
Novel Hyper-heuristic

Approaches

in Exam Timetabling

Amr Soghier, MSc.

Thesis submitted to The University of Nottingham

for the degree of Doctor of Philosophy

July 2012

Abstract

This thesis presents an investigation into the use of hyper-heuristic ap-

proaches to construct and improve solutions for exam timetabling prob-

lems. The majority of the approaches developed in the literature operate

on a space of potential solutions to a problem. However, a hyper-heuristic is

a heuristic which acts on a space of heuristics, rather than a solution space

directly. The majority of research papers, so far, have involved the design

of tailored approaches which focus on tackling specific problems. Less well

studied are hyper-heuristics which can operate on a range of problems.

The first area of investigation is the use of a Greedy Random Adaptive

Search Procedure to combine multiple heuristics within the construction

of timetables. Different combinations of multiple heuristic orderings were

examined, considering five graph-based heuristic orderings - Largest De-

gree, Saturation Degree, Largest Enrolment, Largest Coloured Degree and

Largest Weighted Degree. The development utilised two heuristic orderings

simultaneously and subsequent development went on to break ties within

the heuristic orderings.

Improving exam timetables has been the subject of much research. It is

generally the case that a meta-heuristic is used to improve constructed so-

lutions. Indeed, there are usually a very large number of different methods

i

to obtain better timetables. Some method is required to automatically

choose the appropriate method to be applied depending on the constraints

in a problem. In response to that demand, the second area of investiga-

tion of this thesis is concerned with a hyper-heuristic approach to hybridise

neighbourhood operators to improve constructed timetables.

The reuse of heuristics in different problem domains have been explored

previously in the literature. Bin packing heuristics on their own are simple

techniques where items in the problem are packed using a specific strategy

to construct solutions. Therefore, using bin packing heuristics to assign

exams to time slots and rooms have been investigated. This is the first

time that bin packing heuristics are used within a hyper-heuristic to assign

exams to rooms and time slots.

ii

Acknowledgements

My sincere thanks go to my two supervisors, Dr Rong Qu, and Professor

Edmund Burke, for the encouragement and flexibility they have given to

me over the last few years. Through their support and trust, I have had

the opportunity to work on an interesting project and to learn alot from

their advice and guidance.

Special thanks to my mom, my sisters Lamia and Israa, and my aunts for

their love, patience and support throughout the study.

I would also like to thank the EPSRC, whose funding made this project

possible. In addition, many thanks go to the rest of the academic and ad-

ministrative staff at the Automated Scheduling, optimisation and Planning

(ASAP) research group.

Finally, I would like to thank Sally Hankin, Professor Chris Hawkey from

the Queens Medical Centre of Nottingham for their support during my

illness and for their help to overcome stress during my study.

iii

Contents

List of Figures x

List of Tables xi

List of Algorithms xv

1 Introduction 1

1.1 Background and Motivation 1

1.2 Aims and Scope . 2

1.3 Structure of the Thesis . 6

1.4 List of publications . 6

2 Exam Timetabling 8

2.1 Introduction . 8

2.2 The Toronto Benchmark . 13

2.2.1 Problem Description 13

2.2.2 Approaches for the Toronto benchmark 17

iv

Contents

2.3 The Exam Timetabling Track of the Second International

Timetabling Competition (ITC 2007) 35

2.3.1 Problem Description 35

2.3.2 Approaches for the ITC2007 dataset 38

2.4 Chapter Summary . 39

3 Hyper-Heuristics 40

3.1 Introduction . 40

3.2 Hyper-heuristics to Create Heuristics 43

3.3 Hyper-heuristics to Choose Heuristics 47

3.4 Chapter Summary . 59

4 Adaptive Selection of Heuristics within a GRASP for Exam

Timetabling Problems 60

4.1 Introduction . 60

4.1.1 Greedy Random Adaptive Search Procedure (GRASP) 62

4.2 Methodology . 63

4.2.1 The GRASP Construction Phase 63

4.2.2 The GRASP Improvement Phase 68

4.3 Results . 69

v

Contents

4.3.1 Analysis on the Intelligent Adaptive Hybridisation

of the LWD and SD GHH to construct a RCL in a

GRASP . 69

4.3.2 Analysis on GRASP improvement using steepest de-

scent . 73

4.3.3 Comparison with state-of-the-art approaches 74

4.4 Chapter Summary . 77

5 An Adaptive Tie Breaking and Hybridisation Hyper-Heuristic

for Exam Timetabling Problems 78

5.1 Introduction . 78

5.2 The Exam Timetabling Instance Generator 80

5.3 Methodology . 83

5.3.1 Hybridising and Tie Breaking Graph Heuristics using

the Conflict Density of Exam Timetabling Problems . 83

5.3.2 Analysis of Saturation Degree Tie Breakers 85

5.3.3 Hybridising Heuristic Sequences after Breaking the

SD Ties . 87

5.3.4 Relating Conflict Density of Exam Timetabling Prob-

lems to SD Tie Breaking 89

5.4 Results . 90

5.4.1 Adaptive Tie Breaking and Hybridisation for Bench-

mark Exam Timetabling Problems 90

vi

Contents

5.5 Chapter Summary . 99

6 A Hyper-heuristic using Improvement Low-level Heuristics

for Exam Timetabling 101

6.1 Introduction . 101

6.2 Methodology . 102

6.2.1 The low-level heuristics 102

6.2.2 The random iterative hyper-heuristic 103

6.2.3 Analysis of hybridising improvement low-level heuris-

tics . 106

6.2.4 Variations of Orderings of the exams causing a penalty108

6.2.5 Adaptive Selection of Low-level Heuristics for Im-

proving Exam Timetables 110

6.3 Results . 113

6.3.1 The Toronto Benchmark Results 113

6.3.2 The International Timetabling Competition (ITC2007)

Results . 119

6.4 Chapter Summary . 122

7 Adaptive Selection of Heuristics for Assigning Time Slots

and Rooms in Exam Timetables 123

7.1 Introduction . 123

7.2 Methodology . 126

vii

Contents

7.2.1 A Random Iterative Time Slot and Room Assign-

ment Hyper-heuristic 126

7.2.2 Analysis of the Initial Heuristic Sequences 128

7.2.3 Analysis of the Hybrid Heuristic Sequences 131

7.2.4 Adaptive Hybridisation of Bin Packing Heuristics . . 134

7.3 Results . 137

7.4 Chapter Summary . 140

8 Conclusion 141

8.1 Summary of Contributions 142

8.1.1 A Hyper-heuristic Using a GRASP to Construct Timeta-

bles . 142

8.1.2 Adaptive Tie Breaking and Hybridisation of Graph

Colouring Heuristics 143

8.1.3 A Hyper-heuristic Using Low-level Heuristic Moves

to Improve Timetables 144

8.1.4 A Hyper-heuristic Using Bin Packing Heuristics for

Time Slot and Room Assignment 145

8.2 Extensions and Future Work 146

8.2.1 Using More Than Two Heuristics in Hybridisations . 146

8.2.2 Improving the Constructed Solutions Using Meta-

heuristics . 147

viii

Contents

8.2.3 Designing Hyper-heuristics to Choose Heuristics De-

pending on Problem Characteristics 147

8.2.4 Applying Improvements to Partial Solutions 147

8.2.5 Combining Heuristics to Construct and Improve So-

lutions in the Same Approach 148

8.2.6 Applying the Approaches Developed to Other Prob-

lem Domains . 148

ix

List of Figures

3.1 Hyper-heuristic Framework [39] 49

3.2 An illustrative example of using a heuristic sequence to con-

struct a timetable . 58

4.1 An illustrative example of building a RCL from SD and LWD 66

5.1 An illustrative example of breaking Saturation Degree ties . 85

5.2 The relation between conflict density and the percentage of

hybridisations obtaining the best solutions 90

6.1 An illustrative example of solution improvement using a se-

quence of Neighbourhood Operators 105

x

List of Tables

2.1 Characteristics of the Toronto benchmark dataset 16

2.2 Characteristics of the ITC2007 dataset 37

4.1 Average results, best results and percentage of feasible solu-

tions produced from the GRASP construction phase using

SD & LWD in comparison to using them separately. A (-)

indicates that no feasible solution could be obtained 71

4.2 Average costs before and after improvement, best costs after

improvement and total average time using Steepest Descent

in GRASP . 74

4.3 Best results obtained by the adaptive GHH using GRASP

compared to the state-of-the-art approaches 76

5.1 Characteristics of the Benchmark dataset produced by our

problem instance generator 82

xi

List of Tables

5.2 Results using SD without tie breakers and with several dif-

ferent tie breakers. A (-) indicates that a feasible solution

could not be obtained. The notation X tb Y denotes Y is

used to break ties in X . 86

5.3 t-test on the results from breaking the ties using LWD and

LD . 86

5.4 t-test on the results from breaking the ties using LWD and

CD . 87

5.5 t-test on the results from breaking the ties using LD and CD 87

5.6 Results of hybridising SD with other graph heuristics with

and without breaking ties. The notation X tb Y denotes Y

is used to break ties in X 88

5.7 t-test on the results from hybridising SD with LWD and SD

tb LWD with LD . 88

5.8 t-test on the results from hybridising SD with LWD and SD

tb LWD with CD . 89

5.9 t-test on the results from hybridising SD tb LWD with LD

and SD tb LWD with CD 89

5.10 Results from the adaptive tie breaking (ATB) approach on

the Toronto Benchmark dataset, Percentage of tie breaking

SD (% of tb SD).Computational time is presented in seconds. 94

5.11 Results from the adaptive tie breaking (ATB) approach on

the random dataset, Percentage of tie breaking SD (% of tb

SD).Computational time is presented in seconds. 95

xii

List of Tables

5.12 Best results obtained by the adaptive tie breaking (ATB) ap-

proach compared to other Hyper-Heuristic approaches and

the best reported in the literature 96

5.13 A comparison of the results obtained by the adaptive tie

breaking and the reverse of the approach 98

6.1 Results using KCM without a hybridisation and with several

different moves . 107

6.2 Results of hybridising KCM with ST using different order-

ings of the exams causing a soft constraint violation. The

notation X tb Y means heuristic Y is used to break ties in

heuristic X . 109

6.3 t-test on the results from ordering exams causing violations

using SD and LP . 109

6.4 t-test on the results from ordering exams causing violations

using SD and LWD . 109

6.5 t-test on the results from ordering exams causing violations

using LP and LWD . 109

6.6 Results from the adaptive improvement Hyper-heuristic (AIH)

approach on the Toronto Benchmark dataset 115

6.7 Contd. Results from the adaptive improvement Hyper-heuristic

(AIH) approach on the Toronto Benchmark dataset 116

6.8 Best results obtained by the Adaptive Improvement Hyper-

heuristic (AIH) compared to the best approaches in the lit-

erature on the Toronto Benchmark 117

xiii

List of Tables

6.9 Best results obtained by the Adaptive Improvement Hyper-

heuristic (AIH) compared to other hyper-heuristics approaches

in the literature on the Toronto Benchmark 118

6.10 Best results obtained by the Adaptive Improvement Hyper-

heuristic (AIH) compared to the best approaches in the lit-

erature on the ITC2007 dataset 121

7.1 Packing strategies used to assign a time slot and room in

timetabling . 125

7.2 Best and average results obtained by using a single heuristic.

A (-) indicates that a feasible solution could not be obtained 129

7.3 Room capacity ordered as they appear in each instance . . . 131

7.4 Penalties of the best and worst solutions from the heuristic

sequences and the amount of hybridisation of BF, ABF, WF,

FF and LF . 133

7.5 Best results obtained by the Room and Time slot Assign-

ment Hyper-heuristic (RTAH) compared to the best approaches

in the literature on the ITC2007 dataset 139

xiv

List of Algorithms

1 The pseudo-code of the RCL construction in a GRASP using

a GHH . 64

2 The pseudo-code of the GRASP hyper-heuristic 68

3 The pseudo-code of the Tabu Search graph based hyper-

heuristic [42] . 80

4 The pseudo-code of the random graph heuristic sequence

generator using a tie breaker for Saturation Degree (tb:tie-

breaker) . 84

5 The pseudo-code for the Adaptive Tie Breaking (ATB) ap-

proach . 92

6 The pseudo-code of the random iterative hyper-heuristic with

low-level improvement heuristics 104

7 The pseudo-code of the initialisation stage of the adaptive

hyper-heuristic with low-level improvement heuristics 111

8 Adaptive generation of heuristic sequences hybridising KCM

and ST . 113

9 The pseudo-code of the random iterative bin packing based

hyper-heuristic . 127

10 The pseudo-code of the initialisation stages of the adaptive

bin packing based hyper-heuristic 136

xv

List of Algorithms

11 The pseudo-code of the adaptive tuning of the levels of hy-

bridisations in a heuristic sequence 137

xvi

Chapter 1

Introduction

1.1 Background and Motivation

For more than 40 years exam timetabling has become one of the mostly

studied domains in the AI and OR research communities. This is due to its

importance in many academic institutions worldwide. The basic problem is

to allocate a time slot and a room for all the exams within a limited number

of permitted time slots and rooms in order to find a feasible timetable. This

assignment process is subject to ’hard’ constraints which must be satisfied

in order to get a good timetable. An example of such constraint is that no

student is required to attend two exams at the same time. On the other

hand, other constraints can be violated but must be satisfied as much as

is possible to obtain a good timetable. These are called ’soft’ constraints.

Not using certain rooms is an example of a soft constraint.

As this task is time consuming and tedious to carry out manually, much

effort during the last few decades has been directed to generate timetables

automatically. With a large number of events needing to be assigned to

1

Chapter 1: Introduction

resources (time slots and rooms) and a list of constraints (both hard and

soft) needing to be addressed, there are a large number of potential solu-

tions to this problem. Therefore, much of the research has been aimed at

developing methodologies that focus on producing the best quality timeta-

bles for a specific problem or even a specific problem instance. A more

recent direction in this field, namely, hyper-heuristics, aims to raise the

level of generality of search methodologies to create algorithms that act

well over a range of problems. A hyper-heuristic is seen as a heuristic to

choose heuristics.

The motivation for the work presented in this thesis is to investigate whether

the use of hyper-heuristics could be of benefit in automating the decision

making process in the construction and improvement of solutions to the

exam timetabling problem.

1.2 Aims and Scope

The first area of investigation, described in chapter 4, is an exploration

of how a Greedy Random Adaptive Search Procedure (GRASP) can be

employed in a hyper-heuristic to combine multiple heuristics to construct

exam timetables. GRASP is a meta-heuristic approach which is used to

solve hard combinatorial optimisation problems. It is a two phase pro-

cedure which starts by adaptively creating a randomised greedy solution.

As this solution produced is not guaranteed to be locally optimal, an im-

provement phase is required. Therefore after the solution is constructed,

an iterative improvement is applied until a locally optimal solution is found

[85, 86].

2

Chapter 1: Introduction

During the process of construction, the order in which exams are assigned

to time slots has been shown to have a major effect on the construction

process. An assessment of how difficult it is to place a given exam into

a timetable is used to guide the order of placement. The usual strategy

is to place the most difficult exams first, on the basis that it is better to

leave the easier exams until later in the process when there are fewer time

slots remaining. There are many different criteria that may be used when

assessing this difficulty. A common approach has been to employ graph

based heuristics.

Several heuristics were developed to solve graph colouring problems [20].

The idea of these heuristics is based on estimating difficulty and colouring

the most difficult vertices first in a simple constructive technique. Exam

timetabling problems with only hard constraints can be represented as

graph colouring models. Vertices in the graph represent exams in the

problem, and edges represent the conflicts between examinations. Colours

correspond to time slots. This measure is then used to determine the order

in which the exams are assigned into the timetable and, hence, are referred

to as ’heuristic orderings’. Examples of such heuristics are the number of

available time slots to schedule an exam, the number of students enroled

on each exam, etc. Detailed descriptions of these heuristic orderings are

given in section 2.2.2.

In this thesis, for the first time, a GRASP is used within a hyper-heuristic to

combine multiple heuristics simultaneously in order to provide a measure of

the difficulty of placing each exam. This measure is then used to order the

exams for assignment. Various combinations of heuristics are investigated

in the construction process.

Graph heuristics have been hybridised in an iterative adaptive approach

3

Chapter 1: Introduction

developed in [29]. In each iteration, the exams are ordered using different

graph heuristics and the exam to be scheduled is chosen. In addition,

the exams that are found to be difficult to schedule in previous iterations

are adaptively moved forward. Another approach has been developed in

[142] where different graph heuristics are adaptively hybridised. Different

ordering strategies in graph heuristics are adaptively called at a higher

level. However, a random exam is selected in the situation where a tie

appears. Hence, instead of choosing these exams randomly, tie breaking is

a way to help guide a search in scenarios where two or more exams have

the same weight in a specific ordering. Therefore, the use of tie breakers

in heuristic orderings is investigated in chapter 5. In addition, an exam

timetabling instance generator was developed as part of this thesis to test

the adaptiveness of the tie breaking on randomly generated data.

The third area of investigation, described in chapter 6, is combining heuris-

tic moves to improve the quality of constructed timetables. It is generally

the case that a number of alternative solutions that satisfy all the hard

criteria are possible. Indeed, there is usually a very large number of such

feasible solutions. Therefore, some method is required to automatically

improve the overall quality of the different solutions and select the best.

Finally, in exam timetabling problems which consist of time slot assignment

and room allocation, the choice of time slots and rooms has a great effect

on the quality of the solution generated according to the soft constraints

in a problem. Therefore, a means of combining heuristics and evaluating

the performance when assigning an exam to a certain time slot and room is

required. In chapter 7, an investigation on combining bin packing heuristics

and their effect on the quality of the solutions is presented.

There are a number of objectives that were addressed in order to accomplish

4

Chapter 1: Introduction

the primary aim of the research which can be outlined as follows:

1. to investigate the ability of hyper-heuristics to generalise over a set

of exam timetabling problems.

2. to explore the use of GRASP within a hyper-heuristic to combine

heuristics simultaneously to construct timetables.

3. to investigate the effectiveness of applying tie breakers to heuristic

orderings within a hyper-heuristic.

4. to explore the hybridisation of heuristic moves within a hyper-heuristic

to improve timetables.

5. to investigate the performance of a hyper-heuristic which combines

bin packing heuristics to assign exams to time slots and rooms.

5

Chapter 1: Introduction

1.3 Structure of the Thesis

The thesis is structured as follows. Chapter 2 provides a description of the

exam timetabling problem and describes the benchmark datasets that are

used in this research. A review of the different algorithms and approaches

investigated on exam timetabling problems with focus on the approaches

applied to the benchmarks is also presented. Furthermore, a description

of the objective functions currently used to evaluate the quality of the

timetables is described.

Chapter 3 presents a review of the relevant literature for hyper-heuristics.

Chapter 4 presents a description of a hyper-heuristic approach which con-

structs exam timetables. Chapter 5 presents a study on the effectiveness of

breaking ties in heuristic orderings. Chapter 6 presents a hyper-heuristic

approach to improve timetables using heuristic moves. Chapter 7 presents

the most recent work, a hyper-heuristic system which focuses on time slot

and room assignment using both graph colouring and bin packing heuris-

tics. Finally, chapter 8 provides some concluding remarks and suggestions

for future research that arise from the work presented in this thesis.

1.4 List of publications

The following academic papers have been produced as a result of this re-

search. For each paper, the corresponding chapter in this thesis which

describes the content of the publication is presented.

• Chapter 4

E.K. Burke, R. Qu, and A. Soghier. Adaptive selection of heuristics

6

Chapter 1: Introduction

within a GRASP for exam timetabling problems. In Proceedings of

the 4th Multidisciplinary International Scheduling: Theory and Ap-

plications 2009 (MISTA 2009), 10-12 August 2009, Dublin, Ireland,

pages 93-104, 2009.[48]

• Chapter 5

E.K. Burke, R. Qu, and A. Soghier. Adaptive tie breaking and hy-

bridisation in a graph-based hyper-heuristic for exam timetabling

problems. In Proceedings of the Nature Inspired Cooperative Strate-

gies for Optimisation, Studies in Computational Intelligence. Springer,

2011.[50]

• Chapter 6

E.K. Burke, R. Qu and A. Soghier. Adaptive Selection of Heuristics

for Improving Constructed Exam Timetables. The 8th International

Conference on the Practice and Theory of Automated Timetabling

(PATAT 2010), 10-13 August 2010, Belfast, Northern Ireland.[49]

An extended version of this paper has been submitted to Annals of

OR (ANOR)

• Chapter 7

E.K. Burke, R. Qu and A. Soghier. Adaptive Selection of Heuristics

for Assigning Time Slots and Rooms in Exam Timetables. Paper

submitted to The Journal of Applied Intelligence.

7

Chapter 2

Exam Timetabling

2.1 Introduction

Exam timetabling [54, 144] is the process of assigning a number of exams

into a limited number of time slots putting in consideration a number

of constraints that must be satisfied. Many academic institutions face

problems in scheduling their exams every semester or term. The greater

the number of constraints in the problem, the more difficult the exam-

timetabling problem becomes. In addition, there is a great number of

different constraints that make exam-timetabling problems different from

one institution to the other. It is vital that some constraints are fully

satisfied. These are called hard constraints. For example, a student cannot

attend two exams at the same time. Therefore, any two exams that are

attended by the same student must not be scheduled at the same time. A

timetable that satisfies all hard constraints is called a feasible timetable.

Other constraints could be violated but the higher the degree of satisfying

such constraints the better the solution. These are called soft constraints.

8

Chapter 2: Exam Timetabling

For example, providing students with more gaps between their exams is

very desirable. However, not providing the gaps will not affect the exam

being held and the timetable followed. Violations of soft constraints could

be used to decide the quality of the timetable created.

Every institution will have its own set of constraints according to its prefer-

ences. An institution could decide that each student should have only one

exam per day, which is regarded as a hard constraint. Another institution

would accept that students can have more than one exam per day. In this

case, the constraint of having a single exam each day is no longer a hard

constraint.

Examples of common hard constraints are:

• avoid any student having an exam scheduled in the same time slot;

• all exams must be assigned to a time slot and a room during the exam

period;

• the capacity of a room should not be exceeded at a given period.

In practice, the quality of a feasible timetable is evaluated in a different

way. In the majority of the cases, the measure of quality is calculated

based upon a penalty function which represents the degree to which the

soft constraints are violated. Examples of soft constraints are as follows:

• exam X must be after exam Y or exam A must use room R;

• a student must not sit two exams on the same day;

• large exams should not be scheduled close to the end of the exam

session;

9

Chapter 2: Exam Timetabling

• certain rooms or time slots should not be used;

• exams with different durations should not be scheduled in the same

room.

More details on constraints for exam timetabling can be found in [23, 74,

124, 144].

Many techniques over the years have been based on graph colouring [31,

54, 71]. This is the process of assigning colours to the vertices in a graph

so that no adjacent vertices share the same colour. The objective is to

use the minimum number of colours possible. This minimum number of

colours is known as the chromatic number of a graph. Exam timetabling

problems with only hard constraints can be represented as graph colouring

models. Vertices in the graph represent exams in the problem, and edges

represent the conflicts between exams. Colours correspond to time slots.

Hence, if the exam timetabling problem is considered as a graph colouring

problem, the aim is to find the minimum number of time slots which are

able to accommodate all the exams without any clashes. Several heuristics

(e.g. [20]) have been developed to solve graph colouring problems. Graph

colouring heuristics are still widely used to develop new methods to solve

timetabling problems [31].

By analysing the student enrolment list, the exams that are in conflict(exams

that have at least one common student) can be identified. Cole[58] repre-

sented the conflicting exams using the incompatibility table, while Broder[21]

used the term conflict matrix to define the same thing. The conflicting ex-

ams are represented by a conflict matrix, C = [cij]NxN where i, j ∈ 1, ..., N

(N is the number of exams). Element cij denotes the number of students

enroled for both exam i and exam j. When a nonweighted graph is em-

10

Chapter 2: Exam Timetabling

ployed, it is also possible to use cij = 1 if there is conflict between exam

i and exam j; cij = 0 otherwise. It is a symmetrical matrix, i.e. element

cij = cji. For diagonal cells (i.e. i = j), each cell either contains the

number of students enroled for the particular exam (cij = number of stu-

dents for exam i) or the cell contains zero (cij = 0) to denote that there

is no conflict. Essentially, several pieces of information can be generated

from the conflict matrix that are related to graph theory. The number

of exams in conflict for an exam is equivalent to the node degree. Node

degree values are utilised when heuristic orderings (e.g. Largest Degree,

Largest Coloured Degree and Largest Weighted Degree, see section 2.2.2)

are employed to order the exams by difficulty when constructing solutions.

It is also possible to use the diagonal cell values for the heuristic ordering

Largest Enrolment if cij is not set to zero when i = j.

Constraint based techniques have attracted the attention of researchers due

to their ease and flexibility when employed to exam timetabling problems.

Exams are modeled as variables with finite domains. The values within

the domains represent the time slots and rooms. The values are assigned

in a sequential manner to construct solutions for the problems. David [69]

applied constraint satisfaction to model an exam timetabling problem in

a French school, the Ecole des Mines de Nantes. Partial solutions were

constructed first since time complexity was crucial. Local repair strate-

gies were employed successively to obtain complete solutions and make

improvements. The approach was run several times using different initial

assignments to lower the chance of missing good solutions.

Duong and Lam [82] also employed constraint programming to generate

initial solutions for the exam timetabling problems at the HoChiMinh City

University of Technology. The generated solutions were improved using

11

Chapter 2: Exam Timetabling

a Simulated Annealing approach (see section 2.2.2). Backtracking and

forward checking were used to enhance the search. A labeling strategy,

which indicates the order in which variables are to be initiated, was used

to order the variables (exams) by a number of factors such as the number

of students and the size of the domain.

Bullnheimer [22] used Simulated Annealing on two neighbourhood struc-

tures on small scale exam timetabling problems. He adapted a model for

Quadratic Assignment Problems to formulate a problem at the University

of Magdeburg. The models enabled the university administrators to control

the spacing between conflicting exams.

Sheibani [150] developed a mathematical model which is used by a Genetic

Algorithm (see section 2.2.2) to solve exam timetabling problems in training

centres with the objective of maximising the gaps between exams. The

closeness between exams was estimated using an activity-on-arrow network

which was used in the fitness function of the Genetic Algorithm.

Wong et al. [167] applied a Genetic Algorithm to a solve an exam timetabling

problem at the Ecole de Technologie Superieure. The problem was modeled

as a Constraint Satisfaction problem. Parents were selected using tourna-

ment selection and repairing strategies were combined with mutations to

produce better candidates.

Colijn and Layfield [59] applied a multi-stage approach for the exam timetabling

problem in the University of Calgary. In the 1st stage, exams were moved

to reduce the number of occurrences where students sit two exams in a

row. In the 2nd stage, the same approach is used to reduce the number of

occurrences of students taking three and four exams in a row.

Burke et al. [30] used another multi-stage approach to deal with nine

12

Chapter 2: Exam Timetabling

criteria in exam timetabling problems (e.g. room capacity, time and order

of exams, proximity of exams, etc). In the 1st stage, the criteria was dealt

with individually using Saturation Degree (see section 2.2.2) to generate a

set of feasible solutions. The initial solutions were improved simultaneously

using heuristics.

This chapter will provide a review of the exam timetabling literature which

is relevant to the work studied in this thesis. There are three main exam

timetabling problems which are used to evaluate the performance of the

investigated approaches. The exam timetabling problems are the Toronto

benchmark and the Exam Timetabling Competition (ITC2007) dataset. In

this chapter we review the previous work on exam timetabling problems by

organising the subjects into two sections. Section 2.2 presents the Toronto

benchmark literature and a brief description of the different approaches de-

veloped to solve exam timetabling problems. However, the section focuses

on the approaches applied to the Toronto benchmark. Finally, section 2.3

presents the ITC2007 exam timetabling problem and the approaches ap-

plied to the dataset. The aim of this chapter is to put this contribution in

context, and provide information about the problems investigated in this

thesis and the different approaches applied in the area of research. For

further information a survey for exam timetabling can be found in [144].

2.2 The Toronto Benchmark

2.2.1 Problem Description

In 1996, Carter et al. introduced a set of exam timetabling benchmark

data. This dataset is widely used in exam timetabling research by different

13

Chapter 2: Exam Timetabling

state-of-the-art approaches and can therefore be considered as a benchmark

[54]. It consists of 13 real-world problems from 3 Canadian high schools, 5

Canadian, 1 American, 1 UK and 1 mid-east universities. The problem has

one hard constraint where conflicting exams cannot be assigned to the same

time slot. In addition, a soft constraint is present to minimise the number

of exams assigned in adjacent time slots in such a way as to reduce the

number of students sitting exams in close proximity. The sum of proximity

costs is given as follows:

∑4
i=0(wi × L)/S

where

• wi = 24−i is the cost of assigning two exams with i time slots apart.

Only exams with common students and are four or less time slots

apart cause violations

• L is the number of students involved in the conflict

• S is the total number of students in the problem

There has, however, been a problem with these benchmarks. Over the years

two slightly different versions of some of the sets have been made available.

This has caused some confusion when comparing different approaches in

the literature. Qu et al. [144] have recently completed a thorough re-

classification of all problem instances which have appeared in published

work. In the version II problem instances, 3 instances (sta83 II, yor83

II and ear83 II) contain repetitions in the data files. Therefore, these

repetitions were removed [144] and named as version IIc (the ”c” stands

for ”corrected”). A modification to the number of time slots had to be

14

Chapter 2: Exam Timetabling

made for sta83 II from 13 to 35 time slots to obtain a feasible solution.

The characteristics of the versions used in this research are presented in

table 2.1. The original version I, version II and the version IIc data files

are all available at http://www.asap.cs.nott.ac.uk/resources/data.shtml.

For each data instance, two files are provided - a student data file (with a

.stu file extension) and exam data file (with a .exm file extension). A list of

the exams enrolled on by each student are stored in the student data file,

while the number of available time slots is stored in the exam data file.

Examples of the information available are the conflicting exams, the total

number of students enrolled for each exam and the number of examinations

enrolled by each student. This information can be used to measure the

density of conflicting exams for each problem instance. The conflict density

values shown in the table indicates the density of conflicting exams. To

calculate the conflict density, a conflict matrix C is defined in which each

element cij is one if exam i conflicts with exam j (at least one student is

enrolled for both exam i and j), or zero otherwise. The conflict density

is calculated by summing the number of other exams that each exam is

conflicted with (i.e. the elements of the conflict matrix for which cij = 1),

and dividing the sum by the total number of elements in the conflict matrix.

15

Chapter 2: Exam Timetabling

T
a
b
le

2
.1
:
C
h
a
ra
ct
er
is
ti
cs

o
f
th
e
T
o
ro
n
to

b
en
ch
m
a
rk

d
a
ta
se
t

P
ro
b
le
m

E
x
am

s
I/
II
/I
Ic

S
tu
d
en
ts

I/
II
/I
Ic

E
n
ro
lm

en
ts

I/
II
/I
Ic

D
en
si
ty

ti
m
e
sl
ot
s

ca
r9
1
I

68
2

16
92
5

56
87
7

0.
13

35
ca
r9
2
I

54
3

18
41
9

55
52
2

0.
14

32
ea
r8
3
I

19
0

11
25

81
09

0.
27

24
ea
r8
3
II
c

18
9

11
08

80
57

0.
27

24
h
ec
92

I
81

28
23

10
63
2

0.
42

18
h
ec
92

II
80

28
23

10
62
5

0.
42

18
k
fu
93

I
46
1

53
49

25
11
3

0.
06

20
ls
e9
1
I

38
1

27
26

10
91
8

0.
06

18
st
a8
3
I

13
9

61
1

57
51

0.
14

13
st
a8
3
II
c

13
8

54
9

54
17

0.
19

35
tr
e9
2
I

26
1

43
60

14
90
1

0.
18

23
u
ta
92

I
62
2

21
26
6

58
97
9

0.
13

35
u
ta
92

II
63
8

21
32
9

59
14
4

0.
12

35
u
te
92

I
18
4

27
50

11
79
3

0.
08

10
yo
r8
3
I

18
1

94
1

60
34

0.
29

21
yo
r8
3
II
c

18
0

91
9

60
02

0.
3

21

16

Chapter 2: Exam Timetabling

2.2.2 Approaches for the Toronto benchmark

Approaches developed to solve timetabling problems usually consist of two

phases [107]. In the first phase, a solution is constructed by using a se-

quential construction algorithm. The constructed solution can be feasible

or infeasible. If a solution is infeasible, it can be corrected during the second

phase which is an iterative improvement phase.

In the second phase, the initial solution is improved while ensuring the

feasibility of the solution. The improvements can be implemented by using

any search algorithm such as Genetic Algorithms [101], Tabu Search [95–

97], Simulated Annealing [117] or the Great Deluge Algorithm [81]. In this

section, a brief description of various search algorithms and approaches

applied to exam timetabling problems is presented.

In the first two parts of this research, the focus is on the construction

process, as constructing feasible solutions is a difficult task especially for

large, real-world timetabling problems [107]. A detailed explanation of

the construction algorithms employed in this research are outlined in the

following section.

Sequential Constructive Algorithms

Sequential constructive algorithms were amongst the first approaches used

to tackle the exam timetabling problem in an automated manner [21, 58].

The idea behind such algorithms is to prioritise the assignment of the exams

that might cause problems if left to be scheduled later in the process.

Therefore, the overall aim is to avoid the assignment of exams to time slots

which might later lead to an infeasible solution. An infeasible solution is

17

Chapter 2: Exam Timetabling

obtained when at least one exam remains unscheduled. In many cases this

is because all the potentially valid time slots are invalidated. In such a

situation, a different ordering may enable a feasible solution to be reached.

Approaches which order the exams prior to assignment to a period have

been discussed by several authors including Boizumault [18], Brailsford

[19], Burke and Newall [43], Burke et al. [31], Burke and Petrovic [46],

and Carter et al. [54]. The strategy of solving exam timetabling prob-

lems sequentially has been applied to the Toronto benchmark by Carter

et al. [54], Burke and Newall [43], and Burke et al. [42]. Usually, the

unscheduled examinations are ordered according to certain criteria which

represent the priority to schedule exams (the most difficult first). A num-

ber of well known strategies from the graph colouring problem were used.

Many studies employ graph theory to calculate the ”difficulty to schedule

an exam”. The following list describes the most common graph colouring

based heuristic orderings used in timetabling research:

Largest Degree (LD) First. Exams are ranked in a descending order

by the number of exams in conflict i.e. priority is given to examinations

with the greatest number of exams in conflict.

Largest Enrolment (LE) First. Exams are ranked in a descending order

by the number of students enroled in each of the exams i.e. examinations

with the highest number of students are given the highest priority.

Least Saturation Degree (SD) First. Exams are ranked in an increas-

ing order by the number of valid time slots remaining in the timetable for

each exam. Priority is given to exams with fewer time slots available.

Largest Coloured Degree (LCD) First. This heuristic is based on

LD. For this heuristic, only exams which have been already assigned to the

18

Chapter 2: Exam Timetabling

schedule are considered as the exams which will cause conflict.

Largest Weighted Degree (LWD) First. This heuristic is also based on

LD. Besides the number of exams in conflict, the total number of students

involved in the conflict is taken into account as well.

Largest Uncoloured Degree(LUD) First. Exams are ranked in an in-

creasing order by the number of conflicts each exam has with examinations

unscheduled yet.

Largest Uncoloured Weighted Degree(LUWD) First. This heuristic

is based on LUD. Besides the number of exams in conflict, the total number

of students involved in the conflict is taken into account as well.

In general, heuristic orderings are divided into two categories: static and

dynamic. Static heuristic orderings are predetermined before the start of

the assignment process and their values remain the same throughout the

process. From the heuristic orderings described above, LD, LE and LWD

are categorised as static heuristic orderings. The number of exams in con-

flict with each exam and the number of students enroled for each exam only

need to be calculated once by analysing the specific problem structure. On

the other hand, SD, LCD, LUD and LUWD are considered to be dynamic

heuristic orderings because the number of valid time slots available for

unscheduled exams and the number of exams assigned to time slots may

change each time an exam is assigned to a valid time slot. Therefore, the

unscheduled exams need to be reordered each time an exam is scheduled.

In 1961, Appleby et al. [5] implemented graph colouring techniques in the

preparation of school timetables. Graph based heuristic orderings were

also applied to other educational timetabling problems. LD was the most

widely used heuristic ordering in earlier research into exam timetabling

19

Chapter 2: Exam Timetabling

[21, 58, 161]. Furthermore, the LE and LD heuristic orderings were used

in [168]. In this approach, the exams which require the room with the

largest capacity were selected. These exams were then ordered using LD

and the first exam in the ordering is scheduled. The same process was

repeated using the second largest room and so on. LE and LD were also

combined simultaneously through a simple linear combination multiplied

by a weighted factor wLE that was varied [111].

In 1979, Saturation Degree was introduced to solve the graph colouring

problem [20]. Saturation degree suggests that the most difficult vertex to

colour is the vertex with the least available colours. Mehta [125] used the

SD heuristic to schedule exams in twelve time slots. However, to avoid any

student from sitting two exams at the same time, thirteen time slots were

required. In addition, an exam grouping mechanism and an adjustment to

the sequence of time slots was applied to avoid conflicts and to spread out

each student’s schedule.

LD, SD, LWD and LE were used in [122] and [54] to rank the exams in a

decreasing/increasing order to estimate the difficulty of scheduling each of

the exams. An ordering was obtained using each one of the four heuristics.

Then, the exams were selected sequentially and assigned to a time slot

without violating any hard constraint. In [54], the algorithm presented

was used to find the maximum clique of conflicting examinations. A clique

of exams is a group of exams in which each exam conflicts with every other

exam. The size of the maximum clique is very important as it can be

used to determine the minimum number of time slots required to schedule

all the exams [93]. The approach starts by scheduling the exams in the

maximum clique in different time slots. Then the rest of the exams were

scheduled using the heuristic orderings. This approach was applied to ten

20

Chapter 2: Exam Timetabling

random instances and thirteen real problems. The use of cliques for exam

timetabling has been further investigated in [53].

Greedy Randomised Adaptive Search Procedure (GRASP) is a meta-heuristic

which has attracted significant recent attention [86]. It is a two phase

procedure which starts by adaptively creating a randomised greedy solu-

tion followed by an improvement phase. A study on the efficiency of the

four heuristic orderings (i.e. Largest Degree, Saturation Degree, Largest

Weighted Degree and Largest Enrolment) was presented in [55]. The or-

derings were used to construct the initial solutions in the first phase of a

GRASP algorithm. A roulette wheel selection was then applied to the top

n exams to choose the next exam to be scheduled. The value of n was

chosen depending on the number of exams in the problem instance. The

exam chosen was scheduled into the first time slot which satisfied all the

hard constraints.

A priority formula was used to order the exams in [89]. The priority formula

uses information on the exams extracted from the problem. In addition,

a manual special priority setting was employed to override other soft con-

straints. For example, final year exams were given special priority and were

scheduled first. The aim of scheduling exams in a sequential manner using

certain criteria or heuristics is to make sure the timetabling process ends

by scheduling all the exams in the construction phase. However, in some

cases the exams are not assigned in the first attempt. Therefore, different

strategies were used to select which time slot to choose when assigning an

exam. This can have a significant effect on the construction process. Some

common strategies mentioned in the literature are as follows:

• Using the first or last valid time slot.

21

Chapter 2: Exam Timetabling

• Using a random valid time slot.

• Using the time slot leading to the least penalty cost.

• Using the time slot leading to the least number of unused seats.

After applying different strategies of event selection and time slot assign-

ment, various approaches can be applied in the case where a feasible timetable

is not achievable. The idea is to reshuffle the earlier scheduled events to

find a feasible solution. Backtracking was implemented in [54] and [122]

whenever a valid time slot could not be found to schedule an event. In

order to free a time slot, the time slot with the minimum number of con-

flicting scheduled exams was chosen. The minimum disruption cost (the

cost of reshuffling the conflicting examinations from the selected time slot

into another valid time slot and inserting the current unscheduled exam

into the selected time slot) is calculated to identify which exam was to be

moved. All the conflicting exams were either moved to a different valid

time slot with the least penalty cost or returned to the list of unscheduled

exams. To avoid an infinite loop, an exam is not allowed to be returned

to the list of unscheduled exams more than three times. This process ends

when a feasible solution was produced. A similar backtracking approach

was investigated in [55].

Another approach proposed in [43] applied an adaptive ordering strategy in

which the exams were dynamically ordered by a particular heuristic. This

heuristic could then be modified to take into account the penalty caused

from constraint violations. Their work was motivated by the Squeaky

Wheel approach introduced by Joslin and Clements [112]. Other approaches

in the literature implemented heuristic orderings where events were split

into independent sets. The events are split in a way to make sure there are

22

Chapter 2: Exam Timetabling

no conflicts within a group. Each event in the group is then assigned a time

slot with the objective of minimising the violations of soft constraints. One

of the earliest approaches using this technique was introduced in [169]. A

comparison between two different groupings for the graph colouring prob-

lem was presented. The first was based on the graph heuristic LD, while the

second was based on a similarity matrix. A similarity matrix was generated

based on the information obtained from the conflict matrix. As defined in

[169], ”if vertices i and j are not connected, the similarity is the number

of other vertices k which are connected to both i and j”. The experiments

on timetabling problems showed that the ordering using the LD heuristic

performed better than the similarity matrix approach when it was applied

to randomly generated datasets.

An automated exam timetabling system called HOREX employed by the

L’ecole Polytechnique de Montrèal was presented in [73]. The system was

implemented using five heuristic orderings to select exams and place them

into non conflicted groups. The heuristic orderings included LE, two ran-

dom approaches, and two orderings based on LD. Another approach was de-

veloped in [34] using LD to determine which examinations could be grouped

together in the same time slot. The exams in each group were ordered us-

ing LE to assign them to rooms with the aim of minimising the number of

unused seats. In this problem, more than one exam could be scheduled in

the same room.

In summary, many different heuristic orderings were examined in the liter-

ature. It was proven that it is difficult to determine which ordering would

be most suitable for a given problem [54]. Furthermore, the investigation

presented in [43] suggested that adaptively changing the heuristic ordering

during construction can produce better solutions. A common observa-

23

Chapter 2: Exam Timetabling

tion in different approaches implies that it might be beneficial to hybridise

heuristics during construction in order to further improve the quality of the

solutions obtained.

Iterative Improvement Methods

As stated earlier, after constructing a solution in the first phase, the solu-

tion is often improved in the second phase. The improvement is an iterative

process where the main objective is to improve the quality of the solution

at the end of the process. Meta-heuristic approaches have been the most

commonly used in the literature for this improvement. An excellent gen-

eral review of meta-heuristic approaches in combinatorial optimisation can

be found in [17]. The aim of heuristic search techniques is to provide an

efficient way of iteratively exploring the search space of a given problem.

However, most methods will get stuck into local optima. A meta-heuristic

is a technique to guide other heuristics to produce better solutions through

leading them out of local optimum. The term meta-heuristics was first

used by Fred Glover and he defines it as [98]:

”A meta-heuristic refers to a master strategy that guides and modifies other

heuristics to produce solutions beyond those that are normally generated

in a quest for local optimality. The heuristics guided by such a meta-

strategy may be high level procedures or may embody nothing more than

a description of available moves for transforming one solution into another,

together with an associated evaluation rule.”

While Osman and Kelly [131] defined it as: ”A meta-heuristic is an iterative

generation process which guides a subordinate heuristic ...”

This section focuses on the meta-heuristic approaches developed in the

24

Chapter 2: Exam Timetabling

literature for exam timetabling.

Simulated Annealing and the Great Deluge Algorithm

The process of annealing originally comes from physics where a material

is heated then cooled gradually to allow atoms to arrange themselves in

a configuration with lower internal energy. It was introduced in the early

1980s by [117] and [56].

Using a hill climbing algorithm to solve combinatorial optimisation prob-

lems could easily lead to falling into local optima. The reason this happens

is that a hill climbing algorithm only accepts better solutions within a cer-

tain neighbourhood, without exploring other neighbourhoods, which may

lead to a better solution. Simulated Annealing allows escaping from local

optima by accepting worse solutions probabilistically.

In each iteration, Simulated Annealing replaces the current solution with

a nearby random solution. If the nearby solution is better, then the solu-

tion is chosen. Otherwise the solution is chosen according to the difference

between the costs of the last previous solutions, and the temperature pa-

rameter (T) that gradually decreases in each iteration. For minimisation

problems, the Simulated Annealing process starts by randomly searching

different neighbourhoods allowing the escape from local optima followed by

a gradual decrease in the movement inside the search space.

Simulated Annealing has been applied to the exam timetabling problem to

improve soft constraint satisfaction by Thompson and Dowsland [158, 159].

They focused on automating the tuning of the cooling schedule and adapt-

ing it to problem instances and their corresponding objective functions.

25

Chapter 2: Exam Timetabling

Burke et al. [27] investigated a variant of Simulated Annealing which is

known as Great Deluge algorithm [81]. In comparison with the Simulated

Annealing, the Great Deluge Algorithm accepts worse moves as long as

the decrease in quality is below a certain level. It uses two parameters

which are the decay factor and an estimate of the quality of the desired

solution. The advantage of the Great Deluge Algorithm is that it requires

less parameter tuning and therefore it can be used by people who are non-

experts in meta-heuristics. The application of the Great Deluge Algorithm

in exam timetabling problems has been investigated by Burke et al. [31]

and, Burke and Bykov [23]. A comparison of Great Deluge Algorithm

and Simulated Annealing applied to the Toronto benchmark instances, as

reported by Burke et al. [27], and Abdullah and Burke [2], showed that,

overall, Great Deluge Algorithm was superior to Simulated Annealing.

Tabu Search

Tabu search performs a local search process iteratively until a certain stop-

ping condition is satisfied. Tabu search makes it possible to explore areas

of the search space that have not been explored through keeping a record of

the areas visited or preventing the reversal of certain moves. It also accepts

worse moves to escape local optima. A tabu list is used for the storage of

such information. The tabu list could be used in different ways to assist the

local search, such as storing the moves that would lead to an undesirable

solution or areas of the search space that have been previously explored.

Tabu search has proved itself effective and efficient for solving combinato-

rial optimisation problems where it avoids stopping at suboptimal points

and the repetition of previous solutions (see [94–97]).

Tabu Search has also been successfully applied to exam timetabling prob-

26

Chapter 2: Exam Timetabling

lems. Di Gaspero and Schaerf [74] investigated a family of Tabu Search

algorithms and applied the algorithms to the exam timetabling benchmark

datasets. The neighbourhoods used concerned those of which contributed

to the violations of hard or soft constraints. The experimental results

showed that the adaptive cost function and the effective selection of neigh-

bourhoods concerning the violations were key features of the approach.

White and Xie [163] developed a four-stage Tabu Search algorithm which

they called OTTABU. Both types of adaptive memory (namely recency-

based short term memory and frequency-based longer term memory) were

employed in order to construct exam timetables for the University of Ot-

tawa. The approach focused on avoiding cycling with the aim of improving

the quality of solutions. It was found that using long term memory can

significantly improve Tabu search and produce better timetables. Later,

the approach was extended in [162] and applied to twelve instances of the

Toronto benchmark (see table 2.1). The comparison with the results pub-

lished by other researchers showed that the performance of their approach

was favourable.

Paquette and Stutzle [134] developed a Tabu Search methodology depend-

ing on giving priorities for constraints. They investigated two different ways

of considering the constraints. In the first, the constraints were considered

one at a time starting with the highest priority and breaking ties by consid-

ering the lower priorities. The second way considered all the constraints at

a time starting from the highest priority. The second way obtained better

results than the first. However, the first way proved to be more consistent.

The length of the tabu list was determined according to the number of

violations in the solutions. It was observed that the length of the tabu list

needed to be increased with the size of the problems.

27

Chapter 2: Exam Timetabling

Evolutionary Algorithms

Evolutionary Algorithms (EA) are population based algorithms motivated

by the process of natural evolution [109]. EAs depend on storing a number

of solutions and creating better solutions by combining or changing the

solutions in the current population. Amongst the popular EAs are Genetic

Algorithms, Memetic Algorithms and Ant Algorithms.

Genetic Algorithms

Genetic Algorithms (GA) are designed through representing solutions of a

problem as chromosomes, which later evolve to better solutions [101]. The

chromosomes are encoded in a binary form as a series of 1s and 0s. The

process starts by generating a random solution and evolving more gener-

ations of different solutions. The process of evolution happens in three

steps which are selection, recombination and mutation. Individuals can be

selected using fitness proportionate selection or ordinal selection. Fitness

proportionate selection orders individuals according to their fitness then

the individuals are randomly selected. Individuals with higher fitness have

a higher chance of getting selected. Ordinal selection includes tournament

and truncation selection. In a tournament, a certain number of chromo-

somes are chosen and are entered in a tournament against each other. The

fittest is then chosen to become the parent. In truncation selection, the

top (1/s)th individuals get s copies each in the mating pool.

After the individuals are selected and placed in the mating pool, they are

recombined to form new chromosomes which are expectantly better. There

are many methods to perform recombination such as k-point, uniform,

order-based, uniform order-based, partially matched, cycle crossover.

28

Chapter 2: Exam Timetabling

Performing crossovers is usually not enough to explore the entire search

space. Therefore, performing a mutation would add to the diversity of

the chromosomes created. The simplest way to create a mutation is per-

forming a bit flip. Finally, once a new generation is created, the current

generation needs to be replaced. The current generation could simply be

deleted and replaced with the same number of chromosomes just created.

A steady-state replacement deletes a certain number of chromosomes from

the current generation and replaces them. This could also be done without

duplicating chromosomes that have been added.

Burke et al. [33] used GAs to minimise the number of time slots required

for exam timetabling problems. They investigated using different selec-

tion heuristics and uniform crossover operators. Two of the heuristics were

graph colouring heuristics (LD and LCD), one was a random, and the

remaining were specially designed heuristics that highlighted the two con-

straints that needed to be addressed (i.e. the number of time slots and the

spread of the conflicting exams) either individually or combined. These

heuristic crossover operators were developed with the aim of avoiding in-

feasible timetables being produced during the recombination process. The

experimental results showed that good quality timetables might be pro-

duced by integrating heuristics in crossover operators. Similar heuristic

crossover operators were successfully implemented by Burke et al. [35] for

another set of more difficult timetabling problems.

Ross et al. [147] discussed the weakness of direct coding in GAs. They

suggested that a GA is more suitable for finding a good algorithm instead

of directly searching for the solutions for a particular problem. Erben [84]

applied grouping GAs for exam timetabling problems. In grouping GAs, a

group of non-conflicting exams are treated as one gene. The chromosome

29

Chapter 2: Exam Timetabling

length represents the number of time slots for exam timetabling problems.

In order to generate feasible solutions, the hard and soft constraints need

to be incorporated in the crossover operator and mutation operator. Al-

though the approach did not compete with the best results when applied

to the Toronto benchmark, the computational time was less when com-

pared to the other approaches. The work also highlighted the importance

of representation when designing Genetic Algorithms.

Memetic Algorithms

The term ’Memetic Algorithm’ was introduced by Moscato [127] to intro-

duce an extension to GAs where individuals in a population can be im-

proved within a generation. Later, Moscato and Norman [128] presented

an approach that applied a local search within a GA implementation.

Burke et al. [45] performed a hill climbing local search after each mutation

instead of using a crossover operator. Light and heavy mutation operators

were proposed to reassign single exams and sets of exams. However, none

of the mutations were capable of improving the quality of the solutions

when they were used on their own. In addition, a comparison with ap-

proaches that relied on multi-start random descent local search showed that

this approach obtained better results for the Nottingham capacitated exam

timetabling problem. Further tests on the Toronto benchmark showed that

this approach was outperformed by their previous approach presented in

Burke et al. [35].

Burke and Newall [44] presented a paper which focused on heuristic decom-

position of the timetabling problem. A memetic algorithm was then used

to solve sub-problems. The results showed that using heuristics and local

30

Chapter 2: Exam Timetabling

search approaches with GAs obtained better results than using a GA only.

A detailed description on designing Memetic Algorithms for timetabling

problems can be found in Burke and Landa Silva [26].

Ant Algorithms

Ant algorithms are another subset of population based approaches, intro-

duced by Dorigo et al. [77]. Initially, ant algorithms were applied to the

Traveling Salesman Problem in [76, 77]. Eventually, Costa and Hertz [61]

developed the ANTCOL system which investigated the use of ant algo-

rithms in graph colouring problems. Although the results produced from

the system did not match the best reported in the literature, Costa and

Hertz stated that the results were quite satisfactory. Socha et al. [151]

applied ant algorithms to course timetabling. When they compared ant al-

gorithms to other local search techniques, it was found that ant algorithms

produced the best solutions.

The basic ANTCOL developed by Costa and Hertz [61] was extended

by Dowsland and Thompson [80] and applied to the Toronto benchmark

datasets with the aim of finding the minimum number of time slots re-

quired to produce a feasible timetable. Overall, the improved ANTCOL

has produced competitive results compared to the results obtained using

other approaches.

Eley [83] investigated the use of two modified ant algorithms based on the

Max-Min Ant System for course timetabling [151], and the ANTCOL algo-

rithm for graph colouring problems [61]. Both algorithms were hybridised

with a hill climber and a comparison was made. It was observed that

the ANTCOL outperformed the Max-Min ant system and the results were

31

Chapter 2: Exam Timetabling

comparable with the best results in the literature.

Hybrid Approaches

More recently, the timetabling research turned into a new direction of hy-

bridised methods which combine two or more of the techniques mentioned

earlier. Casey and Thompson [55] implemented a GRASP algorithm in

exam timetabling. They observed that better solutions could be obtained

when a limited form of Simulated Annealing with a high starting temper-

ature and fast cooling was used in the improvement phase. Kempe chain

neighbourhoods [159] were employed to the exams that contributed to the

cost. Furthermore, a memory function was used to avoid exams sharing

the same time slot as in the previous iteration.

Azimi [11] developed a hybrid heuristic based on a combination of an Ant

algorithm and Tabu Search. This hybridisation was based on an earlier

analysis where Simulated Annealing, Genetic Algorithms, Tabu Search and

Ant algorithms were compared in [10]. The analysis was carried out with

randomly generated exam timetabling datasets. Azimi introduced three

different variants of hybridisation on Tabu Search and the Ant Colony

method, and the results showed that the hybrid approaches work better

than the meta-heuristics applied individually.

The hybrid approach developed by Caramia et al. [52] has produced several

best known results in the literature on several instances of the Toronto

benchmark datasets. They assigned the exams into the least number of time

slots using a greedy scheduler followed by a penalty decreaser to improve

the timetable. A penalty trader was applied to increase the number of time

slots when no improvement could be made.

32

Chapter 2: Exam Timetabling

Merlot et al. [126] introduced another approach which also produced some

of the best results in the literature. Their three-stage hybrid approach

starts by constructing a feasible solution using a constraint programming

approach. The solution is improved using Simulated Annealing in stage

two, and in the final stage the solution is further improved by implementing

a hill climbing method.

A study that investigated the hybridisation of large neighbourhood search

based on improvement graph construction [4] and Tabu search was pre-

sented in Abdullah et al. [1]. A tree-based neighbourhood was imple-

mented to perform cyclic exchanges among all of the time slots instead

of considering the traditional pair-wise exchange based operators. Exper-

imental results showed that their solutions were competitive to the best

reported in the literature at the time of publication.

Asmuni et al. [7] used fuzzy logic to combine two out of three graph

colouring heuristics. The idea was to combine the two heuristics into a

single value which calculates the difficulty of allocating an exam to a time

slot. The exams are ordered using this value and are scheduled in order.

Furthermore, the approach was extended to tune the fuzzy rules instead of

keeping them fixed [8]. This was achieved through automating the combi-

nation of construction and improvement techniques. They observed that

the use of meta-heuristics to enhance solutions is dependent on the quality

of the solution obtained during the construction process. The approach fo-

cused on combining multiple criteria to decide how to construct a solution.

Fuzzy methods were used to combine three single construction heuristics

into three different pair wise combinations of heuristics to determine the

order in which the exams are inserted into the timetable. They presented

a comparison on the performance of the various heuristic approaches with

33

Chapter 2: Exam Timetabling

respect to a number of criteria (overall cost penalty, number of skipped

exams, number of iterations of a rescheduling procedure required and com-

putational time).

Abdullah et. al [3] presented a hybridisation of an electromagnetic-like

mechanism (EM) and the Great Deluge algorithm. The technique estimates

the quality of the solution and calculates a decay rate at every iteration

during the search process. These values depend on a force value calculation

using the EM approach. This approach produced the best quality solution

for four of the instances.

Burke et al. [32] introduced an approach which combines a variable neigh-

bourhood search (VNS) with a GA which produced the best quality solu-

tion for one of the Toronto instances. Different initialisation methods were

used to introduce variants of the technique including a biased VNS and

its hybridisation with a GA. They analysed a number of different neigh-

bourhood structures and were able to demonstrate that the approach was

highly effective although it requires a relatively large amount of compu-

tational time. In addition Burke et. al [28] proposed a method where a

hill-climber compares the candidate solution with a solution produced a

couple of iterations back instead of the current solution. This was called

the ”late acceptance criteria” and it produced the best quality solutions

for two instances of the Toronto benchmark.

34

Chapter 2: Exam Timetabling

2.3 The Exam Timetabling Track of the Sec-

ond International Timetabling Compe-

tition (ITC 2007)

2.3.1 Problem Description

The ITC2007 exam timetabling track could be considered as a complex and

a more practical dataset in comparison to the Toronto benchmark. This is

due to the larger number of constraints it contains. A full description of

the problem and the evaluation function can be found in [124]. In addition,

the characteristics which define the instances are summarised in table 2.2.

The problem consists of the following:

• A set of time slots covering a specified length of time. The number

of time slots and their durations are provided.

• A set of exams which should be allocated to the time slots.

• A list of the students enrolled in each exam.

• A set of rooms with different capacities.

• A set of additional hard constraints (e.g. exam X must be after exam

Y or exam A must use Room R).

• A set of soft constraints and their associated penalties.

In comparison to the Toronto benchmark, the ITC2007 dataset has more

than one hard constraint. The hard constraints are as follows:

• No student sits more than one exam at the same time.

35

Chapter 2: Exam Timetabling

• The capacity for each individual room should not be exceeded at a

given period.

• Period lengths should not be violated.

• Additional hard constraints should be all satisfied.

The soft constraints violations are summarised as follows:

• Two Exams in a Row The number of occurrences where a student

sits two exams in a row on the same day.

• Two Exams in a Day The number of occurrences where a student

sits two exams on the same day. If the exams are back to back

then this is considered as a Two Exams in a Row violation to avoid

duplication.

• Period Spread The exams have to be spread a certain number of

time slots apart.

• Mixed Durations The number of occurrences where exams of dif-

ferent durations are assigned to the same room.

• Larger Exams Constraint The number of occurrences where the

largest exams are scheduled near the end of the exam session. The

number of the largest exams and the distance from the end of the

exam session are specified in the problem description.

• Room Penalty The number of times where certain rooms, which

have an associated penalty, are used.

• Period Penalty The number of times where certain time slots, which

have an associated penalty, are used.

36

Chapter 2: Exam Timetabling

T
a
b
le

2
.2
:
C
h
a
ra
ct
er
is
ti
cs

o
f
th
e
IT

C
2
0
0
7
d
a
ta
se
t

In
st
an

ce
C
on

fl
ic
t
D
en
si
ty

E
x
am

s
S
tu
d
en
ts

P
er
io
d
s

R
o
om

s
n
o.

of
H
ar
d
C
on

st
ra
in
ts

ex
am

1
5.
05

60
7

78
91

54
7

12
ex
am

2
1.
17

87
0

12
74
3

40
49

14
ex
am

3
2.
62

93
4

16
43
9

36
48

18
5

ex
am

4
15
.0

27
3

50
45

21
1

40
ex
am

5
0.
87

10
18

92
53

42
3

27
ex
am

6
6.
16

24
2

79
09

16
8

23
ex
am

7
1.
93

10
96

14
67
6

80
15

28
ex
am

8
4.
55

59
8

77
18

80
8

21

37

Chapter 2: Exam Timetabling

2.3.2 Approaches for the ITC2007 dataset

A three phased approach was developed by Muller [129] to solve the prob-

lems in the ITC2007 exam timetabling track. The first phase consists of an

Iterative Forward Search algorithm to find a feasible solution. Hill climb-

ing is used to find the local optima in the second phase. Finally, a Great

Deluge Algorithm is applied to further explore the search space.

Gogos et al. [99] proposed a method which used a GRASP. In the construc-

tion phase, five orderings of exams based on various criteria are generated.

Tournament selection is used to select exams until they are all scheduled.

A backtracking strategy using a tabu list is employed as required. In the

improvement phase, Simulated Annealing is used. Finally, room allocations

are arranged using integer programming in the third phase. The work was

further improved in [100].

Atsuta et al. [9] used a constraint satisfaction solver incorporating tabu

search and iterated local search. The solver differentiates between the

constraints and their corresponding weights during computation to improve

performance. De Smet [70] also incorporated local search techniques in a

solver called Drools. Drools is an Open-Source Business Rule Management

System (http://www.jboss.org/drools/).

Pillay [135] introduced a biological inspired approach which mimics cell

behaviour. The exams are initially ordered using the saturation degree

heuristic and scheduled sequentially in the available ”cells” i.e. time slots.

If more than one time slot is available, the slot which causes the least overall

constraints violation is chosen. Rooms are chosen using the best fit heuris-

tic. If a conflict occurs before all the exams are scheduled, the timetable

is rearranged to lower the soft constraints violation. This is described as

38

Chapter 2: Exam Timetabling

cell division. If the overall soft constraint violation is not improved with-

out breaking hard constraints, cell interaction occurs. The time slots are

swapped in this process to remove hard constraint violations. The process

continues until a feasible solution is achieved. Finally, the contents of cells

having equal durations are swapped to improve the solution. This is called

cell migration.

McCollum et al. [123] proposed a two phased approach where an adaptive

heuristic is used to achieve feasibility during the first phase. The second

phase improves the solution through the employment of a variant of the

Great Deluge Algorithm.

2.4 Chapter Summary

This chapter has presented a detailed description of exam timetabling prob-

lems. As timetabling problems are tedious tasks to solve manually, a wide

variety of approaches and algorithms have been applied to timetabling

problems with the aim of developing computer-based automated timetabling

systems. An overview of the two benchmarks used in this thesis was pre-

sented. Various approaches that have been implemented on both the bench-

marks were also highlighted. In the next chapter, a background to the

hyper-heuristic techniques utilised in the remainder of this thesis is pre-

sented, for the reader not familiar with hyper-heuristics.

39

Chapter 3

Hyper-Heuristics

3.1 Introduction

Hyper-heuristics can be defined as heuristics which choose heuristics, as

opposed to searching for a solution directly [146]. The basic idea of hyper-

heuristics has been around since the 1960s when Fisher and Thompson

presented an algorithm which combines local job shop scheduling rules

using a probabilistic learning technique [87, 88]. The learning technique

was used to choose one of two heuristics which assign jobs to machines and

therefore the approach can be classified as a hyper-heuristic.

For the past 10-15 years and until today, meta-heuristics have been used

to solve many combinatorial optimisation problems in different fields. This

allowed the in-depth scientific understanding of these problems. In addi-

tion, a range of new meta-heuristics was successfully developed to solve

difficult problems and problem-specific systems were produced as a result.

Designing and implementing such systems is expensive and very difficult

for users to understand and maintain. Instead, some users decide to use

40

Chapter 3: Hyper-Heuristics

very simple heuristics, which lead to low quality solutions. This motivated

research on the creation of systems, which would operate on a range of

related problems with the ”goal of raising the level of generality at which

optimisation systems can operate” [51]. In practice, this motivates explor-

ing systems which can operate over a range of different problem instances

and even across problem domains, without expensive and time consuming

parameter tuning, while still maintaining a certain level of solution quality.

The ’No Free Lunch’ theorem [165, 166] states that all search algorithms

would yield the same average performance for all the possible finite search

problems on a given finite domain. This would suggest that it is not possible

to develop a general search methodology for all optimisation problems.

However, this does not state that it is not possible to develop a search

methodology for a group or range of problems.

In educational timetabling, the algorithms are developed to target a spe-

cific set of problems and sometimes instances of the same problem. The

algorithms would also need to be tailored to specific requirements accord-

ing to the requirement of the stakeholders depending on their resources and

constraints [6, 164].

The power of tailored algorithms falls in the use of domain knowledge

which allows them to exploit the search space of the problem in hand.

This knowledge can be used to intelligently guide and adapt the heuristic

search. Therefore, humans develop heuristics which rely on the features of

a problem domain, and this aids the heuristics to perform better on average

than random search.

Hyper-heuristic research is concerned with building systems which can au-

tomatically guide and adapt a search according to the structure of the

41

Chapter 3: Hyper-Heuristics

problem in hand. This can be achieved through the exploitation of the

structure of a problem, and the creation of new heuristics for that prob-

lem, or intelligently choosing from a set of pre-defined heuristics. In other

words, hyper-heuristic research aims to automate the heuristic design pro-

cess through automating the decision of which heuristics to employ to ex-

plore the solution space for a new problem. The aim here is to automate

the heuristic design process and produce optimisation tools available to

stakeholders who require quick and cheap solutions for their optimisation

problems. Examples of such stakeholders could range from a school with

a timetabling problem or a company with a space allocation problem, to

larger scale problems such as a packing problem in a freight company or

a job scheduling problem in a factory. It is often an expensive and time

consuming process for them to consult a team of analysts to gather their re-

quirement and employ a tailored heuristic, which would be very specific to

their needs. A general system which automatically exploits the knowledge

about a given problem and creates or chooses predefined heuristics would

be applicable to a range of organisations, potentially decreasing the cost

to all. However, there could be a trade-off between the generality of such

a system, and the quality of the solutions produced. On the other hand,

stakeholders looking for a cheap solution are not interested in the optimal

as long as they obtain an accurate and quick solution for their problem.

For example, consider a university that currently solves its timetabling

problems by hand. This university may find that the cost of contracting a

company to design a system to solve their problem, would be higher than

the benefit they would get in terms of better timetables. However, the

cost of purchasing a general system which can automatically find solutions

without an expert being involved, may be lower than the resulting cost

reduction to the university after using such a system. If the quality of the

42

Chapter 3: Hyper-Heuristics

solutions produced is satisfactory compared to the cost, then this would

encourage more universities to take the advantage of using such systems

which apply heuristic search methodologies. Hyper-heuristic research aims

to automate the heuristic design process to produce ”good-enough soon-

enough cheap-enough” solutions for organisations with similar optimisation

needs[51]. The broad aim is to design an algorithm for solving a range of

problems or instances of a problem that is fast, reasonably comprehensible,

trustable in terms of quality and reliable in terms of its performance across

that range of problems [146].

There are two classes of hyper-heuristics, explained in sections 3.2 and 3.3.

One class aims to generate heuristics from a set of components while the

second class aims to intelligently choose heuristics from a set of predefined

heuristics which have been previously developed. This can be seen as a

framework to automate the process of predefined heuristic choice and hy-

bridisation. It is this second class that is the focus of the work presented

in this thesis.

3.2 Hyper-heuristics to Create Heuristics

The class of hyper-heuristics which aim to create a heuristic from a set

of potential components is a fairly recent approach investigated in the lit-

erature. The heuristics created can be classified as ’disposable’ heuristics

which are created for a single and known problem instance, and cannot be

applied to another unknown or hidden one. In contrast, the heuristic can

be created in a manner which allows it to be re-used on different instances

of the same problem class.

43

Chapter 3: Hyper-Heuristics

The true challenge here falls in the creation of a new heuristic or a variation

of a previously created heuristic, which may obtain the best possible result

for an instance. Human tailored heuristics are usually targeted to solve a

class of instances, as it is inefficient to create a heuristic for every problem

instance.

For example, the ’best-fit’ heuristic is well-known to perform well on one

dimensional packing problems [116] and is created to be generally used

in solving any bin-packing instance. However, best-fit can be easily out-

performed where piece sizes are defined over a certain distribution, and a

heuristic is tailored to fit the specific requirement given that the piece sizes

are known [37].

Therefore, if the heuristic design process is automated, a computer system

could produce a good quality heuristic for an instance in a practical amount

of time. This heuristic could even produce a solution that may be better

than that which can be obtained by a human created heuristic. This is be-

cause it would have been created using specific knowledge of that instance.

Automating the heuristic design process offers the chance to easily specify

the range of instances that a heuristic will be applicable to, and then obtain

that heuristic with minimal human intervention.

Poli, Woodward and Burke [141] employ genetic programming to evolve

heuristics for bin packing. They observed that space was wasted while

placing a piece in a bin. This left space which is a smaller than the smallest

piece still to be packed. The structure within which their heuristics operate

is based on matching the piece size histogram to the bin gap histogram.

Fukunaga [90] present an automated heuristic discovery system for the SAT

problem. After analysing the problem and breaking down the structure into

44

Chapter 3: Hyper-Heuristics

component parts, an evolutionary algorithm to evolve human competitive

heuristics was developed. It was also shown that specific human created

heuristics from the literature, such as GWSAT and WalkSAT, can be rep-

resented from this component set. Fukanaga states that due to the large

number of possibilities involved, the task of combining heuristics is a dif-

ficult one. However, using an automated system would make the task of

creating new heuristics easier.

Bader-El-Din and Poli [12] observe that the approach of Fukunaga results

in heuristics which are composites of those in early generations. There-

fore, they present a different methodology to generate heuristics for SAT,

which makes use of traditional crossover and mutation operators to pro-

duce heuristics which are faster to execute. Using four existing human

created heuristics, a grammar which allows significant flexibility to cre-

ate completely new heuristics is defined. Furthermore, the same team of

researchers develop a hyper-heuristic system which evolves constructive

heuristics for timetabling problems [13]. Since the heuristics generated are

not re-usable, the system is considered as an online learning method which

can obtain better results than other constructive algorithms.

Work presented by Keller and Poli in [113] presents a linear genetic pro-

gramming hyper-heuristic for traveling salesman problems. The system

evolves sequences of swap heuristics which swap two or three pairs of edges.

The complexity of the evolved heuristics is then increased by adding loop

and conditional components.

Ho and Tay employ genetic programming to evolve composite dispatching

rules for the flexible job shop scheduling problem in [108, 155]. The dis-

patching rules are functions which assign a score to a job based on the state

of the problem. When a machine becomes idle, each job in the machine’s

45

Chapter 3: Hyper-Heuristics

queue receives a score. The job with the highest score in the queue is the

next job to be assigned to the machine. Jakobovic et al. apply the same

technique for the parallel machine scheduling problem [110].

Dimopoulos and Zalzala [75] evolve priority dispatching rules, based on

the ’Montagne’ rule, to minimise the total tardiness of jobs for the single

machine scheduling problem. Although the function and terminal sets are

relatively simple, the system evolves heuristics superior to the Montagne,

ADD, and SPT heuristics. The function set consists of the four basic arith-

metic operators and the terminal set contains five elements representing the

global and local job information.

Recent work by Kumar et al. presents the first genetic programming system

in which heuristics for a multi-objective problem have been automatically

generated with a hyper-heuristic [120]. The system evolves heuristics for

the bi-objective knapsack problem. The heuristic evolved iterates through

the pieces still to be packed and evaluates them according to the profit and

weight. When the evaluation returns a value which is greater than one,

the iteration stops and that piece is packed. A similar approach is used for

the bin packing problem in [36] as it uses a threshold to stop the iteration

during evaluating pieces.

Oltean [130] presents a linear genetic programming hyper-heuristic, which

generates evolutionary algorithms. A series of instructions that manipu-

late values in a memory array are represented in a standard individual.

The approach was applied to function optimisation, the traveling salesman

problem, and the quadratic assignment problem. The memory positions

in the array are referred to as ’registers’. The evolutionary algorithm pop-

ulation is represented as the memory array and each member is stored

in one register. The instructions which operate on the memory array are

46

Chapter 3: Hyper-Heuristics

represented as the genetic operators.

Tavares et al. [154] present another methodology for evolving an evolution-

ary algorithm for a function optimisation problem. They evolve the main

components of a generic evolutionary algorithm, including initialisation,

selection, and the use of genetic operators. The approach is demonstrated

through an example of evolving an effective mapping function of genotype

to phenotype.

Pappa and Freitas employ a grammar based genetic programming system to

evolve rule induction algorithms for classification [133]. They state that the

creation of algorithms may result in better algorithms than ones tailored by

hand, which is one of the motivations behind hyper-heuristics. In addition,

such algorithms reduce development costs and is another reason why hyper-

heuristic research is potentially beneficial to smaller organisations.

Further work by Krasnogor and Gustafson has shown that there is a link

between memetic algorithms and hyper-heuristics, where local searchers are

evolved in an evolutionary algorithm by the self generation of memes [119].

They evolve a memetic algorithm with genetic programming for protein

structure prediction [118, 119]. A grammar is defined to express groups of

memes, each of which performs a local search at a given point in a genetic

algorithm.

3.3 Hyper-heuristics to Choose Heuristics

In the majority of the work presented in the literature, the hyper-heuristic

is provided with a set of predefined heuristics. These heuristics are usu-

ally known to have performed well in the problem domain in which they

47

Chapter 3: Hyper-Heuristics

are used. When using this type of hyper-heuristic approach, the hyper-

heuristic is used to choose which heuristic, or sequence of heuristics, to

apply, depending on the current problem state.

Furthermore, testing different heuristics on a given problem is very time

consuming. It could take days or even months to test a certain approach

on a single instance of a problem and not achieving the desired result.

This proves that an exhaustive search is often computationally difficult to

accept. Therefore, hyper-heuristics involve the design of intelligent sys-

tems that could decide the appropriate heuristics to be used to solve a

certain problem. In addition, the strengths of the individual heuristics can

potentially be automatically combined. However, for such an approach

to be worthwhile, the combination should ”outperform all the constituent

heuristics” [148]. The hyper-heuristic explores the heuristic space instead

of exploring the solution space. After choosing a certain heuristic to be

used, this heuristic acts on the problem and the solution is evaluated using

an objective function. Finally, the hyper-heuristic uses this evaluation to

decide whether to accept the current heuristic or switch to a different one.

As described earlier, a meta-heuristic is usually applied directly to search

the solution space. This means that the meta-heuristic is able to directly

access the domain knowledge. A framework has been presented in [39,

63–66] where the hyper-heuristic operates at a higher level of abstraction

without using any domain knowledge. The hyper-heuristic can only access

the low-level heuristics but it has no knowledge about the problem being

solved. This suggests that a designed hyper-heuristic could be re-used to

be applied on different problem domains by replacing the set of low-level

heuristics and the objective function. Figure 3.1 presents a diagram of a

general Hyper-heuristic framework.

48

Chapter 3: Hyper-Heuristics

Figure 3.1: Hyper-heuristic Framework [39]

The hyper-heuristic can only access the non-domain data due to the pres-

ence of the domain barrier. Therefore the hyper-heuristic is not problem

specific, as it has no knowledge of the problem being solved. It can only

control the low-level heuristics that have access to the domain data and

can directly act on the problem. The evaluation function then evaluates

the solution and the results are passed to the hyper-heuristic which will

take decisions accordingly.

As discussed in [39], there are two reasons for defining an interface between

the hyper-heuristic and the low-level heuristics:

• Allowing the hyper-heuristic to communicate with the low-level heuris-

tics using a standard interface instead of developing a separate inter-

face for each low-level heuristic.

• Other domains could be easily implemented if the low-level heuristics

49

Chapter 3: Hyper-Heuristics

follow a standard interface. This would be done by supplying the

hyper-heuristic with a set of low-level heuristics and the correspond-

ing evaluation function.

The idea is demonstrated in a tabu search hyper-heuristic applied to nurse

scheduling and university course timetabling in [25]. The same hyper-

heuristic is used to act on two different sets of low-level heuristics for each

of the two problems. The hyper-heuristic ranks the heuristics according

to their performance and applies the heuristic with the highest ranking.

If the heuristic does not obtain a better solution, then it is placed in a

tabu list and subsequently not used for a number of iterations. The tabu

search receives no information on the problem domain it is applied to, and

therefore it could be used to solve a range of problems in different domains.

A similar approach is applied to a real world timetabling problem from

the MARA university of technology in [115]. An improved version of the

approach was presented in [114].

Another example of a hyper-heuristic that maintains a domain barrier is

the choice function hyper-heuristic [65]. At each decision point, the choice

function evaluates the domain specific heuristics and chooses the best one.

The choice function has three terms. The first is a measure of the recent

effectiveness of the heuristic; the second is a measure of the recent effective-

ness of consecutive pairs of heuristics; and the third measures the amount of

time since the heuristic was last called. The first two factors make it more

likely for good heuristics to be used more frequently. However, the third

term adds the possibility of diversification. The approach obtained good

results when applied to sales summit scheduling, presentation scheduling,

and nurse scheduling. Applying the choice function on parallel hardware is

investigated in [145].

50

Chapter 3: Hyper-Heuristics

Many existing meta-heuristics have been employed successfully as hyper-

heuristics. A genetic algorithm and a learning classifier system have been

applied to the one dimensional bin packing problem. The learning classifier

system hyper-heuristic [149] selects between eight heuristics to pack each

piece. The pieces remaining to be packed are assigned to four different

ranges according to their size. The percentage of the pieces in each range

in relation to the total number of pieces is calculated. The state of the

problem is determined according to the result of the calculation and a rule

is chosen to decide which heuristic to use to pack the next item. The

system learns which heuristics should be used when different features are

present. Subsequent work uses a genetic algorithm hyper-heuristic to evolve

similar rule sets [148]. This work shows that good results can be obtained

by assigning a reward to rule sets only when the outcome of the packing

is known. Terashima-marin et al. apply a similar approach to the two

dimensional stock cutting problem which involve a learning classifier system

[156], and a genetic algorithm [157].

Work on a genetic algorithm hyper-heuristic for a trainer scheduling prob-

lem is presented in [67, 102–104]. The aim of the problem is to create

a timetable of geographically-distributed courses over a period of several

weeks using geographically distributed trainers [104]. The genetic algo-

rithm chromosome represents a sequence of heuristics to apply to the prob-

lem rather than a timetable representing a solution. The work is extended

in [104] to improve the genetic algorithm using an adaptive length chromo-

some, to encourage the evolution of good combinations of low-level heuris-

tics without having to explicitly consider this optimal length. Then the

results are further improved in [102] by guiding the genetic algorithm in

adding and removing genes. A tabu method is added to the genetic algo-

rithm in [103], to allow the genes which do not contribute to improving the

51

Chapter 3: Hyper-Heuristics

solution not to be used for a number of generations, instead of physically

adding and removing genes.

Vazquez-Rodriguez et al. [160] employ another genetic algorithm on se-

quences of thirteen different dispatching rules to solve a multi-machine

cardboard box shop scheduling problem. The hyper-heuristic was shown

to be capable of learning effective hybridisations upon dispatching rules

during scheduling, and thus was superior to employing single rules for the

whole scheduling process.

Garrido and Riff [91, 92] also propose a genetic algorithm based hyper-

heuristic for solving the 2-D strip packing problem. The hyper-heuristic

is based on a set of four low-level heuristics. The hyper-heuristic uses a

variable length representation which categorises the low-level heuristics ac-

cording to their functionality: greedy, ordering and rotational. The number

of objects to be positioned using each low-level heuristic is specified in the

chromosome. Very good results are reported where the approach outper-

forms some of the specialised algorithms for the problem and benchmark

instances presented.

An ant algorithm hyper-heuristic for the two dimensional bin packing prob-

lem is presented in [68]. The ant colony algorithm optimises a sequence

of five heuristics, each with five parameters. An ant lays an amount of

pheromone, proportional to the quality of the solution, on the path it takes

to construct a full solution. Thus, the good sequences of heuristics become

reinforced. Another ant algorithm hyper-heuristic is used in [38] for the

project presentation scheduling problem. A standard ant algorithm is ap-

plied to a search space of heuristics by representing each heuristic as a node

in a graph, where an edge between two nodes means one can be applied

after the other. The ants traverse the graph, each producing a solution

52

Chapter 3: Hyper-Heuristics

using the heuristic associated with each node they travel through.

Simulated annealing is employed as a hyper-heuristic in [79] to solve the

problem of selecting a set of shippers that minimises the total annual vol-

ume of space required to accommodate a given set of products with known

annual shipment quantities. The simulated annealing algorithm is based

on the tabu search hyper-heuristic presented in [25], where the heuristic is

selected by the tabu search and is accepted according to the criteria de-

fined in the simulated annealing algorithm. A simulated annealing hyper-

heuristic is also employed in [16] for a shelf space allocation problem. The

approach automates the design of planograms, which are used to show

exactly where and how many facings of each item should physically be

placed onto the store shelves. The performance of the simulated anneal-

ing hyper-heuristic was superior when compared to a greedy and choice

function hyper-heuristic.

Bai et al. present further work inspired by a real world problem in [14],

where a collaboration to consider a practical fresh produce inventory con-

trol and shelf space allocation model was tailored to suit a requirement

from Tesco. Three hyper-heuristics are implemented for this problem, in-

cluding the tabu search and simulated annealing hyper-heuristic previously

presented in [79]. In addition, a comparison is made between meta-heuristic

and heuristic approaches. A study on the effect of memory length on the

performance of a simulated annealing hyper-heuristic is presented in [15].

Two genetic algorithm hyper-heuristics are investigated for the job shop

scheduling problem in [78]. The first evolves the choice of a single priority

rule from twelve rules to resolve a conflict at a given iteration. The other

evolves a sequence of the sequence in which the machines are considered

by a ’shifting bottleneck’ heuristic. This is considered a hyper-heuristic

53

Chapter 3: Hyper-Heuristics

as the space of ordering heuristics is searched for one which minimises the

makespan. Storer et al. present an approach for solving the job shop

scheduling problem where they parameterise existing heuristics and search

a space of parameters instead of solutions [152]. They state, ”Search spaces

can also be generated by defining a space of heuristics” [152], which is one of

the main principles of hyper-heuristic research. Their subsequent research

on how to successfully search such a space is presented in [153].

Cowling and Chakhlevitch [62] state that the performance of a hyper-

heuristic relies very much on the choice of low-level heuristics. They ad-

dress the question of how the set of low-level heuristics should be designed.

Related to this is the problem of ensuring that the set of low-level heuris-

tics is varied enough to ensure an efficient search, but not so large that

it contains heuristics that are not necessary. Further work by the same

authors addresses this problem, by introducing learning mechanisms into

a hyper-heuristic to avoid using heuristics which do not make valuable

contributions [57]. This reduces computational effort, because the under-

performing heuristics do not then slow the search down.

A case based reasoning hyper-heuristic is presented in [41] for the course

timetabling problem, and then again in [47], where it is shown that the

hyper-heuristic can operate over both the exam timetabling and the course

timetabling domains. This hyper-heuristic works by comparing the current

problem to problems encountered before, and applying the same heuristics

that have worked well in similar situations. Tabu search is employed in [24]

to search for the best combination of two well known graph based heuristics

for constructing exam timetabling solutions. The tabu search mechanism

is based on that presented in [25]. The knowledge gained from this hyper-

heuristic is then used to inform two hybrid graph based approaches to the

54

Chapter 3: Hyper-Heuristics

same problem, one which inserts a certain percentage of one heuristic into

the heuristic list, and the other in which case based reasoning remembers

heuristics that have been successfully used on similar partial solutions.

Pisinger and Ropke present a hyper-heuristic that can operate over five dif-

ferent variants of the vehicle routing problem [140]. The approach employs

adaptive large neighbourhood search, a method which selects a heuristic to

destroy part of the solution and a heuristic to rebuild it. Adaptive large

neighbourhood search is a paradigm rather than a specific algorithm. It

requires acceptance criteria to be specified as well as the heuristics which

drastically modify the solution. The acceptance criteria used in this pa-

per is simulated annealing, but any meta-heuristic could be used. The

paradigm has similarities to variable neighbourhood search [105], which

can also be considered a hyper-heuristic. This is because adaptively chang-

ing the neighbourhood of the search can be seen as intelligently selecting

an appropriate heuristic.

Hyper-heuristics in Exam Timetabling

Ozcan et al. [132] state that one of the hyper-heuristic frameworks is based

on a single point search in which heuristic selection and move acceptance

are performed. They also highlight that most of the existing move ac-

ceptance methods compare a new solution to the current one to decide

whether to accept it or not. They use a late acceptance strategy which

compares between the new candidate solution and a previous solution that

is generated a number of steps earlier. A set of hyper-heuristics utilising

different heuristic selection methods combined with the late acceptance

strategy were investigated on the Toronto benchmark.

55

Chapter 3: Hyper-Heuristics

Another approach was developed in [47] where a Case-Based Reasoning

system was implemented. The system is used as a heuristic selector for

solving exam timetabling problems. The different problem states and their

corresponding constructive heuristics are stored in the system. The system

then compares the problem to be solved with the cases that are already

stored. The solutions are then constructed by repeatedly using the con-

structive heuristics suggested by the system.

Pillay and Banzhaf [138] present a genetic programming (GP) hyper-heuristic

approach which acts over a search space of functions to assess the difficulty

of allocating an exam during the timetable construction process. Each func-

tion is a heuristic combination of low-level construction heuristics combined

by logical operators. The approach was applied to the Toronto benchmark

on five instances of varying difficulty. The GP hyper-heuristic approach

was found to generalise well over the five problems and performed compa-

rably to other hyper-heuristic approaches combining low-level construction

heuristics. In addition, a study to investigate the use of genetic algorithms

(GAs) as a means of inducing solutions was conducted in [139]. They

used a two-phased approach to the problem which focuses on constructing

timetables during the first phase, while improvements are made to these

timetables in the second phase to reduce the soft constraint violations.

Domain specific knowledge in the form of heuristics was used to guide the

evolutionary process.

The Graph based Hyper-heuristic (GHH)

In a graph based hyper-heuristic (GHH) for timetabling problems [142],

a sequence of graph heuristics (see section 2.2.2) are used to order the

events one by one to construct a full timetable. A number of high-level

56

Chapter 3: Hyper-Heuristics

heuristics are used to compare their performance to find the best heuristic

sequences to solve exam and course timetabling problems. In each iteration,

a heuristic sequence is chosen and used to construct a solution. After a

sequence is applied and a solution is generated, this solution is evaluated

using the objective function.

In each iteration of GHH, a timetable is constructed by adding the events

one by one in the available time slots. According to the heuristic sequence

being followed, the first event in the ordered list is scheduled to the first

time slot that leads to the least cost. The cost in this situation is calculated

by the soft constraint violations incurred. After an event is scheduled, the

remaining events are re-ordered by using the next heuristic in the heuristic

sequence. The process continues until all the events are scheduled and a

full timetable is constructed.

An illustrative example of ordering five exams (e1-e5) using two graph

heuristics is shown in figure 3.2. The example assumes that the exams

are ordered according to their SD and LWD as shown. In the 1st and 2nd

iterations, LWD is used (as shown in the heuristic sequence) and therefore

e1 and e2 are scheduled. Assuming that the order of the remaining elements

does not change after the SD list is updated in the 3rd iteration, e5 is then

scheduled. Finally, e4 followed by e3 are scheduled using the LWD ordering.

57

Chapter 3: Hyper-Heuristics

Figure 3.2: An illustrative example of using a heuristic sequence to
construct a timetable

The quality of the timetable constructed is then evaluated and the cost

is compared with any previous timetables produced using other sequences.

Certain sequences during the construction of the timetable cannot schedule

a certain event as it causes conflicts. Hence, the sequence is discarded and

the high-level heuristic uses another sequence to construct another solution.

In this approach, the high-level heuristic acts on the heuristic sequences

and does not act on the problem domain itself. The search is performed on

the heuristic space and the high-level heuristic is controlled by the perfor-

mance of running heuristic sequences to construct timetables. The GHH

approach is used to construct a heuristic sequence which will then con-

struct a solution. This technique applies heuristics adaptively to construct

solutions and could therefore be generalised to be applied to a set of similar

problems (i.e. timetabling problems in this case).

Qu et al. [143] presented a new direction in hyper-heuristic research where

a random iterative graph based hyper-heuristic was used to generate a

collection of heuristic sequences to construct solutions of different quality.

58

Chapter 3: Hyper-Heuristics

The sequences were a dynamic hybridisation of different graph colouring

heuristics which was applied to the Toronto benchmark instances to con-

struct solutions step by step. They observed that hybridisation of the

LWD and SD heuristics tends to generate the best solutions. An iterative

hybrid approach was developed based on these observations to adaptively

hybridise LWD and SD at different stages of solution construction.

3.4 Chapter Summary

This chapter introduces hyper-heuristics which have been defined as heuris-

tics which choose heuristics, as opposed to searching for a solution directly.

Hyper-heuristics introduce the concept of automating the heuristic design

process to provide more general and therefore cheaper systems. Two classes

of hyper-heuristics are presented where one class aims to generate heuris-

tics from a set of components while the second class aims to intelligently

choose heuristics from a set of predefined heuristics which have been previ-

ously developed. In addition, previous work in the literature was discussed

for each class. Furthermore, the hyper-heuristics approaches developed

to solve exam timetabling which is the topic of this thesis was presented.

Finally, the graph based hyper-heuristic which is used in chapters 4 and

5 is explained. In this thesis, we use different hyper-heuristics to either

construct or improve solutions for a variety of exam timetabling problems.

The next chapter presents a hyper-heuristic based on a GRASP to con-

struct solutions for the Toronto benchmark.

59

Chapter 4

Adaptive Selection of

Heuristics within a GRASP for

Exam Timetabling Problems

4.1 Introduction

In the previous two chapters, we presented a review of the relevant literature

regarding exam timetabling and hyper-heuristics. This chapter will present

work on automating the selection of heuristics within a Greedy Randomised

Adaptive Search Procedure (GRASP) to construct solutions for the Toronto

benchmark. In the next chapter we will focus on tie breaking in heuristic

orderings during the construction process.

For the past ten to fifteen years, meta-heuristics have strongly influenced

the development of modern search technology at the inter-disciplinary in-

terface of Artificial Intelligence and Operational Research [40]. Meta-

heuristics can be applied in a wide variety of different areas such as schedul-

60

Chapter 4: Adaptive Selection of Heuristics within a
GRASP for Exam Timetabling Problems

ing, data mining, cutting and packing, bio-informatics and many others.

This facilitated the understanding of different problems in depth and the

development of intelligent systems which would automatically solve large

complex problems. Many of the meta-heuristic approaches which have been

developed are particularly problem-specific. This is appropriate in certain

circumstances but there are scenarios where we require a more generic

methodology. This motivates the idea of designing automated systems

that can operate on a range of related problems rather than on just one

particular problem [39].

GRASP is a meta-heuristic which has attracted significant recent atten-

tion [86]. It is a two phase procedure which starts by adaptively creating

a randomised greedy solution followed by an improvement phase. The aim

of this work is to investigate if it is possible to use a GRASP to combine

multiple heuristics simultaneously within a hyper-heuristic in order to pro-

vide a measure of the difficulty of placing each exam. If this is found to

be possible then it would validate the hypothesis that a GRASP can be

employed as a hyper-heuristic to combine heuristics. Experiments are per-

formed to determine the effectiveness of the approach when applied to the

Toronto benchmark.

In the following section we define some important terminology and present

GRASP in detail. Section 4.2 discusses our intelligent adaptive hyper-

heuristic using GRASP. The experimental settings and results are presented

in section 4.3. Finally, a summary of the chapter is presented in section

4.4.

61

Chapter 4: Adaptive Selection of Heuristics within a
GRASP for Exam Timetabling Problems

4.1.1 Greedy Random Adaptive Search Procedure (GRASP)

Randomly generated solutions are not expected to be of high quality. A

greedy function, which does not contain ties or which contains deterministic

rules to break ties, will always lead to the same solution. To overcome

such issues a semi-greedy heuristic such as GRASP can be used [85, 106].

GRASP is a multi-start or iterative meta-heuristic which consists of two

phases: construction and local search [85]. The construction phase builds a

feasible solution which is improved in the local search phase. The process is

performed for a certain number of iterations and the best overall solution is

stored. At each iteration of the construction phase, a restricted candidate

list (RCL) is created. The RCL is a set of all candidate elements that

can be incorporated to the partial solution under construction without

destroying feasibility. Two different methods were proposed by [85] and

[106] to choose the elements to place in the restricted candidate list (RCL).

The cardinality-based method chooses a number of elements from the top

of the list. The size of the RCL is set through a parameter. The value-

based method chooses the elements that fall within a certain threshold

(0-100%) from the greedy value. More methods were also proposed in

[106]. An element from the RCL is randomly selected and incorporated to

the partial solution. The candidate list is updated and the next element

for incorporation is determined by the evaluation of all candidate elements

according to a greedy evaluation function.

GRASP can be easily integrated in a hybrid meta-heuristic, as any local

search algorithm could be used in the improvement phase. Simulated An-

nealing and Tabu Search have been used in [60, 72, 121] as local search

procedures.

62

Chapter 4: Adaptive Selection of Heuristics within a
GRASP for Exam Timetabling Problems

In the next section, we present an adaptive approach where a graph based

hyper-heuristic is used in the construction phase of a GRASP. The hyper-

heuristic hybridises two low-level graph heuristics (SD and LWD) to obtain

a heuristic sequence. A RCL is created and the heuristic sequence is used

to fill the RCL. A heuristic is randomly selected from the RCL to order the

unscheduled exams. Then, the exam on the top of the ordering is added to

the timetable. After all the exams are scheduled, an improvement is made

in the second phase of GRASP.

4.2 Methodology

4.2.1 The GRASP Construction Phase

Using a Graph based Hyper-heuristic to construct a Restricted

Candidate List

In [142], a random ordering method was used in an iterative approach to

generate heuristic sequences to be applied on exam and course timetabling

problems. However, applying random heuristic sequences to a problem is

usually a time consuming process. In this case, an approach that would

always lead to a feasible solution would be preferred. This section explains

how a GHH can be used to construct a RCL in a GRASP. The objective

here is to create a RCL of heuristics instead of directly acting upon the

problem to find a solution. Algorithm 1 presents the pseudo-code of the

proposed technique to construct a RCL using a GHH in the construction

phase of a GRASP.

63

Chapter 4: Adaptive Selection of Heuristics within a
GRASP for Exam Timetabling Problems

Algorithm 1 The pseudo-code of the RCL construction in a GRASP using
a GHH
u = number of unscheduled exams
create a heuristic sequence hs of size u
rclSize = 0.03 × u
create a restricted candidate list RCL of size rclSize
for n = 0 → rclSize do
RCL(n) = hs(n)

end for
Randomly choose a heuristic from the RCL
Apply the heuristic to order the unscheduled exams and insert the exam
on top of the ordering in the timetable

It was observed in previous work [143] that heuristic sequences that com-

bine SD with LWD perform the best for almost all the exam timetabling

problem instances that were investigated. The motivation of combining

LWD and SD comes from the fact that LWD identifies the difficulty of

scheduling exams in relation to the rest and SD orders them according to

the current state of the available time slots. Therefore, we developed a

hyper-heuristic which generates a heuristic sequence using SD and LWD

within the construction phase of a GRASP.

Creating a heuristic sequence to construct a RCL

In each iteration, the GHH starts by updating the SD and LWD orderings.

The GHH then determines the size of the heuristic sequence required to

construct the RCL. The size was initially set to 3% of the number of un-

scheduled exams. Different RCL sizes were tested and it was found that

using a RCL which has a size from 1% to 3% of the unscheduled exams

obtains the best solutions according to the size of the problem. Using a

RCL of a large size increases the randomness in the solution construction

and therefore the choice of the exam to be scheduled next becomes more

64

Chapter 4: Adaptive Selection of Heuristics within a
GRASP for Exam Timetabling Problems

difficult. In contrast, using a very small RCL would limit the choice of

exams and would not lead to a feasible solution. After determining the

size of the RCL, the heuristics to be used are defined using the heuristic

sequence. A heuristic is then randomly chosen from the RCL and the ex-

ams are ordered according to this heuristic. Finally, the exam on top of

the ordering is scheduled.

The main role of the hyper-heuristic is to choose the heuristics required

to construct the RCL. In previous work undertaken in [29, 42, 54], it was

proved that using SD on its own outperforms other graph heuristics and

results in a better outcome. This is due to the ability of SD to dynamically

adapt itself to the current state of the solution construction as it orders

events according to the available valid time slots. Therefore, we decided

to let the GHH to construct a heuristic sequence which contains twice as

many SD iterations than LWD. Hence, this technique gives the GRASP a

higher chance to schedule the exams using SD. The size of the RCL will

decrease adaptively as the exams are scheduled. In addition, the approach

will automatically schedule the last 20 exams using SD only.

An illustrative example is given in figure 4.1 to use a GHH to construct a

RCL. The GHH uses SD and LWD as low-level heuristics. The number of

unscheduled exams are equal to 100. Assuming the parameter of the size

of the RCL is set to 3%, a RCL of size 3 is created. The heuristics on top

of the sequence are used to fill the RCL. A heuristic from the 3 is randomly

chosen from the RCL. Assuming SD is chosen, the SD ordering is updated

and e56 is scheduled. Since SD appears twice in the RCL, the chance of

SD being chosen is twice as that of LWD.

65

Chapter 4: Adaptive Selection of Heuristics within a
GRASP for Exam Timetabling Problems

Figure 4.1: An illustrative example of building a RCL from SD and
LWD

Adaptive selection of the Switching Point

Since SD orders exams according to the number of time slots available,

starting to solve a problem using SD is inefficient as all the time slots would

be available [29, 42, 54]. This would result in many ties at the beginning

and different approaches could be used to overcome this difficulty. To avoid

this problem, the GHH uses LWD only to construct the RCL and schedule

the first exams in the first iterations. This process is done adaptively to

find the switching point which leads to the best solution. The switching

point is the point where SD is introduced into the heuristic sequence. The

GHH switches to combine LWD and SD to build the GRASP RCL for the

rest of the iterations. A random heuristic is then chosen from the RCL

66

Chapter 4: Adaptive Selection of Heuristics within a
GRASP for Exam Timetabling Problems

and used to schedule an exam. This process will either schedule all the

exams and construct a feasible solution or it will stop at a certain point

where the exam cannot be scheduled in any time slot due to its conflict

with those already scheduled. If a feasible solution is obtained, the solution

is evaluated using the objective function. Otherwise, the process restarts

if a feasible solution cannot be obtained.

In view of the fact that LWD orders the exams that have the largest number

of students involved in clashes with other exams first, LWD gives priority to

the exams that will be difficult to schedule later on in the process. There-

fore, we used LWD to order exams in the first iterations before introducing

SD in the heuristic sequence.

We applied the intelligent GHH to the Toronto benchmark exam timetabling

problems [54] (see section 2.2) to adaptively select the best switching point

from using LWD to combining both LWD & SD in a GRASP. The follow-

ing formula was used to choose an initial switching point which is then

adaptively tuned:

Switching Point =
Total Number of Exams

Total Number of time slots
(4.2.1)

The starting switching point is the number of exams required so that the

exams are spread evenly in the time slots available. The hyper-heuristic

uses this as the initial switching point and applies the approach described

in the previous section to obtain a solution. The switching point is then

incremented and decremented by one and the new switching points are

used to obtain another set of solutions. The process stops when a feasible

solution is not obtained for two consecutive iterations.

Using this adaptive approach, the best switching point is automatically

67

Chapter 4: Adaptive Selection of Heuristics within a
GRASP for Exam Timetabling Problems

found for different problems. We observed that using LWD on its own will

not construct a feasible solution. Furthermore, SD has to be used early in

the process to be able to identify exams that will be difficult to schedule

later on. In addition, it is observed that using different switching points

leads to different solutions. This is due to the fact that SD dynamically

orders the exams and therefore the amount of LWD iterations employed at

the beginning will affect the decisions made by SD.

4.2.2 The GRASP Improvement Phase

The GRASP improvement phase starts with a feasible solution from the

construction phase and a steepest descent hill climbing improvement is

employed. The hill climbing is run for (e × 10) iterations where e is the

number of exams. In each iteration a random exam is chosen and the

improvement of scheduling this exam in all the time slots of the timetable

is observed. The best improvement is stored at the end of the process and

the result is obtained. To summarise the whole approach, Algorithm 2

presents the construction and improvement phases of the GRASP.

Algorithm 2 The pseudo-code of the GRASP hyper-heuristic

for 1 → numberofiterations do
while number of exams scheduled < total number of exams do
Construct a RCL using a GHH (see Algorithm 1)

end while
if solution is feasible then
Evaluate the solution and apply a steepest descent improvement

else
Discard the solution & continue without applying an improvement

end if
if current solution is better than the best solution then
best solution = current solution

end if
end for

68

Chapter 4: Adaptive Selection of Heuristics within a
GRASP for Exam Timetabling Problems

4.3 Results

The adaptive GHH using GRASP was implemented and tested on a PC

with an Intel Pentium 3.4 GHz processor, 1GB RAM andWindows XP. The

program was coded using C++. The hyper-heuristic, the low-level graph

heuristics and the GRASP are implemented as objects with a common

interface to work together. The hyper-heuristic could be easily applied to

different exam timetabling problems in the dataset. The objectives of the

experiments are:

• To demonstrate the role of adding a GRASP to a GHH to improve

the quality of the solutions obtained (shown in table 4.3).

• To raise the generality of exam timetabling problem solving approaches

through producing a dynamic hyper-heuristic that would adapt to a

given exam timetabling problem and generate results which are com-

parable to the results published in the literature (shown in table 4.3).

• To compare the quality of this approach with other known published

methods (shown in table 4.3).

4.3.1 Analysis on the Intelligent Adaptive Hybridis-

ation of the LWD and SD GHH to construct a

RCL in a GRASP

In the first set of experiments, the GHH using GRASP is applied to version

I and version II of the Toronto benchmark exam timetabling problems to see

its ability to construct a feasible solution as well as to evaluate the quality

of the solutions produced. The effect of intelligently hybridising different

69

Chapter 4: Adaptive Selection of Heuristics within a
GRASP for Exam Timetabling Problems

low-level heuristics in a GRASP is investigated. It is observed that SD and

LWD performed the best when hybridised together in the RCL rather than

using them separately. The GHH chooses the exams which have a high

priority in both the SD and LWD orderings to construct the RCL (i.e. the

exams that have the largest number of students, involved in clashes with

other exams and the exams that have the lowest number of slots available

at that time to schedule in).

In the second set of experiments, using different percentages of SD and

LWD in the RCL was investigated. It was observed that using the SD

heuristic more than the LWD in the RCL produces better results. There-

fore, we used a ratio of 2:1 SD to LWD heuristics to construct the RCL.

This shows the importance of SD being used as it updates the ordering in

each iteration and adapts to the current situation.

Five runs with 100 iterations each using distinct seeds are carried out for

all the datasets except for (car92 I), (uta92 I), (uta92 II) and (car91 I)

where only three runs were performed.The average costs of the solutions

and the average percentage of feasible solutions constructed in the runs are

presented in table 4.1. A comparison with using the same approach with

SD and LWD separately is also shown.

Furthermore, another set of experiments is run to observe the effect of

changing the size of the restricted candidate list used. Different RCL sizes

were tested on problems with different size. The experiments showed that

using a RCL with 3% the size of the unscheduled exams produces the best

results for small problems (i.e problems with less than 200 exams). For

medium sized problems, a RCL with 2% the size of unscheduled exams

produced the best results (i.e problems with exams between 200 - 400).

For large problems, a 1% RCL produced the best results (i.e. problems

70

Chapter 4: Adaptive Selection of Heuristics within a
GRASP for Exam Timetabling Problems

T
a
b
le

4
.1
:
A
v
er
ag
e
re
su
lt
s,

b
es
t
re
su
lt
s
an

d
p
er
ce
n
ta
g
e
o
f
fe
a
si
b
le

so
lu
ti
o
n
s
p
ro
d
u
ce
d
fr
o
m

th
e
G
R
A
S
P

co
n
st
ru
ct
io
n
p
h
a
se

u
si
n
g

S
D

&
L
W

D
in

co
m
p
ar
is
on

to
u
si
n
g
th
em

se
p
a
ra
te
ly
.
A

(-
)
in
d
ic
a
te
s
th
a
t
n
o
fe
a
si
b
le

so
lu
ti
o
n
co
u
ld

b
e
o
b
ta
in
ed

P
ro
b
le
m
s

G
R
A
S
P
C
on

st
ru
ct
io
n

G
R
A
S
P
C
on

st
ru
ct
io
n

G
R
A
S
P
C
on

st
ru
ct
io
n

u
si
n
g
S
D

&
L
W

D
u
si
n
g
on

ly
S
D

u
si
n
g
on

ly
L
W

D
A
ve
ra
ge

B
es
t

P
er
ce
n
ta
ge

A
ve
ra
ge

B
es
t

P
er
ce
n
ta
ge

A
ve
ra
ge

B
es
t

P
er
ce
n
ta
ge

C
os
t

C
os
t

of
fe
as
ib
le

C
os
t

C
os
t

of
fe
as
ib
le

C
os
t

C
os
t

of
fe
as
ib
le

so
lu
ti
on

s
so
lu
ti
on

s
so
lu
ti
on

s
h
ec
92

I
13
.0
0

12
.4
1

35
%

13
.8
2

13
.0
2

21
%

-
-

0%
h
ec
92

II
13
.7
2

12
.3
7

20
%

-
-

0%
-

-
0%

st
a8
3
I

16
7.
31

16
3.
63

19
%

17
4.
61

16
9.
10

15
%

17
2.
52

17
1.
49

38
%

st
a8
3
II
c

40
.4
2

36
.8
2

69
%

40
.5
3

38
.0
3

63
%

36
.0
3

34
.7
9

69
%

yo
r8
3
I

43
.3
8

42
.5
4

5%
45
.6
2

44
.2
1

4%
-

-
0%

yo
r8
3
II
c

52
.5
7

52
.2
4

3%
-

-
0%

-
-

0%
u
te
92

I
31
.9
0

30
.0
1

13
%

32
.7
8

30
.7
4

10
%

-
-

0%
ea
r8
3
I

39
.0
6

37
.7
1

32
%

45
.7
4

43
.9
4

29
%

-
-

0%
ea
r8
3
II
c

42
.5
4

40
.4
9

6%
48
.2
7

48
.2
1

3%
-

-
0%

tr
e9
2
I

9.
38

9.
00

39
%

10
.1
6

9.
30

22
%

-
-

0%
ls
e9
1
I

12
.8
9

12
.2
9

3%
13
.4
8

12
.5
1

2%
-

-
0%

k
fu
93

I
17
.2
4

16
.8
4

6%
18
.2
8

18
.2
4

2%
-

-
0%

ca
r9
2
I

4.
84

4.
74

3%
5.
07

4.
85

0%
-

-
0%

u
ta
92

I
3.
65

3.
62

10
0%

3.
97

3.
70

32
%

-
-

0%
u
ta
92

II
3.
72

3.
60

20
%

-
-

0%
-

-
0%

ca
r9
1
I

5.
59

5.
48

94
%

5.
78

5.
49

57
%

-
-

0%

71

Chapter 4: Adaptive Selection of Heuristics within a
GRASP for Exam Timetabling Problems

with more than 400 exams). A large RCL introduces more randomness in

large problems while a small RCL restricts the choice in small problems.

In all the cases, the process starts with high randomness which adaptively

decreases and becomes more deterministic as exams are scheduled.

Finally, another important factor for this method to construct a feasible

solution is the switching point from using LWD to combining both SD

and LWD in the GRASP. It is observed that for each problem, more than

one switching point between the 1st and the 25th iteration led to a fea-

sible solution. The choice of the switching point that would lead to the

best solution is difficult especially when the method is applied to different

problems. Using the formula and approach described in section 4.2.1, the

switching point problem was adaptively solved. The average percentage of

feasible solutions obtained in the runs for each problem is shown in table

4.1.

72

Chapter 4: Adaptive Selection of Heuristics within a
GRASP for Exam Timetabling Problems

4.3.2 Analysis on GRASP improvement using steep-

est descent

In the second set of experiments, steepest descent is applied to the con-

structed solutions to perform a local search on the solution space. The

improvement is applied to all the instances where a feasible solution is

constructed. It is observed that the solutions with the least cost from the

construction phase do not always lead to the best improvements. This is

because the solutions constructed by different heuristic sequences in the

heuristic space lead to different neighbourhoods in the solution space be-

ing searched to find the global optimum. We also investigated using tabu

search and found that the tabu search improvement performs slightly bet-

ter than steepest descent in some problems. However, the computational

time for performing a tabu search improvement is much higher. Therefore,

we used steepest descent as it produces competitive results in comparison

with tabu search in a shorter time. Table 4.2 shows the average costs after

the improvement and the total average time including construction and

improvement.

73

Chapter 4: Adaptive Selection of Heuristics within a
GRASP for Exam Timetabling Problems

Table 4.2: Average costs before and after improvement, best costs after
improvement and total average time using Steepest Descent
in GRASP

Problems GRASP construction GRASP Improvement Total Average
Average Cost using Steepest Descent Time (sec)

Average Cost Best Cost
hec92 I 13.00 12.14 11.78 83.13
hec92 II 13.72 13.51 12.04 267.50
sta83 I 167.31 166.39 158.94 314.60
sta83 IIc 40.42 38.26 35.19 3376.87
yor83 I 43.38 42.85 42.19 484.58
yor83 IIc 52.24 51.53 50.40 410.77
ute92 I 31.90 31.14 26.62 402.50
ear83 I 39.06 38.71 36.52 5289.05
ear83 IIc 42.54 42.10 39.93 737.30
tre92 I 9.38 9.31 8.99 10817.01
lse91 I 12.89 12.72 12.12 768.33
kfu93 I 17.24 16.64 15.45 748.32
car92 I 4.84 4.67 4.45 8710.55
uta92 I 3.65 3.62 3.50 99053.51
uta92 II 3.72 3.69 3.49 95687.27
car91 I 5.59 5.48 5.37 99874.59

4.3.3 Comparison with state-of-the-art approaches

The best results obtained, the best reported in the literature using different

constructive methods [144], the graph based hyper-heuristic [42], the tabu

search hyper-heuristic [114] and other methods are presented in table 4.3.

In addition, the standard deviation from the best reported results obtained

is shown (σ in table 4.3).

The results obtained by this approach when compared to the state-of-the-

art approaches, indicate the efficiency and generality of the intelligent adap-

tive hybridisation of LWD and SD GHH. In comparison with the pure GHH

approach in [42], the GRASP-GHH performs better in 9 out of the 11 ver-

74

Chapter 4: Adaptive Selection of Heuristics within a
GRASP for Exam Timetabling Problems

sion I cases. Furthermore, it performs better in 7 out of 8 cases reported in

[114]. The results of (sta83 II), (yor83 II) and (ear83 II) were not compared

to other results in the literature since the methods of modification to deal

with the corruption (i.e. repetitions) in the datasets were not stated.

Although the best results reported in the literature were obtained by using

different approaches that worked well only on specific instances, the results

produced here using the adaptive approach are still in the range of the

best-reported results as shown. In addition, the aim of this paper is to

illustrate the adaptiveness and the effect of hybridising low-level heuristics

in a hyper-heuristic using GRASP that could be applied to any timetabling

problem with similar constraints. The objective here is not to outperform

the other approaches that worked only on specific instances. However, we

can demonstrate that our approach is competitive to the other approaches

in the literature. It was not possible to compare the computational time

as the time for most of the approaches was not reported in the literature.

75

Chapter 4: Adaptive Selection of Heuristics within a
GRASP for Exam Timetabling Problems

T
a
b
le

4
.3
:
B
es
t
re
su
lt
s
ob

ta
in
ed

b
y
th
e
a
d
a
p
ti
v
e
G
H
H

u
si
n
g
G
R
A
S
P

co
m
p
a
re
d
to

th
e
st
a
te
-o
f-
th
e-
a
rt

a
p
p
ro
a
ch
es

P
ro
b
le
m
s

S
te
ep

es
t
D
ec
en
t

G
H
H

T
ab

u
se
ar
ch

H
H

C
on

st
ru
ct
iv
e

B
es
t

in
G
R
A
S
P

B
es
t
[4
2]

[1
14
]

B
es
t
[1
44
]

R
ep

or
te
d
[1
44
]

B
es
t
C
os
t

σ
h
ec
92

I
11
.7
8

1.
82

12
.7
2

11
.8
6

10
.8

9
.2

h
ec
92

II
12
.0
4

0.
88

-
-

-
10
.8

st
a8
3
I

15
8.
94

1.
16

15
8.
19

15
7.
38

15
8.
19

1
5
7
.3

st
a8
3
II
c

35
.1
9

-
-

-
-

-
yo
r8
3
I

42
.1
9

4.
24

40
.1
3

-
39
.8
0

3
6
.2
0

yo
r8
3
II
c

50
.4
0

-
-

-
-

-
u
te
92

I
26
.6
2

0.
54

31
.6
5

27
.6
0

25
.8

2
4
.4

ea
r8
3
I

36
.5
2

5.
11

38
.1
9

40
.1
8

36
.1
6

2
9
.3

ea
r8
3
II
c

39
.9
3

-
-

-
-

-
tr
e9
2
I

8.
99

0.
78

8.
85

8.
39

8.
38

7
.9

ls
e9
1
I

12
.1
2

1.
78

13
.1
5

-
10
.5
0

9
.6

k
fu
93

I
15
.4
5

1.
73

15
.7
6

15
.8
4

14
.0
0

1
3
.0

ca
r9
2
I

4.
45

0.
37

4.
84

4.
67

4.
32

3
.9
3

u
ta
92

I
3.
50

0.
25

3.
88

-
3.
36

3
.1
4

u
ta
92

II
3.
49

0.
13

-
-

-
3.
40

ca
r9
1
I

5.
37

0.
62

5.
41

5.
37

4.
97

4
.5

76

Chapter 4: Adaptive Selection of Heuristics within a
GRASP for Exam Timetabling Problems

4.4 Chapter Summary

In this chapter, we present an adaptive approach where two low-level graph

heuristics (saturation degree and largest weighted degree) are dynamically

hybridised in the construction phase of a greedy random adaptive search

procedure (GRASP) for exam timetabling problems. The problem is ini-

tially solved using an adaptive LWD & SD graph hyper-heuristic which con-

structs the restricted candidate list in the construction phase of GRASP.

It is observed that the SD heuristic is essential to construct a feasible

solution. However, SD does not perform well at the early stages of the con-

struction as the timetable is empty and it returns the same difficulty value

for scheduling exams at the first few iterations. Therefore, LWD is used

until a certain switching point. The switching point is adaptively tuned by

the hyper-heuristic after evaluating the quality of the solutions generated.

An improvement is made to the constructed solutions and the best is cho-

sen. Steepest descent is used for the improvement and it is shown to pro-

duce competitive results to a tabu search improvement in a shorter time. It

is observed from experiments that the approach adapts to all the problems

it is applied to and generates different quality solutions according to the

switching point chosen. Therefore, we created an adaptive adjustment to

the switching point according to the quality of the solutions produced.

The comparison of this approach with state-of-the-art approaches indicates

that it is a simple yet efficient technique. It is also a more general technique

than many in the literature. It can be adapted to construct good quality

solutions for any exam timetabling problem with similar constraints.

77

Chapter 5

An Adaptive Tie Breaking and

Hybridisation Hyper-Heuristic

for Exam Timetabling

Problems

5.1 Introduction

In previous work presented by Burke et al. [42], tabu search is used to

search a set of heuristic sequences (rather than the solutions themselves)

which consisted of the first five graph heuristics presented in section 2.2.2

and a random ordering strategy. In every step of tabu search, a sequence

of these heuristics is used to construct a solution. Therefore, the search

space of the tabu search consists of all the possible sequences of the low-

level graph heuristics described in section 2.2.2. A tabu search move in

this case creates a new sequence by changing two heuristics in the previous

78

Chapter 5: An Adaptive Tie Breaking and Hybridisation
Hyper-Heuristic for Exam Timetabling Problems

heuristic list. A parameter is used to decide the number of exams scheduled

in every iteration of the solution construction. The list is then applied to

the problem in hand and the solution obtained is evaluated. If a better

solution is obtained it is saved and the heuristic list is stored in the tabu

list or otherwise it is discarded. The process continues for a number of pre-

defined iterations depending on the problem size. The exams are scheduled

to the first time slot that leads to the least cost. Algorithm 3 presents

the pseudo-code of the approach. This approach and another approach

developed in [143] can adaptively search and hybridise different low-level

heuristics.

From these previously developed approaches, it was observed that Satu-

ration Degree performs the best in most cases. The saturation degree of

each unscheduled exam is calculated in each iteration and the exams are

ordered according to the number of remaining time slots where an exam

can be scheduled without violating any hard constraint. However, all the

exams have the same saturation degree at the beginning of the solution con-

struction as the timetable is empty. Ties could also occur anytime during

the construction process when the same number of time slots is available

for two exams. In this chapter, we analyse the effectiveness of applying

different tie breakers to the Saturation Degree heuristic. In addition, we

develop an intelligent adaptive approach which determines the heuristic to

use in a hybridisation with Saturation Degree and the amount of hybridis-

ation required to achieve the best solutions. The approach is tested on the

Toronto benchmark as well as instances which are generated as part of this

work.

The remainder of this chapter is structured as follows. Section 5.2 presents

the instance generator we developed to test the approach. In section 5.3,

79

Chapter 5: An Adaptive Tie Breaking and Hybridisation
Hyper-Heuristic for Exam Timetabling Problems

we present an investigation on the effectiveness of hybridisations and tie

breaking in graph heuristics. We describe our approach and discuss our

results in section 5.4. Finally, a summary of this chapter is presented in

section 5.5.

Algorithm 3 The pseudo-code of the Tabu Search graph based hyper-
heuristic [42]

Create a heuristic sequence hs = {h1, h2, h3 hk} //k: number of
exams/exams scheduled by each heuristic
for 1 → number of iterations do
h = change two heuristics from the sequence hs

if h is not in the tabu list then
Construct a solution using h
if a feasible solution (sc) is obtained & sc < s //s: best solution so
far
then
save the best solution, s = sc
update the tabu list
hs = h

end if
end if

end for
Output the best solution s

5.2 The Exam Timetabling Instance Gener-

ator

Different exam timetabling benchmark problems were collected and widely

studied over the years due to the high-level of research interest in this

area [144]. The data was collected from real world problems present in

several institutions over the world. The benchmarks provide a means of

comparison and evaluation to the different approaches developed. In addi-

tion to the Toronto benchmark described in section 2.2, the International

Timetabling Competition (ITC2007) exam timetabling track [124] was re-

80

Chapter 5: An Adaptive Tie Breaking and Hybridisation
Hyper-Heuristic for Exam Timetabling Problems

cently introduced (see section 2.3). It is a dataset which is more complex

as it contains a larger number of constraints. As the focus of this work is

on tiebreaking and hybridisations, the approach developed in this chapter

was not applied to the ITC2007 dataset which requires different heuristics

to schedule exams in rooms following certain constraints.

Since the Toronto benchmark is collected from real-world problems present

in several institutions, they do not provide a full coverage of all possible

problem scenarios. For example, the benchmark dataset does not contain

instances with conflict density in the range from 19%-27% and 29%-42%

(see table 2.1).

In this section, we introduce an exam timetabling instance generator and a

benchmark exam timetabling problem dataset that consists of 18 different

problem instances. The 18 problems consist of 9 small and 9 large problems.

To be more precise, a problem is considered small if it does not contain more

than 100 exams while a large problem exceeds 500 exams. The problems

are generated with conflict density values starting from 6% to 47% using

5% intervals. The number of students and their enrolments are variables

according to the problem size and conflict density. The problems have

similar constraints and use the same objective function as the Toronto

benchmark dataset stated in the previous section.

Table 5.1 presents the characteristics of the 18 problem instances in the

dataset. They vary in several characteristics, not only with respect to the

number of exams (ranging from 80 - 567), the conflict density (ranging from

6%-47%), but also the number of enrolments (ranging from 194 - 60168)

and the number of time slots to assign the exams (ranging from 15-70).

There are also different numbers of students (ranging from 66 - 15326)

across different instances.

81

Chapter 5: An Adaptive Tie Breaking and Hybridisation
Hyper-Heuristic for Exam Timetabling Problems

The dataset is available at http://www.asap.cs.nott.ac.uk/resources/data.shtml

where each problem consists of 3 text files. The file names describe the size

(SP for small problem & LP for large problem) and conflict density of the

problem instances. The representation is extendable to add new character-

istics. At the same website, we also provide a solution evaluator to evaluate

the quality of the timetables produced. In addition, the website presents

the instance generator we developed to produce the dataset.

We investigate the approach developed in this chapter by applying it to

the Toronto benchmark exam timetabling problems and the dataset we

generated in table 5.1. Our approach is tested on the newly developed

dataset to highlight its generality on problems with a full range of conflict

density. There is a large set of problem instances in the existing literature.

However, none concerns the generation of a full range of problems for testing

approaches which are dependent on problem characteristics.

Table 5.1: Characteristics of the Benchmark dataset produced by our
problem instance generator

Problem Exams Students Enrolments Density Time Slots
SP5 80 66 194 0.07 15
SP10 100 100 359 0.11 15
SP15 80 81 314 0.17 15
SP20 80 83 344 0.19 15
SP25 80 119 503 0.26 15
SP30 80 126 577 0.32 15
SP35 100 145 811 0.36 19
SP40 81 168 798 0.42 19
SP45 80 180 901 0.47 19
LP5 526 1643 5840 0.06 20
LP10 511 2838 10659 0.12 20
LP15 508 3683 14026 0.16 24
LP20 533 5496 21148 0.21 30
LP25 542 7275 27948 0.26 35
LP30 550 8798 34502 0.31 35
LP35 524 9973 38839 0.37 50
LP40 513 10826 42201 0.41 60
LP45 567 15326 60168 0.46 70

82

Chapter 5: An Adaptive Tie Breaking and Hybridisation
Hyper-Heuristic for Exam Timetabling Problems

5.3 Methodology

5.3.1 Hybridising and Tie Breaking Graph Heuristics

using the Conflict Density of Exam Timetabling

Problems

As previously stated, many ties can appear in a Saturation Degree ordering

of exams during solution construction. In previous work [29, 143], an exam

is randomly chosen in such situations. The random choice in the earlier

stages of the search has a great effect on the quality of the solutions pro-

duced. Therefore, a means of breaking these ties is essential. We initially

developed a method of breaking ties in Saturation Degree using other graph

heuristics. The Saturation Degree after breaking the ties is then hybridised

with another heuristic in a sequence where random heuristic sequences with

different percentages of hybridisation are generated. Each heuristic in the

sequence is used to schedule a single exam.

This technique was applied to four instances (hec92 I, sta83 I, yor83 I and

car91 I) of the Toronto benchmark exam timetabling problems described in

table 2.1 for off-line learning of the best tie breakers and heuristic hybridi-

sations leading to the best solutions for problems with different conflict

densities. These instances were chosen as they vary in size and cover a

range of conflict densities. The effect of tie breaking and hybridising differ-

ent low-level heuristics on the quality of the solutions produced is analysed.

Algorithm 4 presents the pseudo-code of the random graph heuristic se-

quence generator. The approach starts by constructing different heuristic

sequences which consist of two graph heuristics (Saturation Degree and one

of the other heuristics described in section 2.2.2 using different pre-defined

83

Chapter 5: An Adaptive Tie Breaking and Hybridisation
Hyper-Heuristic for Exam Timetabling Problems

percentages of hybridisation). The sequences are then applied to the in-

stances to construct a solution. For each percentage of hybridisation, 50

heuristic sequences are generated using different seeds to construct solu-

tions. Only the sequences that produce feasible solutions are saved and the

rest are discarded (see Algorithm 4). According to the quality of the solu-

tions obtained for each instance, the best tie breaker and low-level heuristic

for hybridisation are identified. Further analysis is performed to find the re-

lation of conflict density with the low-level heuristics used and the amount

of hybridisation required to guide the search to the best solutions.

Algorithm 4 The pseudo-code of the random graph heuristic sequence
generator using a tie breaker for Saturation Degree (tb:tie-breaker)

Set h1 as the first graph heuristic to be used (SD, SD tb LWD, SD tb
LUWD, SD tb LD)
Set h2 as the second graph heuristic to hybridise with h1 (LWD, LD,
LUWD, LUD, CD)
for i = 0 → i = 1 do
for n = 1 → n = 50 do
Initialise the heuristic sequence h = {h1 h1 h1}
h = randomly change (i × size of h) heuristics in h from h1 to h2

Construct a solution sc using h
if sc is feasible & sc < s then
save the best solution, s = sc
save h

else
Discard the sequence h

end if
n = n+ 1

end for
i = i+ 0.05

end for

In work presented in the previous chapter and work undertaken in [29, 42,

54], it was shown that using Saturation Degree on its own usually outper-

forms other graph heuristics and results in a better outcome. Therefore,

we investigated applying Saturation Degree without breaking ties as the

primary heuristic in a sequence generator in one set of experiments. In

84

Chapter 5: An Adaptive Tie Breaking and Hybridisation
Hyper-Heuristic for Exam Timetabling Problems

addition, we applied Saturation Degree while breaking the ties using some

other heuristic orderings such as LWD, LD and LE in another set of exper-

iments. Finally, the effect of hybridising Saturation Degree with different

percentages of another graph heuristic (i.e. LWD, LD, LUWD, LUD, CD

or LE) in both experiments was analysed.

5.3.2 Analysis of Saturation Degree Tie Breakers

Several heuristic orderings can be used to break ties that occur in the Satu-

ration Degree list during solution construction. An illustrative example of

breaking ties in a Saturation Degree list is shown in Figure 5.1. We assume

that the exams are ordered according to their LWD and Saturation Degree

as shown. We also assume that the saturation degree is the same for the

first 3 exams (i.e. e1, e2 and e3) in the list. In this case, LWD is used to

break the ties. The tied exams are re-ordered according to their position in

the LWD list. Therefore, e2 is scheduled first and removed from both lists.

The Saturation Degree list is then re-ordered again in the next iteration of

solution construction.

Figure 5.1: An illustrative example of breaking Saturation Degree ties

We applied several tie breakers to four instances of the Toronto benchmark

exam timetabling problems [54]. This was run for 20 times on each instance

85

Chapter 5: An Adaptive Tie Breaking and Hybridisation
Hyper-Heuristic for Exam Timetabling Problems

with different random seeds. Table 5.2 presents a comparison between

the results obtained using Saturation Degree without breaking ties and

Saturation Degree using different tie breakers.

It is observed that a Saturation Degree ordering without any tiebreakers

does not produce a feasible solution when applied to HEC92 I and YOR83

I. After breaking the ties in Saturation Degree, a feasible solution could be

obtained for all instances. The results also show that LWD is overall the

best tie breaker for Saturation Degree as the exams are ordered according

to their largest weighted degree when they have the same saturation degree.

A t-test is also carried out to give an indication if the results using the

three different tie breakers are significantly different. Tables 5.3, 5.4 and

5.5 summarise the p-values of the t-tests carried out between the different

tie breakers results. It can be seen that the results between the different

tiebreakers are significantly different in all the cases except for hec92 I and

sta83 I where LD and CD have no significant difference.

Table 5.2: Results using SD without tie breakers and with several dif-
ferent tie breakers. A (-) indicates that a feasible solution
could not be obtained. The notation X tb Y denotes Y is
used to break ties in X

hec92 I yor83 I sta83 I tre92
SD without breaking ties - - 178.24 9.68

SD tb LWD Best 13.40 43.84 166.88 9.16
SD tb LD Best 13.42 44.44 170.20 9.59
SD tb CD Best 13.67 46.78 168.21 9.19

Table 5.3: t-test on the results from breaking the ties using LWD and
LD

hec92 I yor83 I sta83 I tre92
p-value 0.03 1.2E-04 0.01 6.71E-06
t Stat 2.14 6.25 2.59 7.05

86

Chapter 5: An Adaptive Tie Breaking and Hybridisation
Hyper-Heuristic for Exam Timetabling Problems

Table 5.4: t-test on the results from breaking the ties using LWD and
CD

hec92 I yor83 I sta83 I tre92
p-value 6.6E-03 6.42E-11 0.03 6.4E-06
t Stat 3.30 41.37 1.99 7.08

Table 5.5: t-test on the results from breaking the ties using LD and
CD

hec92 I yor83 I sta83 I tre92
p-value 0.47 6.12E-08 0.27 0.02
t Stat 0.07 17.38 0.61 2.41

5.3.3 Hybridising Heuristic Sequences after Breaking

the SD Ties

To analyse the effect of hybridisations, we decided to hybridise the SD

ordering using a LWD tie breaker with different graph heuristics and to

apply the sequences to the same four instances of the Toronto benchmark

exam timetabling problems. Table 5.6 presents the results of applying these

different hybridisations as well as a comparison against a hybridisation

without using any tie breakers. As shown in table 5.6, hybridising the tie

breaking SD ordering with other graph heuristics produced better results.

For problems where a feasible solution could not be obtained using SD

without breaking ties (i.e. HEC92 I and YOR83 I), breaking the ties using

LWD and a hybridisation using LD produced the best results. However, for

problems where a feasible solution was obtained without handling ties in SD

(i.e. STA83 I and TRE92), breaking the ties using LWD and a hybridisation

using CD performed better. A possible reason could be the occurrence of

many ties in the SD ordering which prevents it from producing a feasible

87

Chapter 5: An Adaptive Tie Breaking and Hybridisation
Hyper-Heuristic for Exam Timetabling Problems

solution. Therefore, when tie breaking the SD ordering and hybridising it

with LD, some exams will be ordered according to their number of conflicts

with unscheduled exams. Generating a feasible solution using SD without

handling ties is an indication that no ties or a very small number of ties

occur. Therefore, applying a tie breaker and hybridising it with CD will

order some examinations according to the conflicts with the exams already

scheduled, producing better results than a LD hybridisation in this case.

A t-test is also carried out to give an indication if the results of using

different hybridisations are significantly different. Tables 5.7, 5.8 and 5.9

summarise the p-values of the t-tests. It can be seen that the results be-

tween the different hybridisations are significantly different in all the cases

except for hec92 I and tre92 when comparing hybridising SD tb LWD with

LD and CD where no significant difference can be seen.

Table 5.6: Results of hybridising SD with other graph heuristics with
and without breaking ties. The notation X tb Y denotes Y
is used to break ties in X

hec92 I yor83 I sta83 I tre92 I
SD + LWD Average 13.02 44.59 170.08 9.25
SD + LWD Best 12.20 42.49 164.65 9.02

best % hybridisation 54 18 7 49
SD tb LWD + LD Average 12.60 43.03 168.21 9.03
SD tb LWD + LD Best 11.89 42.16 168.21 8.94
best % hybridisation 28 24 3 18

SD tb LWD + CD Average 12.69 43.34 163.32 9.00
SD tb LWD + CD Best 12.25 42.61 159.50 8.83
best % hybridisation 15 9 78 84

Table 5.7: t-test on the results from hybridising SD with LWD and SD
tb LWD with LD

hec92 I yor83 I sta83 I tre92
p-value 2.19E-08 2.45E-08 4.83E-04 2.91E-10
t Stat 7.52 7.47 3.70 9.36

88

Chapter 5: An Adaptive Tie Breaking and Hybridisation
Hyper-Heuristic for Exam Timetabling Problems

Table 5.8: t-test on the results from hybridising SD with LWD and SD
tb LWD with CD

hec92 I yor83 I sta83 I tre92
p-value 3.54E-04 9.53E-07 1.55E-13 5.26E-10
t Stat 3.82 6.05 13.13 9.09

Table 5.9: t-test on the results from hybridising SD tb LWD with LD
and SD tb LWD with CD

hec92 I yor83 I sta83 I tre92
p-value 0.14 0.003 1.03E-16 0.1
t Stat 1.11 2.98 17.75 1.33

5.3.4 Relating Conflict Density of Exam Timetabling

Problems to SD Tie Breaking

By analysing the properties of the four problems and the results obtained

using the different tie breakers and hybridisations, a relationship becomes

apparent between the conflict density of exams in a problem and the per-

centage of hybridisations required (see Figure 5.2). As shown in table 5.6,

the problems with conflict density of less than 25% (i.e. less than half of

the exams are in conflict) obtained the best results when a hybridisation

of less than 50% is used (i.e. more tie breaking SD is used than CD or

LD). As the conflict density exceeds 25%, the percentage of the tie break-

ing SD used increases and the hybridised graph heuristic appears less in

the sequences generating the best results. Having a higher conflict density

means a higher probability of ties occurring in the SD ordering during the

solution construction. Therefore, using SD and breaking the ties proves

to be more effective. In contrast, instances with a lower conflict density

will have a lower probability of ties occurring in the SD ordering during

construction and using a lower percentage of the tie breaking SD is more

89

Chapter 5: An Adaptive Tie Breaking and Hybridisation
Hyper-Heuristic for Exam Timetabling Problems

effective. The conclusions made here using four problems proved to be

enough as they were verified later in section 5.4 after running the approach

on the rest of the Toronto benchmark instances and the instances randomly

generated.

Figure 5.2: The relation between conflict density and the percentage
of hybridisations obtaining the best solutions

5.4 Results

5.4.1 Adaptive Tie Breaking and Hybridisation for

Benchmark Exam Timetabling Problems

The above observations indicate that there are two important factors to

choose the most effective SD tie breaker and the percentage of hybridisa-

tion. The two factors are stated as follows:

90

Chapter 5: An Adaptive Tie Breaking and Hybridisation
Hyper-Heuristic for Exam Timetabling Problems

• Whether a problem is solved using pure SD or not. If it is solved

using pure SD then the tie breaking SD should be hybridised with

CD. Otherwise it should be hybridised using LD.

• According to the conflict density of the problem, the percentage range

of the tie breaking SD to be used could be defined.

Based on the above off-line learning we developed an approach which adapts

to the problem in hand, choosing the most appropriate heuristic to be

hybridised with the tie breaking SD and search for a solution within the

percentage range of the tie breaking SD in a sequence. Figure 5 presents the

pseudo-code of the Adaptive Tie Breaking (ATB) approach we developed.

91

Chapter 5: An Adaptive Tie Breaking and Hybridisation
Hyper-Heuristic for Exam Timetabling Problems

Algorithm 5 The pseudo-code for the Adaptive Tie Breaking (ATB) ap-
proach

Schedule all exams using SD only
Set h1 to SD and set the tiebreaker as LWD //h1 : 1st heuristic in
hybridisation
if a feasible solution could be obtained using SD only then
Set h2 to CD //h2: 2nd heuristic in hybridisation

else
Set h2 to LD

end if
if Conflict density > 25 % then
i1 = 0.5
i2 = 1

else
i1 = 0
i2 = 0.5

end if
for i1 → i2 do
i = i1 // i: percentage of hybridisation
for n = 1 → n = numberofexams × 10 do
Initialise heuristic sequence h = {h1 h1 ... h1}
h = randomly change (i × size of h) heuristics in h to h2

Construct a solution sc using h
if sc is feasible & sc < s then
save the best solution, s = sc
save h

else
Discard sequence h

end if
end for
i = i+ 0.05
Save the smallest s and the corresponding h

end for

According to the conflict density of the problem, the range of percentages

of hybridisations is defined. For problems with a conflict density greater

than 25%, a percentage of 50% or greater of tie breaking SD is used. For

problems with conflict density less than 25%, a percentage of 50% or less

of tie breaking SD is used.

92

Chapter 5: An Adaptive Tie Breaking and Hybridisation
Hyper-Heuristic for Exam Timetabling Problems

We tested this approach on the Toronto benchmark exam timetabling prob-

lems and present the results in table 5.10. Furthermore, we tested the ap-

proach on the dataset we developed to test the generality of the approach

and present the results in table 5.11. The average computational time

across the instances is also presented for 5 runs on a Pentium IV machine

with a 1 GB memory. Note that this run time is acceptable in university

timetabling problems because the timetables are usually produced months

before the actual schedule is required [144].

The results obtained indicate the generality of our adaptive approach to all

these exam timetabling instances regardless of the problem size. We com-

pare our approach with other approaches where a random exam is chosen

in the situation where a tie occurs. The results are presented in table 5.12.

We also highlight the best results reported in the literature. In addition,

the standard deviation from the best reported results obtained is shown (σ

in table 5.12). Recall that the aim of this work is to illustrate the effect

of breaking ties in heuristic orderings and automatically hybridising and

adapting heuristics. We do not expect to outperform other heuristic and

meta-heuristic approaches which are tailored specially for specific instances

of this exam timetabling benchmark. However, we demonstrate that we can

achieve results that are competitive with the best in the literature.

In comparison with the tabu search based hyper-heuristic in [114], our tie

breaking approach performs better in 8 out of 11 cases reported. Further-

more, it outperforms in all the cases in comparison with the pure GHH

investigated in [42]. Only the problems presented in table 5.12 were com-

pared to other results since the others were not reported in the literature.

Computational time was also not compared for the same reason.

93

Chapter 5: An Adaptive Tie Breaking and Hybridisation
Hyper-Heuristic for Exam Timetabling Problems

T
a
b
le

5
.1
0
:
R
es
u
lt
s
fr
om

th
e
ad

ap
ti
v
e
ti
e
b
re
ak

in
g
(A

T
B
)
a
p
p
ro
a
ch

o
n
th
e
T
o
ro
n
to

B
en
ch
m
a
rk

d
a
ta
se
t,
P
er
ce
n
ta
g
e
o
f
ti
e
b
re
a
k
in
g

S
D

(%
of

tb
S
D
).
C
om

p
u
ta
ti
on

al
ti
m
e
is

p
re
se
n
te
d
in

se
co
n
d
s.

A
T
B

A
ve
ra
ge

%
of

tb
S
D

A
ve
ra
ge

A
T
B

b
es
t

%
of

tb
S
D

b
es
t

T
im

e
(s
)

h
ec
92

I
12
.6
1

75
11
.8
9

85
27
4

yo
r8
3
I

43
.0
3

71
42
.1
6

81
16
83

ea
r8
3
I

38
.3
5

90
38
.1
6

77
14
75

st
a8
3
I

16
3.
33

42
15
9.
50

56
35
7

ca
r9
2

4.
5

49
4.
44

67
35
81
2

ca
r9
1

5.
35

57
5.
23

62
10
03
04

u
ta
92

I
3.
64

52
3.
50

53
54
89
3

u
te
92

29
.7
2

43
28
.8
1

48
14
69

ls
e9
1

11
.8
9

47
11
.7
3

39
20
53

tr
e9
2

9.
01

43
8.
83

45
42
93

k
fu
93

16
.3
9

35
15
.3
8

35
26
97

h
ec
92

II
12
.5
2

69
11
.8
4

73
34
6

yo
r8
3
II

51
.2
4

91
50
.4
0

84
11
44

ea
r8
3
II

38
.3
5

90
38
.1
6

82
14
57

st
a8
3
II

36
.1
0

47
35
.0
0

42
14
15

u
ta
92

II
3.
56

46
3.
48

48
66
33
9

94

Chapter 5: An Adaptive Tie Breaking and Hybridisation
Hyper-Heuristic for Exam Timetabling Problems

T
a
b
le

5
.1
1
:
R
es
u
lt
s
fr
om

th
e
ad

ap
ti
v
e
ti
e
b
re
a
k
in
g
(A

T
B
)
a
p
p
ro
a
ch

o
n
th
e
ra
n
d
o
m

d
a
ta
se
t,

P
er
ce
n
ta
g
e
o
f
ti
e
b
re
a
k
in
g
S
D

(%
o
f

tb
S
D
).
C
om

p
u
ta
ti
on

al
ti
m
e
is

p
re
se
n
te
d
in

se
co
n
d
s.

A
T
B

A
ve
ra
ge

%
of

tb
S
D

A
ve
ra
ge

A
T
B

b
es
t

%
of

tb
S
D

b
es
t

T
im

e
(s
)

S
P
5

3.
71

34
3.
55

34
10

S
P
10

11
.9
1

48
10
.5
4

45
30

S
P
15

17
.1
5

37
15
.5
6

35
29

S
P
20

20
.3
3

44
18
.6
9

41
33

S
P
25

25
.1
8

54
23
.2
2

52
43

S
P
30

33
.8
9

52
31
.5
6

60
78

S
P
35

47
.4
2

64
45
.1
9

74
14
1

S
P
40

28
.5
8

53
27
.2
8

61
10
9

S
P
45

32
.7
6

78
31
.0
8

81
10
0

L
P
5

9.
27

42
9.
12

39
46
10

L
P
10

15
.1
5

45
14
.9
6

40
18
03

L
P
15

13
.3
1

29
13
.0
5

24
25
40

L
P
20

11
.3
9

12
11
.3
0

10
57
08

L
P
25

9.
93

89
9.
90

86
16
39
6

L
P
30

7.
45

72
7.
43

72
29
36
7

L
P
35

6.
81

90
6.
76

91
40
16
0

L
P
40

5.
23

69
5.
22

73
42
30
6

L
P
45

4.
85

72
4.
77

81
59
04
5

95

Chapter 5: An Adaptive Tie Breaking and Hybridisation
Hyper-Heuristic for Exam Timetabling Problems

T
a
b
le

5
.1
2
:
B
es
t
re
su
lt
s
ob

ta
in
ed

b
y
th
e
ad

ap
ti
v
e
ti
e
b
re
a
k
in
g
(A

T
B
)
a
p
p
ro
a
ch

co
m
p
a
re
d
to

o
th
er

H
y
p
er
-H

eu
ri
st
ic

a
p
p
ro
a
ch
es

a
n
d

th
e
b
es
t
re
p
or
te
d
in

th
e
li
te
ra
tu
re

P
ro
b
le
m
s

A
T
B

σ
G
H
H

T
ab

u
se
ar
ch

H
H

B
es
t
R
ep

or
te
d

B
es
t

B
es
t

(B
u
rk
e
et

al
.,
20
07
)

(K
en
d
al
l,
20
05
)

(Q
u
et

al
.,
20
09
a)

h
ec
92

I
11
.8
9

1.
90

12
.7
2

11
.8
6

9
.2

st
a8
3
I

15
9.
50

1.
56

15
8.
19

15
7.
38

1
5
7
.3

yo
r8
3
I

42
.1
6

4.
21

40
.1
3

-
3
6
.2
0

u
te
92

I
28
.8
1

3.
11

31
.6
5

27
.6
0

2
4
.4

ea
r8
3
I

38
.1
6

6.
26

38
.1
9

40
.1
8

2
9
.3

tr
e9
2

8.
83

0.
65

8.
85

8.
39

7
.9

ls
e9
1

11
.7
3

1.
50

13
.1
5

-
9
.6

k
fu
93

15
.3
8

1.
68

15
.7
6

15
.8
4

1
3
.0

ca
r9
2
I

4.
44

0.
36

4.
84

4.
67

3
.9
3

u
ta
92

I
3.
50

0.
25

3.
88

-
3
.1
4

ca
r9
1
I

5.
23

0.
52

5.
41

5.
37

4
.5

96

Chapter 5: An Adaptive Tie Breaking and Hybridisation
Hyper-Heuristic for Exam Timetabling Problems

To validate our results, we reversed the decisions taken by our approach in

choosing a low-level heuristic and a percentage range of hybridisation, and

applied the reversed approach to some of the problems with different char-

acteristics and present a comparison in table 5.13. We present the average,

best and standard deviation of the results obtained when using different

combinations of the low-level heuristic and the percentage range used in

the hybridisations. A paired t-test obtained a stat of 2.1, which is close

to 2.11 (p = 0.05), demonstrating the adaptiveness of our approach during

solution construction, indicating that hybridising the tie breaking SD with

CD improves the quality of the solutions for problems solved using only

SD. Otherwise a LD hybridisation is better. In addition, the comparison

indicates that for problems with conflict density greater than 25% more

tie breaking SD should be used than any low-level heuristic used in the

hybridisation.

97

Chapter 5: An Adaptive Tie Breaking and Hybridisation
Hyper-Heuristic for Exam Timetabling Problems

T
a
b
le

5
.1
3
:
A

co
m
p
ar
is
on

of
th
e
re
su
lt
s
o
b
ta
in
ed

b
y
th
e
a
d
a
p
ti
v
e
ti
e
b
re
a
k
in
g
a
n
d
th
e
re
v
er
se

o
f
th
e
a
p
p
ro
a
ch

P
ro
b
le
m
s

A
T
B

R
ev
er
se

A
T
B

A
T
B

R
ev
er
se

A
T
B

A
T
B

R
ev
er
se

A
T
B

A
ve
ra
ge

A
ve
ra
ge

B
es
t

B
es
t

σ
σ

u
te
92

I
29
.7
2

30
.2
7

28
.8
1

29
.9
4

0.
53
1

0.
12
0

ea
r8
3
I

38
.3
5

38
.4
1

38
.1
6

38
.2
7

0.
11
6

0.
09
1

ls
e9
1

11
.8
9

13
.0
4

11
.7
3

12
.1
7

0.
09
9

0.
51
1

k
fu
93

16
.3
9

17
.1
3

15
.3
8

16
.9
0

0.
58
9

0.
14
2

ca
r9
2
I

4.
5

4.
64

4.
44

4.
49

0.
04
2

0.
09
6

u
ta
92

I
3.
56

3.
82

3.
50

3.
52

0.
04
2

0.
18
2

ca
r9
1
I

5.
35

5.
51

5.
23

5.
24

0.
07
6

0.
16
5

S
P
5

3.
71

4.
24

3.
55

3.
82

0.
09
9

0.
25
2

S
P
10

11
.9
1

11
.9
8

10
.5
4

10
.7
8

0.
79
7

0.
70
2

S
P
15

17
.1
5

17
.7
1

15
.5
6

15
.9
8

0.
92
4

1.
00
8

S
P
20

20
.3
3

20
.5
2

18
.6
9

18
.8
9

0.
95
3

0.
95
0

S
P
25

25
.1
8

25
.2
1

24
.1
7

25
.1
8

0.
58
9

0.
03
0

S
P
30

33
.8
9

34
.2
2

31
.5
6

32
.0
2

1.
35
1

1.
27
9

S
P
35

47
.4
2

47
.8
5

45
.1
9

46
.0
0

1.
29
3

1.
07
7

S
P
40

28
.5
8

29
.5
7

27
.2
8

27
.6
1

0.
75
6

1.
14
0

S
P
45

32
.7
6

32
.8
6

31
.0
8

31
.1
8

0.
97
6

0.
97
9

L
P
5

9.
27

9.
35

9.
12

9.
29

0.
09
3

0.
04
6

L
P
25

9.
93

9.
99

9.
90

9.
96

0.
02
5

0.
03

L
P
45

4.
85

5.
03

4.
77

4.
78

0.
05
3

0.
15
4

98

Chapter 5: An Adaptive Tie Breaking and Hybridisation
Hyper-Heuristic for Exam Timetabling Problems

5.5 Chapter Summary

This chapter presents an adaptive approach where a Saturation Degree

heuristic, using Largest Weighted Degree to break ties, is dynamically hy-

bridised with another low-level heuristic for exam timetabling problems.

The hybridisation is performed according to the conflict density of the

problem and the ability of the problem to be solved using a pure Satura-

tion Degree (SD) heuristic. Largest Colour Degree First (CD) and Largest

Degree First (LD) are used in the hybridisation process. CD is used for

hybridisation if the problem is solved using a pure SD heuristic or LD is

used otherwise. The amount of heuristic hybridisation is determined ac-

cording to the conflict density of the problem. If the conflict density of a

problem is greater than 25%, using more SD in a hybridisation with LD

or CD and breaking the ties was more effective. On the other hand, for

problems with conflict density less than 25% using more LD or CD than

SD in a hybridisation was more effective. The approach is simple and

performs the same regardless of the problem instance size although large

instances take more time to solve. It performs better than a pure graph

based hyper-heuristic and obtains reasonably good results when compared

to a tabu search hyper-heuristic.

To test the generality of the approach and verify the results, an exam

timetabling instance generator was developed and a set of benchmark exam

timetabling problems was introduced and the first results on this data was

reported. The generator takes the problem size and conflict density as in-

puts and generates a random problem with the required characteristics. To

encourage scientific comparisons the generator and dataset is made avail-

able at http://www.asap.cs.nott.ac.uk/resources/data.shtml. The aim is to

have a larger variety of exam timetabling problem instances with different

99

Chapter 5: An Adaptive Tie Breaking and Hybridisation
Hyper-Heuristic for Exam Timetabling Problems

characteristics.

100

Chapter 6

A Hyper-heuristic using

Improvement Low-level

Heuristics for Exam

Timetabling

6.1 Introduction

The previous two chapters presented hyper-heuristic approaches to con-

struct solutions for exam timetabling problems. This chapter presents an

approach to improve constructed solutions. In this case the low-level heuris-

tics are used to perform certain moves to improve a constructed timetable.

A random iterative hyper-heuristic approach which uses improvement low-

level heuristics is presented. Several low-level heuristics can be used to

improve a timetable with varying quality. The different low-level heuris-

tics used could be considered as different methods for escaping from local

101

Chapter 6: A Hyper-heuristic using Improvement Low-level
Heuristics for Exam Timetabling

optima. However, the order in which exams are moved and the type of

move performed play an important role in finding the best quality solu-

tion. An initial feasible solution is constructed using the Largest Degree

heuristic where the exams in the ordering are assigned to the time slot

causing the least penalty. In case there is more than one time slot with the

lowest penalty, one of them is randomly chosen. Our objective is to analyse

the performance of the different low-level heuristics used to minimise the

penalty incurred from a constructed solution. In addition, we test the effect

of using different orderings for the exams causing penalties in the solution.

Finally we develop an adaptive approach which orders the exams causing

violations and automatically selects the best heuristic to use for each exam

to produce an improvement.

In the next section, the low-level heuristics used to improve solutions are

presented, followed by a detailed explanation of the random iterative hyper-

heuristic. Section 6.2.3 presents an analysis of hybridising improvement

low-level heuristics, followed by an analysis on changing the ordering of ex-

ams causing a penalty in section 6.2.4. The proposed approach is described

in section 6.2.5. Section 6.3 presents the results obtained when applying

the approach to the Toronto benchmark and the ITC2007 dataset. Finally,

a summary of this chapter is given in section 6.4.

6.2 Methodology

6.2.1 The low-level heuristics

In this chapter we investigate the effect of using different low-level heuristics

or neighbourhood operators to improve timetables. A combination of two

102

Chapter 6: A Hyper-heuristic using Improvement Low-level
Heuristics for Exam Timetabling

improvement low-level heuristics is used in our approach. The following is

a list of the heuristics investigated:

1. Move Exam (ME): This heuristic selects an exam and reassigns it to

the time slot causing the least penalty.

2. Swap Exam (SE): This heuristic selects an exam and tries swapping

it with a scheduled exam leading to the least penalty timetable.

3. Kempe Chain Move (KCM): This is similar to the SE heuristic but

is more complex as it involves swapping a subset of conflicting ex-

aminations in two distinct time slots. This neighbourhood operator

proved success in some previous research [32, 159].

4. Swap Time Slot (ST) : This heuristic selects an exam and swaps all

the exams in the same time slot with another set of examinations

in a different time slot. After testing all the time slots, the swap

producing the least penalty timetable is applied.

6.2.2 The random iterative hyper-heuristic

The study presented in this chapter takes a similar approach to that pre-

sented in [143] where a random iterative hyper-heuristic was used to gener-

ate heuristic sequences of different quality to solve the Toronto benchmark.

Instead of using the heuristic sequences to construct solutions, they are

used here to improve constructed feasible solutions by rescheduling exams

causing penalties. Algorithm 6 presents the pseudo-code of this random it-

erative hyper-heuristic. The process starts by constructing an initial feasi-

ble solution. Since the initial solution constructed affects the improvement

103

Chapter 6: A Hyper-heuristic using Improvement Low-level
Heuristics for Exam Timetabling

process, a random largest degree graph colouring heuristic which orders ex-

ams according to the number of conflicts each exam has with others is used

[32]. This allows us to compare our approach to other approaches in the

literature which use a similar method in construction. At every iteration,

the exams causing violations in the constructed solution are identified and

a random sequence of moves is generated. A move is the application of

one of the low-level heuristics described in section 6.2.1. The sequence of

moves is then applied to the sequence of exams as they are unscheduled

one by one. Only moves that improve the current solution are accepted.

If a move does not improve the solution, it is skipped and the exam stays

in its current position. A sequence is discarded if an improvement is not

obtained after the whole sequence is employed.

Algorithm 6 The pseudo-code of the random iterative hyper-heuristic
with low-level improvement heuristics

order the exams using the LD heuristic
construct a feasible solution by assigning the exams to the time slot
causing the least penalty
create a random ordered list of the exams contributing to the overall
penalty incurred
for i = 0 → i = e × 50 //e: number of exams causing penalty do
for n = 1 → n = e do
initialise heuristic sequence h = [KCM KCM KCM KCM] //h has
size e
h = randomly change n heuristics in h to ME, SE or ST
construct a solution sc using h
if solution sc is feasible then
save h and the penalty of its corresponding solution sc

end if
end for

end for

Figure 6.1 presents an illustrative example of the improvement process for

a simple problem with six events (e1-e6) causing violations and ordered

using SD. Assume that the sequence of six moves generated is ”KCM ST

KCM KCM KCM ST”. An initial solution has been improved iteratively

104

Chapter 6: A Hyper-heuristic using Improvement Low-level
Heuristics for Exam Timetabling

by using the first two heuristics in the sequence. A swap time slot move

is applied to exam e1 to swap all the exams in slot 1 with the exams in

slot 2. In the next iteration, assuming that exam 5 is in conflict with exam

6, a Kempe chain move is applied to exam 5 where it is moved from slot

1 to slot 3 and exam 6 is moved to slot 1. The rest of moves are applied

to the corresponding examinations in the sequence. In the case where an

improvement is not achieved, the exam is kept in its current position. The

sequences obtaining the best improvements are stored for the second stage

where an adaptive approach is applied to generate more sequences which

further improves the solution.

Figure 6.1: An illustrative example of solution improvement using a
sequence of Neighbourhood Operators

This approach was applied to four instances (hec92 I, sta83 I,yor83 I and

tre92) of the Toronto benchmark exam timetabling problems described in

section 2.2 for off-line learning of the best heuristic hybridisations and the

order of execution leading to the best improvement. These instances were

105

Chapter 6: A Hyper-heuristic using Improvement Low-level
Heuristics for Exam Timetabling

chosen as they vary in size and cover a range of conflict densities. Af-

ter running this process for (ex50) times, where e is the number of exams

causing soft constraint violations in the constructed solution, a set of se-

quences and the penalties of their corresponding solutions are obtained for

further investigation on the effectiveness of the different heuristics used.

Note that, only 50 samples were collected for each rate of hybridisation as

we found that using more samples does not improve the quality of the final

outcome at this point. Finally, an adaptive approach was developed and

applied to the Toronto benchmark. Furthermore, to test the generality of

the approach, it was applied to the ITC2007 exam timetabling track. The

approach is presented in section 6.2.5.

6.2.3 Analysis of hybridising improvement low-level

heuristics

In order to clearly observe the effect of the different low-level heuristics

in improving solutions, the heuristic sequences generated consist of two

heuristics. We use the Kempe chain move heuristic as the basic heuristic

in the sequences as it has proved to be successful in previous work [32, 159].

The Kempe chain move involves swapping a subset of exams in two distinct

time slots making sure that a hard constraint violation does not occur. The

rest of the heuristics (ME, SE and ST) are randomly hybridised into the

list of KCM.

The random sequences are generated with different percentages of hybridi-

sation by inserting n ME, SE or ST, n = [1,..,e] in the sequences. For each

hybridisation of KCM with either ME, SE or ST, 50 samples are obtained

for each amount of hybridisation. Duplicate sequences are discarded and

106

Chapter 6: A Hyper-heuristic using Improvement Low-level
Heuristics for Exam Timetabling

another sequence is generated instead. The sequences are re-initialised in

each iteration to avoid guiding the search and to explore a wider area of

the search space at this stage.

We applied this approach to four instances of the Toronto benchmark exam

timetabling problems [54]. Table 6.1 presents the results obtained using

ME, SE and ST in a hybridisation with KCM as well as a comparison

against using KCM only.

Table 6.1: Results using KCM without a hybridisation and with sev-
eral different moves

hec92 I yor83 I sta83 I tre92
KCM without hybridisation Best 13.50 43.84 160.43 8.99

KCM with ME Best 12.03 43.84 157.48 8.91
KCM with SE Best 12.03 42.37 157.75 8.75
KCM with ST Best 11.30 41.79 157.27 8.57

It is observed that using a Kempe chain only produces the worst results.

After introducing other heuristics in a hybridisation with the Kempe chain

moves, better results were obtained. Another observation from table 6.1

is that swapping time slots and performing Kempe chain moves produces

the best improvement for all the problems. One possible reason may be

that swapping time slots allows the search to be more diverse and to sample

different areas of the search space to find good solutions faster. In addition,

no obvious trends could be obtained on the amount of ST hybridisation

within the best heuristic sequences. However, it is observed in all the

sequences leading to the best timetables that the ST heuristic is randomly

distributed within the sequence and the percentage of hybridisation is less

than 50%.

107

Chapter 6: A Hyper-heuristic using Improvement Low-level
Heuristics for Exam Timetabling

6.2.4 Variations of Orderings of the exams causing a

penalty

To analyse the effect of ordering the unscheduled exams causing a soft

constraint violation in a previous solution, we decided to test different or-

derings while using the Kempe Chain and swapping time slot hybridisation

stated in the previous section. After the exams causing violations are iden-

tified, they are ordered first before being reassigned to a time slot. Several

orderings can be used to help guide the search as follows:

• Largest Degree (LD) : The exams are ordered decreasingly according

to the number of conflicts each exam has with others.

• Largest Weighted Degree (LWD) : The exams are ordered similarly

to LD but weighted according to the number of students involved in

the conflict.

• Saturation Degree (SD) : The exams are ordered increasingly accord-

ing to the number of remaining time slots available to assign them

without causing conflicts. In the case where ties occur, LWD is used

as a tie breaker. From the work presented in chapter 5, it was shown

that SD produces the best results when LWD is used to break ties in

the ordering.

• Largest Penalty (LP) : The exams are ordered decreasingly according

to the penalty they incur in the current solution.

• Random Ordering (RO) : The exams are ordered randomly.

Table 6.2 presents the results of applying different orderings to the un-

scheduled exams, then running a random heuristic sequence of KCM and

108

Chapter 6: A Hyper-heuristic using Improvement Low-level
Heuristics for Exam Timetabling

ST to assign them in better time slots.

Table 6.2: Results of hybridising KCM with ST using different order-
ings of the exams causing a soft constraint violation. The
notation X tb Y means heuristic Y is used to break ties in
heuristic X

hec92 I yor83 I sta83 I tre92
KCM with ST + RO Average 11.99 42.63 159.74 9.02
KCM with ST + RO Best 11.60 41.33 158.46 8.66

KCM with ST + LD Average 12.69 42.10 163.32 9.00
KCM with ST + LD Best 12.50 39.69 159.50 8.66

KCM with ST + LWD Average 12.06 42.08 159.74 8.91
KCM with ST + LWD Best 11.39 39.69 157.76 8.64
KCM with ST + LP Average 12.15 42.09 159.52 8.85
KCM with ST + LP Best 11.32 39.69 157.49 8.56

KCM with ST + SD tb LWD Average 11.45 41.96 159.39 8.74
KCM with ST + SD tb LWD Best 11.25 39.56 157.37 8.54

Table 6.3: t-test on the results from ordering exams causing violations
using SD and LP

hec92 I yor83 I sta83 I tre92
p-value 1.3E-05 5.27E-21 1.9E-18 1.33E-04
t Stat 5.96 74.66 50.35 4.73

Table 6.4: t-test on the results from ordering exams causing violations
using SD and LWD

hec92 I yor83 I sta83 I tre92
p-value 1.58E-07 5.3E-18 6.85E-16 5.56E-08
t Stat 8.67 47 33.89 9.41

Table 6.5: t-test on the results from ordering exams causing violations
using LP and LWD

hec92 I yor83 I sta83 I tre92
p-value 0.18 7.51E-04 1.58E-11 3.36E-09
t Stat 0.93 3.87 17.04 11.62

109

Chapter 6: A Hyper-heuristic using Improvement Low-level
Heuristics for Exam Timetabling

As shown in table 6.2, we found that using SD and breaking any ties

in the ordering using LWD produced the best results. This is because

SD orders the unscheduled exams according to the number of time slots

available to assign them without causing conflicts. Therefore, the chances

of moving exams at the top of the SD list and finding better time slots for

them become higher. Ordering the exams according to the penalty they

incur proved to be the second best ordering followed by LWD. LD and RO

performed randomly when applied.

A t-test is also carried out to give an indication if the results using SD, LP

and LWD are significantly different. Tables 6.3, 6.4 and 6.5 summarise the

p-values of the t-tests carried out between the results of different orderings,

which are significantly different in all the cases.

6.2.5 Adaptive Selection of Low-level Heuristics for

Improving Exam Timetables

Algorithm 7 presents the initialisation stage of the adaptive approach. The

exams causing a penalty are first identified and are unscheduled. They

are then put in a list and ordered using SD. Random heuristic sequences

are generated using KCM and ST to reschedule the examinations. The

sequences are then applied to the ordered exams and the corresponding so-

lutions are saved. Note that, only 10 sequences are generated for each rate

of hybridisation to be able to adhere with the time limitation and compare

our results with the best in the literature for the ITC2007 dataset. Fur-

thermore, limiting the number of sequences generated in this stage makes

it easier to analyse and observe any trends in the sequences generating the

best results.

110

Chapter 6: A Hyper-heuristic using Improvement Low-level
Heuristics for Exam Timetabling

Algorithm 7 The pseudo-code of the initialisation stage of the adaptive
hyper-heuristic with low-level improvement heuristics

order the exams using the LD heuristic
construct a feasible solution by assigning the exams to the time slot
causing the least penalty
create a list of the exams contributing in the overall penalty incurred
ordered by SD
for i = 0 → i = e × 10 //e: number of exams causing penalty do
for n = 1 → n = e do
initialise heuristic sequence h = {KCM KCM ... KCM KCM}
h = randomly change n heuristics in h to ST
construct a solution using h
if solution c is feasible then
save h and the penalty of its corresponding solution c

end if
end for

end for

The above observations indicate that the best solutions were obtained when

ordering the exams causing violations using SD, and rescheduling them us-

ing either a Kempe-chain move or swapping time slots. It was also observed

that the heuristic sequences producing the top 5% results used the same

move for the majority of the exams (i.e. the same heuristic appears in

the same position in more than 75% of the sequences). Therefore, we de-

veloped an intelligent approach that performs an analysis to the best 5%

of the sequences produced to generate a new set of sequences. The new

set of sequences obtained better results for all the problem instances. The

adaptive approach was tested and showed to be effective and comparable

with the best approaches in the literature.

Algorithm 8 presents the pseudo-code of the approach which hybridises ST

with KCM in two stages. The process is presented as follows:

1. In the first stage, the best 5% of heuristic sequences are collected and

analysed. If the same heuristic is used in the same position for more

111

Chapter 6: A Hyper-heuristic using Improvement Low-level
Heuristics for Exam Timetabling

than 75% of the heuristic sequences, then it is stored. Otherwise the

position is kept empty. Note that, we also tested collecting more than

5% of the best sequences to analyse them. However, the behaviour

was random since no trends were seen. Therefore, to guarantee the

effectiveness of the approach, the heuristic was chosen at a certain

position if it appears in 75% of the best 5% heuristic sequences col-

lected.

2. In the second stage, the empty positions are randomly assigned as

KCM or ST. n x 5 sequences for the large problems (uta92 I, uta92

II, car91 and car92) and n x 10 sequences for the small problems are

generated, respectively. The generated sequences are then applied to

the problem.

112

Chapter 6: A Hyper-heuristic using Improvement Low-level
Heuristics for Exam Timetabling

Algorithm 8 Adaptive generation of heuristic sequences hybridising KCM
and ST
construct initial heuristic sequences // see Algorithm 7
collect the best 5 % of the heuristic sequences
for i = 0 → i < number of exams causing penalty do
count = 0
for j = 1 → j < number of sequences do
if heuristicSequence[i][j] = KCM then
count ++

end if
end for
if count > 0.75 × number of sequences then
finalHeuristicSequence[i] = KCM

else if count < 0.25 × number of sequences then
finalHeuristicSequence[i] = ST

else
finalHeuristicSequence[i] = empty

end if
end for
n = number of empty positions × 5 for large problems or number of
empty positions × 10 for small problems
for i = 0 → i < n do
for j = 0 → j < number of sequences do
if finalHeuristicSequence[j] = empty then
finalHeuristicSequence[j] = KCM or ST

end if
end for
construct a solution using finalHeuristicSequence[j]
if a better solution is obtained then
save finalHeuristicSequence[j] and the penalty of its corresponding
solution

end if
end for

6.3 Results

6.3.1 The Toronto Benchmark Results

The approach was tested on the Toronto benchmark exam timetabling

problems and the results are presented in tables 6.6 and 6.7. The average

113

Chapter 6: A Hyper-heuristic using Improvement Low-level
Heuristics for Exam Timetabling

computational time for each stage across the instances is also presented for

30 runs on a Pentium IV machine with a 1 GB memory. In addition, the

number of exams causing a penalty is presented in the tables.

The best results stated in the literature are presented in table 6.8. These

include the hybridisation of an electromagnetic-like mechanism and the

Great Deluge employed by Abdullah et al. [3], the hill-climbing with a

late acceptance strategy implemented by Burke et al. [28], the variable

neighbourhood search incorporating the use of genetic algorithms used by

Burke et al. [32] and the sequential construction method developed by

Caramia et al. [52]. These algorithms are described in section 2.2.2.

114

Chapter 6: A Hyper-heuristic using Improvement Low-level
Heuristics for Exam Timetabling

T
a
b
le

6
.6
:
R
es
u
lt
s
fr
om

th
e
ad

ap
ti
v
e
im

p
ro
ve
m
en
t
H
y
p
er
-h
eu
ri
st
ic

(A
IH

)
a
p
p
ro
a
ch

o
n
th
e
T
o
ro
n
to

B
en
ch
m
a
rk

d
a
ta
se
t

h
ec
92

I
yo
r8
3
I

ea
r8
3
I

st
a8
3
I

ca
r9
2

ca
r9
1

u
ta
92

I
u
te
92

ls
e9
1

tr
e9
2

k
fu
93

A
IH

A
ve
ra
ge

12
.6
9

41
.7
4

38
.9
8

15
9.
21

4.
49

5.
39

3.
56

27
.9
7

11
.4
5

8.
90

15
.5
4

A
IH

B
es
t

11
.1
9

39
.4
7

35
.7
9

15
7.
18

4.
31

5.
19

3.
44

26
.7
0

10
.9
2

8.
49

14
.5
1

T
im

e
sp
en
t
in

fi
rs
t
st
ag
e(
s)

25
4

12
27

11
39

57
6

10
28
6

74
97
3

35
14
9

17
8

11
89

20
65

21
53

T
im

e
sp
en
t
in

se
co
n
d
st
ag
e(
s)

14
3

45
6

55
3

18
3

41
95
4

22
98
8

26
13
5

64
1

27
7

22
28

59
2

N
u
m
b
er

of
ex
am

s
ca
u
si
n
g
v
io
la
ti
on

s
18

22
26

22
42

49
40

27
39

29
34

115

Chapter 6: A Hyper-heuristic using Improvement Low-level
Heuristics for Exam Timetabling

T
a
b
le

6
.7
:
C
on

td
.
R
es
u
lt
s
fr
om

th
e
ad

ap
ti
v
e
im

p
ro
ve
m
en
t
H
y
p
er
-h
eu
ri
st
ic

(A
IH

)
a
p
p
ro
a
ch

o
n
th
e
T
o
ro
n
to

B
en
ch
m
a
rk

d
a
ta
se
t

h
ec
92

II
yo
r8
3
II

ea
r8
3
II

st
a8
3
II

u
ta
92

II
A
IH

A
ve
ra
ge

12
.4
3

50
.4
9

41
.9
8

35
.0
0

3.
54

A
IH

B
es
t

11
.3
5

49
.7
2

39
.6
0

32
.5
7

3.
45

T
im

e
ta
ke
n
in

fi
rs
t
st
ag
e
(s
)

35
2

86
1

15
17

12
04

53
96
6

T
im

e
ta
ke
n
in

se
co
n
d
st
ag
e
(s
)

14
6

51
3

12
75

68
4

27
35
0

N
u
m
b
er

of
ex
am

s
ca
u
si
n
g
v
io
la
ti
on

s
23

19
30

17
53

116

Chapter 6: A Hyper-heuristic using Improvement Low-level
Heuristics for Exam Timetabling

T
a
b
le

6
.8
:
B
es
t
re
su
lt
s
ob

ta
in
ed

b
y
th
e
A
d
ap

ti
v
e
Im

p
ro
v
em

en
t
H
y
p
er
-h
eu
ri
st
ic

(A
IH

)
co
m
p
a
re
d

to
th
e
b
es
t
a
p
p
ro
a
ch
es

in
th
e

li
te
ra
tu
re

on
th
e
T
or
on

to
B
en
ch
m
ar
k

P
ro
b
le
m
s

A
IH

A
b
d
u
ll
ah

(2
00
9)

B
u
rk
e(
20
08
)

B
u
rk
e(
20
10
)

C
ar
am

ia
(2
00
8)

B
es
t

B
es
t

B
es
t

B
es
t

B
es
t

[3
]

[2
8]

[3
2]

[5
2]

h
ec
92

I
11
.1
9

9.
73

10
.0
6

10
.0
0

9
.2
0

st
a8
3
I

15
7.
18

15
6.
94

15
7.
03

1
5
6
.9
0

15
8.
20

yo
r8
3
I

39
.4
7

34
.9
5

3
4
.7
8

34
.9
0

36
.2
0

u
te
92

26
.7
0

24
.9
0

24
.7
9

24
.8
0

2
4
.4
0

ea
r8
3
I

35
.7
9

36
.0
0

32
.6
5

32
.8
0

2
9
.3
0

tr
e9
2

8.
49

8.
5

7
.7
2

7.
90

9.
40

ls
e9
1

10
.9
2

10
.0
3

9.
86

10
.0
0

9
.6
0

k
fu
93

14
.5
1

1
2
.6
2

12
.8
1

13
.0
0

13
.8
0

ca
r9
2

4.
31

3
.7
6

3.
81

3.
90

6.
00

u
ta
92

I
3.
44

2
.9
9

3.
16

3.
20

3.
50

ca
r9
1

5.
19

4
.4
2

4.
58

4.
60

6.
60

117

Chapter 6: A Hyper-heuristic using Improvement Low-level
Heuristics for Exam Timetabling

The results obtained indicate the generality of our approach to different

constructed timetables regardless of the size. We also make a comparison

with other hyper-heuristics which produced the best results in the literature

in table 6.9. In comparison with the graph-based hyper-heuristic in [42],

our approach performs better in all the cases reported. In addition, it

performs better in 8 out of 11 cases in comparison with the hyper-heuristics

investigated in [138] and [142]. Finally, it performs better in 10 out of 11

cases compared to the tabu search hyper-heuristic investigated in [114].

Only the problems presented in table 6.9 were compared to other results

since the results for the other instances in table 2.1 were not reported in

the literature.

Table 6.9: Best results obtained by the Adaptive Improvement Hyper-
heuristic (AIH) compared to other hyper-heuristics ap-
proaches in the literature on the Toronto Benchmark

Problems AIH Kendall(2005) Burke(2007) Pillay(2009) Qu(2009)
Best Best Best Best Best

[114] [42] [138] [142]
hec92 I 11.19 11.86 12.72 11.85 11.94
sta83 I 157.18 157.38 158.19 158.33 159.00
yor83 I 39.47 - 40.13 40.74 40.24
ute92 26.70 27.60 31.65 28.88 28.30
ear83 I 35.79 40.18 38.19 36.86 35.86
tre92 8.49 8.39 8.85 8.48 8.60
lse91 10.92 - 13.15 11.14 11.15
kfu93 14.51 15.84 15.76 14.62 14.79
car92 4.31 4.67 4.84 4.28 4.16
uta92 I 3.44 - 3.88 3.40 3.42
car91 5.19 5.37 5.41 4.97 5.16

118

Chapter 6: A Hyper-heuristic using Improvement Low-level
Heuristics for Exam Timetabling

6.3.2 The International Timetabling Competition (ITC2007)

Results

To test the generality of our approach, we applied it to the ITC2007 exam

timetabling dataset. The initial solution is constructed by ordering the

exams according to their saturation degree. The exams are assigned a

random time slot in the situation where more than one time slot is avail-

able. After a feasible solution is constructed the Adaptive Improvement

Hyper-heuristic was applied to the constructed solution. To allow a fair

comparison with the reported competition results, the approach was run

for the same amount of time using 11 distinct seeds for each instance. Ta-

ble 6.10 presents the results we obtained in comparison with the best in

the literature. The description of the approaches used for comparison is

presented in section 2.3.2. We do emphasise that the objective here is not

to beat the best reported results but to demonstrate the generality of our

approach to different problems with different constraints. A dash in the

table means that no feasible solution was obtained.

The Extended Great Deluge in [123] obtained the best results for 5 out of

the 8 instances. However, the approach was run for a longer time as it was

developed after the competition. In the competition, the best results for

all the 8 instances were reported in [129] using a three phased approach.

The GRASP used in [99] produced the second best results.

In comparison with other hyper-heuristic techniques, our approach was

able to produce better results in only one instance when compared to the

evolutionary algorithm based hyper-heuristic presented in [137]. However,

it was stated that they did not adhere to the time limitation imposed by

the competition.

119

Chapter 6: A Hyper-heuristic using Improvement Low-level
Heuristics for Exam Timetabling

In comparison to the Constraint Based Solver developed in [9], our ap-

proach performed better in 3 out of the 8 instances. The approach using

the Drools solver in [70] obtained feasibility for only 5 instances. Our ap-

proach outperformed it as we were able to gain feasibility for all the 8

instances. This demonstrates the generality of our approach to solving

exam timetabling problems. Finally, our approach performed better on 6

of the 8 instances in comparison with the biologically inspired approach

proposed in [135].

120

Chapter 6: A Hyper-heuristic using Improvement Low-level
Heuristics for Exam Timetabling

T
a
b
le

6
.1
0
:
B
es
t
re
su
lt
s
ob

ta
in
ed

b
y
th
e
A
d
ap

ti
v
e
Im

p
ro
ve
m
en
t
H
y
p
er
-h
eu
ri
st
ic

(A
IH

)
co
m
p
a
re
d
to

th
e
b
es
t
a
p
p
ro
a
ch
es

in
th
e

li
te
ra
tu
re

on
th
e
IT

C
20
07

d
at
as
et

In
st
an

ce
s

A
IH

M
cC

ol
lu
m
(2
00
9)

M
u
ll
er
(2
00
8)

G
og
os
(2
00
8)

A
ts
u
ta
(2
00
8)

D
e
S
m
et
(2
00
8)

P
il
la
y
(2
00
8)

P
il
la
y
(2
01
0)

B
es
t

B
es
t

B
es
t

B
es
t

B
es
t

B
es
t

B
es
t

B
es
t

[1
23
]

[1
29
]

[9
9]

[9
]

[7
0]

[1
35
]

[1
37
]

E
x
am

1
62
35

46
33

4
3
7
0

59
05

80
06

66
70

12
03
5

85
59

E
x
am

2
29
74

40
5

4
0
0

10
08

34
70

62
3

30
74

83
0

E
x
am

3
15
83
2

9
0
6
4

10
04
9

13
86
2

18
62
2

-
15
91
7

11
57
6

E
x
am

4
35
10
6

1
5
6
6
3

18
14
1

18
67
4

22
55
9

-
23
58
2

21
90
1

E
x
am

5
48
73

30
42

2
9
8
8

41
39

47
14

38
47

68
60

39
69

E
x
am

6
31
75
6

2
5
8
8
0

26
95
0

27
64
0

29
15
5

27
81
5

32
25
0

28
34
0

E
x
am

7
11
56
2

4
0
3
7

42
13

66
83

10
47
3

54
20

17
66
6

81
67

E
x
am

8
20
99
4

7
4
6
1

78
61

10
52
1

14
31
7

-
16
18
4

12
65
8

121

Chapter 6: A Hyper-heuristic using Improvement Low-level
Heuristics for Exam Timetabling

6.4 Chapter Summary

The study presented in this chapter implements a hyper-heuristic approach

which adaptively adjusts heuristic combinations to achieve the best im-

provement on constructed timetables. An investigation is made on the

low-level heuristics used and the order in which exams causing soft con-

straint violations are rescheduled. The analysis is performed on a set of four

benchmark instances of differing difficulty in an off-line learning process.

It is shown that, of the heuristics tried, the best to combine with Kempe

chains is the time slot swapping heuristic. In addition, better solutions are

produced when ordering the exams causing a soft constraint violation us-

ing Saturation Degree and breaking any ties with Largest Weighted Degree.

Based on the output of the learning process, an adaptive approach which

analyses and adjusts some randomly generated sequences is implemented

and applied to the rest of the instances. Furthermore, the hyper-heuristic

approach is applied to a more constrained dataset, and showed to produce

very competitive results compared to other approaches in the literature on

both datasets.

The next chapter presents an adaptive approach which uses bin packing

heuristics to assign exams to time slots and rooms. This is the first such

system where bin packing heuristics are used within a hyper-heuristic to

solve exam timetabling problems. This represents further work towards

one of the objectives of hyper-heuristic research and, indeed, this thesis, to

raise the level of generality at which optimisation systems can operate.

122

Chapter 7

Adaptive Selection of

Heuristics for Assigning Time

Slots and Rooms in Exam

Timetables

7.1 Introduction

The one dimensional bin packing problem consists of a set of pieces, which

must be packed into the least number of bins. Each piece j has a weight wj

, and each bin has a capacity c. The objective is to minimise the number

of bins used, where each piece is assigned to one bin only, and the weight

of the pieces in each bin does not exceed c. Bin packing heuristics on their

own are simple techniques where items in the problem are packed using a

specific strategy to construct solutions. For example, by using Best Fit (see

table 7.1), a piece in a bin packing problem is placed into the bin which

123

Chapter 7: Adaptive Selection of Heuristics for Assigning
Time Slots and Rooms in Exam Timetables

has the least space remaining. Bin packing heuristics can be used in exam

timetabling problems to assign rooms with different capacities to exams.

Hence, using a Best Fit heuristic, the exam is placed in a room which has

the least remaining capacity. The overall strategy is to make use of the

same heuristics used in bin packing to assign resources in other problems

such as exam timetabling.

In this chapter, we present an adaptive approach which hybridises heuristics

used in bin packing to assign time slots and rooms to exams during the

construction of a timetable. It is based upon the observations and statistical

analysis over a large number of different heuristic sequences obtained by a

random iterative hyper-heuristic generator. A similar process to the one

described in section 6.2.2 will be used in the approach developed in this

chapter. However, more than two heuristics are used in the hybridisation

and a different method to adapt the heuristic sequences is presented.

124

Chapter 7: Adaptive Selection of Heuristics for Assigning
Time Slots and Rooms in Exam Timetables

T
a
b
le

7
.1
:
P
ac
k
in
g
st
ra
te
g
ie
s
u
se
d
to

a
ss
ig
n
a
ti
m
e
sl
o
t
a
n
d
ro
o
m

in
ti
m
et
a
b
li
n
g

P
ac
k
in
g
h
eu
ri
st
ic
s

P
ac
k
in
g
st
ra
te
gi
es

th
at

al
lo
ca
te

a
ti
m
e
sl
ot

an
d
ro
om

in
th
e
p
ro
b
le
m

B
es
t
F
it
(B

F
)

P
u
ts

th
e
ex
am

in
th
e
fe
as
ib
le

ti
m
e
sl
ot

an
d
ro
om

w
h
ic
h
h
av
e
th
e
le
as
t
re
m
ai
n
in
g
ca
p
ac
it
y

A
lm

os
t
B
es
t
F
it
(A

B
F
)

P
u
ts

th
e
ex
am

in
th
e
fe
as
ib
le

ti
m
e
sl
ot

an
d
ro
om

w
h
ic
h
h
av
e
th
e
se
co
n
d
le
as
t
re
m
ai
n
in
g
ca
p
ac
it
y

W
or
st

F
it
(W

F
)

P
u
ts

th
e
ex
am

in
th
e
fe
as
ib
le

ti
m
e
sl
ot

an
d
ro
om

w
h
ic
h
h
av
e
th
e
la
rg
es
t
re
m
ai
n
in
g
ca
p
ac
it
y

A
lm

os
t
W
or
st

F
it
(A

W
F
)

P
u
ts

th
e
ex
am

in
th
e
fe
as
ib
le

ti
m
e
sl
ot

an
d
ro
om

w
h
ic
h
h
av
e
th
e
se
co
n
d
la
rg
es
t
re
m
ai
n
in
g
ca
p
ac
it
y

F
ir
st

F
it
(F

F
)

P
u
ts

th
e
ex
am

in
th
e
lo
w
es
t
in
d
ex
ed

fe
as
ib
le

ti
m
e
sl
ot

an
d
ro
om

L
as
t
F
it
(L
F
)

P
u
ts

th
e
ex
am

in
th
e
h
ig
h
es
t
in
d
ex
ed

fe
as
ib
le

ti
m
e
sl
ot

an
d
ro
om

125

Chapter 7: Adaptive Selection of Heuristics for Assigning
Time Slots and Rooms in Exam Timetables

7.2 Methodology

7.2.1 A Random Iterative Time Slot and Room As-

signment Hyper-heuristic

The approach presented in this chapter focuses on the assignment of exams

to time slots and rooms. It takes a similar approach to the one presented

in the previous chapter where a random iterative hyper-heuristic generates

heuristic sequences for the ITC2007 benchmark problem mentioned in sec-

tion 2.3. Instead of using the heuristic sequences to order the exams to

construct solutions or to improve constructed solutions, they are used here

to assign exams to time slots and rooms.

Algorithm 9 presents the pseudo-code of this random iterative hyper-heuristic.

The process starts by ordering exams using the LWD heuristic which orders

the exams in a descending order according to the number of conflicts each

exam has with others. The exams are weighted according to the number of

students involved in the conflict (see section 2.2.2). Although it was proven

in previous research [43, 54] that using SD performs the best in most cases

due to its ability to dynamically order the events according to the number

of remaining valid time slots, we have chosen to fix the order of the exams

by using a static ordering heuristic to be able to focus on the effect of the

heuristics assigning time slots and rooms.

At every iteration, the exam at the top of the list is chosen and the cor-

responding heuristic from the generated sequence is used to assign a time

slot and room to the exam. The heuristics used for the assignment are

those used in the one dimensional bin packing domain as described in table

7.1. In cases where ties appear when using BF, ABF, WF or ABF, the

126

Chapter 7: Adaptive Selection of Heuristics for Assigning
Time Slots and Rooms in Exam Timetables

time slot and room leading to the least penalty is chosen. If more than

one time slot and room combination lead to the least penalty, one of these

time slot and room combinations is randomly chosen. However, this does

not apply when using FF or LF since these heuristics aim to assign exams

in the first or last feasible time slot and room found. The process stops

and the sequence is discarded if a feasible solution could not be generated.

After a certain number of steps, a set of heuristics are collected for further

analysis on the characteristics of good hybridisations of packing heuristics.

Algorithm 9 The pseudo-code of the random iterative bin packing based
hyper-heuristic

Create an ordered list O of all the exams using LWD
for i = 0 → e x 50, e :the number of exams do
for n = 1 → e do
initialise heuristic sequence h1 = {BF BF BF BF}
initialise heuristic sequence h2 = {ABF ABF ABF ABF}
initialise heuristic sequence h3 = {WF WF WF WF}
initialise heuristic sequence h4 = {AWF AWF AWF AWF}
initialise heuristic sequence h5 = {FF FF FF FF}
initialise heuristic sequence h6 = {LF LF LF LF}
for s = 1 → 6 do
hs = randomly change n heuristics in hs to BF, ABF, WF, AWF,
FF or LF
construct a solution c by applying the heuristic sequence hs to the
exams in list O (see Figure 6.1)
if solution c is feasible then
save h and the penalty of its corresponding solution c

end if
end for

end for
end for

In this work, to investigate the effect of hybridising different heuristics to

allocate time slots and rooms to exams, we generate a large number of

heuristic sequences which consist of the 6 bin packing heuristics described

in table 7.1. Since the allocation of examinations depends on the hard and

soft constraints of the time slots and rooms in the problem, it is essential

127

Chapter 7: Adaptive Selection of Heuristics for Assigning
Time Slots and Rooms in Exam Timetables

that we examine a number of different strategies in assigning the exams.

Since one of the objectives of hyper-heuristics is to avoid using any domain

specific knowledge, we are only interested in the quality of the solutions

obtained from the different allocation strategies to guide our search.

We start by applying the 6 initial heuristic sequences to the problem and

analyse the effect of these sequences without performing a hybridisation

in section 7.2.2. In section 7.2.3, we use the random iterative hyper-

heuristic described above to generate a large number of hybridised heuristic

sequences and analyse the results after applying the sequences to the prob-

lem instances. Finally, we develop an adaptive approach based on our

observations and analysis in section 7.2.4.

7.2.2 Analysis of the Initial Heuristic Sequences

We start by applying the initial heuristic sequences, which contain only a

single heuristic, to 8 instances of the International Timetabling Competi-

tion (ITC2007) exam timetabling dataset presented in section 2.3. The aim

is to be able to compare the results before and after hybridising heuristics

in the sequence. Since the timetable is empty, many ties appear at the

beginning of process. A random choice is made from the set of feasible

time slots and rooms available. Therefore, the initial sequences were run

for 10 distinct seeds for each instance and the average and best results were

collected. Table 7.2 presents the results obtained by running the 6 heuristic

sequences which consist of a single heuristic.

It is clear, from table 7.2, that none of the heuristics used performed the

best for all the exam timetabling instances. However, varying solution

quality was obtained when applying the heuristics to the instances. This is

128

Chapter 7: Adaptive Selection of Heuristics for Assigning
Time Slots and Rooms in Exam Timetables

T
a
b
le

7
.2
:
B
es
t
an

d
av
er
ag
e
re
su
lt
s
ob

ta
in
ed

b
y
u
si
n
g
a
si
n
g
le

h
eu
ri
st
ic
.

A
(-
)
in
d
ic
a
te
s
th
a
t
a
fe
a
si
b
le

so
lu
ti
o
n

co
u
ld

n
o
t
b
e

ob
ta
in
ed

In
st
a
n
ce

s
B
F

B
F

A
B
F

A
B
F

W
F

W
F

A
W

F
A
W

F
F
F

L
F

B
e
st

A
v
e
ra

g
e

B
e
st

A
v
e
ra

g
e

B
e
st

A
v
e
ra

g
e

B
e
st

A
v
e
ra

g
e

B
e
st

B
e
st

E
x
a
m

1
12
93
8

13
69
0

13
13
9

13
71
2

-
-

-
-

-
1
2
5
7
7

E
x
a
m

2
3
5
9
8

46
36

44
03

52
78

40
43

51
94

-
-

41
58

37
09

E
x
a
m

3
1
7
5
8
6

19
69
0

20
14
3

21
55
8

20
26
1

21
04
0

-
-

20
08
3

20
30
8

E
x
a
m

4
2
5
1
6
5

28
77
6

44
35
8

44
35
8

-
-

-
-

-
-

E
x
a
m

5
49
09

58
29

48
26

57
26

55
53

56
73

-
-

4
7
7
8

48
44

E
x
a
m

6
32
17
5

32
17
5

32
57
5

32
57
5

-
-

-
-

3
1
4
8
0

38
74
0

E
x
a
m

7
22
38
8

23
48
3

25
44
6

26
98
2

24
20
3

24
87
4

-
-

2
1
3
1
4

23
33
1

E
x
a
m

8
15
97
2

16
23
1

16
04
6

16
33
8

17
76
6

17
76
6

-
-

1
5
7
4
0

18
14
1

129

Chapter 7: Adaptive Selection of Heuristics for Assigning
Time Slots and Rooms in Exam Timetables

due to the fact that the instances have different structures and constraints.

This indicates that different allocation strategies are required to solve the

different instances. In addition, the results show that a feasible solution

could not be obtained for any of the instances when using AWF.

Table 7.3 presents the capacities of the rooms in each instance ordered

in the way they appear in the problem. For the first instance, feasible

solutions were generated using BF, ABF and LF only. One possible reason

may be that the first room in each time slot is the largest and using FF, WF

or AWF would start by filling this room. This leaves exams with a large

enrolment difficult to schedule later on in the process. The best solution

was obtained using LF.

It can be seen that BF performed the best for the second and third in-

stances. The second best solution was achieved using LF and FF for the

second and third instances respectively. This may be due to the fact that

the performance of the heuristics vary depending on the position of the

room with the largest capacity in each instance. In addition, delaying the

use of the largest room leads to better solutions. For example, in the second

instance the first room in each time slot has the largest capacity. There-

fore, LF performed better than FF for this instance. On the contrary, FF

performed better than LF on the third instance since the rooms with the

largest capacity are at the end of each time slot. The same observation

also applies to the performance of FF and LF in the rest of the instances

where a feasible solution was obtained using the two heuristics. Further-

more, since the distribution of room capacity is uniform in each time slot

in the third instance, a small difference can be seen in the results obtained

using FF and LF. Since the fourth instance contains only a single room in

each time slot, only BF and ABF could find a feasible solution to this in-

130

Chapter 7: Adaptive Selection of Heuristics for Assigning
Time Slots and Rooms in Exam Timetables

stance. Note that although the LWD heuristic is used to order the exams,

this does not mean that the exams with the largest number of students

which require large rooms are scheduled first since the degree of conflicts

with other exams is also considered.

Table 7.3: Room capacity ordered as they appear in each instance

Instance Room Capacity ordered as they appear in the problem
Exam 1 260, 100, 129, 60, 77, 65, 111
Exam 2 424, 219, 120, 100, 40, 60, 60, 40, 36, 30, 30, 25, 72, 40, 35,

40, 38, 30, 60, 30, 85, 110, 100, 80, 70, 80, 40, 50, 92, 58, 195,
400, 90, 110, 264, 50, 19, 27, 60, 40, 51, 30, 39, 50, 50, 14,
127, 143, 23

Exam 3 127, 77, 41, 101, 93, 93, 76, 30, 70, 545, 275, 24, 171, 44, 70,
78, 59, 49, 27, 20, 39, 182, 32, 65, 58, 56, 61, 28, 26, 44, 78,
120, 500, 18, 30, 100, 11, 800, 16, 40, 16, 14, 116, 42, 51, 39,
500, 60

Exam 4 1200
Exam 5 896, 500, 999
Exam 6 240, 90, 210, 210, 110, 110, 80, 1000
Exam 7 240, 90, 210, 210, 110, 110, 70, 75, 70, 110, 110, 35, 45, 45,

1000
Exam 8 260, 100, 129, 60, 77, 65, 111, 120

7.2.3 Analysis of the Hybrid Heuristic Sequences

The random iterative time slot and room assignment hyper-heuristic gen-

erates a collection of heuristic sequences by hybridising different rates of

BF, ABF, WF, AWF, FF or LF as described in Algorithm 9. The idea

is to generate a variety of sequences which contain heuristics in different

positions to use different strategies to schedule exams. Since the order of

exams does not change during the solution construction, the effect of the

heuristic used to schedule each exam can be clearly observed.

Due to the amount of heuristic sequences that could be generated from

131

Chapter 7: Adaptive Selection of Heuristics for Assigning
Time Slots and Rooms in Exam Timetables

using a large number of different heuristics, 5 heuristic sequences are ini-

tialised each using BF, ABF, WF, FF and LF. AWF was discarded from

the hybridisation since it could not obtain any feasible result in table 7.2.

The random iterative hyper-heuristic then systematically hybridises n BF,

ABF, WF, FF or LF, n = [1, ..., e], in each sequence. For each amount of

hybridisation for each sequence, 50 samples are obtained. Although it is

very difficult to cover the whole range of heuristic sequences, our focus is

to explore the different areas of the search space by generating sequences

which contain different hybridisations. Table 7.4 presents the penalties

of the best and worst solutions obtained by these sequences. The corre-

sponding amounts of BF, ABF, WF, FF and LF in the sequences are also

presented.

It can be seen, from table 7.4, that the hybridisations leading to the best

solutions mainly consist of the heuristic which produced the best solution

using the initial sequences. Furthermore, the overall hybridisation of each

heuristic in the best heuristic sequences for different instances depends on

the performance of the heuristics before the hybridisation. For example

for the first instance, from table 7.2, LF performed the best followed by

BF then ABF. Therefore, the best heuristic sequence for the first instance

employs more LF followed by BF then ABF.

Another observation from table 7.4 is that the worst solutions were obtained

when hybridising heuristics which performed poorly when used on their

own.

The initial heuristics help the hyper-heuristic to gather knowledge about

the nature of the problem. Using this information, the search can be guided

and the hybridisation process can be adapted and automated to improve

the quality of the solutions.

132

Chapter 7: Adaptive Selection of Heuristics for Assigning
Time Slots and Rooms in Exam Timetables

T
a
b
le

7
.4
:
P
en
al
ti
es

of
th
e
b
es
t
an

d
w
or
st

so
lu
ti
o
n
s
fr
o
m

th
e
h
eu
ri
st
ic

se
q
u
en
ce
s
a
n
d
th
e
a
m
o
u
n
t
o
f
h
y
b
ri
d
is
a
ti
o
n
o
f
B
F
,
A
B
F
,
W

F
,

F
F
an

d
L
F

In
st
a
n
ce

s
B
e
st

%
o
f
h
y
b
ri
d
is
a
ti
o
n

W
o
rs
t

%
o
f
h
y
b
ri
d
is
a
ti
o
n

B
F

A
B
F

W
F

F
F

L
F

B
F

A
B
F

W
F

F
F

L
F

E
x
a
m

1
78
21

26
17

0
0

57
14
35
8

19
38

31
9

3
E
x
a
m

2
42
95

34
6

18
16

26
68
27

8
43

29
18

2
E
x
a
m

3
15
38
6

32
19

9
28

12
22
14
9

6
28

11
7

48
E
x
a
m

4
23
71
3

63
30

0
0

0
50
28
8

12
63

18
3

4
E
x
a
m

5
42
88

14
20

6
34

26
62
39

39
8

43
4

6
E
x
a
m

6
29
34
9

28
17

0
42

13
40
34
0

5
19

37
13

26
E
x
a
m

7
97
52

25
8

13
35

19
27
41
7

13
31

24
14

18
E
x
a
m

8
15
67
5

27
21

11
39

2
18
59
9

3
18

22
5

52

133

Chapter 7: Adaptive Selection of Heuristics for Assigning
Time Slots and Rooms in Exam Timetables

7.2.4 Adaptive Hybridisation of Bin Packing Heuris-

tics

The above observations indicate that although the heuristics to be hy-

bridised can be identified from running the initial sequences, the level of

hybridisation of each heuristic and their appropriate ranges vary a lot for

different instances. In addition, running the initial sequences gives an in-

dication of the nature of the problem from the quality of the solution pro-

duced. Therefore, an intelligent approach needs to be developed to adap-

tively choose the heuristics to be used and the amount of each heuristic in

the sequence. The adaptive approach is applied to all the instances and

shown to be effective in comparison to the best approaches in the literature.

The adaptive approach is a three staged approach which identifies the

heuristics to use in the hybridisation. A sequence is then initialised with a

certain amount of each heuristic. Finally, an iterative adjustment is made

to the amount of each heuristic in the sequence. The process is presented

as follows:

1. In the first stage, the 5 initial heuristics containing only BF, ABF,

WF, FF or LF are applied to the problem and the results are collected.

The heuristics are ranked in a descending order according to the

quality of the solutions produced. Heuristics which cannot produce

a solution are discarded. A sequence is initialised using the heuristic

producing the best result in this stage.

2. Based on the results obtained from the first stage, an adjustment is

made to hybridise the initial sequence with the rest of the heuristics.

The level of hybridisation of each heuristic is based on the number of

heuristics producing a feasible solution and the ranking of heuristics

134

Chapter 7: Adaptive Selection of Heuristics for Assigning
Time Slots and Rooms in Exam Timetables

from stage 1. According to the ranking of heuristics the level of

hybridisation of each heuristic is defined. The level of hybridisation

is proportional to the ranking. For example, if 2 heuristics obtain

a feasible solution for a problem which contains 100 exams, 67 of

the exams will use the 1st heuristic in the ranking while 33 will use

the 2nd. The following equation is used to determine the level of

hybridisation of each heuristic:

e

f2 + f
2

× r (7.2.1)

e : the number of exams in the problem

f : the number of heuristics obtaining a feasible solution

The ranking r is calculated using the following equation:

r = f − i+ 1 (7.2.2)

f : the number of heuristics obtaining a feasible solution

i : the ranking of the heuristic according to the quality of the solution

produced. The heuristic producing the best solution has the highest

ranking.

Algorithm 10 presents the pseudo-code of the first two stages of the

approach.

135

Chapter 7: Adaptive Selection of Heuristics for Assigning
Time Slots and Rooms in Exam Timetables

Algorithm 10 The pseudo-code of the initialisation stages of the adaptive
bin packing based hyper-heuristic

create an ordered list O of all the exams using LWD
initialise heuristic sequence s1 = {BF BF BF BF}
initialise heuristic sequence s2 = {ABF ABF ABF ABF}
initialise heuristic sequence s3 = {WF WF WF WF}
initialise heuristic sequence s4 = {FF FF FF FF}
initialise heuristic sequence s5 = {LF LF LF LF}
x = id of the heuristic sequence obtaining the best solution
f = number of sequences from s1 to s5 producing a feasible solution
sh = sx
for i = 1 → f do
n = (e/((f 2 + f)/2)) ∗ (f − i+ 1) // equation (1)
sh = randomly change n heuristics in sh to the heuristic used in se-
quence si

end for
construct a solution c by applying the heuristic sequence sh to the exams
in list O (see Figure 6.1)
if solution c is feasible then
save sh and the penalty of its corresponding solution c

end if

3. Based on the heuristic sequence obtained from the second stage, an

iterative adjustment is made to tune the levels of hybridisations of

each heuristic over the whole heuristic sequence. The aim in this

stage is to increase the levels of hybridisation of the best performing

heuristics.

Algorithm 11 presents the pseudo-code of the approach used to tune

the levels of hybridisation in the sequence obtained from stage 2. The

heuristics in the sequence are tuned starting with the best heuristic

in the ranking. The level of hybridisation in the sequence is increased

by 1% by randomly changing other heuristics. Note that if the same

heuristic is used in a randomly chosen position, another position is

chosen to guarantee that the level of hybridisation is increased. De-

pending on the size of the problem, a number of sequences are gen-

erated and applied to the problem. The level of hybridisation is only

136

Chapter 7: Adaptive Selection of Heuristics for Assigning
Time Slots and Rooms in Exam Timetables

increased if a better solution is obtained. When an improvement is

not obtained, the level of hybridisation of the next heuristic in the

ranking is increased. The process stops when all the heuristics used

in the sequence are increased and an improvement is not achieved.

Algorithm 11 The pseudo-code of the adaptive tuning of the levels of
hybridisations in a heuristic sequence

create an ordered list O of all the exams using LWD
f = number of sequences producing a feasible solution
for i = 1 → f do
hi = the heuristic with rank i
while an improvement is achieved do
sh = randomly change 1% of the heuristics in the sequence to heuris-
tic hi

construct a solution c by applying the heuristic sequence sh to the
exams in list O (see Figure 6.1)
if solution c is better than the previous solution then
save sh and the penalty of its corresponding solution c

end if
end while

end for

7.3 Results

We evaluate our adaptive approach by applying it to the ITC2007 instances

described in table 2.2. The approach is run for the same amount of time

specified in the timetabling competition, on a Pentium IV machine with a

1 GB memory, to allow a fair comparison with the reported results. The

results are presented in table 7.5.

Table 7.5 shows that the results produced by the adaptive approach are

better than the random approach presented earlier in table 7.4. In addition,

table 7.5 presents the results we obtained in comparison with the best in

the literature. The description of the approaches used for comparison is

presented in section 2.3.2. We do emphasise that the objective here is not

137

Chapter 7: Adaptive Selection of Heuristics for Assigning
Time Slots and Rooms in Exam Timetables

to beat the best reported results but to demonstrate the generality of our

approach to the different problem instances and the ability of a hyper-

heuristic to adaptively hybridise heuristics used in bin-packing to assign

events (exams in our case) to time slots and rooms. A dash in the table

means that no feasible solution was obtained.

The Extended Great Deluge in [123] obtained the best results for 5 out of

the 8 instances. However, the approach was run for a longer time as it was

developed after the competition. In the competition, the best results for

all the 8 instances were reported in [129] using a three phased approach.

The GRASP used in [99] produced the second best results.

In comparison to the evolutionary algorithm based hyper-heuristic pre-

sented in [136], our approach was able to produce better results in only

one instance. However, it was stated that they did not adhere to the time

limitation imposed by the competition.

In comparison to the Constraint Based Solver developed in [9], our ap-

proach performed better on all 8 instances. The approach using the Drools

solver in [70] obtained feasibility for only 5 instances. Our approach out-

performed it, gaining feasibility for all 8 instances. This demonstrates the

generality of our approach to solving exam timetabling problems. Finally,

our approach performed better on all instances in comparison with the

biologically inspired approach proposed in [135].

138

Chapter 7: Adaptive Selection of Heuristics for Assigning
Time Slots and Rooms in Exam Timetables

T
a
b
le

7
.5
:
B
es
t
re
su
lt
s
ob

ta
in
ed

b
y
th
e
R
o
om

a
n
d
T
im

e
sl
o
t
A
ss
ig
n
m
en
t
H
y
p
er
-h
eu
ri
st
ic

(R
T
A
H
)
co
m
p
a
re
d
to

th
e
b
es
t
a
p
p
ro
a
ch
es

in
th
e
li
te
ra
tu
re

on
th
e
IT

C
20
07

d
at
a
se
t

In
st
an

ce
s

R
T
A
H

M
cC

ol
lu
m
(2
00
9)

M
u
ll
er
(2
00
8)

G
og
os
(2
00
8)

A
ts
u
ta
(2
00
8)

D
e
S
m
et
(2
00
8)

P
il
la
y
(2
00
8)

P
il
la
y
(2
01
0)

B
es
t

B
es
t

B
es
t

B
es
t

B
es
t

B
es
t

B
es
t

B
es
t

[1
23
]

[1
29
]

[9
9]

[9
]

[7
0]

[1
35
]

[1
36
]

E
x
am

1
57
52

46
33

4
3
7
0

59
05

80
06

66
70

12
03
5

85
59

E
x
am

2
16
93

40
5

4
0
0

10
08

34
70

62
3

30
74

83
0

E
x
am

3
14
58
6

9
0
6
4

10
04
9

13
86
2

18
62
2

-
15
91
7

11
57
6

E
x
am

4
21
49
1

1
5
6
6
3

18
14
1

18
67
4

22
55
9

-
23
58
2

21
90
1

E
x
am

5
38
44

30
42

2
9
8
8

41
39

47
14

38
47

68
60

39
69

E
x
am

6
28
48
0

2
5
8
8
0

26
95
0

27
64
0

29
15
5

27
81
5

32
25
0

28
34
0

E
x
am

7
51
82

4
0
3
7

42
13

66
83

10
47
3

54
20

17
66
6

81
67

E
x
am

8
13
71
1

7
4
6
1

78
61

10
52
1

14
31
7

-
16
18
4

12
65
8

139

Chapter 7: Adaptive Selection of Heuristics for Assigning
Time Slots and Rooms in Exam Timetables

7.4 Chapter Summary

The study presented in this chapter implements a hyper-heuristic approach

which adaptively hybridises bin packing heuristics to assign exams to time

slots and rooms. An investigation is made on the low-level heuristics used

and their performance on different problem instances. A random iterative

hyper-heuristic is developed to hybridise the heuristics and generate a large

number of sequences of differing quality. It is shown that, the hybridisa-

tions leading to the best solutions mainly consist of the heuristic which

produced the best solution when used on its own. Furthermore, the overall

hybridisation of each heuristic in the best heuristic sequences for different

instances depends on the performance of the heuristics before the hybridi-

sation. Based on these observations, an adaptive approach which chooses

the heuristics to use and tunes the level of hybridisation of each heuristic

is implemented. Furthermore, the hyper-heuristic approach is applied to

the International Timetabling Competition (ITC2007) dataset and showed

to produce very competitive results compared to other approaches in the

literature.

140

Chapter 8

Conclusion

In this thesis hyper-heuristic methodologies have been investigated in an

attempt to construct and improve solutions to exam timetabling problems

and to evaluate the generality of the approaches developed. A hyper-

heuristic is a heuristic that searches a space of heuristics, rather than a

solution space directly. The goal of such research is to develop systems

which are more general than those currently available [39]. Designing and

implementing problem-specific systems is expensive and very difficult for

users to understand and maintain. Instead, some users decide to use very

simple heuristics, which lead to low quality solutions. This motivated the

creation of systems, which would operate on a range of related problems

and yield good enough solutions. Eventually this would decrease the devel-

opment costs and make it much easier for users to maintain such systems.

In other words, raising the generality of the systems developed through

the use of heuristics to choose the most appropriate heuristics to solve a

problem in hand [25].

Furthermore, testing different algorithms on each problem is very time

141

Chapter 8: Conclusion

consuming. It could take days or even months to test a certain technique

on a single problem and not achieving the desired result. This proves that

an exhaustive search is often computationally difficult to accept. Therefore,

hyper-heuristics involves the design of intelligent systems that could decide

the appropriate heuristics to be used to solve a certain problem. The hyper-

heuristic explores the heuristic space instead of exploring the solution space.

After choosing a certain heuristic to be used, this heuristic acts on the

problem and the solution is evaluated using an objective function. Finally,

the hyper-heuristic uses this evaluation to decide whether to accept the

current technique or switch to a different one.

This thesis has presented and analysed different hyper-heuristic approaches

which automate the construction and improvement of solutions for differ-

ent exam timetabling problems. The heuristics chosen by these approaches

produce results which are competitive to those obtained by tailored ap-

proaches. In this chapter, a list of contributions drawn from this research

is provided, followed by a brief outline of some possibilities for future re-

search.

8.1 Summary of Contributions

8.1.1 A Hyper-heuristic Using a GRASP to Construct

Timetables

In chapter 4, a Greedy Random Adaptive Search Procedure (GRASP) is

used to construct solutions for exam timetabling problems. Two low-level

graph heuristics, Saturation Degree (SD) and Largest Weighted Degree

(LWD) are dynamically hybridised in the construction phase of the GRASP.

142

Chapter 8: Conclusion

The problem is initially solved using an intelligent adaptive LWD and SD

graph hyper-heuristic which constructs the restricted candidate list (RCL)

in the first phase of GRASP. It is observed that the size of the RCL used

in each iteration affects the quality of the results obtained. In addition,

the SD heuristic is essential to construct a RCL which leads to a feasible

solution. However, SD does not perform well at the early stages of the

construction. Therefore, LWD is used until a certain switching point is

reached. The hyper-heuristic adaptively determines the size of the RCL in

each iteration and the best switching point after evaluating the quality of

the solutions produced. In the improvement phase of GRASP, it is observed

that tabu search slightly improves the constructed solutions when compared

to steepest descent but it takes a longer time. The approach adapts to all

the instances of the Toronto benchmark. The comparison of this approach

with state-of-the-art approaches indicates that it is a simple yet efficient

technique. The results also indicate that the technique could adapt itself to

construct good quality solutions for any timetabling problem with similar

constraints.

8.1.2 Adaptive Tie Breaking and Hybridisation of Graph

Colouring Heuristics

Graph colouring heuristics have long been applied successfully to the exam

timetabling problem. Despite the success of a few heuristic ordering criteria

developed in the literature, the approaches lack the ability to handle the sit-

uations where ties occur. In chapter 5, an investigation on the effectiveness

of applying tie breakers to orderings used in graph colouring heuristics is

presented. An approach to construct solutions for exam timetabling prob-

lems is proposed after defining which heuristics to combine and the amount

143

Chapter 8: Conclusion

of each heuristic to be used in the orderings. Heuristic sequences are then

adapted to help guide the search to find better quality solutions. The ap-

proach is tested on the Toronto benchmark problems and is able to obtain

results which are within the range of the best reported in the literature.

In addition, to test the generality of the approach an exam timetabling

instance generator and a new benchmark dataset which has a similar format

to the Toronto benchmark are introduced. The instances generated vary

in size and conflict density. The publication of this problem data to the

research community is aimed to provide researchers with a dataset which

covers a full range of conflict densities. Furthermore, it is possible using the

instance generator to create random datasets with different characteristics

to test the performance of approaches which rely on problem characteristics.

The first results for the benchmark and the results obtained show that the

approach is adaptive to all the problem instances that are addressed. We

also encourage the use of the dataset and generator to produce tailored

instances and to investigate various methods on them.

8.1.3 A Hyper-heuristic Using Low-level Heuristic Moves

to Improve Timetables

Chapter 6 presents a hyper-heuristic approach which hybridises low-level

heuristic moves to improve timetables. Exams which cause a soft-constraint

violation in the timetable are ordered and rescheduled to produce a bet-

ter timetable. It is observed that both the order in which examinations

are rescheduled and the heuristic moves used to reschedule the exams and

improve the timetable affect the quality of the solution produced. After

testing different combinations in a hybrid hyper-heuristic approach, the

144

Chapter 8: Conclusion

Kempe chain move heuristic and time-slot swapping heuristic proved to

be the best heuristic moves to use in a hybridisation. Similarly, it was

shown that ordering the exams using Saturation Degree and breaking any

ties using Largest Weighted Degree produce the best results. Based on

these observations, an iterative hybrid approach is developed to adaptively

hybridise the Kempe chain move and time slot swapping heuristics in two

stages. In the first stage, random heuristic sequences are generated and

automatically analysed. The heuristics repeated in the best sequences are

fixed while the rest are kept empty. In the second stage, sequences are

generated by randomly assigning heuristics to the empty positions in an

attempt to find the best heuristic sequence. Finally, the generated se-

quences are applied to the problem. The approach is tested on the Toronto

benchmark and the exam timetabling track of the second International

Timetabling Competition, to evaluate its generality. The hyper-heuristic

with low-level improvement heuristics approach was found to generalise

well over the two different datasets and performed comparably to the state

of the art approaches.

8.1.4 A Hyper-heuristic Using Bin Packing Heuris-

tics for Time Slot and Room Assignment

Chapter 7 presents an adaptive approach which hybridises bin packing

heuristics to assign exams to time slots and rooms. The approach combines

a graph-colouring heuristic which selects exams with bin-packing heuris-

tics to automate the process of time slot and room allocation for exam

timetabling problems. The process starts by analysing the quality of the

solutions obtained by using one heuristic at a time. Depending on the in-

dividual performance of each heuristic, a random iterative hyper-heuristic

145

Chapter 8: Conclusion

is used to randomly hybridise the heuristics and produce a collection of

heuristic sequences to construct solutions with different quality. Based on

these sequences, the way in which the bin packing heuristics are automat-

ically hybridised is analysed. It is observed that the performance of the

heuristics used varies depending on the problem. Based on these observa-

tions, an iterative hybrid approach is developed to adaptively choose and

hybridise the heuristics during solution construction. The overall aim here

is to automate the heuristic design process, which draws upon an emerg-

ing research theme which is concerned with developing methods to design

and adapt heuristics automatically. The approach is tested on the exam

timetabling track of the second International Timetabling Competition, to

evaluate its ability to generalise on instances with different features. The

hyper-heuristic with low-level graph-colouring and bin-packing heuristics

approach was found to generalise well over all the problem instances and

performed comparably to the state of the art approaches.

8.2 Extensions and Future Work

We suggest here some research directions in order to extend the work pre-

sented in this thesis.

8.2.1 Using More Than Two Heuristics in Hybridis-

ations

Chapters 4 and 5 explore different hyper-heuristic approaches to hybridise

two graph colouring heuristics to construct exam timetables. A similar

approach could be used to intelligently hybridise more different low-level

146

Chapter 8: Conclusion

graph colouring heuristics. In addition, some new adaptive heuristics sim-

ilar to SD could be designed and used in the hybridisations.

8.2.2 Improving the Constructed Solutions Using Meta-

heuristics

The solutions constructed in chapter 5 could be further improved by apply-

ing a meta-heuristic approach. Therefore, it would be interesting to study

the effect of different improvement meta-heuristics on exam timetabling

problems. The objective would be choosing the meta-heuristic that would

produce the best improvement and automating this process.

8.2.3 Designing Hyper-heuristics to Choose Heuris-

tics Depending on Problem Characteristics

In chapter 5, the approach developed used the conflict density of the prob-

lems to choose the heuristics to be used in a hybridisation and the amount of

each heuristic in the heuristic sequences. Future research directions include

observing the effect of more problem characteristics such as the number of

students and enrolments on the performance of the approaches developed.

8.2.4 Applying Improvements to Partial Solutions

For the approaches investigated in chapters 6 and 7, future research direc-

tions include performing improvements during the timetable construction

stage. This would allow changing the time slot or room assignment of a

scheduled exam to make room for another exam.

147

Chapter 8: Conclusion

8.2.5 Combining Heuristics to Construct and Improve

Solutions in the Same Approach

In chapter 7, LWD was used to order the exams to be able to analyse the

effect of using different bin packing heuristics used for time slot and room

allocation. However, the effect of using a different heuristic or hybridising

heuristics as in chapters 4 and 5 can be investigated. The objective is to

combine heuristics used to order exams with heuristics used to assign time

slots and rooms.

8.2.6 Applying the Approaches Developed to Other

Problem Domains

Another future research direction is applying the techniques developed to

random exam timetabling datasets with different constraints and evalu-

ating their ability to adapt to the problems being solved. In addition,

the techniques developed could be applied to graph colouring and course-

timetabling problems using the same low-level heuristics. Furthermore,

different low-level heuristics can be used in the approaches to solve prob-

lems from different domains.

148

References

[1] S. Abdullah, S. Ahmadi, E. Burke, and M. Dror. Investigating

ahuja-orlin’s large neighbourhood search approach for examination

timetabling. OR Spectrum, 29(2):351–372, 2007.

[2] S. Abdullah and E.K. Burke. A multi-start large neighbour-

hood search approach with local search methods for examination

timetabling. In The International Conference on Automated Plan-

ning and Scheduling (ICAPS2006), Cumbria, UK, pages 334–337,

2006.

[3] S. Abdullah, H. Turabieh, and B. McCollum. A hybridization of

electromagnetic-like mechanism and great deluge for examination

timetabling problems. In Proceedings of the 6th International Work-

shop on Hybrid Metaheuristics (HM2009), volume 5818 of Lecture

Notes in Computer Science, pages 60–72. Springer, 2009.

[4] R.K. Ahuja, O. Ergun, J.B. Orlin, and A.O. Punnen. A survey of

very large-scale neighbourhood search techniques. Discrete Applied

Mathematics, 123:75102, 2002.

[5] J.S. Appleby, D.V. Blake, and E.A. Newman. Techniques for produc-

ing school timetables on a computer and their application to other

scheduling problems. The Computer Journal, 3:237–245, 1961.

149

References

[6] H. Asmuni, E. K. Burke, J. M. Garibaldi, and B. McCollum. A novel

fuzzy approach to evaluate the quality of examination timetabling.

In Proceedings of the 6th International Conference on the Practice

and Theory of Automated Timetabling (PATAT’06), Lecture Notes

in Computer Science, pages 327–346. Springer, 2006.

[7] H. Asmuni, E.K. Burke, J. Garibaldi, and B. McCollum. Fuzzy multi-

ple ordering criteria for examination timetabling. In E.K. Burke and

M. Trick, editors, Selected Papers from the 5th International Confer-

ence on the Practice and Theory of Automated Timetabling, volume

3616 of Lecture Notes in Computer Science, pages 334–353. Springer,

2004.

[8] H. Asmuni, E.K. Burke, J. Garibaldi, B. McCollum, and A.J. Parkes.

An investigation of fuzzy multiple heuristic orderings in the construc-

tion of university examination timetables. Computers and Operations

Research, 36(4):981–1001, 2009.

[9] M. Atsuta, K. Nonobe, and T. Ibaraki. Itc2007 track 1: An ap-

proach using general csp solver. In Practice and Theory of Automated

Timetabling (PATAT 2008), pages 19–22, August 2008.

[10] Z.N. Azimi. Comparison of metaheuristic algorithms for examination

timetabling problem. Applied Mathematics and Computation, 16(1-

2):337–354, 2004.

[11] Z.N. Azimi. Hybrid heuristics for examination timetabling problem.

Applied Mathematics and Computation, 163(2):705–733, 2005.

[12] M.B. Bader-El-Din and R. Poli. Generating sat local-search heuristics

using a gp hyper-heuristic framework. In Proceedings of the 8th In-

150

References

ternational Conference on Artifcial Evolution, Lecture Notes in Com-

puter Science, pages 37–49, 2007.

[13] M.B. Bader-El-Din and R. Poli. Grammar-based genetic program-

ming for timetabling. In Proceedings of the IEEE Congress on Evo-

lutionary Computation(CEC 09), pages 2532–2539, 2009.

[14] R. Bai, E.K. Burke, and G. Kendall. Heuristic, meta-heuristic and

hyper-heuristic approaches for fresh produce inventory control and

shelf space allocation. Journal of the Operational Research Society,

59(10):1387–1397, 2008.

[15] R. Bai, E.K. Burke, G. Kendall, and B. McCollum. Memory length in

hyperheuristics: An empirical study. In Proceedings of the 2007 IEEE

Symposium on Computational Intelligence in Scheduling (CISched

07), pages 173–178, 2007.

[16] R. Bai and G. Kendall. An investigation of automated planograms

using a simulated annealing based hyper-heuristics. In Proceedings

of The 5th Metaheuristics International Conference (MIC 03), 2003.

[17] C. Blum and A. Roli. Metaheuristics in combinatorial optimization:

Overview and conceptual comparison. ACM Computing Surveys,

35:268–308, 2003.

[18] P. Boizumault, Y. Delon, and L. Peridy. Constraint logic program-

ming for examination timetablingboizumault1996. Journal of Logic

Programming, 26(2):217–233, 1996.

[19] S.C. Brailsford, C.N. Potts, and B.M. Smith. Constraint satisfac-

tion problems: Algorithms and applications. European Journal of

Operational Research, 119:557–581, 1999.

151

References

[20] D. Brelaz. New methods to colour the vertices of a graph. Commu-

nications of the ACM, 22:251–256, 1979.

[21] S. Broder. Final examination scheduling. Communications of the

ACM, 7(8):494–498, 1964.

[22] B. Bullnheimer. An examination scheduling model to maximize stu-

dents study time. In E. Burke and M. Carter, editors, Proceedings

of the 2nd International Conference on the Practice and Theory of

Automated Timetabling, pages 78–91, 1998.

[23] E. Burke and Y. Bykov. Solving exam timetabling problems with the

flex-deluge algorithm. In Proceedings of the Practice and Theory of

Automated Timetabling Conference(PATAT2006), 2006.

[24] E. Burke, M. Dror, B. McCollum, S. Petrovic, and R. Qu. Hy-

brid graph heuristics within a hyper-heuristic approach to exam

timetabling problems. The Next Wave in Computing Optimization

and Decision Technologies, 29(1):79–91, 2005.

[25] E. Burke, G. Kendall, and E. Soubeiga. A tabu search hyperheuristic

for timetabling and rostering. Journal of Heuristics, 9(6):451–470,

2003.

[26] E. Burke and J. Landa Silva. The design of memetic algorithms for

scheduling and timetabling problems. In Krasnogor N., E. Hart, and

J. Smith, editors, Recent Advances in Memetic Algorithms, Studies

in Fuzziness and Soft Computing, volume 166, page 289312. Springer,

2004.

[27] E. K. Burke, Y. Bykov, J. P. Newall, and S. Petrovic. Time-predefined

local search approach to exam timetabling problems. IIE Transac-

tions on Operations Engineering, 36(6):509–528, 2004.

152

References

[28] E.K. Burke and Y. Bykov. A late acceptance strategy in hill-climbing

for examination timetabling problems. In Proceedings of the confer-

ence on the Practice and Theory of Automated Timetabling(PATAT),

2008.

[29] E.K. Burke, Y. Bykov, J. Newall, and S. Petrovic. A time-predefined

local search approach to exam timetabling problems. IIE Transac-

tions, 36(6):509–528, 2004.

[30] E.K. Burke, Y. Bykov, and S. Petrovic. A multicriteria approach

to examination timetabling. In E.K. Burke and W. Erben, editors,

Selected papers from the 3rd International Conference on the Practice

and Theory of Automated Timetabling (PATAT’00), volume 2079 of

Lecture Notes in Computer Science, pages 118–131, 2001.

[31] E.K. Burke, D. de Werra, and J. Kingston. Applications to

timetabling. In J. Gross and J. Yellen, editors, Handbook of Graph

Theory, chapter 5.6, pages 445–474. Chapman Hall/CRC Press, 2004.

[32] E.K. Burke, A. Eckersley, B. McCollum, S. Petrovic, and R. Qu.

Hybrid variable neighbourhood approaches to university exam

timetabling. European Journal of Operational Research (EJOR),

206(1):46–53, 2010.

[33] E.K. Burke, D.G. Elliman, P.H. Ford, and R.F. Weare. Specialised re-

combinative operators for the timetabling problem. In Proceedings of

the AISB (Artificial Intelligence and Simulation of Behaviour) Work-

shop on Evolutionary Computing (University of Sheffield, UK, 3rd-

7th April 1995), Lecture Notes in Computer Science, pages 75–85.

Springer, 1995.

[34] E.K. Burke, D.G. Elliman, and R.F. Weare. A university timetabling

153

References

system based on graph colouring and constraint manipulation. Jour-

nal of Research on Computing in Education, 27:1–18, 1994.

[35] E.K. Burke, D.G. Elliman, and R.F. Weare. A hybrid genetic algo-

rithm for highly constrained timetabling problems. In L. Eshelman,

editor, Proceedings of the 6th International Conference on Genetic

Algorithms (ICGA95, Pittsburgh, USA, 15th-19th July 1995), page

605610. Morgan Kaufmann, San Francisco, CA, USA, 1995.

[36] E.K. Burke, M.R. Hyde, and G. Kendall. Evolving bin packing

heuristics with genetic programming. In T. Runarsson, H.G. Beyer,

E.K. Burke, J.J. Merelo-Guervos, D. Whitley, and X. Yao, editors,

Proceedings of the 9th International Conference on Parallel Problem

Solving from Nature (PPSN 06), volume 4193 of Lecture Notes in

Computer Science, pages 860–869, 2006.

[37] E.K. Burke, M.R. Hyde, G. Kendall, and J. Woodward. Automatic

heuristic generation with genetic programming: Evolving a jack-of-

all-trades or a master of one. In Proceedings of the 9th ACM Ge-

netic and Evolutionary Computation Conference (GECCO 07), pages

1559–1565, 2007.

[38] E.K. Burke, G. Kendall, J.D. Landa Silva, R.F.J. O’Brien, and

E. Soubeiga. An ant algorithm hyperheuristic for the project pre-

sentation scheduling problem. In Proceedings of the Congress on

Evolutionary Computation 2005 (CEC 05), volume 3, pages 2263–

2270, 2005.

[39] E.K. Burke, G. Kendall, J. Newall, E. Hart, P. Ross, and S. Schu-

lenburg. Hyper-heuristics: An emerging direction in modern search

154

References

technology. In F. Glover and G. Kochenberger, editors, Handbook of

Meta-Heuristics, pages 457–474. Kluwer, 2003.

[40] E.K. Burke, J.D. Landa-Silva, and E. Soubeiga. Multi-objective

hyper-heuristic approaches for space allocation and timetabling. In

T. Baraki, K. Nonobe, and M. Yagiura, editors, Meta-heuristics:

Progress as Real Problem Solvers, pages 129–158. Springer, 2005.

[41] E.K. Burke, B.L. MacCarthy, S. Petrovic, and R. Qu. Knowledge

discovery in hyper-heuristic using case-based reasoning on course

timetabling. In Proceedings of the 4th International Conference on

the Practice and Theory of Automated Timetabling (PATAT 2002),

volume 2740 of Lecture Notes in Computer Science, pages 276–286.

Springer, 2002.

[42] E.K. Burke, B. McCollum, A. Meisels, S. Petrovic, and R. Qu. A

graph-based hyper-heuristic for educational timetabling problems.

European Journal of Operational Research, 176:177–192, 2007.

[43] E.K. Burke and J. Newall. Solving examination timetabling prob-

lems through adaptation of heuristic orderings. Annals of operations

Research, 129(2):107–134, 2004.

[44] E.K. Burke and J.P. Newall. A multi-stage evolutionary algorithm

for the timetable problem. IEEE Transactions on Evolutionary Com-

putation, 3(1):63–74, 1999.

[45] E.K. Burke, J.P Newall, and R.F. Weare. A memetic algorithm

for university exam timetabling. In Proceedings of the 1st In-

ternational Conference on the Practice and Theory of Automated

Timetabling(PATAT1996), pages 496–503, 1996.

155

References

[46] E.K. Burke and S. Petrovic. Recent research directions in automated

timetabling. European Journal of Operational Research, 140:266–280,

2002.

[47] E.K. Burke, S. Petrovic, and R. Qu. Case based heuristic selection

for timetabling problems. Journal of Scheduling, 9(2):115–132, 2006.

[48] E.K. Burke, R. Qu, and A. Soghier. Adaptive selection of heuristics

within a grasp for exam timetabling problems. In Proceedings of the

4th Multidisciplinary International Scheduling: Theory and Applica-

tions 2009 (MISTA 2009), 10-12 August 2009, Dublin, Ireland, pages

93–104, 2009.

[49] E.K. Burke, R. Qu, and A. Soghier. Adaptive selection of heuristics

for improving constructed exam timetables. In Proceedings of the 8th

International Conference on the Practice and Theory of Automated

Timetabling (PATAT’10), pages 136–151, 2010.

[50] E.K. Burke, R. Qu, and A. Soghier. Adaptive tie breaking and hy-

bridisation in a graph-based hyper-heuristic for exam timetabling

problems. In Proceedings of the Nature Inspired Cooperative

Strategies for Optimisation, Studies in Computational Intelligence.

Springer, 2011.

[51] E.K. Burke and E. Soubeiga. Scheduling nurses using a tabu-search

hyperheuristic. In Proceedings of the 1st Multidisciplinary Intl. Conf.

on Scheduling: Theory and Applications (MISTA 2003), volume 1,

pages 197–218, Nottingham, UK, August 13-16 2003.

[52] M. Caramia, P. Dell Olmo, and G.F. Italiano. Novel local-search-

based approaches to university examination timetabling. Informs

Journal of Computing, 20(1):86–99, 2008.

156

References

[53] M.W. Carter and D.G. Johnson. Extended clique initialisation in ex-

amination timetabling. Journal of the Operational Research Society,

52:538–544, 2001.

[54] M.W. Carter, G. Laporte, and S.Y. Lee. Examination timetabling:

Algorithmic strategies and applications. Journal of Operational Re-

search Society, 74:373–383, 1996.

[55] S. Casey and J.M. Thompson. Grasping the examination scheduling

problem. In Practice and Theory of Automated Timetabling: Selected

papers from the 4th International Conference .Lecture Notes in Com-

puter Science, volume 2740, pages 232–244, 2003.

[56] V. Cerny. Thermo dynamical approach to the travelling salesman

problem: an efficient simulation algorithm. Journal of Optimization

Theory and Applications, 45:41–51, 1985.

[57] K. Chakhlevitch and P.I. Cowling. Choosing the fittest subset of

low level heuristics in a hyperheuristic framework. in lncs ,. In Evo-

lutionary Computation in Combinatorial Optimization, 5th European

Conference (EvoCOP 05), volume 3448 of Lecture Notes in Computer

Science, pages 23–33, 2005.

[58] A. J. Cole. The preparation of examination timetables using a small-

store computer. Computer Journal, 7:117–121, 1964.

[59] A.W. Colijn and C. Layfield. Conflict reduction in examination

schedules. In E. Burke and P. Ross, editors, Proceedings of the 1st

International Conference on the Practice and Theory of Automated

Timetabling (PATAT’95), pages 297–307, 1995.

[60] R. Colome and D. Serra. Consumer choice in competitive loca-

tion models: Formulations and heuristics. Technical report, Depart-

157

References

ment of Economics and Management, Universitat Pompeu Fabra,

Barcelona, Spain, 1998.

[61] D. Costa and A. Hertz. Ants can colour graphs. Journal of the

Operational Research Society, 48:295–305, 1997.

[62] P. Cowling and K. Chakhlevitch. Hyperheuristics for managing a

large collection of low level heuristics to schedule personnel. In Pro-

ceedings of the 2003 IEEE Congress on Evolutionary Computation

(CEC 03), pages 1214–1221, 2003.

[63] P. Cowling, G. Kendall, and N. M. Hussin. A survey and case study of

practical examination timetabling problems. In Proceedings of the 4th

International Conference on the Practice and Theory of Automated

Timetabling (PATAT 02), pages 258–261, 2002.

[64] P. Cowling, G. Kendall, and E. Soubeiga. A hyperheuristic approach

to scheduling a sales summit. In E. Burke and W. Erben, editors,

Selected Papers of the Third International Conference on the Practice

And Theory of Automated Timetabling (PATAT 2000), pages 176–

190. Springer LNCS, 2001.

[65] P. Cowling, G. Kendall, and E. Soubeiga. A parameter-free hyper-

heuristic for scheduling a sales summit. In Proceedings of the 4th

Metaheuristic International Conference, pages 127–131, 2001.

[66] P. Cowling, G. Kendall, and E. Soubeiga. Hyperheuristics: A robust

optimisation method applied to nurse scheduling. In Proceedings of

the VII Parallel Problem Solving From Nature (PPSN VlI), volume

2439 of LNCS, pages 7–11. Springer, 2002.

[67] P.I. Cowling, G. Kendall, and L. Han. An investigation of a hyper-

heuristic genetic algorithm applied to a trainer scheduling problem.

158

References

In Proceedings of the 2002 Congress on Evolutionary Computation

(CEC 02), pages 1185–1190, 2002.

[68] A. Cuesta-Canada, L. Garrido, and H. Terashima-Marin. Building

hyper-heuristics through ant colony optimization for the 2d bin pack-

ing problem. In Proceedings of the 9th International Conference on

Knowledge-Based Intelligent Information and Engineering Systems

(KES 05), volume 3684 of Lecture Notes in Computer Science, pages

654–660, 2005.

[69] P. David. A constraint-based approach for examination timetabling

using local repair technique. In E.K. Burke and M.W. Carter, editors,

Practice and Theory of Automated Timetabling II: Selected Papers

from the 2nd International Conference, volume 1408 of Lecture Notes

in Computer Science, pages 169–186, 1998.

[70] G. De Smet. Examination track, practice and theory of automated

timetabling. In Examination track, Practice and Theory of Auto-

mated Timetabling (PATAT08), Montreal, 19-22, August, 2008.

[71] D. De Werra. An introduction to timetabling problem. European

Journal of Operational Research, 19(2):151–162, 1985.

[72] H. Delmaire, J.A. Diaz, E. Fernandez, and Ortega M. Reactive grasp

and tabu search based heuristics for the single source capacitated

plant location problem. INFOR, 37:94–225, 1999.

[73] S. Desroches, G. Laporte, and J.M. Rosseau. Horex: A computer pro-

gram for the construction of examination schedules. INFOR, 16:294–

298, 1978.

[74] L. Di Gaspero and A. Schaerf. Tabu search techniques for exami-

nation timetabling. In E.K. Burke and W. Erben, editors, Selected

159

References

papers from the 3rd International Conference on the Practice and

Theory of Automated Timetabling (PATAT’00), volume 2079 of Lec-

ture Notes in Computer Science, pages 104–117, 2001.

[75] C. Dimopoulos and A.M.S Zalzala. Investigating the use of genetic

programming for a classic one-machine scheduling problem. Advances

in Engineering Software, 32(6)(@INPROCEEDINGSColijn1995, au-

thor = Colijn, A.W. and Layfield, C., title = Conflict reduction in ex-

amination schedules, booktitle = Proceedings of the 1st International

Conference on the Practice and Theory of Automated Timetabling

(PATAT’95), year = 1995, editor = Burke, E. and Ross, P., pages =

297-307, owner = Afaf, timestamp = 2011.04.17):489–498, 2001.

[76] M. Dorigo and L. Gambardella. Ant colonies for the traveling sales-

man problem. Biosystems, 43:73–81, 1997.

[77] M. Dorigo, V. Maniezzo, and A. Colorni. Ant system: Optimization

by a colony of cooperating agents. IEEE Trans. on Systems, Man,

and Cybernetics Part B, 26:29–41, 1996.

[78] U. Dorndorf and E. Pesch. Evolution based learning in a job shop

scheduling environment. Computers and Operations Research, 22:25–

40, 1995.

[79] K. Dowsland, E. Soubeiga, and E.K. Burke. A simulated annealing

hyperheuristic for determining shipper sizes. European Journal of

Operational Research, Vol 179, issue 3:pp 759–774, 2007.

[80] K. Dowsland and J. Thompson. Ant colony optimization for the

examination scheduling problem. Journal of the Operational Research

Society, 56(4):426–438, 2005.

160

References

[81] G. Dueck. New optimisation heuristics: The great deluge algorithm

and the record-to-record travel. Journal of Computational Physics,

104:86–92, 1993.

[82] T.A. Duong and K.H. Lam. Combining constraint programming and

simulated annealing on university exam timetabling. In Proceedings

of the 2nd International Conference in Computer Sciences, Research,

Innovation & Vision for the Future(RIVF2004), pages 205–210, 2004.

[83] M. Eley. Ant algorithms for the exam timetabling problem. In Pro-

ceedings of the 5th International Conference on the Practice and The-

ory of Automated Timetabling (PATAT04), pages 364–382, 2006.

[84] W. Erben. A grouping genetic algorithm for graph colouring and

exam timetabling. In The 3rd International Conference on the Prac-

tice and Theory of Automated Timetabling (PATAT00), volume 2079

of Lecture Notes in Computer Notes, pages 132–156. Springer, 2001.

[85] T. Feo and M. Resende. A probabilistic heuristic for a computa-

tionally difficult set covering problem. Operations Research Letters,

8:67–71, 1989.

[86] T. Feo and M. Resende. Greedy randomized adaptive search proce-

dures. Journal of Global Optimization, 6:109–133, 1995.

[87] H. Fisher and G.L. Thompson. Probabilistic learning combinations

of local job-shop scheduling rules. In Factory Scheduling Conference,

Carnegie Institue of Technology, pages 10–12, 1961.

[88] H. Fisher and G.L. Thompson. Probabilistic learning combinations of

local job shop scheduling rules. Industrial Scheduling, pages 225–251,

1963.

161

References

[89] E. Foxley and K. Lockyer. The construction of examination timeta-

bles by computer. The Computer Journal, 11:264–268, 1968.

[90] A.S. Fukunaga. Evolving local search heuristics for sat using genetic

programming. In K. Deb, R. Poli, W. Banzhaf, H.G. Beyer, E.K.

Burke, P. Darwen, D. Dasgupta, D. Floreano, J. Foster, M. Harman,

O. Holland, P.L. Lanzi, L. Spector, A. Tettamanzi, D. Thierens, and

A. Tyrrell, editors, Proceedings of the ACM Genetic and Evolutionary

Computation Conference (GECCO 04), volume 3103 of Lecture Notes

in Computer Science, pages 483–494. Springer, 2004.

[91] P. Garrido and M.C. Riff. Collaboration between hyperheuristics to

solve strippacking problems. In Proceedings of the 12th International

Fuzzy Systems Association World Congress, volume 4529 of Lecture

Notes of Computer Science, page 698707. Springer, 2007.

[92] P. Garrido and M.C. Riff. An evolutionary hyperheuristic to solve

strip-packing problems. In Proceedings of the Intelligent Data Engi-

neering and Automated Learning (IDEAL 07), volume 4881 of Lecture

Notes in Computer Science, page 406415. Springer, 2007.

[93] A. Gendreau, L. Salvail, and P. Soriano. Solving the maximum clique

problem using a tabu search approach. Annals of Operations Re-

search, 41:385–403, 1993.

[94] F. Glover. Future paths for integer programming and links to artificial

intelligence. Computers & Operations Research, 13:533–549, 1986.

[95] F. Glover. Tabu search part i. ORSA Journal on Computing 1,

3:190–206, 1989.

[96] F. Glover. Tabu search part ii. ORSA Journal on Computing 2,

1:4–32, 1990.

162

References

[97] F. Glover and M. Laguna. Modern Heuristics Techniques for Com-

binatorial Problems, chapter Tabu Search, pages 70–141. Blackwell

Scientific Publishing, 1993.

[98] F. Glover and M. Laguna. Tabu search. Kluwer,Dordecht, 1997.

[99] C. Gogos, P. Alefragis, and E. Housos. A multi-staged algorithmic

process for the solution of the examination timetabling problem. In

Practice and Theory of Automated Timetabling (PATAT 2008), pages

19–22, 2008.

[100] P. Gogos, C.and Alefragis and E. Housos. An improved multi-staged

algorithmic process for the solution of the examination timetabling

problem. Annals of Operations Research, page to appear, 2010.

[101] D. Goldberg. Genetic Algorithms in Search, chapter Optimization

and Machine Learning. Kluwer Academic Publishers, Boston, MA,

1989.

[102] L. Han and G. Kendall. Guided operators for a hyper-heuristic ge-

netic algorithm. In T. D. Gedeon and L. C. C. Fung, editors, Pro-

ceedings of AI-2003: Advances in Artificial Intelligence. The 16th

Australian Conference on Artificial Intelligence (AI 03), pages 807–

820, 2003.

[103] L. Han and G. Kendall. Investigation of a tabu assisted hyper-

heuristic genetic algorithm. In Proceedings of Congress on Evolu-

tionary Computation (CEC 03), volume 3, pages 2230–2237, 2003.

[104] L. Han, G. Kendall, and P. Cowling. An adaptive length chromosome

hyperheuristic genetic algorithm for a trainer scheduling problem. In

Proceedings of the 4th Asia-Pacific Conference on Simulated Evolu-

tion and Learning (SEAL 02), pages 267–271, 2002.

163

References

[105] P. Hansen and N. Mladenovic. An introduction to variable neigh-

borhood search. In S. Voss, I.H. Osman, and C. Roucairol, editors,

Metaheuristics, advances and trends in local search paradigms for op-

timization, pages 433–458. Kluwer, 1999.

[106] J.P. Hart and A.W. Shogan. Semi-greedy heuristics: An empirical

study. Operations Research Letters, 6:107–114, 1987.

[107] A. Hertz. Tabu search for large scale timetabling problems. European

Journal of Operations Research, 54:39–47, 1991.

[108] N.B. Ho and J.C. Tay. Evolving dispatching rules for solving the

flexible jobshop problem. In Proceedings of the IEEE Congress on

Evolutionary Computation (CEC 05), pages 2848–2855, 2005.

[109] J.H. Holland. Adaptation in Natural and Artificial Systems. MIT

Press, Cambridge, MA, USA, 1992.

[110] D. Jakobovic, L. Jelenkovic, and L. Budin. Genetic programming

heuristics for multiple machine scheduling. In Proceedings of the Eu-

ropean Conference on Genetic Programming (EUROGP 07), volume

4445 of Lecture Notes in Computer Science, pages 321–330, 2007.

[111] D. Johnson. Timetabling university examinations. Journal of Oper-

ational Research Society, 41:3947, 1990.

[112] D.E. Joslin and D.P. Clements. Squeaky wheel optimization. Journal

of Artificial Intelligence Research, 10:353–373, 1999.

[113] R.E. Keller and R. Poli. Linear genetic programming of parsimonious

metaheuristics. In Proceedings of the IEEE Congress on Evolutionary

Computation (CEC 07), pages 4508–4515, 2007.

164

References

[114] G. Kendall and N. Hussin. An investigation of a tabu search based

hyper-heuristic for examination timetabling. In G. Kendall, E. Burke,

S. Petrovic, and M. Gendreau, editors, Selected Papers from MISTA

2005, pages 309–328. Springer, 2005.

[115] G. Kendall and N.M. Hussin. A tabu search hyper-heuristic approach

to the examination timetabling problem at the mara university of

technology. In E.K. Burke and M. Trick, editors, Selected Papers

from the 5th International Conference on the Practice and Theory of

Automated Timetabling, volume 3616 of Lecture Notes in Computer

Science, pages 199–218. Springer, 2005.

[116] C. Kenyon. Best-fitt bin-packing with random order. In Proceed-

ings of the Seventh Annual ACM-SIAM Symposium on Discrete Al-

gorithms, pages 359–364, 1996.

[117] S. Kirkpatrick, C.D. Gelatt, and M.P Vecchi. Optimization by sim-

ulated annealing. Science, 220:671–680, 1983.

[118] N. Krasnogor. Self generating metaheuristics in bioinformatics: The

proteins structure comparison case. Genetic Programming and Evolv-

able Machines, 5(2):181–201, 2004.

[119] N. Krasnogor and S. Gustafson. A study on the use of ”self-

generation” in memetic algorithms. Natural Computing, 3(1):53–76,

2004.

[120] R. Kumar, A.H. Joshi, K.K. Banka, and P.I. Rockett. Evolution

of hyperheuristics for the biobjective 0/1 knapsack problem by mul-

tiobjective genetic programming. In Proceedings of the 10th ACM

conference on Genetic and evolutionary computation (GECCO 08),

pages 1227–1234, 2008.

165

References

[121] M. Laguna and Gonzalez-Velarde. A search heuristic for just-in-time

scheduling in parallel machines. Journal of Intelligent manufacturing,

2:253–260, 1991.

[122] G. Laporte and S. Desroches. Examination timetabling by computer.

Computers & Operations Research, 11:361372, 1984.

[123] B. McCollum, P. McMullan, A. J. Parkes, E. K. Burke, and S. Ab-

dullah. An extended great deluge approach to the examination

timetabling problem. In Proceedings of the 4th Multidisciplinary

International Scheduling: Theory and Applications 2009 (MISTA

2009), pp. 424-434, 10-12 August , Dublin, Ireland, 2009.

[124] B. McCollum, A. Schaerf, B. Paechter, P. McMullan, R. Lewis, and

L. Parkes, A.J.and Di Gaspero. Setting the research agenda in au-

tomated timetabling: The second international timetabling competi-

tion. INFORMS Journal on Computing, 22(1), 2010.

[125] N.K. Mehta. The application of a graph coloring method to an ex-

amination scheduling problem. Interfaces, 11:57–64, 1981.

[126] N. Merlot, L.and Boland, B. Hughes, and P. Stuckey. A hybrid al-

gorithm for the examination timetabling problem. In E.K. Burke

and P. Causmaecker, editors, Practice and Theory of Automated

Timetabling: Selected Papers from the 4th International Conference

(PATAT02), volume 2740 of Lecture Notes in Computer Science,

pages 207–231, 2003.

[127] P. Moscato. On evolution, search, optimization, genetic algorithms

and martial arts: Towards memetic algorithms. Caltech Concurrent

Computation Program 826, California Institute of Technology, 1989.

166

References

[128] P. Moscato and M.G. Norman. A memetic approach for the trav-

eling salesman problem implementation of a computational ecology

for combinatorial optimization on message-passing systems. Parallel

Computing and Transputer Applications, pages 177–186, 1992.

[129] T. Muller. Itc 2007 solver description: A hybrid approach. In Practice

and Theory of Automated Timetabling (PATAT 2008), pages 19–22,

August 2008.

[130] M. Oltean. Evolving evolutionary algorithms using linear genetic

programming. Evolutionary Computation, 13(3):387–410, 2005.

[131] I.H. Osman and J.P. Kelly, editors. Metaheuristics: Theory and Ap-

plications. Kluwer, Dordrecht, 1996.

[132] E. Ozcan, Y. Bykov, M. Birben, and E.K. Burke. Examination

timetabling using late acceptance hyper-heuristics. Evolutionary

Computation, 2009(CEC ’09), pages 997 – 1004, 2009.

[133] G.L. Pappa and A.A. Freitas. Automatically evolving rule induc-

tion algorithms tailored to the prediction of postsynaptic activity in

proteins. Intelligent Data Analysis, 13(2):243–259, 2009.

[134] L. Paquete and T. Stutzle. Empirical analysis of tabu search for

the lexicographic optimization of the examination timetabling prob-

lem. In Proceedings of the 4th International Conference on the Prac-

tice and Theory of Automated Timetabling(PATAT’02), pages 21–23.

Springer-Verlag, 2002.

[135] N. Pillay. A developmental approach to the examination timetabling

problem. In Practice and Theory of Automated Timetabling (PATAT

2008), pages 19–22, August 2008.

167

References

[136] N. Pillay. Evolving hyper-heuristics for a highly constrained exami-

nation timetabling problem. In Proceedings of the 8th International

Conference on the Practice and Theory of Automated Timetabling

(PATAT’10), pages 336–346, 2010.

[137] N. Pillay. A study into the use of hyper-heuristics to solve the school

timetabling problem. In Proceedings of the 2010 Annual Research

Conference of the South African Institute of Computer Scientists and

Information Technologists (SAICSIT ’10), 2010.

[138] N. Pillay and W. Banzhaf. A study of heuristic combina-

tions for hyper-heuristic systems for the uncapacitated examination

timetabling problem. European Journal of Operational Research,

197:482–491, 2009.

[139] N. Pillay and W. Banzhaf. An informed genetic algorithm for the ex-

amination timetabling problem. Applied Soft Computing, 10(2):457–

467, 2010.

[140] D. Pisinger and S. Ropke. A general heuristic for vehicle routing prob-

lems. Computers and Operations Research, 34(8):2403–2435, 2007.

[141] R. Poli, J.R. Woodward, and E.K. Burke. A histogram-matching

approach to the evolution of bin-packing strategies. In Proceedings

of the Congress on Evolutionary Computation (CEC 2007), pages

3500–3507, 2007.

[142] R. Qu and E.K. Burke. Hybridisations within a graph-based hyper-

heuristic framework for university timetabling problems. Journal of

Operational Research Society, 60:1273–1285, 2009.

[143] R. Qu, E.K. Burke, and B. McCollum. Adaptive automated construc-

tion of hybrid heuristics for exam timetabling and graph colouring

168

References

problems. European Journal of Operational Research, 198(2):392–

404, 2009.

[144] R. Qu, E.K. Burke, B. McCollum, L.T.G. Merlot, and S.Y. Lee. A

survey of search methodologies and automated approaches for exam-

ination timetabling. Journal of Scheduling, 12(1):55–89, 2009.

[145] P. Rattadilok, A. Gaw, and R. Kwan. Distributed choice function

hyper-heuristics for timetabling and scheduling. In E.K. Burke and

M. Trick, editors, Practice and Theory of Automated Timetabling

V, volume 3616 of Lecture notes in Computer Science, pages 51–67.

Springer, 2005.

[146] P. Ross. Hyper-heuristics. In E. K. Burke and G. Kendall, editors,

Search Methodologies: Introductory Tutorials in Optimization and

Decision Support Techniques, pages 529–556. Kluwer, Boston, 2005.

[147] P. Ross, E. Hart, and D. Corne. Some observations about ga-

based exam timetabling. In Selected papers from the Second Interna-

tional Conference on Practice and Theory of Automated Timetabling

(PATAT 97), pages 115–129, 1998.

[148] P. Ross, J.G. Marin-Blazquez, S. Schulenburg, and E. Hart. Learn-

ing a procedure that can solve hard bin-packing problems: A new

ga-based approach to hyper-heuristics. In Proceedings of the Ge-

netic and Evolutionary Computation Conference (GECCO’03), pages

1295–1306, 2003.

[149] P. Ross, S. Schulenburg, J.G. Marin-Blazquez, and E. Hart. Hyper-

heuristics: learning to combine simple heuristics in bin-packing prob-

lem. In Proceedings of the Genetic and Evolutionary Computation

Conference (GECCO’02), pages 942–948, 2002.

169

References

[150] K. Sheibani. An evolutionary approach for the examination

timetabling problems. In E. Burke and P. Causmaecker, editors,

Proceedings of the 4th International Conference on the Practice and

Theory of Automated Timetabling (PATAT 02), pages 387–396, 2002.

[151] K. Socha, J. Knowles, and M. Sampels. A max- min ant system

for the university timetabling problem. In M. Dorigo, G. Di Caro,

and M. Sampels, editors, Proceedings of ANTS 2002 - Third Inter-

national Workshop on Ant Algorithms, volume 2463 of Lecture Notes

in Computer Science, pages 1–13. Springer, Berlin, Germany, 2002.

[152] R.H. Storer, S.D. Wu, and R. Vaccari. New search spaces for sequenc-

ing problems with application to job shop scheduling. Management

Science, 38(10):1495–1509, 1992.

[153] R.H. Storer, S.D. Wu, and R. Vaccari. Problem and heuristic space

search strategies for job shop scheduling. ORSA Journal on Comput-

ing, 7(4):453–467, 1995.

[154] J. Tavares, P. Machado, A. Cardoso, F.B. Pereira, and E. Costa.

On the evolution of evolutionary algorithms. In M. Keijzer, U.M

O’Reilly, S.M. Lucas, E. Costa, and T. Soule, editors, Proceedings of

the European Conference on Genetic Programming (EUROGP 04),

volume 3003 of Lecture Notes in Computer Science, pages 389–398,

2004.

[155] J.C. Tay and N.B. Ho. Evolving dispatching rules using genetic

programming for solving multi-objective flexible job-shop problems.

Computers and Industrial Engineering, 54(3):453–473, 2008.

[156] H. Terashima-Marin, E.J. Flores-Alvarez, and P. Ross. Hyper-

heuristics and classifier systems for solving 2d-regular cutting stock

170

References

problems. In Proceeedings of the ACM Genetic and Evolutionary

Computation Conference (GECCO 05), pages 637–643, 2005.

[157] H. Terashima-Marin, C.J.F. Zarate, P. Ross, and M. Valenzuela-

Rendon. A ga-based method to produce generalized hyper-heuristics

for the 2d-regular cutting stock problem. In Proceedings of the Ge-

netic and Evolutionary Computation Conference (GECCO 06), pages

591–598, 2006.

[158] J. Thompson and K. Dowsland. A robust simulated annealing based

examination timetabling system. Computers and Operations Re-

search, 25(7):637–648, 1998.

[159] J. M. Thompson and K. A.. Dowsland. Variants of simulated anneal-

ing for the examination timetabling problem. Annals of Operations

Research, 63:105128, 1996.

[160] J.A. Vazquez-Rodriguez, S. Petrovic, and A. Salhi. A combined meta-

heuristic with hyper-heuristic approach to the scheduling of the hy-

brid flow shop with sequence dependent setup times and uniform

machines. In P. Baptiste, G. Kendall, A. Munier, and F. Sourd, ed-

itors, Proceedings of the 3rd Multidisciplinary International Schedul-

ing Conference: Theory and Applications (MISTA 07), 2007.

[161] D.J.A. Welsh and M.B. Powell. The upper bound for the chromatic

number of a graph and its application to timetabling problems. The

Computer Journal, 11:41–47, 1967.

[162] B. White, G. Xie and S. Zonjic. Using tabu search with longer-term

memory and relaxation to create examination timetables. European

Journal of Operational Research, 153(16):80–91, 2004.

171

References

[163] G.M. White and B.S. Xie. Examination timetables and tabu search

with longer-term memory. In E.K. Burke and W. Erben, editors,

Practice and Theory of Automated Timetabling III, Lecture Notes in

Computer Science 2079, pages 85–103. Springer, Berlin, 2001.

[164] D. Whitley and J. P. Watson. Complexity and no free lunch. In E.K.

Burke and G. Kendall, editors, Search Methodologies: Introductory

Tutorials in Optimization and Decision Support Techniques, pages

317–339. Kluwer, Boston, 2005.

[165] D. Whitley and J.P. Watson. Complexity theory and the no free lunch

theorem. In E.K. Burke and G. Kendall, editors, Search Methodolo-

gies: Introductory Tutorials in Optimization and Decision Support

Techniques. Kluwer, Boston, 2005.

[166] D.H. Wolpert and W.G. Macready. No free lunch theorems for opti-

mization. IEEE Transactions on Evolutionary Computation, 1(1):67–

82, 1997.

[167] T. Wong, P. Cote, and P. Gely. Final exam timetabling: a practi-

cal approach. In Proceedings of the IEEE Canadian Conference on

Electrical and Computer Engineering, pages 726–731, 2002.

[168] D.C. Wood. A system for computing university examination timeta-

bles. The Computer Journal, 11:4147, 1968.

[169] D.C. Wood. A technique for colouring a graph applicable to large

scale timetabling problems. The Computer Journal, 12:317–319,

1969.

172

