible

131

resolution to the Kempe chains. In the worst case scenario this would involve

swapping all exams int1 with all exams int2. A further discussion of the Kempe

chain neighbourhood is given in Chapter 7.

The other data set of note is HEC-S-92 whose behaviour is perhaps even more

interesting than that of STA-F-83 and also less easily understandable. Contrary

to the other 10 data sets, HEC-S-92 does not have a single exam which never

moves across 100 runs of simulated annealing from a different initialisation each

time. The percentage of exams which fail to move in 25-99 runs is also very

low, yet over half the exams (41) in the data set fail to move in 1-25 of the 100

runs. A deeper analysis of this behaviour concerning how much overlap there is

in the runs during which these> 50% of exams do not move would be required

to draw any firm conclusions about this behaviour, but it is worthy of note as

being significantly different from all other data sets.

This data set is also the only one which the greedy largest degree with back-

tracking initialisation technique fails to find a feasible initial solution to. This is

due to the fact that the backtracking module only searches two levels deep before

giving up and restarting, but on this data set it always reaches the same irresolv-

able point. This is probably caused by a combination of the high conflict matrix

density and also the unusual behaviour indicated by our fluidity analysis. The LD

heuristic with randomisation, used in section 5.2 avoids this problem, but tends

to need a number of restarts. What this fluidity analysis seems to show is that

whilst all exams in the data set can move around over the course of 100 runs from

random initialisations, the actual fluidity of the data set from any given initiali-

sation is not so high with a certain number of exams being fixed by their relative

positions to other exams. Again, this behaviour can be attributed to the fact that

the conflict graph is very dense. An analysis of cliques within the problem as

discussed in the following section may also shed some light on this behaviour.

From this analysis it would seem that the fluidity of a given data set with

132

respect to the neighbourhood used in a meta-heuristic can prove crucial to how

successful the meta-heuristic will be. From the point of view of our similarity

measure, this is an area which could prove very important.

6.2.8 Cliques

One of the most significant features of exam timetabling problems when mod-

elled as a graph is that large cliques and near-cliques tend to exist, unlike the

structure of a typical random graph in which any two nodes have an equal prob-

ability of being connected by an edge. In exam timetabling, many of the edges

which contribute to the conflict matrix are clustered together representing exams

which form part of a particular discipline. Students taking science-based subjects

will generally take very few, if any, humanities exams, but will take a large num-

ber of science exams meaning that the density of clashes between science exams

will be far greater than between science exams and humanities exams. Carter &

Johnson [42] investigate the cliques to be found within the benchmark problems

considered in this thesis as well as looking at near-maximum cliques. An inves-

tigation of cliques gives another angle to measuring similarity (based upon the

conflict matrix). As well as considering the size of the maximum clique in each

problem graph, Carter & Johnson investigate how many cliques there are of max

size and also (max-1) size. As a problem feature, the number of maximum size

cliques could provide invaluable information for measuring similarity between

problems by giving a much more in-depth view of the structure of the conflict

matrix.

The two largest data sets (CAR-S-91 and UTA-S-92) are found to have over

100 maximum size cliques whilst the majority of data sets have fewer than five.

Again the STA-F-83 data set exhibits very different behaviour to the other data

sets, being the second smallest measured by exam size, but having 60 cliques

133

of size 13, which is also the number of periods used to construct the timetable.

Carter & Johnson also calculate the number of nodes occurring in all max cliques

and in any max clique together with an analysis of the complement graphs. When

considering cliques of size (max-1), the number of these is significantly larger

than max-size cliques in the majority of problems. The authors move on to con-

sider Quasi-cliques, where all nodes in a quasi-clique,Qk, have at mostkmissing

edges from a true clique. Again these represent very dense areas of the conflict

graph which have a far larger impact on the difficulty of the problem than the

much less dense areas which balance these out to give the overall conflict matrix

density.

There is a large amount of analysis which can potentially be carried out on

cliques, with Carter & Johnson’s work [42] providing a crucial backbone for

this. How much of the clique analysis could be used as part of our similarity

measure remains to be seen, however, since finding the largest clique in a graph

of sizen is in itself an NP-hard problem. As such, it may not be feasible for our

CBR system to calculate the required feature data for a new problem in order

to compare with those in the case base. Having said that, cliques clearly form

the basis of the core problem definition in most exam timetabling problems so

cannot be ignored.

6.2.9 Side Constraints & the Objective function

So far I have considered features which are common to the core exam timetabling

problem where the only hard constraints are that every exam must be scheduled

to exactly one timeslot within the timetable and no two exams with students in

common can be scheduled in the same time slot. The only soft constraint so far

considered is that of spreading clashing exams around the timetable using the

proximity cost given by Carter et. al [45]. In reality, real world problems will

134

have a number of other constraints, both hard and soft. The hard constraints will

determine the feasible solutions space, whilst the soft constraints will give a mea-

sure of how good the timetable is, either by being combined in a weighted single

objective function or by forming a Pareto front in a multi-objective optimisation

(e.g. [11, 92]).

When attempting to measure similarity between exam timetabling problems,

it is required that the problems being compared have the same constraints. At-

tempting to compare two problems, one in which the number of periods in the

timetable is fixed and one in which it is a variable to be minimised is clearly

not sensible. For this reason, we need within the case-base a large variety of

problems with different hard and soft constraints to give the system as wide ap-

plicability as possible. This can be done potentially by adding in constraints to

the core problems and forming new cases with these additional constraints.

The work presented in Chapter 5 investigating the effect of the objective func-

tion on potential similarity measures showed that, even when the same soft con-

straints are employed within the problem, using a different set of weights on the

constraints can have an effect on the performance of a given heuristic applied to

the problem. This is to be expected since the objective function defines the height

of the problem landscape at every point, therefore using different weights on the

same set of constraints could change the structure of the landscape significantly

causing a meta-heuristic which may previously have traversed the landscape very

effectively to now get stuck more in local optima and provide a less high quality

result.

From this analysis, it would seem that the matching process employed within

our CBR system can only compare two problems whose definitions are the same

regarding the hard and soft constraints included as well as the weightings applied

to those soft constraints. It may be possible to adapt problems within the case

base to use the weightings of a new problem given to the system with the same

135

constraints, but this would require further research.

6.3 Conclusions

In this chapter, I presented a discussion of the key features of exam timetabling

problems. The motivation for this work is the aim of creating a similarity mea-

sure between timetabling problems, which can be used within a case-based rea-

soning (CBR) system to intelligently select a heuristic or meta-heuristic tech-

nique to solve a new problem. I selected a number of simple features which I

expect to form a major part of this similarity measure and analysed their contri-

bution and importance to the problem solving method. From the outset I knew

that the contribution to a similarity measure of the simple features listed would

by itself be quite small, but that the contribution of combinations of these fea-

tures would form the key to the similarity measure.

Of the simple features themselves, the number of exams is considered to be

a very good basic indicator of problem difficulty and also of which techniques

are likely to be successful. In particular, it was noted that on the larger problems

(500+ exams), the hybrid great deluge meta-heuristic [30] always outperforms

the other techniques considered. For problems of smaller size, other features be-

come more important to distinguish between different problems. The number of

students in the problem and the number of periods in the problem are not con-

sidered to be of any value as features by themselves, but combined in ratios with

other features, number of periods is an important factor. Of the other features

studied, the conflict matrix density is thought to be an important element of a

problem definition, providing a basic measurement of how highly constrained

the problem is. However, it was also noted that other features of the conflict ma-

trix are also required to get a better indication of the problem structure. Amongst

these are the variation in degree of exams from the average and the cliques found

136

within the conflict matrix.

A knowledge discovery process will be applied (similar to [37]), which will

select from a large number of features (including ratios of all pairs of features

included in the system), those which provide the best measure of similarity be-

tween exam timetabling problems. It has been shown [37] that between three

and seven features tend to give the best performance for a similarity measure and

it is thought likely that most of these features will be ratios of the more simple

features presented in this chapter, some of which may not have been considered

to be important, but which may be found to provide crucial knowledge of the

problems studied. Ultimately however, it will be the training within the knowl-

edge discovery process which will conclude which combinations of features give

best system performance based on our test cases. This work is currently ongoing

as a part of the wider project.

137

Chapter 7

A Variable Neighbourhood Search

(VNS) technique for Exam

Timetabling

The main aim of the work presented in this chapter is to develop a compet-

itive meta-heuristic technique for exam timetabling problems, to be tested on

the benchmark data sets used throughout this thesis. Simulated annealing, tabu

search, ant colony optimisation and great deluge have all been implemented for

potential use within the CBR meta-heuristic selector, but only great deluge (as

presented by Burke and Newall [30]) proves to be competitive with current state

of the art techniques, mostly on larger benchmark problems. The success of our

CBR system will ultimately depend on the quality of the meta-heuristic tech-

niques in the case base therefore there is a clear need for more competitive tech-

niques to include. In this chapter I present a successful Variable Neighbourhood

Search (VNS) technique together with discussion on its many variations. Chap-

ter 8 looks at how to improve the performance further and combine this technique

successfully with case based reasoning.

138

7.1 The Importance of the Neighbourhood

In section 1.2, I discussed two of the major factors which determine the suc-

cess of a local search technique when applied to a given problem, these being

the technique itself and the neighbourhood employed during the search. It was

pointed out that techniques such as simulated annealing and tabu search gener-

ally use a single neighbourhood throughout the entire search and the focus is

more on the parameters affecting the acceptance of moves than on the neigh-

bourhood. Clearly the type of technique is an important factor in local search,

with simulated annealing and tabu search methods using the same neighbour-

hood definition providing differing results on benchmark problems.

Burke and Newall [30] and Burke et al. [12] perform a series of experiments

comparing simulated annealing (SA) to great deluge (GD) with the focus being

on the parameters for the two techniques, both using the same standard move

neighbourhood. In [30], the authors demonstrate how big an effect the parameter

selection can have on performance of the two techniques and also how much they

rely on a good initial solution in order to produce the highest quality results. This

is particularly noticeable when fewer iterations of the local search techniques are

performed. Also discussed is the possibility for including these approaches in a

hyper-heuristic framework which would decide on the parameters.

One of the main focuses in [12] is on modifying SA and GD to simplify the

parameters so that run time and an estimate of desired solution quality are all that

is required to be set, thus removing the need to tune less easily understandable

parameters. Again the two techniques are compared with great deluge gener-

ally outperforming simulated annealing in both papers, but not by a significant

amount. The biggest advantage of GD is that it is less reliant on its parameters

and is more consistent than SA.

The issue of how much the choice of neighbourhood affects the quality of

139

solutions produced is considered by Thompson & Dowsland [101, 103], as dis-

cussed in section 2.2.3. The conclusion they arrive at is that the utilisation of a

more complicated neighbourhood1 than the standard neighbourhood can yield

significant improvements in solution quality. The ability of the variable neigh-

bourhood search (VNS) technique to incorporate a large number of neighbour-

hoods in the search makes it a potentially very interesting method with this in

mind.

From the perspective of a CBR meta-heuristic selector, these two major fac-

tors can be considered separately or as one. If a number of local search tech-

niques are to be used, with the most suitable for each problem in the case base

being stored, it is important that a range of neighbourhoods are tested with each

technique to get the best combination. On the other hand, if the technique itself

is a far smaller factor than the neighbourhood selection, it is possible that just a

single technique could be used with the matching process determining the best

neighbourhood and parameters to apply within a given framework rather than

choosing a technique itself.

In section 7.2 I present the basic variable neighbourhood search approach

which uses a very simple search mechanism with the whole focus being on

the neighbourhoods and in particular the ability to search a number of varied

neighbourhoods. A huge number of variations of this basic VNS approach ex-

ist, making it potentially a very useful technique to combine with CBR to select

components for the VNS algorithm for specific problems. The biggest motiva-

tion behind implementing a VNS approach to timetabling is that its utilisation of

many different neighbourhoods may allow it to perform competitively across a

whole range of problems, which is the ultimate aim of our CBR approach.
1in their case, Kempe chains which will be covered in more detail in section 7.3.1

140

7.2 Variable Neighbourhood Search

In the late 1990s, Pierre Hansen and Nenad Mladenović [80] proposed the Vari-

able Neighbourhood (VNS) meta-heuristic for solving difficult combinatorial op-

timisation problems. It was felt that the reasons for the effectiveness of many

local search techniques were difficult to pinpoint, so the authors chose to exam-

ine the effects of a relatively unexplored reason, changing the neighbourhood

during the search. The resulting meta-heuristic is both very versatile and very

successful compared to other local search techniques when applied to a range of

different problem domains, in particular for the travelling salesman problem as

demonstrated by the authors [80].

More standard local search techniques perform their search by selecting the

next move from a fixed and constant neighbourhood at each point during the

search with the aim of finding local optima, followed by some form of diversifi-

cation technique to escape the local optima to search for a new one nearby. The

most basic of these methods is the steepest descent (or ascent for maximisation

problems) meta-heuristic which has no method for escaping local minimum and

simply takes the steepest route down to a nearby local minimum and terminates

there since no move within the same neighbourhood which was used to reach the

local minimum can improve on the current solution.

More sophisticated techniques such as tabu search (TS) and simulated an-

nealing (SA) include techniques for escaping these local minima to continue the

search, either by probabilistically accepting moves with a worse objective cost

(SA) or by simply selecting the best move from a neighbourhood or subset of a

neighbourhood even if it leads to a worse solution (TS), the tabu list then prevents

the search falling straight back into the same local minimum. Such techniques

have proved extremely successful when applied to combinatorial optimisation

problems. Section 2.2.3 gives a review of many of these local search techniques

141

applied to exam timetabling.

One point of note regarding such techniques is that a local optima in one

neighbourhood is not necessarily a local optima in another neighbourhood, there-

fore changing neighbourhoods within the search can act as another method for

escaping local minima within a particular neighbourhood. This is the basis of

the VNS meta-heuristic and can be applied with any underlying local search

technique, improving its versatility hugely. As described by Hansen and Mlade-

nović [66], “Contrary to other meta-heuristics based on local search methods,

VNS does not follow a trajectory but explores increasingly distant neighbour-

hoods of the current incumbent solution...”.

The basic VNS meta-heuristic is a descent method, moving to a new solution

if and only if it is better than the current solution. Since the neighbourhoods are

varied regularly, there is no need to accept worsening solutions to escape local

minima, although variations of VNS do exist in which such moves are accepted

(as will be discussed in section 7.3.2). The VNS meta-heuristic essentially sam-

ples a large number of local minima by using a local search technique to bring

the solution selected from the neighbourhood to its nearest local optima. Po-

tentially any local search method can be used in this part of the search and the

solution arrived at will of course only be a local minimum with respect to the

neighbourhood used in the local search. The most basic VNS method uses a

simple steepest descent local search with a single neighbourhood, but this can

still yield very competitive results.

The steps of the Basic VNS meta-heuristic (refer to Hansen and Mladen-

ović [80, 66] for a more detailed description) are presented in figure 7.1.

Any finite number,kmax, of pre-defined neighbourhoods may be used within

VNS and the neighbourhoods are usually in some sense nested withkmax being

the most diverse neighbourhood, although this is not a strict requirement. Stop-

ping criteria may be selected as for any local search technique, total number of

142

• Initialisation: Select the set of neighbourhood structuresNk, k =
1, . . . , kmax, to be used in the search; find an initial solutionx; choose
stopping criteria;

• Repeatuntil stopping criteria is satisfied:

1. Setk := 1;

2. Until k = kmax, repeat:

(a) Shaking: Generate a pointx′ at random from thekth neighbour-
hood ofx (x′ ∈ Nk(x));

(b) Local search: Apply a local search method withx′ as initial so-
lution, until a local optimum,x′′ is obtained;

(c) Move or not: If x′′ is better than the incumbent solutionx′ then
move there (x← x′′), and continue the search withN1 (k ← 1);
otherwise, setk = k + 1;

Figure 7.1: The steps of the Basic VNS meta-heuristic

iterations, number of iterations without improvement or CPU time being three of

the most commonly used. In the basic VNS, the move selected from the neigh-

bourhood at step 2 (a) is generated at random, avoiding any issues of cycling;

also the local search is performed using a single neighbourhood. There are a

large number of variations of the basic VNS, with changes possible to each step

of the algorithm given in figure 7.1 - many of these are discussed in [66] and will

be considered in context for exam timetabling in section 7.3.2.

7.3 VNS for Exam Timetabling

In this section I discuss my application of variable neighbourhood search to the

exam timetabling problem, which has seen a large number of single neighbour-

hood local search techniques successfully applied in recent years. The initial

implementation was based on the basic VNS presented in figure 7.1 to which a

number of variations were sequentially added to further improve performance.

The one major change from the basic VNS presented is that instead of con-

143

tinuing the search with neighbourhoodN1 each time an improvement is found in

step 2 (c) the search continues using the current neighbourhood which yielded

the improvement. The main reason for this is that it places slightly less reliance

on the ordering of the neighbourhoods and focuses the search on each neigh-

bourhood for as long as it yields an improvement before moving to the next

neighbourhood in the list. Experiments with the basic VNS from figure 7.1, al-

ways restarting with neighbourhoodN1 after an improvement have also been per-

formed, but results so far have not been as successful as the first method. Hence,

further experiments are all performed with the search continuing in neighbour-

hoodNk rather thanN1 at step 2 (c). This allows further neighbourhoods to

easily be incorporated without the need to consider the ordering since, with this

method the order only matters for determining which neighbourhood the search

begins in.

To initialise VNS I use the greedy and randomised largest degree graph-

colouring heuristics introduced in section 5.1, both of which produce a feasible

initial solution. The greedy approach gives higher initial solution quality at the

expense of diversification whilst the randomised approach provides the opposite.

VNS performs its search only within the search space of feasible solutions for

all experiments reported. The two different initialisation techniques were tested

for a number of reasons. Firstly, the greedy method produces much better initial

solutions as measured by the objective function and so may result in better, or at

least faster solutions from VNS. However on one data set tested, this determin-

istic technique with backtracking fails to find a feasible solution so the random

method had to be used which does find feasible solutions. Also, I was interested

to note how much of an effect the quality of the initial solution has on the quality

of solution produced after VNS is applied. Many local search techniques, using a

standard trajectory search, are very dependent on their initial solution for certain

problems where the search space is very disconnected, but it was felt that VNS

144

might be able avoid this dependence on initial solution by still being capable of

reaching all areas of the search space using different neighbourhoods.

The stopping condition used requires a minimum of 10,000 iterations with

2,500 idle iterations (iterations without improvement) before the algorithm ter-

minates. The local search part of the method uses a simple steepest descent

approach which is fast and yields very good results. Other more complex local

search techniques may be considered in future work. However, introducing a

more complicated local search technique also involves introducing a number of

new parameters which have to be carefully tuned and will also notably increase

the running time of the algorithm.

7.3.1 Neighbourhoods used within VNS

For the exam timetabling problem, neighbourhoods used in local search tech-

niques generally consist of moving some subset of exams from their current time

slot to a new time slot, the number and identity of exams to move forming the

definition of each neighbourhood. My initial implementation of VNS used the

following eight neighbourhoods, although one of these was later replaced for

further experiments for reasons explained below:

1. Single move: The simplest move neighbourhood for exam timetabling and

the one most commonly used in single-neighbourhood local search tech-

niques - this neighbourhood consists of all moves obtained by selecting a

single exam and moving it to a new feasible time slot. This neighbourhood

can be quite limiting as many exams in a timetable have no other feasible

slots to move to so these exams will never be moved. (Also referred to as

the Standard neighbourhood).

2. Swap: The swap neighbourhood contains all feasible moves involving

swapping the time slots of a pair of exams,ei andej. By itself this is a

145

very limited neighbourhood since it requires that the two exams selected

can both feasibly move to each other’s time slot. In some circumstances

this neighbourhood can solve the main problem of the single move neigh-

bourhood by moving the clashing exam from a given slot which prevented

the first exam from moving there otherwise, however this is only the case

if there is just a single clash in the time slot. Despite its limitations as

a single neighbourhood, the Swap neighbourhood can prove very useful

within a VNS framework.

3. Move 2 exams randomly: This neighbourhood is formed from all pairs of

Single moves. Instead of picking a single exam to move to a new time slot,

2 exams are chosen at random and moved to a new feasible time slot. This

allows for a slightly more diverse change to the current solution than the

single move neighbourhood.

4. Move 3 exams randomly: As above

5. Move 4 exams randomly: As above

6. Move 5 exams randomly: As above

7. Move a whole time slot: In an exam timetable, then time slots are or-

dered from 1 ton with clashing exams in nearby time slots adding a high

penalty to the overall timetable cost. Rather than moving individual exams

between timeslots, this neighbourhood moves an entire timeslot to a new

position in the ordering, with the other periods being shuffled along ac-

cordingly. Moving entire timeslots allows exams which would otherwise

be unable to move (due to clashing with exams in all other timeslots) to

move around the timetable relative to all exams in other periods. This can

be extremely useful, especially if VNS is seeded with a bad initial solution

since it allows for most components of the timetable to move relative to

146

each other - the only components it does not allow to move relative to each

other are exams in the same time slot.

8. Swap timeslots: Similar to the previous neighbourhood, instead of moving

a single timeslot to a new position in the ordering and as a result shuffling

other periods down the ordering, this neighbourhood only affects 2 time

slots, simply swapping all exams in one with all exams in the other. Again,

this allows for previously immobile exams to move around the timetable.

Neighbourhood 1 is the neighbourhood used in the steepest descent local

search part of the algorithm and as such did not figure very strongly in the VNS

part of the algorithm since each solution is optimised relative to that neighbour-

hood using steepest descent therefore picking a random move from neighbour-

hood 1 invariably led to the same local minimum being found instantly. A tabu

list could be used to prevent the search from dropping straight back into the

same local minimum, however I decided to replace neighbourhood 1 with the

more successful Kempe chain neighbourhood used by Thompson and Dowsland

in their simulated annealing technique [101].

The Kempe chain neighbourhood involves swapping a subset of exams in 2

distinct time slots (colours in the graph colouring model) - in my implementation,

an exame, in slot s1 and a new timeslot,s2, are selected at random in the same

way as for the single move neighbourhood above, with the exams in the two

timeslots forming a bi-partite graph since only feasible solutions are allowed.

The Kempe chain is defined from the initial chosen exam as the connected com-

ponents of this bi-partite graph, these are exams which clash with each other and

therefore must be moved across to the other period as their clashing exams are

moved to their current period. The single move neighbourhood is a subset of the

Kempe chain neighbourhood consisting of all disconnected vertices (exams) in

the bi-partite graph - these are the exams which can be moved across to the new

147

n
~
~
~

~
n
n
~1

2

3

4

5

6

7

8

T1 T2

��
��
��
��
��
�

�
�
�
�
�
�
�
�
�
��

��
��
��
��
���

Q
Q
Q
Q
Q
Q
Q
Q
Q
QQ

Figure 7.2: A Kempe chain move before execution

~

~

n ~

n
n
~
~

4

5

8

1

2

3

6

7

T1 T2

S
S
S
S
S
S
S
S
S
S
S
S
S
S

�
�
�
�
�
�
�
�
�
��

��
��
��
��
���

�
�
�
�
�
�
�
�
�
�
�

Figure 7.3: The result of a Kempe chain neighbourhood move

period without inducing a clash.

Figure 7.2 shows a simple Kempe chain move involving 2 timeslots, T1 and

T2 each containing 4 exams. Exam 6 is a disconnected node which could move

from slot T2 to T1 in the single move sub-neighbourhood of the Kempe chain

neighbourhood. All other exams have clashes (represented by edges of the graph)

with exam(s) in the other time slot and so could not be moved in the single move

neighbourhood. If exam 1 is selected in the Kempe chain neighbourhood to be

moved to slot T2, the Kempe chain represented by the black circles in figure 7.2

is constructed resulting in exams 1, 2 & 3 moving to T2 and exams 5 & 6 moving

148

across to T1 to maintain feasibility of the solution and the bi-partite nature of the

graph defined by time slots T1 and T2 as shown in figure 7.3.

The Kempe chain neighbourhood eliminates the main failing of the single

move neighbourhood by allowing any exam within the timetable to be moved to

a new time slot since every pair of time slots forms a bi-partite graph meaning

that there will always be a Kempe chain move starting with any exam. The

largest Kempe chain move would result in every exam being exchanged between

two periods - whilst in graph colouring this would not have any effect on the

solution, in exam timetabling it does since the periods are all ordered. However,

unlike the simple move neighbourhood, the swap timeslots neighbourhood isnot

wholly contained within the Kempe chain neighbourhood since in the example of

Figure 7.2, exam 6 would never move across to T1 with the other exams because

it is disconnected.

7.3.2 Variations of VNS for exam timetabling

The initial aim was to test out the most basic version of VNS on exam timetabling

to investigate how well it performs compared to other local search techniques on

benchmark problems with the intention to add more complexity afterwards so I

could keep track of which aspect of the method is providing the improvement.

Results (presented in section 7.4) from the basic VNS detailed in the previous

sub-section were extremely encouraging and in fact, without any further im-

provements have produced results which are highly competitive with those of

other state of the art techniques. It was felt that some of the many variations of

VNS could produce even better results.

One of the significant advantages of VNS is that it is a very modular tech-

nique which can easily be added to in almost any of the steps given in figure 7.1

to produce potentially better results. A number of variations under consideration

149

are listed below, some of which are suggested by Hansen and Mladenović [66]:

• Descent-ascent: Basic VNS is a ‘descent, first improvement method with

randomization’ [66]. A very simple change to the algorithm would be to

make it a descent-ascent method by accepting worsening moves with some

probability in a similar way to that used by simulated annealing.

• Best improvement: Instead of taking the first random move from a single

neighbourhood, make a move to the best neighbourhoodk∗ among all

kmax of them.

• Variable neighbourhood descent (VND): VND uses many neighbourhoods

during the local search phase of the VNS method as oppose to the more

standard use of just a single neighbourhood. Hansen and Mladenović [66]

report that this technique is crucial to obtain good results in certain prob-

lem domains.

• Biased VNS: In step 2 (a) of the basic VNS, it is possible to select the

solution x′ in a number of different methods rather than purely at ran-

dom. One such method could be to choose the best move from a random

selection from thekth neighbourhood or to select at random from then

exams adding most penalty to the timetable for a neighbourhood such as

the Kempe chain neighbourhood above.

• More complex local search: In place of the steepest descent local search

technique to bring solutions to their local optimum, any other local search

technique, such as simulated annealing, great deluge or tabu search could

also be used, with a sufficient stopping criteria for the local search. One of

the main disadvantages of the current implementation however is the run

time so a more complex local search technique would be likely to increase

150

this still further unless it allows for significantly fewer iterations to be run

to find a high quality solution.

• Problem-specific neighbourhoods: Since the structure of different exam

timetabling problems can vary hugely, it may be the case that some neigh-

bourhoods work far better on one problem than another and that discard-

ing certain neighbourhoods from the original set will not detract from the

quality of solutions produced and may in fact improve solution quality by

allowing the search to spend longer in more promising neighbourhoods.

In my implementation, the more neighbourhoods I include, the fewer it-

erations are performed in each neighbourhood before the stopping criteria

is met - reducing the number of neighbourhoods to thebestsubset for the

specific problem may allow for further improvements to be found or for

good solutions to be found faster.

• Different initialisation strategies: Currently I use two different initialisa-

tion strategies to seed VNS, but there are a number of other methods which

can be used. In section 7.4, I present results from VNS when initialised by

a greedy construction technique and by a random construction technique

- one of the aims of this comparison is to examine the importance of the

initial solution to the quality of the final solution produced by VNS since,

for most datasets the greedy initialisation technique produces far better

starting solutions.

Of the above variations, the first one to be considered to improve on the

results from basic VNS is thebiased VNSmethod. Rather than apply this equally

to all neighbourhoods I add in two new neighbourhoods based on the successful

Kempe chain neighbourhood. The first of these samples a random 5% of the total

exams and selects the one adding the highest penalty to the current timetable.

This exam is then used to form a Kempe chain move in exactly the same way as

151

when a random exam is chosen. The second variation selects an exam at random

from the 20% of exams adding the highest penalty to the timetable and continues

with the Kempe Chain move as before.

The aim of adding these two neighbourhoods is to better utilise the strengths

of the Kempe chain neighbourhood which has the ability to move any exam in

the timetable to any other slot, unlike many simpler neighbourhoods. Selecting

the first exam for the Kempe chain purely at random will quite often lead to a

worse solution if the exam in question is already adding very little penalty to the

timetable. It is hoped that by biasing selection towards the most troublesome

exams, which are also the exams which can rarely move in the simpler neigh-

bourhoods, better improvements can be found. Results from this variation of

VNS are presented in section 7.4 together with those of basic VNS for compari-

son.

Also considered is thedescent-ascentapproach which includes an acceptance

criteria combining aspects from both simulated annealing and great deluge. In

order to maintain a mostly descent method, only solutions which are less than 1%

worse than the current solution are considered, with on average 10 per cent of

these being accepted. This variant of the basic VNS adds in further parameters,

but can yield some improvement without these parameters having been tuned

to each individual problem. Further improvement may be possible with better

tuning, but I did not wish to introduce parameter tuning into the algorithm since

that would take away one of the major advantages of VNS.

Thebest improvementandvariable neighbourhood descentmethods are not

considered here because they involve far more significant changes to the algo-

rithm and also increase the run time of each iteration. Another variation in-

volving multiple Kempe chain move neighbourhoods was tested with up to five

Kempe chain moves forming a neighbourhood, but this variation yielded no im-

provement in the tests performed. However, these neighbourhoods are consid-

152

ered again in Chapter 8. Also tested were variants of VNS utilising great del-

uge or simulated annealing in place of the simple steepest descent local search

method, but again these introduced a large number of parameters and far longer

run times without yielding any improvement.

The other variation which I looked into is theproblem-specific neighbour-

hoodselection. In the implementation in this chapter, when I consider a new

neighbourhood which may add something to the performance of the algorithm

I simply add it to the existing set of neighbourhoods to run the algorithm. If

the stopping criteria are extended to take account of the extra neighbourhoods,

this should not detract from the ability of the VNS meta-heuristic to find high

quality solutions, however it will increase the run time of the algorithm. If the

stopping criteria are kept the same, adding more and more neighbourhoods may

cause performance to drop due to the search spending less time in each neigh-

bourhood. Statistics collated from many runs of VNS on 11 benchmark problems

show that for some problems a certain neighbourhood results in an improvement

very often whilst in other problems the same neighbourhood rarely results in an

improvement whilst a different neighbourhood is most effective.

Rather than just use these fairly crude statistics to decide which neighbour-

hoods to discard for each problem, in Chapter 8, I investigate the use of a genetic

algorithm (GA) technique to intelligently select the best neighbourhoods to in-

clude in the search for a given problem. I also examine how this can fit into our

case based reasoning framework.

7.4 Results

Experiments were carried out on the 11 benchmark data sets used in the earlier

chapters of this thesis. Results for these problems are reported as average penalty

per student with only the soft constraint of spreading clashing exams around

153

the timetable taken into account via the use of proximity costs, as detailed in

section 4.2. Results from the literature for a variety of methods applied to these

data sets are presented in table 2.3.

Table 7.1 compares the results produced by the Basic VNS algorithm with

the best reported solution taken from Table 2.3. Figures in italics represent

the best solution found between the two initialisation techniques. Basic VNS

uses a Kempe Chain neighbourhood together with neighbourhoods 2-8 from

section 7.3.1, all using random move selection in step 2 (a) of the algorithm

in figure 7.1.

Table 7.2 gives the results of the Biased VNS approach when initialised by

the two different methods. Biased VNS-RI and Biased VNS-GI use the eight

neighbourhoods used for Basic VNS with random move selection, but also in-

clude the two additional biased Kempe Chain neighbourhoods described in sec-

tion 7.3.2, one selecting the exam currently adding the largest penalty to the

timetable from a random 5% sample, the other selects a random exam from the

20% of exams adding the largest penalty.

Average and best results from 100 runs on a 750MHz Athlon are presented

for both Basic and Biased variants. Run times vary considerably between prob-

lems as well as across the 100 runs on a single problem due to the stopping

criteria of 2,500 iterations without improvement after a minimum of 10,000 and

the random move selection from neighbourhoods - some runs terminate after

10,000 iteration whilst others continue to improve past 40,000 iterations. On the

smaller datasets, the algorithm terminates in the order of 1-2 minutes, whereas

run times for larger data sets range from 30 minutes to 90 minutes. A further

discussion of the run times on individual problems is provided in Chapter 8 for

the most successful VNS variant. Run times for results reported from the litera-

ture in Table 2.3 vary between around 0.5 seconds for smaller datasets up to 15

minutes on the larger datasets.

154

Data Best reported Basic VNS-RI Basic VNS-GI
Set solution Best Average Best Average

CAR-S-91 4.6 5.10 5.29 5.07 5.24
CAR-F-92 4.0 4.20 4.39 4.17 4.30
EAR-F-83 29.3 33.56 36.33 33.70 36.35
HEC-S-92 9.2 10.41 11.08 - -
KFU-S-93 13.5 13.72 14.40 13.85 14.54
LSE-F-91 9.6 11.13 11.70 11.18 11.74
STA-F-83 134.9 156.86 157.12 156.86 157.15
TRE-S-92 8.0 8.48 8.88 8.49 8.84
UTA-S-92 3.2 3.49 3.59 3.40 3.49
UTE-S-92 24.4 25.10 25.94 25.18 26.01
YOR-F-83 36.2 36.80 38.70 36.77 38.47

Table 7.1: Results from the basic VNS meta-heuristic with random and greedy
initialisations

Data Best reported Biased VNS-RI Biased VNS-GI
Set solution Best Average Best Average

CAR-S-91 4.6 5.02 5.28 5.07 5.12
CAR-F-92 4.0 4.17 4.34 4.12 4.23
EAR-F-83 29.3 33.10 36.00 33.46 35.78
HEC-S-92 9.2 10.26 11.02 - -
KFU-S-93 13.5 13.38 13.87 13.38 14.03
LSE-F-91 9.6 10.66 11.33 10.93 11.58
STA-F-83 134.9 156.86 157.04 156.86 157.06
TRE-S-92 8.0 8.35 8.76 8.39 8.77
UTA-S-92 3.2 3.47 3.55 3.39 3.50
UTE-S-92 24.4 24.86 25.41 24.86 25.43
YOR-F-83 36.2 36.48 38.33 36.43 38.03

Table 7.2: Results from the VNS with biased neighbourhoods meta-heuristic
with random and greedy initialisations

155

From Table 7.1, it can be seen that the basic implementation of VNS fails

to match the best reported solutions from the literature on the 11 benchmark

problems, but does still provide high quality results across all problems. When

compared with other techniques from Table 2.3 it can be seen that the results

from Basic VNS are highly competitive and beat the results of each other tech-

nique on at least one problem, indicating that whilst it is unable to produce any

best known solutions, it is highly consistent across the range of problems which

was one of the my main aims for the technique. Methods from Table 2.3 which

produce the best solution on one problem are often outperformed by a few tech-

niques on other data sets, showing that they are more suited to some problems

than others.

Comparing the results of Tables 7.1 & 7.2 shows the clear improvement

in solution quality of introducing the two biased neighbourhoods. Apart from

the anomalous STA-F-83 problem, Biased VNS outperforms Basic VNS for all

problems and significantly also manages to produce a best known solution to

the KFU-S-93 data set of 13.38 compared to 13.5 obtained by Merlot et al [82].

Improvements in some problems over the basic VNS are relatively small, whilst

other problems yield a significant improvement, in particular the KFU-S-93 data

set. Results on LSE-S-91 dataset also improve markedly when using the Biased

VNS, but despite this improvement this is still the worst result for VNS when

compared to the other methods in Table 2.3, providing only the 5th best result

out of 7.

When comparing the two initialisation strategies, results are mixed with nei-

ther initialisation approach outperforming the other across all problems. For the

Biased VNS method, the random initialisation outperformed greedy initialisa-

tion on five problems, whilst leading to inferior results on three problems and

equal performance on the other three. This in itself is quite significant however,

implying that VNS has the capability to overcome a seemingly bad initialisation

156

to still produce equally high quality results. Unsurprisingly, the average perfor-

mance of the VNS initialised with the greedy technique was higher in a majority

of cases, but not by a significant amount and not on all problems. Again, this

shows that the VNS technique can take a range of highly diverse solutions (for

certain problems the random technique yields some initial solutions which have

twice the cost of others also produced by the technique) and optimise all to a

relatively high standard.

Further research would need to be carried out to determine exactly how much

the initial solution is changed to produce the final solution using the two ini-

tialisation techniques, but it may be the case that the increased diversity of the

random initialisation approach allows VNS to more easily find higher quality

solutions without being forced into a smaller area of the search space by the

less diverse greedy approach whose initial solution may place certain exams in

unfavourable timeslots which then have to be corrected by the VNS algorithm.

Also worthy of note is that the Biased VNS invariably leads to a higher level

of consistency in the quality of solutions produced with the best average perfor-

mance across 100 runs coming from the Biased VNS variant for 10 of the 11

problems. The average result from Biased VNS on some data sets also outper-

forms the best result of some techniques, showing that the method is capable of

producing good results consistently across a number of runs as well as individual

good results from a selection.

In table 7.3, I present the best results obtained by the descent-ascent variation

of the Biased VNS approach2 compared to those of other techniques in the

literature. On the majority of datasets, this variation outperforms the pure descent

Biased VNS variant with only the EAR-F-83 data set proving to be an exception

when optimised using descent only Biased VNS-RI. However, further analysis
2These results are the best across both initialisation techniques with some best solutions com-

ing from each method

157

Data Carter Caramia Burke & Casey & Merlot Descent-
Set et al. et al. Newall Thompson et al. ascent

[45] [40] [30] [46] [82] Biased VNS
CAR-S-91 7.1 6.6 4.6 5.4 5.1 4.9
CAR-F-92 6.2 6.0 4.0 4.4 4.3 4.1
EAR-F-83 36.4 29.3 36.1 34.8 35.1 33.2
HEC-S-92 10.8 9.2 11.3 10.8 10.6 10.3
KFU-S-93 14.0 13.8 13.7 14.1 13.5 13.2
LSE-F-91 10.5 9.6 10.6 14.7 10.5 10.4
STA-F-83 161.5 158.2 168.3 134.9 157.3 156.9
TRE-S-92 9.6 9.4 8.2 8.7 8.4 8.3
UTA-S-92 3.5 3.5 3.2 - 3.5 3.3
UTE-S-92 25.8 24.4 25.5 25.4 25.1 24.9
YOR-F-83 41.7 36.2 36.8 37.5 37.4 36.3
Total Pen 327.1 306.2 322.3 - 310.8 305.8

Table 7.3: Ascent-descent Biased VNS compared to results from the literature
(best results given)

of the individual runs shows that the 33.10 result obtained by this technique

was significantly better than all other results produced across 100 runs with the

second best being only 33.88. In a method such as VNS, which involves a large

random element there is always the possibility of any variant producing a very

high quality solution on a single run, but not consistently across many runs.

It can be seen from table 7.3 that the descent-ascent Biased VNS method

performs very favourably compared to the current state of the art techniques,

improving the best known solution for the KFU-S-93 data set to 13.2. Perhaps

more significantly however is the consistency of performance across the range

of all 11 problems, where the approach is ranked 2nd out of the 6 presented

on the other 10 data sets, giving a total penalty across all data sets lower than

the four approaches whose techniques were applied to all data sets. This can

be misleading as it may be biased heavily by one problem, especially since the

penalty for the STA-F-83 dataset dwarves that of most others. However, there

are clear indications that VNS is very capable of producing high quality results

across all data sets tested upon.

158

7.5 Conclusions

The Variable Neighbourhood Search (VNS) approach presented in this chapter

has been shown to produce solutions of a high quality across a range of bench-

mark data sets, producing a best reported result on one medium sized data set and

performing consistently on most other data sets. In this chapter I have presented

results from a basic version of VNS with the slight variation from that given by

Hansen and Mladenović [80] and presented in Figure 7.1 that the search con-

tinues in the current neighbourhood if an improvement is found in step 2 (c)

rather than returning to neighbourhood 1 as this yielded better results here with-

out needing to carefully tune the ordering of the neighbourhoods.

A number of more complex variations to the basic VNS were detailed in

Section 7.3.2 from which a Biased VNS has been tested with two new neigh-

bourhoods. Results from this Biased VNS have shown significant improvement

over the Basic VNS on many of the data sets tested and are very competitive with

current state of the art techniques. Further improvements were yielded by the ad-

dition of an ascent mechanism similar to that of simulated annealing. The best

results from this approach compare very favourably with techniques reported in

the literature and it proves robustly competitive across all data sets.

One significant advantage of the Basic VNS approach is that it involves very

few parameters out-with the selection of the neighbourhoods, all of which are

easily implemented since only a random move is required rather than an ex-

haustive search of the neighbourhood. With a high degree of modularisation,

neighbourhoods can be added and taken away easily, any local search technique

can be used and the method of move acceptance altered. Basic VNS also has

a large number of potential improvements, which, whilst adding more parame-

ters can be used to improve performance. The one notable disadvantage to my

VNS implementation so far is the time taken on large problems which can be as

159

much as 90 minutes for a single run. Whilst run time is less crucial for exam

timetabling than many other combinatorial optimisation problems, since exams

are generally only taken a few times a year with a fair degree of planning time,

it is still an area which needs improvement.

When considered in the context of our case based reasoning meta-heuristic

selector, VNS currently only gives a best known solution to one benchmark prob-

lem and thus would not be selected by aperfectCBR system for use on a new

problem similar to any of the other data sets if all other reported techniques were

also implemented. However, as the second best technique on all other data sets,

it provides a clear benchmark against which to measure the performance of a

CBR meta-heuristic selector. In Chapter 8, I propose another variant of VNS,

utilising a genetic algorithm to intelligently select the neighbourhoods for use

with VNS from an increased selection. This technique is specially designed to

work with our CBR system and yields still better results than those presented in

this chapter.

160

Chapter 8

Combining a Genetic Algorithm

with VNS to improve solution

quality

In Chapter 7, I presented a variable neighbourhood search approach to exam

timetabling together with a number of variations, some of which were success-

fully implemented to improve the performance of the technique. In this chapter,

I investigate another of those variations which has particular importance to com-

bining my work on VNS with the wider case based reasoning project of which

this thesis is a part. The main focus of VNS is of course on the neighbourhoods

with the ability for the search to pick solutions out of a variety of neighbourhoods

giving it a high degree of flexibility. In Chapter 7 I considered initially just eight

neighbourhoods with a further two added for the Biased VNS technique. Here

I increase that number to 23 neighbourhoods with the potential for many more.

In order to make this viable I introduce a genetic algorithm based technique for

intelligently selecting neighbourhoods for a given problem and show how this

can be built into our CBR system.

161

8.1 Combining VNS with CBR - the requirements

The results presented in Chapter 7 show that the VNS approach presented is

highly successful when applied to the 11 benchmark problems tested on, pro-

ducing one best known solution and producing the second best solution amongst

all techniques considered on the other 10 problems. For the purposes of creating

a general technique to apply to exam timetabling, VNS is clearly a success, with

a number of further improvements to the technique possible. However, for the

purposes of our project, the CBR system is element which provides the gener-

ality across a range of problems with the techniques contained within the case

base being more specific to certain sets of problems. For instance, if all the tech-

niques included in table 7.3 were part of aperfectCBR system, the great deluge

approach of Burke & Newall [30] would be selected as the best technique for the

CAR-S-91, CAR-F-92, TRE-S-92 and UTA-S-92 problems whilst the technique

of Caramia et al [40] would be selected as the best for five of the 11 problems

and VNS for just the KFU-S-93 problem.

Of course, we do not have all the techniques from table 7.3, although many

could be implemented for use within the system. However, this does highlight

one of the major research aspects of the CBR system: for it to be successful at

selecting from a range of meta-heuristics, we must implement many different

techniques, each of which is sufficiently distinguishable from the rest so that

we can say that a certain method works best on a set ofsimilar problems. For

this to be true, we ideally need to know not only which technique works best on

which problems, but also some indication ofwhythat technique is better on those

problems and why some other technique is better on a different set of problems.

In the case of many meta-heuristic techniques developed for exam timetabling, it

is very difficult to pinpointwhythe technique is successful. For instance, why is

the great deluge of Burke & Newall [30] successful on the three largest data sets,

162

but is noticeably outperformed by the technique of Caramia et al [40] on many

of the smaller data sets?

As discussed earlier in this thesis (see sections 1.2 & 7.1), distinguishing the

methods in the case base by their techniques (e.g. great deluge, simulated an-

nealing) is one way in which CBR could be used to select one of these to apply

to a new problem after a matching process, but this still leaves the rather impor-

tant question of parameters and neighbourhoods for use within these techniques.

Burke & Newall [12] focus solely on the parameter aspect of time pre-defined

great deluge and simulated annealing approaches in order to investigate the ef-

fective use of the time allowed for the algorithms, using the same neighbourhood

structure for both. They do however note that the utilisation of a more advanced

neighbourhood such as Kempe chains could produce better results. This would

imply that ideally all techniques used would have to be tested with numerous

neighbourhood structures to obtain the absolute best algorithm for each problem

in the case base.

An alternative to this would be to use a single algorithm type for the majority

(or the entirety) of the case base and tune this technique to the individual prob-

lems so that the CBR system would retrieve this technique with the parameters

and neighbourhood used for the matched problem when a new problem is given

to the system. Given the results presented in Chapter 7 and the possibilities for

easily extending and altering the VNS method in many different ways, this tech-

nique seemed like a very good one to use for such a purpose. In order to do

this however, it would need to be shown that VNS is capable of competing to

obtain best known results on more than just a single benchmark problem. If it

can be shown that different variations of VNS work well on different problems,

this can be neatly combined with CBR to select a variation of VNS to apply to a

new problem rather than a type of meta-heuristic. This would also eliminate the

need to implement a wide variety of techniques. Instead the focus would be on

163

implementing a range of neighbourhoods, some of which will be more suited to

certain problems than others.

In this chapter I present a genetic algorithm (GA) approach to intelligently

selecting a subset of neighbourhoods to use within VNS for a given problem.

The idea of using a GA at a higher level of abstraction rather than being applied

directly to the problem itself has been successfully implemented by Terashima

et al [100] to evolve the configuration of constraint satisfaction methods as dis-

cussed in section 2.2.1 while Ross et al [98] also comment that GAs may be

better suited to searching for good algorithms rather than acting on the prob-

lem itself. Han et al [52, 63, 64, 65] successfully utilise a GA within a hyper-

heuristic framework to evolve an ordering of low-level heuristics applied to the

trainer scheduling problem. The key difference between the work presented here

and the work of Han et al is that in their hyper-heuristic framework, low-level

heuristics are being ordered by the GA to be applied sequentially to the prob-

lem, whereas in my implementation of VNS, all neighbourhoods used within the

technique are searched, but a move is only made within a given neighbourhood

if it fulfils the criteria for move acceptance.

8.2 The GA technique for neighbourhood selection

The implementation presented in this chapter uses a GA (referred to hereafter

as VNS-GA) to evolve a subset of neighbourhoods from a large pool for use

within the VNS framework on the 11 benchmark problems considered through-

out this thesis, with further possibilities for extension also considered. A very

simple chromosome representation is used with fixed length equal to the total

number of neighbourhoods to select from. Each neighbourhood is represented

by a number, but their ordering is unimportant since the VNS method presented

in Chapter 7 cycles through all neighbourhoods, moving to the next when the

164

move selected from the current neighbourhood is not accepted rather than re-

turning to the first neighbourhood whenever a move is accepted. Neighbour-

hoods can be repeated within the chromosome representation, but duplicates are

removed when the chromosome is translated to the actual set of neighbourhoods

to be used within VNS. This essentially means that repeat neighbourhoods in a

chromosome represent the loss of a neighbourhood from the set, thus creating

many possible distinct subsets of the full neighbourhood set. A chromosome in

which all elements are the same would represent just that single neighbourhood

supplied to VNS.

Crossover and mutation operators are both implemented in a very simple

manner. A percentage of the population of each generation is chosen to produce

an equal number of offspring with the rest of the next generation being selected

directly from the chromosomes of the current generation. In my implementa-

tion, 70 per cent of the chromosomes are selected for crossover using a roulette

wheel style selection based on their fitness evaluation. Most of the 30 per cent

of chromosomes to survive to the next generation are also selected using the

same roulette wheel method. The probability,P (xi), of a chromosomexi be-

ing selected from the populationXg of chromosomes in generationg is given in

equation 8.1 with the fitness function given in equation 8.2

P (xi) = fitness(xi)/(
∑
∀xj∈Xg

fitness(xj)) (8.1)

fitness(xi) = max{(max
∀xj∈X1

{V NS(xj)} × f)− V NS(xi), 0} (8.2)

wheref is the fitness modifier, in my experiments ranging between 1.01 and

1.05. A lower value causes the better chromosomes to have a much larger chance

of roulette wheel selection than the worse chromosomes, whereas a higher value

165

gives worse chromosomes a better chance of being selected by making the differ-

ence between fitness values of the best and worse chromosomes relatively much

smaller. The fitness normalising value is taken from the worst chromosome of

the first generation in order to retain consistency throughout the generations.

Any chromosomes in future generations whose VNS evaluation is greater than

the normalised value will have a zero per cent chance of selection, although due

to the consistency of the VNS algorithm, this is rarely the case.V NS(xj) gives

the result of applying the VNS algorithm with the neighbourhoods specified by

chromosomexj. If more than one VNS run per chromosome is used then this

value can be either the average or best across the runs for a given chromosome.

A standard one-point crossover technique is used to produce the twooff-

springfrom the two selectedparentswith the crossover point selected randomly.

Figure 8.1 shows an example of the crossover procedure for chromosomes of

length 8 with the crossover point indicated by the dashed line. Child 1 takes the

front portion of the chromosome from Parent 1 and the back portion from Parent

2 and Child 2 the opposite. Since multiple copies of a neighbourhood are per-

mitted in this representation there is no need to perform any repair operator after

the crossover as all chromosomes are equally feasible. The interpretation of each

chromosome as a set of neighbourhoods is given to the right of figure 8.1.

The mutation operator acts after selection and crossover, changing an element

(gene) of a chromosome to a random neighbourhood with a given probability

which can be increased or decreased to alter the random element of the evolution.

The basic steps of the VNS-GA procedure are given in figure 8.2.

As discussed earlier, the fitness calculation in Step 1 of figure 8.2 can be

calculated either from the average result or the best result across the runs of

VNS if v > 1. In the experiments reported in this chapter, I always use the

best result. A variety of different methods are possible for generating the next

population using crossover and selection, for instances = n would cause all

166

Child 2 2 4 4 1 2 6 8 1

Child 1 1 5 3 3 5 1 5 7

Parent 2 2 4 4 3 5 1 5 7

Parent 1 1 5 3 1 2 6 8 1

Crossover point

- {1,2,4,6,8}

- {1,3,5,7}

- {1,2,3,4,5,7}

- {1,2,3,5,6,8}

Figure 8.1: The one-point crossover operator for chromosomes of length 8

members of the new population to be formed by one-point crossover between

two parents with no chromosomes carried through unchanged. Step 5 causes the

most promising chromosome from the last population to be carried through to

the new population automatically.

8.2.1 The neighbourhoods

For the experiments reported in this chapter, a total of 23 neighbourhoods were

used to select subsets from for each problem. The random Kempe chain move

neighbourhood and neighbourhoods 2-8 as detailed in section 7.3.1 are included

together with the two “biased” neighbourhoods to select the first exam of a

Kempe chain move based on the exam’s contribution to the current overall penalty.

To these were added 4 more Kempe chain move neighbourhoods, making from

two to five random Kempe chain moves as well as a further 8 biased Kempe chain

167

• Initialisation: Set the following parameters:

– Total number of generations,G

– Population size,n

– Number of runs of VNS per chromosome,v

– Number of members of the population selected as parents for
crossover,s

– Fitness modifier,f

– Mutation rate,m

The initial populationX of chromosomes(x1, . . . , xn) must also be cre-
ated, either at random or by including some selection method.

• Repeatfor G generations:

1. Calculate fitness of each chromosome inX usingv runs of VNS

2. Selects/2 pairs of chromosomes fromX using roulette wheel selec-
tion and a random crossover point for each pair

3. Perform crossover between alls/2 pairs of parents to produces chil-
dren,(c1, . . . , cs)

4. Selectn − s − 1 chromosomes,(cs+1, . . . , cn−1), from the current
population,X, using roulette wheel selection

5. Setcn to be the best chromosome from populationX

6. Perform mutation on all new chromosomes,(c1, . . . , cn) according to
the mutation rate,m

7. SetX = (c1, . . . , cn)

Figure 8.2: The steps of VNS-GA procedure

neighbourhoods, 4 for each method of biased selection again making from two to

five Kempe chain moves. The final neighbourhood included randomly permutes

the ordering of all timeslots. These neighbourhoods were numbered as follows

for the chromosome representation with ‘Type A’ representing the Kempe chain

move with first exam selected being the one which gives the highest penalty

from a random selection of 5% of the total exams and ‘Type B’ representing the

Kempe chain move with first exam selected at random from the 20% giving the

highest penalty:

168

1. Single random Kempe chain move

2. Swap two exams

3. Move two exams at random

4. Make two random Kempe chain moves

5. Move three exams at random

6. Make three random Kempe chain moves

7. Move four exams at random

8. Make four random Kempe chain moves

9. Move five exams at random

10. Make five random Kempe chain moves

11. Make one selective Kempe chain move (Type A)

12. Make one selective Kempe chain move (Type B)

13. Make two selective Kempe chain moves (Type A)

14. Make two selective Kempe chain moves (Type B)

15. Make three selective Kempe chain moves (Type A)

16. Make three selective Kempe chain moves (Type B)

17. Make four selective Kempe chain moves (Type A)

18. Make four selective Kempe chain moves (Type B)

19. Make five selective Kempe chain moves (Type A)

20. Make five selective Kempe chain moves (Type B)

169

21. Move a whole time slot

22. Swap time slots

23. Randomise time slots

8.3 Results

VNS-GA was tested on the 11 benchmark problems used throughout this thesis

with certain parameters varied between data sets. These parameters were those

which affect the time taken by the technique since my aim was to run VNS-

GA on all problems for a similar amount of time rather than for the exact same

number of runs of VNS. The total number of neighbourhood combinations eval-

uated1 by running VNS at step 1 of figure 8.2 is given byG × n × v with v of

course determining how many times the same neighbourhood set is tested for a

given chromosome.

In order to run all problems for roughly the same amount of time, I calculated

an approximation of the time taken for a single VNS run to give a value for

G×n× v for the given amount of time. This was very approximate as run times

can vary greatly for a single problem, but it was not important that all problems

had exactly the same time since their results are not being compared against each

other. For the larger data sets,v was always set to 1, withG andn either balanced

equally or in a 2:1 or 1:2 ratio. Mutation rates of 0.002 (0.2%) and 0.01 (1%)

were both tested with fitness multiplier,f , set at either 1.01 or 1.05.

The main aim of this work is to discover the potential performance of the

VNS algorithm under favourable conditions (selected neighbourhoods) rather

than to evaluate the GA itself. For this reason, I deliberately chose not to care-

fully tune the many GA parameters for my experiments. Instead I simply selected
1including multiple evaluations of the same neighbourhood set

170

a few sets of values which looked to give a balanced setup to run my experiments.

If the method is to be used by exam timetablers who may not be experts in ge-

netic algorithms, it is important to examine the performance with a set of default

parameters rather than after careful tuning. The experiments reported here are

based on a variety of different parameters, but these were nottuned, just selected

in advance with no knowledge of how any would perform. The version of VNS

used is the descent-ascent Biased VNS with the LD heuristic with randomisation

used to give an initial solution as this proved to be the best combination overall

from Chapter 7. The greedy initialisation heuristic was not used here as it is less

reliable at finding feasible initial solutions and gives a lower diversity of solution.

In section 8.3.1 I will discuss future work aimed at improving the perfor-

mance of the GA itself, but here the focus is on the performance of the VNS

technique with different neighbourhoods in order to show that results can be

improved by selecting subsets of the large set of neighbourhoods which may

be more suitable to a problem so that more time can be spent searching these

neighbourhoods rather than those which are not contributing. From the results

obtained in these experiments, it should be possible to determine how effective

this technique is so that the GA itself can then be more carefully considered to

improve performance even further.

Table 8.1 gives the best results found by the VNS-GA algorithm on each data

set and gives a comparison with the previous best result from the VNS variations

presented in Chapter 7 and the best known solutions reported in table 2.3. The

neighbourhoods which were used to produce the best solutions are also given.

It can easily be seen that the VNS-GA method improves on the performance

of the descent-ascent Biased VNS with the 10 neighbourhoods used previously.

Experiments were also carried out using the full set of 23 neighbourhoods with

VNS for all problems. In all cases these results were at least as good as the

previous best results with the 10 neighbourhoods, but were not as good as the

171

Data Best Previous Best Neighbourhood
Set Reported Best VNS VNS-GA Subset For

Solution Solution Solution Best Solution
CAR-S-91 4.6 4.9 4.6 {1,4-8,11-13,16,17,19-23}
CAR-F-92 4.0 4.1 3.9 {1,3-6,8-11,13-17,19-23}
EAR-F-83 29.3 33.1 32.8 {1,3,4,7,11,13-15,17,21-23}
HEC-S-92 9.2 10.3 10.0 {1-4,6,8,10-12,14,16,17,19-22}
KFU-S-93 13.5 13.2 13.0 {2,4,6,8-10,12-15,17-20,22}
LSE-F-91 9.6 10.4 10.0 {2,3,5-8,10,13,15-17,19,20,22,23}
STA-F-83 134.9 156.9 156.9 Many
TRE-S-92 8.0 8.3 7.9 {2,4,7-12,15,19,21-23}
UTA-S-92 3.2 3.3 3.2 {1-9,13,18-22}
UTE-S-92 24.4 24.9 24.8 {1-3,5-10,13-17,19,20,22,23}
YOR-F-83 36.2 36.3 34.9 {1,5,6,9,10,12-14,16,17,19,21,22}

Table 8.1: Best results obtained from the VNS-GA algorithm with neighbour-
hoods given

results from the VNS-GA. This indicates that some (or all) of the additional

13 neighbourhoods are adding something useful to the ability of VNS, but that

selecting a subset of these 23 to focus more on gives still better results.

In order to test whether the neighbourhoods which provided the best solutions

given in table 8.1 are consistently better than using all 23 neighbourhoods or

whether they just happened to be the neighbourhoods which were being used

in VNS when the random element of the algorithm output that best result, I

carried out a further series of tests. In the VNS-GA, in most cases a set of

neighbourhoods was only tested for use within VNS a single time (v = 1) with

HEC-S-92 and UTE-S-92 being the only problems for whichv > 1 was tested.

Table 8.2 shows the results of running VNS 100 times with the neighbourhood

sets suggested from my previous results. Results are compared to those produced

by 100 runs of VNS with the full set of 23 neighbourhoods. Average run times

for the technique are also given in both cases with experiments carried out on a

P4 1.8 GHz Athlon PC.

Results from table 8.2 are fairly inconclusive with regard to the merits of us-

ing selected neighbourhoods rather than just using all 23. Using selected neigh-

172

Data VNS with all VNS with selected
Set neighbourhoods neighbourhoods

Best Average Time (s) Best Average Time (s)
CAR-S-91 4.7 4.9 2751 4.6 4.9 3084
CAR-F-92 4.0 4.2 1605 3.9 4.1 1686
EAR-F-83 32.9 34.2 175 32.8 34.1 162
HEC-S-92 10.2 10.6 28 10.0 10.6 28
KFU-S-93 13.2 13.6 633 13.0 13.4 673
LSE-F-91 10.1 10.6 359 10.0 10.8 345
TRE-S-92 8.3 8.4 244 7.9 8.2 218
UTA-S-92 3.3 3.4 2358 3.2 3.4 2040
UTE-S-92 24.9 25.1 67 24.8 25.0 73
YOR-F-83 35.2 36.4 124 34.9 36.6 126

Table 8.2: Results from VNS comparing all neighbourhoods with the ‘best’ sub-
set of neighbourhoods

bourhoods, the average result across 100 runs is better in five of the problems

whilst using all 23 neighbourhoods provides a better average for two of the

problems. In all cases the difference between the two sets of results is small.

The STA-F-83 data set was excluded from further experiments because the best

solution found by VNS is always 156.86 irrespective of the technique or neigh-

bourhood selection and this solution is found regularly across 100 runs. Further

analysis would be needed to investigate the reasons for this strange behaviour,

but for the purposes of this research, VNS produces a competitive result on the

data set with any selection of neighbourhoods.

8.3.1 Notes on Results

There are a number of points of note from the results presented in tables 8.1

& 8.2 together with the raw data produced by the experiments. It is clear that the

VNS-GA is capable of producing the best results of all the VNS variants tested

on all problems, although on many problems the difference between this method

and supplying the VNS algorithm with all 23 neighbourhoods is relatively small.

Also the use of selected neighbourhoods with the same stopping criteria, based

on the number of iterations without improvement, gives no advantage in terms of

173

the time taken by the algorithm to find solutions. However, it is the case that the

selected neighbourhoods presented in table 8.1 allowed VNS to obtain the best

results whereas no other combination of neighbourhoods is proven to be able

to produce results of that quality. That said, due to the very random nature of

the way VNS works, selecting moves at random (or with some element of bias)

from each neighbourhood in turn and bringing the resulting solution to a local

minimum, it is unrealistic to say that any combination of neighbourhoods will

categorically outperform every other set.

A major aim of this work was to show that VNS can provide highly competi-

tive results in the right circumstances and the results shown prove that this is the

case, irrespective of whether the GA was successful at selecting neighbourhoods

or not. Having proved that VNS is capable of such high quality results, the next

step is to give VNS the best chance of repeating that quality of results on a con-

sistent basis. Comparing the average results from table 8.2 with the best results

reported in the literature (table 2.3) confirms that even the average performance

over 100 runs of VNS can outperform the best results of a number of specially

designed meta-heuristic techniques.

As regards the effectiveness of the GA for selecting neighbourhoods, clearly

more research will need to be carried out to determine whether the method is

successful at evolving the ‘best’ subsets of neighbourhoods for a given problem,

but results from the relatively untuned GA presented here give a lot of promise.

One obvious drawback of the method compared to a more conventional GA is

that the fitness function is calculated using VNS which involves a very high

random element meaning that the same chromosome will be evaluated with a

different fitness every time, unlike a standard GA fitness function which returns

the same fitness for identical chromosomes. This can be significantly improved

by increasing the value ofv to 10 or more and using the average VNS result

across thev runs to calculate chromosome fitness from. This would also allow

174

the GA toevolvethe neighbourhoods more obviously than it does currently.

In the current GA implementation, withv = 1, the total fitness of each suc-

cessive generation is very varied for most problems with only the larger data

sets tested showing an obvious initial evolution. This is largely because of this

variable fitness calculation causing a chromosome which may have been given

a high fitness in one generation to have a relatively low fitness in the next gen-

eration. The higher the value ofv, the more similar the fitness evaluation will

be for two identical chromosomes meaning that when the fitter chromosomes

are selected they represent sets of neighbourhoods which consistently give high

quality results rather than just being able to produce a single good result. Fur-

ther tuning of the other parameters of the GA, especially the population size,

fitness multiplier and the mutation rate could also significantly improve the con-

sistency of its performance. Combined with increasing the number of VNS runs

per chromosome,v, tuning the fitness multiplier will give a much more con-

sistent selection of the best chromosomes resulting in a convergence of the GA

to a set of neighbourhoods which should be capable of giving highly consistent

performance both in terms of best and average results.

My implementation contains just 23 neighbourhoods, many of which are very

similar in terms of what they do. It is possible however to implement a huge vari-

ety of far more complex neighbourhoods which can easily be added into VNS to

give a much larger pool of neighbourhoods. Some of these could be specifically

designed with particular problems in mind. My work in Chapters 4-6 of this the-

sis was largely concerned with studying the features of 11 benchmark datasets

and their behaviour when optimised using simulated annealing. Whilst that re-

search was mostly aimed at defining a similarity measure, it can also be of use in

developing new neighbourhoods for use in VNS. The more that is known about

the structure of a given problem, the easier it may be to develop a neighbourhood

specifically for that problem which takes into account its main features and how

175

they affect the search process.

In this way, the similarity measure we develop for comparing exam timetabling

problems with the aim of retrieving a suitable technique to solve a new problem

is more likely to be accurate. Without knowledge of exactly which problem fea-

tures cause what behaviour in an algorithm, the theory behind our CBR system

becomes less certain. It may be the case that two problems are matched as simi-

lar, but that the key features which cause a given technique to be successful on the

first problem are not actually similar in the second problem whilst features which

are less important to the performance of the technique in question are similar. If

VNS is used with a set of problem specific neighbourhoods, or to be more pre-

cise, problem-feature specific neighbourhoods as well as a group of more general

neighbourhoods, there is a much higher degree of certainty that VNS with those

problem-feature specific neighbourhoods will successfully solve two problems

which are similar based on that feature. Of course, developing neighbourhoods

that can specifically combat certain difficult problem areas is not necessarily pos-

sible, but the ability to incorporate as many neighbourhoods as the user likes into

VNS does make it highly versatile. In section 8.4 I consider how this VNS-GA

implementation can be combined with CBR for our meta-heuristic selector.

8.4 Combining VNS-GA with CBR

One of the major reasons for investigating the intelligent selection of neighbour-

hoods for specific problems was to be able to use VNS as the major technique

within our case based reasoning meta-heuristic selector. Rather than match two

problems for similarity and retrieve thetechniqueused for the problem in the

case base to apply to the new problem, the CBR system would retrieve VNS au-

tomatically and use the set(s) of neighbourhoods stored with the problem in the

case base to apply to the new problem. This would eliminate the need to include a

176

large variety of techniques within the case base whilst also considering variations

of those techniques and which neighbourhood structure to use within a single-

neighbourhood search algorithm. As discussed in section 7.5, a pre-requisite for

this was to improve the performance of VNS so that it could produce best known

solutions for more problems and be as competitive as possible on other problems.

The results presented in this chapter indicate that VNS is capable of produc-

ing (or matching) best known solutions for a number of benchmark data sets and

providing results on others which are very close to the best known. These re-

sults come from selecting thebestsubset of neighbourhoods for the individual

problem resulting in different sets of neighbourhoods being used for each of the

problems considered. From a CBR perspective this is exactly what is required,

especially if the improvements to the GA suggested in section 8.3.1 are capable

of improving its performance and consistency.

To further improve the chances of the CBR system retrieving a successful

set of neighbourhoods to apply with a new problem, the best 5 or 10 subsets

of neighbourhoods for each problem in the case-base can be stored giving the

user a choice of neighbourhood sets to use if the performance of the first set

retrieved is unsatisfactory. Since no single set of neighbourhoods can be proved

to outperform all others on a given problem, this should result in 5 or 10 very

competitive subsets of neighbourhoods being stored for all problems so that the

chances of retrieving a set which will perform successfully on a new problem are

very high, provided our similarity measure can successfully identify a matching

problem.

Given the results in table 8.2, it is not obvious that running VNS with spe-

cially selected neighbourhoods will give noticeably better performance than just

using all neighbourhoods with VNS rather than use the CBR system at all. How-

ever, with the addition of more and more neighbourhoods and the suggested

improvements to the GA, I believe that the consistency of the system can be im-

177

proved to a level at which VNS with intelligently selected neighbourhoods can

consistently outperform VNS with all known neighbourhoods.

The main advantage the CBR system would have over a user just applying the

VNS-GA directly to their new problem is that it can save a lot of time. Applying

VNS-GA directly to a new problem is likely to give a higher quality result than

applying VNS with the neighbourhoods suggested by CBR from some similar

problem, but on large problems it can take of the order of weeks to successfully

run the GA, especially with high values ofv which is essentially a straight time

multiplier - increasingv from 1 to 10 will cause the algorithm to take 10 times as

long to complete its evolution. This means that for a real life problem where the

user may have only two weeks to find a solution, there is not sufficient time to

fully utilise the VNS-GA directly on the problem. Retrieving an already evolved

good set of neighbourhoods from the case base means that more time can be

spent finding a good solution using those neighbourhoods as oppose to evolving

them.

Since the exam timetabling problem only needs to be solved two or three

times per year at most institutions there is a large amount of time between

timetabling sessions during which very little can be done since the problem is

not yet fully known. The big advantage of the CBR system is that the VNS-GA

algorithm can be working in the background during all this time that the sys-

tem is not needed, to evolve the best sets of neighbourhoods for the problems

in its case base. Therefore, whilst a user may only have two weeks to find a

solution to their actual problem, the VNS-GA can spend 20-30 weeks evolving

neighbourhoods to problems in the case base. Therefore when the new problem

is presented to the system, there has already been a large amount of time spent

evolving neighbourhoods for a problemsimilar to the new problem. Clearly the

results would potentially not be as good as spending 20 weeks applying VNS-

GA to the new problem itself, but since that is totally un-viable, the ability to

178

still use that 20 weeks in which an exam timetabling system would otherwise be

fairly dormant to improve the system’s knowledge is a big advantage.

The GA representation proposed here can also be extended to select from

the many variants of VNS proposed in section 7.3.2 since many of these can be

added or subtracted in a component manner.

8.4.1 More complex timetabling problems

Throughout this thesis I have focused my research on the same set of benchmark

problems which have only a single soft constraint - that of spreading clashing ex-

ams around the timetable. Of course, real world timetabling problems will have

a variety of other constraints, both hard and soft, applied to them and our CBR

system will need to be able to handle those if it is to be at its most useful. Some

of the most common side constraints applied to real world exam timetabling

problems are given in section 1.1.2 and by Carter & Laporte [43]. One of my

main motivations in investigating VNS rather than other local search techniques

for this project was that its component nature makes it easy to add in new neigh-

bourhoods and many of these can be specifically designed to deal with a variety

of side constraints which would be less easy to incorporate into a more standard

single neighbourhood trajectory search technique.

Resource constraints

The most important hard constraint after the one considered throughout this pa-

per of conflicting exams not clashing is that there must be sufficient rooms and

other resources available for each period for all exams scheduled during that

period. A number of algorithms exist for assigning exams to rooms, either as

part of an optimisation technique or separate. Other resource constraints can be

considered similarly to rooms.

179

For the work presented in this thesis, I have used a largest degree construction

technique to produce initial feasible results for local search techniques which

then search only the feasible search space. For an initial solution to be fed to

VNS, it is less important that this should be feasible with respect to room ca-

pacities since new neighbourhoods can easily be added to VNS specifically to

move exams between rooms or to assign or un-assign an exam to a given room.

Equally, it could be specified that the initial solution must be feasible with re-

spect to the room constraint also and VNS will never move an exam to a period

without sufficient seating capacity. The latter technique may be better for prob-

lems which are very highly constrained with respect to room capacities, but the

former provides a much more flexible approach and VNS should be capable of

finding feasible solutions on less highly constrained problems with respect to ca-

pacity. Allowing infeasible solutions with respect to room capacities during the

search also means that every Kempe chain move remains feasible, whereas oth-

erwise many of these will become infeasible losing one of the major advantages

of the neighbourhood.

Certain problems include constraints that two exams cannot take place in the

same room or that an exam should not be split across rooms. Both these con-

straints can be dealt with in the same way as the standard capacity constraint in

terms of whether an exam is allowed to be moved to a given timeslot or not if no

room is available. Again, if this constraint causes the problem to be highly con-

strained with respect to room capacities, it is desirable that the initial solution is

feasible with respect to this constraint so that VNS will never enter the infeasible

search space. Otherwise, the neighbourhoods should be capable of moving ex-

ams around in order to obtain feasible solutions whilst also searching the space

of infeasible solutions with respect to this constraint. Also, it is generally un-

desirable to have exams of different lengths in the same room. Considered as

a soft constraint this can be incorporated into the room assignment/swap neigh-

180

bourhoods.

Time constraints between events

Exams which have precedence constraints or which must be scheduled at the

same time as each other or in consecutive time slots can be simply dealt with by

enforcing these priorities during initial solution construction after which VNS

would regard moves which violate these constraints as infeasible in the same

way as the clashing constraint. For a standard local search technique, this re-

duction in the feasible search space can result in problems with the search space

potentially becoming very disconnected, the more infeasible solutions there are,

especially since these techniques conduct their search along a trajectory. VNS

however is not confined to either a single neighbourhood definition or a trajec-

tory based search therefore provided sufficient neighbourhoods are included, the

search should still potentially be able to reach most, if not all areas of the search

space. In this case, the problem specific selection of neighbourhoods by the GA

can become very important if the user does not wish to include every possible

neighbourhood considered.

If these constraints are included as soft constraints they can be incorporated

into the objective function meaning that only problems with an equivalent ob-

jective function within the case base can be retrieved as a match. The VNS

algorithm can then be applied as normal with the addition of specific neighbour-

hoods which can move a given pair of exams together, for example a pair of

Kempe chain moves initiated by the two exams in question so that they are both

guaranteed to be scheduled as required with respect to each other.

Time windows and pre-assignments

Many institutions include time window constraints or desire specific exams to be

scheduled at a certain time. These constraints can be either hard or soft depend-

181

ing on the institution and would be dealt with differently depending which is the

case. If they are present as hard constraints, pre-assignments can be scheduled

before all other exams in the initial solution construction and then forbidden to

be moved throughout the rest of the search. Similarly, exams with time win-

dow constraints can have these enforced in the initial solution also. As above,

this would cause the Kempe chain neighbourhoods to lose their property that all

moves within the neighbourhood are feasible.

Alternatively, new neighbourhoods can be introduced which specifically tar-

get the exams with time window constraints to move these around the timetable,

either allowing temporary infeasibility during the search or in order to repair an

infeasible initial solution. If time windows are present as soft constraints, these

neighbourhoods would become much more influential allowing the algorithm to

focus regularly on those exams involved in time window constraints. Similarly,

if pre-assignments are only soft constraints, a special neighbourhood can be in-

cluded which simply moves the exam in question to its favoured timeslot every

time it is called to check if in doing so the objective function improves. Moves

which involve taking the exam out of its favoured timeslot could then be consid-

ered in the standard way and accepted only if they meet the acceptance criteria -

the inclusion of the above mentioned neighbourhood would increase the chances

of the exam being moved back to its favoured slot later in the search.

A similar constraint may be placed on large exams, albeit less restricted.

It is often desired that large exams are scheduled towards the beginning of the

timetable, but with no specified time window as to the latest allowed slot. Again,

in this case a number of neighbourhoods can be included which specifically tar-

get these large exams, attempting to move them closer to the beginning of the

timetable. With a technique such as simulated annealing, this would likely have

to be incorporated by specifically targeting the large exams at certain intervals

of the search and either just using the single neighbourhood used throughout the

182

SA algorithm or some other more complicated method whereas VNS can easily

include numerous neighbourhoods which target these large exams to move in

different ways together with standard neighbourhoods.

Constraints on students

Constraints may exist on the students themselves rather than on the exams. For

instance, a variation of the soft constraint considered within this thesis to spread

exams around the timetable based on a given set of proximity penalties is that

no student should takex exams withiny periods. To incorporate this constraint,

it is required to keep track of all individual student enrolments rather than just

the conflict matrix, but from the point of view of the optimisation technique

this constraint is very similar to that of spreading exams if it is included as a

soft constraint. If violations of this constraint are recorded, neighbourhoods can

be included to target the exams of a specific student. As with the examples of

constraint specific neighbourhoods considered above, these would be included

together with more standard neighbourhoods which consider the larger picture

so that the focus is not entirely on specific students.

If there are part time students taking a particular course, they may be re-

stricted to only being available in evening or weekend periods. This constraint

can be considered in an identical way to the constraint on exams not being al-

lowed to be in certain periods. Neighbourhoods targeting these exams would

automatically only consider their pre-defined feasible periods.

8.5 Conclusions

In this chapter I have presented a genetic algorithm to intelligently select a sub-

set of neighbourhoods to use within VNS for a given problem. A set of 23

neighbourhoods was considered, but this can be increased by adding many more

183

diverse neighbourhoods which may be much more suited to certain problems

than others. The neighbourhoods so far considered are much more general rather

than targeted at specific problem areas. As a result of this and the GA not having

been carefully tuned (a deliberate effect), the results of the VNS-GA compared

to VNS applied with all 23 neighbourhoods are not as impressive as they perhaps

could be, but still yield very high quality results.

Best known solutions compared to those published at the time of writing have

been found to four benchmark data sets with solutions equal to the best known

found for two more data sets. Results on a further five problems are also highly

competitive with state of the art techniques, indicating that the proposed VNS

method is capable of producing high quality solutions even better than those

presented in Chapter 7 under the right conditions. Those conditions involve the

evolution of a set of neighbourhoods which can provide better solutions than

simply including all implemented neighbourhoods within VNS.

A number of methods for improving the performance of the GA with partic-

ular focus on its consistency have been proposed. Most notable amongst these is

to run VNS 10 or more times for each chromosome to take an average result for

the fitness function rather than a single run. This should result in a much better

evolution of neighbourhoods, but at the cost of significantly increased running

time. The proposed conjunction with our CBR system alleviates the problem of

running time however by allowing the GA to evolve the best sets of neighbour-

hoods for problems within the case base whilst the system would otherwise not

be being used. This implementation would simplify the case base by including

one dominant technique for which neighbourhoods are selected by the matching

process rather than incorporating many techniques which would all have to be

tuned for individual problems.

Methods for dealing with the additional side constraints which are often in-

cluded in real world problems were also discussed, showing that the VNS tech-

184

nique is highly versatile compared to many local search techniques. This is due

to its ability to deal with additional side constraints in a largely modular manner

by adding new neighbourhoods since the high level VNS method does not need

problem specific knowledge itself, only the knowledge it receives from the set of

neighbourhoods with respect to their effect on the objective function.

185

Chapter 9

Conclusions and Future Work

This thesis has investigated some of the key areas relating to the development

of a case based reasoning (CBR) meta-heuristic selector for exam timetabling

problems. Contributing to a wider project, the work in this thesis concentrates

on the low level aspects of a CBR system concerning the domain specific ele-

ments. Amongst these, one of the most important aspects is howsimilarity can

be measured between two exam timetabling problems in such a way that a meta-

heuristic used successfully to solve one will also successfully solve the other.

Involved in this was a study of the structure of a number of benchmark data

sets to examine how the definition of certain features must be carefully consid-

ered before they are used to measure similarity (Chapter 4) and a study of how

these same data sets behaved when optimised, comparing two different objective

functions and two different initialisations (Chapter 5). This work led into a more

detailed quantitative analysis of many of the features of exam timetabling data

sets (Chapter 6) to select which features should be fed into a knowledge discov-

ery process to determine exactly which smaller set of features would be used to

measure similarity.

Another important aspect considered in this thesis was the meta-heuristic

techniques themselves and the issues which need to be resolved in order for the

186

CBR theory to hold for the system. A detailed study of current state of the art

techniques, both meta-heuristic and other methods was carried out (Chapter 2)

to give a good knowledge of which techniques are most successful. It was con-

sidered that two major factors had the largest impact on the success of a given

method, these being the type of technique itself and the neighbourhood used to

perform the local search. With inconclusive results aboutwhycertain techniques

outperformed others on some problems, but not on others, I decided to focus on

the neighbourhood rather than the technique as I felt this was the most important

factor.

With a potentially large number of different neighbourhoods which could be

used within local search for exam timetabling, I opted to implement a variable

neighbourhood search (VNS) capable of incorporating all these rather than hav-

ing to select a single one (Chapter 7). Results from the basic VNS showed that

the approach was successful across a range of problems, success which was fur-

ther increased by the addition of some variations. One of these variations which

provided highly successful results and was capable of a high level of generality

was the use of a genetic algorithm (GA) to select a subset of neighbourhoods,

most suitable to the individual problem, to use within VNS (Chapter 8).

9.1 Measuring Similarity for CBR

Probably the most important part of any CBR system is the measure of similarity

between two problems, without which the best case cannot be retrieved for re-

use with a new problem. For the project to which this thesis contributes, this

similarity measure must match two exam timetabling problems as beingsimilar

if the same meta-heuristic technique could be applied to both to give high quality

results. Ultimately, the set of features to be used within the system would be

decided by a knowledge discovery process which takes a set of problem features,

187

together with ratios between all pairs and aims to discover the feature vector1

from this set which gives the best performance for the CBR system. Before

this could take place however, it was required to study the features of exam

timetabling problems more carefully.

The investigation, reported in Chapter 4, of some of the most obvious fea-

tures which could be used showed that some of these could give a highly mis-

leading measure as to the similarity between two problems. Most obviously, it

was found that although the number of students in a problem is often reported

as a key feature to show the problem size and potential difficulty, it is a very

misleading statistic. Similarly the total number of enrolments was found to be a

very bad indicator of problem difficulty. This of course implied that any statistic

based on either of these could also not be used to measure similarity unless re-

dundancy in the problem definition could be stripped away. This led to a study

regarding which students in the problem definition are actually adding knowl-

edge and which are simply adding ‘noise’ to the problem definition. A key sub-

set of students, defining the conflict matrix, was identified as being important

for problems without capacity constraints, but even this set can be misleading if

used in a similarity measure.

In Chapter 5, I examined the effect on the success of a simulated anneal-

ing algorithm of changing the objective function slightly and of using different

initialisations for the technique. It was found that even with the same side con-

straints considered, a change in the objective function could lead to very different

behaviour of the optimisation algorithm. A data set which is optimised consis-

tently across a number of runs using one objective function was found to give

far less consistent results when optimised by SA using a different objective func-

tion, showing that whilst SA may be good on this problem with the first objective

function, it is less successful when the objectives are changed slightly. Similarly,
1set of features

188

the quality of initial solution was found to have an impact on how successful SA

was across the range of problems. Whilst some problems rely quite heavily on

a good initialisation, others were less reliant when using the same technique and

neighbourhood structure both times.

Due to the fact that knowledge discovery techniques are being used to deter-

mine the exact subset of features which will be used to for the similarity measure

within our CBR system I have been unable to give concrete conclusions in this

thesis as to which features are the most important. From the results presented

by Burke et al [37] using slightly different sets of features from those suggested

here, it is likely that the actual feature set found by the knowledge discovery

process will consist mostly of ratios, between two of the input features, which

may not otherwise have been considered as most important. Also, depending on

the number of features used, different sets features give best performance for the

system.

In Chapter 6, I gave an analysis of many of the features which are considered

to be most important in the definition of an exam timetabling problem. Together

with some of the features tested in [37], I considered the importance of a number

of more complex features such as an analysis of clique structures and the fluidity

of the exams within the problem. Clique analysis may be difficult to calculate

for a new problem given to the system to be solved, but since it is an important

structural aspect I considered it important to include. Ultimately the knowledge

discovery process will select from the set of features proposed, and all ratios of

their pairs, which give the best performance for the CBR system.

9.2 Developing the meta-heuristic technique(s)

After the definition of a similarity measure, one of the most important parts of

a CBR system is the set of cases which form the knowledge of the system. For

189

this project, each case would consist of a set of feature-value pairs defining the

problem, as detailed by the similarity measure together with the meta-heuristic

technique(s) which gives best results on the problem and an indication of how

successful the technique was. In this thesis I restrict my experiments to a set of

benchmark problems to which many techniques have been applied with differing

success. These provide enough variation in difficulty, whilst including the key

hard constraint of not scheduling clashing exams at the same time, that they can

be considered a good starting point to add in further problems.

I have discussed throughout this thesis the importance of two aspects of a lo-

cal search meta-heuristic, the technique itself and the neighbourhood used within

the search. Clearly both aspects are important. However, with a view to measur-

ing similarity between problems in order to select a technique to use, I considered

that there was not enough evidence in results presented in the literature to suggest

that two different methods (e.g. simulated annealing and great deluge in Burke

et al. [12]) using the same neighbourhood structure were sufficiently different

across a range of problems.

For the CBR assumption that the same technique will perform equally well

on two similar problems, we need to be able to more strongly distinguish between

two techniques and knowwhyone is successful on certain problems and not on

others. Results reported by Thompson & Dowsland [101, 103] indicated that the

neighbourhood used within the search could have a large impact on results, albeit

that one neighbourhood significantly outperformed another across all problems.

For this reason, I chose to focus on developing a variable neighbourhood search

(VNS) technique to utilise a potentially large number of neighbourhoods.

In Chapter 7, I introduced the VNS technique together with the initial set

of neighbourhoods developed and a description of some of the large number of

variations which can be applied. Results presented indicated that the basic VNS

method without any variations produced high quality results across the full range

190

of data sets tested and that adding some variations could improve the results still

further to produce one best known result and competitive results on all other

problems. This showed clearly that focusing on the neighbourhood structure

rather than the technique used with a single neighbourhood can yield a much

more general technique.

In order to combine VNS with CBR, I developed a GA to select, from a larger

set of neighbourhoods, the best subset to apply within VNS for each problem.

The results were reported in Chapter 8 and showed that the proposed method is

capable of finding very high quality solutions, with six best known solutions2 out

of 11 benchmark problems and very close results on four others. The VNS-GA

technique can be combined with a CBR framework to select a set of neighbour-

hoods to use with VNS for a new problem now rather than to select a type of

meta-heuristic. This has many advantages, meaning that we do not have to test a

large number of meta-heuristics with all neighbourhoods and sets of parameters

to find the best for each problem in the case base.

I also reported that results when using all 23 neighbourhoods considered were

also very competitive so that improvements would need to be made to the GA

so that evolution of problem-specific neighbourhoods could more obviously out-

perform VNS using all neighbourhoods. The proposed VNS-GA does however

allow a user to add as many new neighbourhoods as they like, which can be very

problem specific to deal with specific constraints, allowing the VNS-GA to de-

termine the best subset(s) of neighbourhoods to store with each problem in the

case base. With more problem-specific neighbourhoods, the similarity measure

and CBR theory of similar problems being solved using a similar technique is

much more solid. A discussion of how new neighbourhoods can be incorporated

into VNS to deal with additional side constraints not covered in this paper was

also given, showing the versatility of the technique.
2Four absolute best known solutions and two equal to the best reported so far

191

9.3 Future Work

An ambitious project such as this in the area of combinatorial optimisation will

always have a number of potential improvements which can be made and some

of those are detailed here.

The knowledge discovery process to discover the best set of features from

those proposed in Chapter 6 is ongoing and further features may be considered

as this progresses. Much of the discussion of cliques in section 6.2.8 centred

around features which are difficult to calculate, indeed finding the largest clique

of a graph is itself an NP-hard problem. As such, further research needs to

be carried out to decide which features of cliques can sensibly be used for a

similarity measure and which are more likely to be misleading or add no useful

information. Similarly, the issue of side constraints and the objective function

discussed in section 6.2.9 can be combined with the suggestions in section 8.4.1

to expand the case base to include a much wider range of side constraints on

problems. There are still a relatively limited number of publicly available data

sets on exam timetabling, but there are some which include these additional side

constraints and more can be developed.

Much of the potential future work resulting from this thesis concerns the

further development of the VNS technique both in terms of its performance on

benchmark problems and its ability to deal with a much wider range of prob-

lems and combine even better with CBR. Basic VNS is a very simple technique,

as detailed in figure 7.1 and with a very component-based nature can be easily

modified at just about any step of the process. Some of these variations were

successfully tested and reported in Chapter 7 whilst others were suggested and

either not tested or tested, but without yielding any positive results. Those which

were not tested were largely because they would require much larger develop-

ment and running time than I had available. It is possible that these can improve

192

the performance of VNS further if studied in detail, for instance the VND varia-

tion which uses a variety of neighbourhoods during the local search part of VNS

has been found to be very successful in other domains, but would require careful

consideration since the current method is very fast and a large increase in running

time for the local search would be undesirable since it is called at every iteration

of the VNS.

Similarly, I tested the use of both great deluge and simulated annealing in

place of the simple steepest descent method for the local search, however both

resulted in vastly increased running time with no improvement in solution qual-

ity. Further research would need to be conducted to determine if either of these

techniques (or others) could be successfully incorporated without causing run-

ning times to be excessively long. Also suggested in section 7.3.2 was to in-

vestigate a variety of different initialisation strategies. In my work I tested just

two, but many other highly successful techniques exist for producing fast initial

solutions which could result in further improvement to VNS or a decrease in the

running time. The adaptive heuristic ordering technique of Burke & Newall [31]

in particular could provide a very good initialisation.

The most obvious further work which can be carried out within the VNS

framework is the development of yet more neighbourhoods since these are the

most important aspect of the method and its ability to vary the neighbourhood

is its biggest strong point. As discussed in section 8.4.1, when dealing with

more complex problems with additional side constraints, the VNS method can

really come into its own, with very specific neighbourhoods being developed

with particular side constraints in mind. Since the standard VNS method used in

this thesis selects a move from the neighbourhood at random, it is very simple to

implement new neighbourhoods to test without having to consider an exhaustive

search of the neighbourhood. The biased neighbourhoods so far implemented

were also deliberately chosen to be quick and easy to implement and run by

193

using a biased selection of exam to move rather than evaluating many moves to

select the best.

The addition of many more neighbourhoods should increase the importance

of the GA to intelligently select a subset of these for each problem. The proposed

GA technique works in the background of the CBR system when it is not in use,

to evolve the best subset of neighbourhoods for the problems in the case base.

This is an extremely flexible process which can run for as short or long a time

as required, with a longer time of course allowing a more thorough search and

better evolution of neighbourhoods. Using 10 or more runs of VNS to calculate

the fitness of each chromosome from the average result will increase the running

time ten-fold for the same population size and as such was infeasible for me to

test with any degree of thoroughness, but should significantly improve the ability

of the GA toevolvethe best set of neighbourhoods. Currently the GA searches

only slightly more well guided than a random walk would, but increasing the

consistency of the fitness function when evaluating a given chromosome will

allow it to evolve the set of neighbourhoods which gives consistently good results

rather than just a single good result.

Further tuning of the parameters of the proposed VNS-GA could also yield

notable improvements in the ability of the GA to find a set of neighbourhoods

which, when tested over 100 runs will consistently outperform VNS seeded with

all neighbourhoods. This is the most important aspect for the GA to be combined

effectively with CBR. For use by itself, it is capable of producing very high

quality results given enough time without needing a single set of neighbourhoods

to work consistently. However, if the best set(s) of neighbourhoods are to be

stored with a case to be retrieved when a similar problem is to be solved, we need

to be as sure as we can be that this set of neighbourhoods produces consistently

good results. Then, if the similarity measure works successfully, the CBR system

will be capable of producing high quality results for a new problem far faster than

194

the VNS-GA would be able to by itself.

Since only the neighbourhoods and the similarity measure are domain spe-

cific in either the VNS algorithm or the CBR system, the technique should easily

be able to be used for a wide range of other optimisation problems. This could

be done simply by changing the set of neighbourhoods used within VNS to a set

suitable for the new domain and conducting an investigation and knowledge dis-

covery processes to develop a suitable similarity measure. This would however

require further research to test whether VNS with a good selection of neighbour-

hoods is capable of producing high quality results in other domains also. My

own feeling based on what I have seen from the work reported in this thesis and

elsewhere is that the VNS technique should be capable of solving problems in a

large number of domains and that it is only the selection of the neighbourhoods

which can severely limit its performance. When compared to a technique which

uses only a single neighbourhood, it has some significant advantages and is far

more flexible.

195

Bibliography

[1] A. M. Abbas and E. P. K. Tsang. Constraint-based timetabling - A case

study. In: Proceedings of ACS/IEEE International Conference on Com-

puter Systems and Applications, Beirut, Lebanon, June 26-29, 2001, pp

67-72.

[2] S. Ahmadi, R. Barrone, P. Cheng, P. Cowling and B. McCollum. Pertur-

bation based variable neighbourhood search in heuristic space for exami-

nation timetabling problem.In: Proceedings of MISTA 2003 conference,

Nottingham, August 13-16, 2003, pp 135-171.

[3] D. T. Anh and L. K. Hoa. Combining constraint programming and simu-

lated annealing on university exam timetabling.In: Proceedings of RIVF

2004 conference, Hanoi, Vietnam, February 2-5, 2004, pp 205-210.

[4] H. Arntzen and A. Løkketangen. A tabu search heuristic for a university

timetabling problem.In: Proceedings of the fifth meta-heuristics inter-

national conference, MIC 2003(CD-ROM), Kyoto, August 25-28, 2003,

MIC03-02.

[5] V. A. Bardadym. Computer-aided school and university timetabling: The

new wave.In: E. K. Burke and P. Ross (eds).Practice and theory of au-

tomated timetabling: Selected papers from the first international confer-

ence.Volume 1153 of Lecture notes in computer science. Springer-Verlag,

Berlin, Heidelberg, 1996, pp 22-45.

196

[6] A. Bezirgan. A case-based approach to scheduling constraints.In: J. Dorn

and K. A. Froeschl (eds).Scheduling of production processes, Ellis Hor-

wood Limited, 1993, pp 48-60.

[7] P. Boizumault, Y. Delon and L. Peridy. Constraint logic programming for

examination timetabling.Journal of logic programming, 1996, 26(2), pp

217-233.

[8] S. C. Brailsford, C. N. Potts and B. M. Smith. Constraint satisfaction prob-

lems: Algorithms and applications.European journal of operational re-

search, 1999, 119, pp 557-581.

[9] D. Brelaz. New methods to color the vertices of a graph.Communication

of the ACM, 1979, 22(4), pp 251-256.

[10] B. Bullnheimer. An examination scheduling model to maximize students’

study time.In: E. K. Burke and M. W. Carter (eds).Practice and theory

of automated timetabling: Selected papers from the second international

conference.Volume 1408 of Lecture notes in computer science. Springer-

Verlag, Berlin, Heidelberg, 1998, pp 78-91.

[11] E.K.Burke, Y. Bykov and S.Petrovic. A multicriteria approach to examina-

tion timetabling.In: E. K. Burke and W. Erben (eds).Practice and theory of

automated timetabling: Selected papers from the third international confer-

ence.Volume 2079 of Lecture notes in computer science. Springer-Verlag,

Berlin, Heidelberg, 2001, pp 118-131.

[12] E.K. Burke, Y. Bykov, J. P. Newall and S. Petrovic. A Time-predefined

local search approach to exam timetabling problems.IIE transactions on

operations engineering, 2004, 36(6), pp 509-528.

197

[13] E. K. Burke and M. W. Carter (eds).Practice and theory of automated

timetabling: Selected papers from the second international conference.

Volume 1408 of Lecture notes in computer science. Springer-Verlag,

Berlin, Heidelberg, 1998.

[14] E. K. Burke and P. De Causmaecker (eds).Practice and theory of auto-

mated timetabling: Selected papers from the fourth international confer-

ence.Volume 2740 of Lecture notes in computer science. Springer-Verlag,

Berlin, Heidelberg, 2003.

[15] E. K. Burke, M. Dror, S. Petrovic and R. Qu. Hybrid graph heuristics in

hyper-heuristics applied to exam timetabling problems.University of Not-

tingham Technical ReportNOTTCS-TR-2004-1, accepted for publication

by 9th Informs computing society conference, January 2005.

[16] E. K. Burke, A. J. Eckersley, B. McCollum, S. Petrovic and R. Qu. Simi-

larity measures for exam timetabling problems.In: Proceedings of MISTA

2003 conference, Nottingham, August 13-16, 2003, pp 120-136.

[17] E. K. Burke, A. J. Eckersley, B. McCollum, S. Petrovic and R. Qu. Using

simulated annealing to study behaviour of various exam timetabling data

sets.In: Proceedings of the fifth meta-heuristics international conference,

MIC 2003(CD-ROM), Kyoto, August 25-28, 2003, MIC03-09.

[18] E. K. Burke, A. J. Eckersley, B. McCollum, S. Petrovic and R. Qu.

Analysing similarity in examination timetabling.To be published in Pro-

ceedings of the fifth international conference on the practice and theory of

automated timetabling, Pittsburgh, USA, August 2004.

[19] E. K. Burke, D. G. Elliman, P. H. Ford and R. F. Weare. Examination

timetabling in British universities: a survey.In: E. K. Burke and P. Ross

198

(eds).Practice and theory of automated timetabling: Selected papers from

the first international conference.Volume 1153 of Lecture notes in com-

puter science. Springer-Verlag, Berlin, Heidelberg, 1996, pp 76-90.

[20] E. K. Burke, D. G. Elliman and R. F. Weare. A university timetabling sys-

tem based on graph colouring and constraint manipulation.Journal of re-

search on computing in education, 1994, 27(1), pp 1-18.

[21] E. K. Burke, D. G. Elliman and R. F. Weare. A genetic algorithm for uni-

versity timetabling.In: Proceedings of the AISB Workshop on Evolutionary

Computing, University of Leeds, UK, April 11-13, 1994, Society for the

study of artificial intelligence and simulation of behaviour (SSAISB).

[22] E. K. Burke, D. G. Elliman and R. F. Weare. A genetic algorithm based

university timetabling system.In: Proceedings of the 2nd East-West In-

ternational Conference on Computer Technologies in Education, Crimea,

Ukraine, September 19-23, 1994, vol 1, pp 35-40.

[23] E. K. Burke and W. Erben (eds).Practice and theory of automated

timetabling: Selected papers from the second international conference.

Volume 2079 of Lecture notes in computer science. Springer-Verlag,

Berlin, Heidelberg, 2001.

[24] E. K. Burke, K. Jackson, J. H. Kingston and R. Weare. Automated univer-

sity timetabling: The state of the art.The computer journal, 1997, 40(9),

pp 565-571.

[25] E. K. Burke, G. Kendall and E. Soubeiga. A tabu-search hyper-heuristic for

timetabling and rostering.Journal of Heuristics, 2003, 9, pp 451-470.

199

[26] E. K. Burke, J. H. Kingston and D. de Werra. Chapter 5.6: Applications

to timetabling.In: J. Gross and J. Yellen (eds.)The Handbook of Graph

Theory, Chapman Hall/CRC Press, 2004, pp 445-474.

[27] E. K. Burke, B. MacCarthy, S. Petrovic and R. Qu. Structured cases in CBR

- Re-using and adapting cases for timetabling problems.Knowledge-Based

Systems, 2000, 13(2-3), pp 159-165.

[28] E.K. Burke, B. MacCarthy, S. Petrovic and R. Qu. Case-based reasoning

in course timetabling: An attribute graph approach.In: Proceedings of

the 4th International conference on case-based reasoning (ICCBR-2001),

Vancouver, July 30-August 2, 2001. LNAI 2080. pp 90-104.

[29] E. K. Burke and J. P. Newall. A multi-stage evolutionary algorithm for

the timetable problem.IEEE Transactions on Evolutionary Computation,

1999, 3(1), pp 63-74.

[30] E. K. Burke and J. P. Newall. Enhancing timetable solutions with local

search methods.In: E. K. Burke and P. De Causmaecker (eds).Practice

and theory of automated timetabling: Selected papers from the fourth in-

ternational conference.Volume 2740 of Lecture notes in computer science.

Springer-Verlag, Berlin, Heidelberg, 2003, pp 195-206.

[31] E. K. Burke and J. P. Newall. Solving examination timetabling problems

through adaptation of heuristic orderings.Annals of operations research,

2004, 129, pp 107-134.

[32] E. K. Burke, J. P. Newall and R. F. Weare. A memetic algorithm for univer-

sity exam timetabling.In: E. K. Burke and P. Ross (eds).Practice and the-

ory of automated timetabling: Selected papers from the first international

conference.Volume 1153 of Lecture notes in computer science. Springer-

Verlag, Berlin, Heidelberg, 1996, pp 241-250.

200

[33] E. K. Burke, J. P. Newall and R. F. Weare. Initialization strategies and di-

versity in evolutionary timetabling.Evolutionary computation, 1998, 6(1),

pp 81-103.

[34] E. K. Burke, J. P. Newall and R. F. Weare. A simple heuristically guided

search for the timetable problem.In: Proceedings of the international ICSC

symposium on engineering of intelligent systems (EIS’98), Rio de Janeiro,

August 2-7, 1998, pp 574-579.

[35] E. K. Burke and S. Petrovic. Recent research directions in automated

timetabling. European journal of operational research (EJOR), 2002,

140(2), pp 266-280.

[36] E. K. Burke, S. Petrovic and R. Qu. Case-based heuristic selection for ex-

amination timetabling.In: Proceedings of the SEAL’02 conference, Singa-

pore, November 18-22, 2002, pp 277-281.

[37] E. K. Burke, S. Petrovic and R. Qu. Case-based heuristic selection

for timetabling problems.University of Nottingham Technical Report

NOTTCS-TR-2004-2, accepted for publication in the Journal of Schedul-

ing, 2005.

[38] E. K. Burke & P. Ross (eds):Practice and theory of automated timetabling:

Selected papers from the first international conference.Volume 1153 of

Lecture notes in computer science. Springer-Verlag, Berlin, Heidelberg,

1996.

[39] Y. Bykov. The description of the algorithm for international timetabling

competition[online].

Available at http://www.idsia.ch/Files/ttcomp2002/results.htm [20 July

2004]

201

[40] M. Caramia, P. Dell’Olmo and G. F. Italiano. New algorithms for exam-

ination timetabling.In: S. Näher and D. Wagner (eds):Algorithm Engi-

neering 4th International Workshop, Proceedings WAE 2000 (Saarbrücken,

Germany). Volume 1982 of Lecture notes in computer science, Springer-

Verlag, Berlin, Heidelberg, New York, 2001, pp 230-241.

[41] M. W. Carter. A survey of practical applications of examination timetabling

algorithms.Operations research, 1986, 34, pp 193-202.

[42] M. W. Carter and D. G. Johnson. Extended clique initialisation in examina-

tion timetabling.Journal of the operational research society, 2001, 52, pp

538-544.

[43] M. W. Carter and G. Laporte. Recent developments in practical examina-

tion timetabling.In: E. K. Burke and P. Ross (eds).Practice and theory of

automated timetabling: Selected papers from the first international confer-

ence.Volume 1153 of Lecture notes in computer science. Springer-Verlag,

Berlin, Heidelberg, 1996, pp 373-383.

[44] M. W. Carter, G. Laporte and J. W. Chinneck. A general examination

scheduling system.Interfaces, 1994, 24, pp 109-120.

[45] M. W. Carter, G. Laporte and S. Y. Lee. Examination timetabling: Algorith-

mic strategies and applications.Journal of the operational research society,

1996, 47(3), pp 373-383.

[46] S. Casey and J. Thompson. GRASPing the examination scheduling prob-

lem. In: E. K. Burke and P. De Causmaecker (eds).Practice and theory

of automated timetabling: Selected papers from the fourth international

conference.Volume 2740 of Lecture notes in computer science. Springer-

Verlag, Berlin, Heidelberg, 2003, pp 232-244.

202

[47] C. Cheng, L. Kang, N. Leung and G. M. White. Investigations of a con-

straint logic programming approach to university timetabling.In: E. K.

Burke and P. Ross (eds).Practice and theory of automated timetabling: Se-

lected papers from the first international conference.Volume 1153 of Lec-

ture notes in computer science. Springer-Verlag, Berlin, Heidelberg, 1996,

pp 112-129.

[48] T. B. Cooper and J. H. Kingston. The complexity of timetable construc-

tion problems.In: E. K. Burke and P. Ross (eds).Practice and theory of

automated timetabling: Selected papers from the first international confer-

ence.Volume 1153 of Lecture notes in computer science. Springer-Verlag,

Berlin, Heidelberg, 1996, pp 183-295.

[49] J-F. Cordeau, B. Jaumard and R. Morales.Efficient timetabling solution

with tabu search[online].

Available at http://www.idsia.ch/Files/ttcomp2002/results.htm [20 July

2004]

[50] D. Corne, P. Ross and H-L Fang. Fast practical evolutionary timetabling.

In: Proceedings of Evolutionary Computing AISB Workshop, Leeds, 1994,

Volume 865 of Lecture notes in computer science. Springer-Verlag, Berlin,

Heidelberg, 1994, pp 251-263.

[51] D. Corne, P. Ross and H-L Fang. Evolutionary timetabling: Practice,

prospects and work in progress.In: P. Prosser (ed).Proceedings of UK

planning and scheduling SIG workshop, Strathclyde, September 1994.

[52] P. I. Cowling, G. Kendall and L. Han. An investigation of a hyperheuristic

genetic algorithm applied to a trainer scheduling problem.In: Proceedings

of congress on evolutionary computation (CEC2002), 2002, pp 1185-1190.

203

[53] P. Cunningham and B. Smyth. Case-based reasoning in scheduling:

Reusing solution components.International journal for production re-

search, 1996, 35(11), pp 2947-2960.

[54] P. David. A Constraint-based approach for examination timetabling using

local repair techniques.In: E. K. Burke and M. W. Carter (eds).Practice

and theory of automated timetabling: Selected papers from the second in-

ternational conference.Volume 1408 of Lecture notes in computer science.

Springer-Verlag, Berlin, Heidelberg, 1998, pp 169-186.

[55] D. de Werra. An introduction to timetabling.European journal of opera-

tional research, 1985, 19, pp 151-162.

[56] M. Dimopoulou and P. Miliotis. Implementation of a university course and

examination timetabling system.European journal of operational research,

2001, 130, pp 202-213.

[57] L. Di Gaspero. Recolour, shake and kick: A recipe for the examination

timetabling problem.In: E. K. Burke and P. De Causmaecker (eds):Pro-

ceedings of the fourth international conference on the practice and theory

of automated timetabling, Gent, Belgium, August 2002, pp 404-407.

[58] L. Di Gaspero and A. Schaerf. Tabu search techniques for examination

timetabling.In: E. K. Burke and W. Erben (eds).Practice and theory of

automated timetabling: Selected papers from the third international confer-

ence.Volume 2079 of Lecture notes in computer science. Springer-Verlag,

Berlin, Heidelberg, 2001, pp 104-117.

[59] L. Di Gaspero and A. Schaerf.Timetabling competition TTComp 2002:

Solver description. [online]

Available at http://www.idsia.ch/Files/ttcomp2002/results.htm [20 July

2004]

204

[60] K. A. Dowsland, N. Pugh and J. Thompson. Examination timetabling with

ants.In: E. K. Burke and P. De Causmaecker (eds):Proceedings of the

fourth international conference on the practice and theory of automated

timetabling, Gent, Belgium, August 2002, pp 397-399.

[61] W. Erben. A grouping genetic algorithm for graph colouring and exam

timetabling.In: E. K. Burke and W. Erben (eds).Practice and theory of

automated timetabling: Selected papers from the third international confer-

ence.Volume 2079 of Lecture notes in computer science. Springer-Verlag,

Berlin, Heidelberg, 2001, pp 132-156.

[62] C. G. Gúeret, N. Jussien, P. Boizumault and C. Prins. Building university

timetables using constraint logic programming.In: E. K. Burke and P. Ross

(eds).Practice and theory of automated timetabling: Selected papers from

the first international conference.Volume 1153 of Lecture notes in com-

puter science. Springer-Verlag, Berlin, Heidelberg, 1996, pp 130-145.

[63] L. Han, G. Kendall and P. Cowling. An adaptive length chromosome hyper-

heuristic genetic algorithm for a trainer scheduling problem.In: Proceed-

ings of the 4th Asia-Pacific conference on simulated evolution and learning

(SEAL’02), Singapore, November 18-22, 2002, pp 267-271.

[64] L. Han and G. Kendall. Guided operators for a hyper-heuristic genetic al-

gorithm. In: Proceedings of the 16th Australian conference on artificial

intelligence, Perth, Australia, 2003, pp 807-820.

[65] L. Han and G. Kendall. Investigation of a tabu assisted hyper-heuristic ge-

netic algorithm.In: Proceedings of congress on evolutionary computation,

2003, vol 3, pp 2230-2237.

205

[66] P. Hansen and N. Mladenović. Variable neighbourhood search: Principles

and applications.European journal of operational research, 2001, 130, pp

449-467.

[67] D. Henderson, S. H. Jacobson and A. W. Johnson. The theory and practice

of simulated annealing.In: F. Glover and G. A. Kochenberger (eds):Hand-

book of Metaheuristics, Kluwer Academic Publishers, 2003, pp. 287-319.

[68] W. K. Ho, A. Lim and W. C. Oon. Maximizing paper spread in examination

timetabling using a vehicle routing method.In: Proceedings of 13th IEEE

international conference on tools with artificial intelligence (ICTAI’01),

2001, pp 359-366.

[69] G. Kendall and N. Mohd Hussin. An investigation of a tabu search based

hyper-heuristic for examination timetabling.In: Proceedings of MISTA

2003 conference, Nottingham, August 13-16, 2003, pp 226-233.

[70] J. H. Kingston. Modelling timetabling problems with STTL.In: E. K.

Burke and W. Erben (eds).Practice and theory of automated timetabling:

Selected papers from the third international conference.Volume 2079 of

Lecture notes in computer science. Springer-Verlag, Berlin, Heidelberg,

2001, pp 309-321.

[71] S. Kirkpatrick, C. Gelatt and P. Vecchi. Optimization by simulated anneal-

ing. Science, 1983, 220, pp 671-679.

[72] J. Kolodner.Case-based reasoning. Morgan Kaufmann Publishers, Inc. San

Mateo, 1993.

[73] P. A. Kostuch.Timetabling competition - SA-based heuristic[online].

Available at http://www.stats.ox.ac.uk/ kostuch/TTcomp.pdf

206

[74] P. Koton. SMARTplan: A case-based reasoning allocation and scheduling

system.In: Proceedings of workshop on case-based reasoning (DARPA),

1989, pp 285-289.

[75] J. D. Landa Silva, E. K. Burke and S. Petrovic. An introduction to multiob-

jective metaheuristics for scheduling and timetabling.In: X. Gandibleux,

M. Sevaux, K. Sorensen and V. T’kindt (eds):Multiple objective meta-

heuristics. Volume 535 of Lecture notes in economics and mathematical

systems. Springer-Verlag, Berlin, Heidelberg, 2004, pp 91-129.

[76] A. Lim, J. C. Ang, W. K. Ho and W. C. Oon. A campus-wide university

examination timetabling application.In: Proceedings of the seventeenth

national conference on artificial intelligence and twelfth conference on in-

novative applications of artificial intelligence, 2000, pp 1020-1025.

[77] A. Lim, J. C. Ang, W. K. Ho and W. C. Oon. UTTSExam: A campus-wide

university exam-timetabling system.In: Proceedings of the eighteenth na-

tional conference on artificial intelligence and fourteenth conference on

innovative applications of artificial intelligence, 2002, pp 838-844.

[78] S. L. M. Lin. A broker algorithm for timetabling problem.In: E. K. Burke

and P. De Causmaecker (eds):Proceedings of the fourth international con-

ference on the practice and theory of automated timetabling, Gent, Bel-

gium, August 2002, pp pp 372-386.

[79] B. MacCarthy and P.Jou. Case-based reasoning in scheduling.In: M. K.

Khan and C. S. Wright (Eds):Proceedings of the symposium on advanced

manufacturing processes, systems and techniques (AMPST96), MEP Pub-

lications, 1996, pp 211-218.

[80] N. Mladenovíc and P. Hansen. Variable neighbourhood search.Computers

Ops. Res., 1997, 24(11), pp 1097-1100.

207

[81] A. Meisels, J. Ell-Sana and E. Gudes. Decomposing and solving

timetabling constraint networks.Computational intelligence, 1997, 13(4),

pp 486-505.

[82] L. T. G. Merlot, N. Boland, B. D. Hughes and P. J. Stuckey. A hybrid algo-

rithm for the examination timetabling problem.In: E. K. Burke and P. De

Causmaecker (eds):Proceedings of the fourth international conference on

the practice and theory of automated timetabling, Gent, Belgium, August

2002, pp 207-231.

[83] K. Miyashita. Case-based knowledge acquisition for schedule optimization.

Artificial intelligence in engineering, 1995, 9, Elsevier Science Ltd. pp 277-

287.

[84] K. Miyashita and K. Sycara. Adaptive case-based control of scheduling re-

vision. In: M. Zweben and M. S. Fox (eds):Intelligent scheduling, Morgan

Kaufmann, 1994, pp 291-308.

[85] K. Miyashita amd K. Sycara. CABINS: a framework of knowledge acqui-

sition and iterative revision for schedule improvement and reactive repair.

Artificial intelligence, 1995, 76, pp 377-426.

[86] J. P. Newell.Hybrid methods for automated timetabling. University of Not-

tingham Ph.D. thesis, 1999.

[87] W. P. M. Nuijten, G. M. Gunnen, E. H. L. Aarts and F. P. M. Dignum.

Examination time tabling: A case study for constraint satisfaction.In: Pro-

ceedings of the ECAI ’94 workshop on constraint satisfaction issues raised

by practical applications, 1994, pp 11-19.

208

[88] L. Pacquete and C. M. Fonseca. A study of examination timetabling with

multiobjective evolutionary algorithm.In: Proceedings of the 4th Meta-

heuristics International Conference (MIC 2001), 2001, pp 149-154.

[89] L. Pacquete and T. Stützle. Empirical analysis of tabu search for the lex-

icographic optimization of the examination timetabling problem.In: E.

K. Burke and P. De Causmaecker (eds):Proceedings of the fourth inter-

national conference on the practice and theory of automated timetabling,

Gent, Belgium, August 2002, pp 413-420.

[90] L. Pacquete and T. Stützle. An experimental investigation of iterated lo-

cal search for coloring graphs.In: S. Cagnoni, J. Gottlieb, E. Hart, M.

Middendorf, and G. Raidl (eds):Applications of evolutionary computing -

EvoWorkshops 2002. Volume 2279 of Lecture notes in computer science,

Springer-Verlag, Berlin, Heidelberg, 2002, pp 122-131.

[91] S. Petrovic and E. K. Burke. Chapter 45: University timetabling.In: J. Le-

ung (ed):Handbook of scheduling: Algorithms, models, and performance

analysis, CRC Press, April 2004.

[92] S. Petrovic and Y. Bykov. A multiobjective optimisation technique for exam

timetabling based on trajectories.In: E. K. Burke and P. De Causmaecker

(eds).Practice and theory of automated timetabling: Selected papers from

the fourth international conference.Volume 2740 of Lecture notes in com-

puter science. Springer-Verlag, Berlin, Heidelberg, 2003, pp 181-194.

[93] S. Petrovic, G. Kendall and Y. Yang. A tabu search approach for graph-

structured case retrieval.In: Proceedings of the Starting artificial intelli-

gence researchers symposium, IOS Press, 2002, pp 55-64.

209

[94] S. Petrovic and R. Petrovic. Eco-Ecodispatch: DSS for multi-criteria load-

ing of thermal power generators.Journal of decision systems, 1995, 4(4),

pp 279-295.

[95] S. Petrovic, Y. Yang and M. Dror. Case-based initialisation of metaheuris-

tics for examination timetabling.In: Proceedings of MISTA 2003 confer-

ence, Nottingham, August 13-16, 2003, pp 137-154.

[96] I. Phillips: The Department of Computing Examination Timetabling Prob-

lem. [online]

Available at http://theory.doc.ic.ac.uk/ iccp/papers/ [20 July 2004]

[97] R. Qu. Case based reasoning for course timetabling problems. University

of Nottingham Ph.D. thesis, 2002.

[98] P. Ross, E. Hart and D. Corne. Some observations about GA-based exam

timetabling.In: E. K. Burke and M. W. Carter (eds).Practice and theory

of automated timetabling: Selected papers from the second international

conference.Volume 1408 of Lecture notes in computer science. Springer-

Verlag, Berlin, Heidelberg, 1998, pp 115-129.

[99] A. Schaerf. A survey of automated timetabling.Artificial Intelligence Re-

view, 1999, 13(2), pp 87-127.

[100] H. Terashima-Marín, P. Ross and M. Valenzuela-Rendón. Evolution of

constraint satisfaction strategies in examination timetabling.In: Proceed-

ings of the genetic and evolutionary conference, Orlando, Florida, July 13-

17 1999, pp 635-642.

[101] J. Thompson and K. Dowsland. Variants of simulated annealing for the

examination timetabling problem.Annals of Operational Research, 1996,

63, pp 105-128.

210

[102] J. Thompson and K. Dowsland. General cooling schedules for a simulated

annealing based timetabling system.In: E. K. Burke and P. Ross (eds).

Practice and theory of automated timetabling: Selected papers from the

first international conference.Volume 1153 of Lecture notes in computer

science. Springer-Verlag, Berlin, Heidelberg, 1996, pp 345-363.

[103] J. Thompson and K. Dowsland. A robust simulated annealing based ex-

amination timetabling system.Comput. Oper. Res., 1998, 25, pp 637-648.

[104] G. M. White. Constrained satisfaction, not so constrained satisfaction and

the timetabling problem.In: E. K. Burke and W. Erben (eds):Proceedings

of the third international conference on the practice and theory of auto-

mated timetabling, Konstanz, Germany, August 2000, pp 32-47.

[105] G. M. White and B. S. Xie. Examination timetables and tabu search with

longer-term memory.In: E. K. Burke and W. Erben (eds).Practice and the-

ory of automated timetabling: Selected papers from the third international

conference.Volume 2079 of Lecture notes in computer science. Springer-

Verlag, Berlin, Heidelberg, 2001, pp 85-103.

[106] A. Wren. Scheduling, timetabling and rostering - A special relationship?

In: E. K. Burke and P. Ross (eds).Practice and theory of automated

timetabling: Selected papers from the first international conference.Vol-

ume 1153 of Lecture notes in computer science. Springer-Verlag, Berlin,

Heidelberg, 1996, pp 46-75.

211

