
Effective Integrations of Constraint Programming,

Integer Programming and Local Search for Two

Combinatorial Optimisation Problems

Fang He, BSc, MSc

Thesis submitted to the University of Nottingham for

the degree of Doctor of Philosophy

April 2012

Contents

- i -

Contents

Abstract..vii
Acknowledgements .. ix
Chapter 1 Introduction .. 1

1.1 Hybrid methods to Nurse Rostering Problem.. 1
1.1.1 Constraint Programming method to NRPs ... 2
1.1.2 Hybrid methods to NRPs .. 3

1.2 Hybrid methods to Portfolio Selection Problem .. 6
1.3 Scope and aim.. 7
1.4 Structure of the thesis... 8

Chapter 2 Preliminaries: an overview of optimisation techniques 12
2.1 Introduction... 12
2.2 Combinatorial optimisation problems .. 13
2.3 Summary of solution approaches to combinatorial optimisation problems . 15
2.4 Constraint Programming ... 17

2.4.1 Propagation .. 19
2.4.2 Search.. 23
2.4.3 Global constraint.. 29
2.4.4 Soft constraint .. 30

2.5 Operational Research techniques.. 33
2.5.1 Linear Programming ... 33
2.5.2 Integer Programming .. 34
2.5.3 Quadratic Programming ... 38

2.6 The IBM ILOG suite .. 38
2.7 Heuristics and local search approaches .. 40
2.8 Decomposition and solution algorithm ... 43

2.8.1 Dantzig-Wolfe decomposition ... 43
2.8.2 Variable fixing.. 48
2.8.3 Decomposition in NRPs ... 49

2.9 The integration of CP and OR with LS .. 49
2.9.1 Integration of two exact methods ... 50
2.9.2 Integration of exact method with local search .. 55

2.10 Conclusions.. 60
Chapter 3 Introduction to the application problems... 62

3.1 Introduction... 62
3.2 The nurse rostering problem ... 62

3.2.1 Modelling the nurse rostering problem ... 64
3.2.2 Solution approaches to nurse rostering problems 66

3.3 The portfolio selection problem... 71
3.3.1 Modelling the portfolio selection problem... 71
3.3.2 Solution approaches to portfolio selection problems 75

Chapter 4 Hybrid CP with Variable Neighbourhood ... 78
Search approach to nurse rostering problems ... 78

4.1 Introduction... 78
4.2 Problem description.. 79

Contents

- ii -

4.3 CP approach to NRPs... 82
4.3.1 Modelling the constraints .. 83
4.3.2 CP approach to NRPs.. 88

4.4 Problem decomposition and hybrid CP approach to NRPs 91
4.4.1 Problem decomposition ... 92
4.4.2 Direct initial solution construction ... 93
4.4.3 Sequence based initial solution construction... 94
4.4.4 Second stage local search .. 100

4.5 Experimental results... 102
4.6 Conclusions.. 110

Chapter 5 Constraint-directed Large Neighbourhood Search to nurse rostering
problems .. 111

5.1 Introduction... 111
5.2 Literature review on global constraints applied to local search................... 114
5.3 Modelling nurse rostering problems ... 116
5.4 Constraint-directed Large Neighbourhood Search 116

5.4.1 The framework... 116
5.4.2 Fragment selection strategies.. 118
5.4.3 Re-optimisation on the fragment .. 122

5.5 Experimental results... 122
5.5.1 Pre-processing and framework... 122
5.5.2 Test on fragment selection strategies in the constraint-directed LNS .. 123
5.5.3 Test on the effort of search.. 125
5.5.4 Comparison with other approaches in the literature 127

5.6 Conclusions.. 129
Chapter 6 CP based column generation approach to nurse rostering problems.. 130

6.1 Introduction... 130
6.1.1 Background .. 130
6.1.2 Motivations ... 132

6.2 Modelling the nurse rostering problem .. 134
6.2.1 Formulating the master problem as Integer Program 134
6.2.2 Formulating the pricing subproblem in CP .. 136

6.3 Solution Procedure ... 138
6.3.1 Initial solution .. 141
6.3.2 Depth Bounded Discrepancy Search to obtain diverse columns 141
6.3.3 Pricing subproblem with threshold.. 143

6.4 Experimental results... 145
6.4.1 Algorithm setting ... 145
6.4.2 Performance of strategies in CP-CG.. 145
6.4.3 CP-CG compared with existing approaches in the literature................ 149

6.5 Conclusions.. 151
Chapter 7 A Layered Branch-and-Bound algorithm to portfolio selection problems
with real-world constraints .. 154

7.1 Introduction... 154
7.2 Problem formulation .. 155
7.3 The Layered Branch-and-Bound algorithm... 159

7.3.1 The Branch-and-Bound algorithm... 159

Contents

- iii -

7.3.2 The Layered Branch-and-Bound algorithm.. 161
7.3.3 Branching rules and the node selection heuristic 163

7.4 Experimental results... 166
7.4.1 Test problems ... 166
7.4.2 Evaluation of the Layered Branch-and-Bound algorithm 167
7.4.3 The efficient frontier.. 174

7.5 Conclusions.. 178
Chapter 8 A hybrid local search and Branch-and-Bound approach to constrained
portfolio selection problems ... 180

8.1 Introduction... 180
8.2 Problem description.. 181

8.2.1 Portfolio selection problem with transaction cost................................... 181
8.2.2 Problem formulation ... 183

8.3 Related work of hybrid local search with B&B ... 187
8.3.1 Local Branching ... 188
8.3.2 Relaxation Induced Neighbourhood Search (RINS) 189
8.3.3 Other approaches... 190

8.4 Local search branching B&B algorithm... 190
8.4.1 Framework of Local search branching B&B .. 190
8.4.2 Notations and definitions of variable fixing .. 193
8.4.3 Solution information reusing and cut-off bound 193
8.4.4 Local search techniques... 195

8.5. Experimental results.. 196
8.5.1 Test problems ... 196
8.5.2 Evaluations on the local search branching B&B algorithm 197

8.6 Conclusions.. 205
Chapter 9 Conclusions and future work... 208

9.1 Conclusions.. 208
9.1.1 Research overviews.. 208
9.1.2 Research contributions.. 209

9.2 Future work... 212
9.2.1 Future research directions for nurse rostering problems 212
9.2.2 Future research for portfolio selection problems 213
9.2.3 Future research for hybrid algorithms .. 214

Appendix.. 217
List of Publications ... 220
References .. 221

List of Figures

- iv -

List of Figures

Fig. 1.1 Structure of the thesis .. 8
Fig. 2.1 AC3/GAC3 [4] .. 22
Fig. 2.2 A search tree for a CSP [4].. 25
Fig. 2.3 Limited Discrepancy Search [14].. 27
Fig. 2.4 Solution quality in a minimization problem.. 35
Fig. 2.5 High-level template of local search [36] ... 41
Fig. 2.6 The column generation method for Linear Program [45] 47
Fig. 2.7 Structural classification of exact methods and meta-heuristics combinations [57]
.. 56
Fig. 3.1 Efficient Frontier (EF) which defines the trade-off between returns and risk in a
portfolio of assets.. 73
Fig. 3.2 Variables, objective and constraints of portfolio selection problems................ 75
Fig. 4.1 Initial solution generation.. 91
Fig. 4.2 Pseudo-code of the iterative forward search algorithm..................................... 99
Fig. 4.3 Two neighbourhood structures .. 101
Fig. 4.4 Pseudo-code of the Variable Neighourhood Search algorithm [124] 101
Fig. 4.5 Behaviour of the hybrid CP approach on the ORTEC January and February
instances.. 106
Fig. 4.6 Behaviour of the hybrid CP approach on the ORTEC January instances with
different initial solutions... 107
Fig. 5.1 The large neighbourhood search scheme with CP as the re-optimiser............ 118
Fig. 5.2 Fragment selection strategy 1: sliding window... 119
Fig. 5.3 Fragment selection strategy 2: sliding window with overlap.......................... 120
Fig. 5.4 Fragment selection strategy 3: selection according to the cost of horizontal
constraints ... 121
Fig. 5.5 The decrease of objective function value over iterations of LNS using three
different fragment selection strategies for problem Gpost ... 123
Fig. 5.6 The decrease of objective function value over iterations of LNS using three
different fragment selection strategies for problem ORTEC.. 125
Fig. 5.7 The decrease of objective function value over iterations of LNS with different
fragment size for strategies 1 and 2 for problem ORTEC .. 126
Fig. 5.8 Size of fragment for strategy 3, denoted by n for problem ORTEC 126
Fig. 6.1 The CP based column generation solution procedure 140
Fig. 6.2 Depth Bounded Discrepancy Search ... 143
Fig. 6.3 The decrease of objective function value over iterations of CP-CG with
different search strategies for the three problems. .. 147
Fig. 7.1 The Branch-and-Bound algorithm [8] ... 160
Fig. 7.2 Illustration of layered B&B algorithm. Spots without descendant nodes
represent the leaf nodes and circles represent the open nodes as shown in Fig. 7.1 161
Fig. 7.3 The pseudo-code of the layered B&B algorithm... 162
Fig. 7.4 Efficient frontiers from the default B&B and layered B&B 175
Fig. 8.1 The transaction cost function... 184
Fig. 8.2 Local Search Branching B&B algorithm for minimization 192
Fig. 8.3 Initialization phase of Local Search Branching B&B approach 195
Fig.8.4 Steps of VNS local search .. 196

List of Figures

- v -

Fig. 8.5 Part of a log file in CPLEX for solving a MIQP subproblem for Société
Générale .. 200
Fig. 8.6 The local search branching B&B with heuristic initialization and random
initialization .. 201
Fig. 8.7 The gap between the local search branching B&B and approximate optimal by
default B&B.. 205

List of Tables

- vi -

List of Tables

Table 2.1 Variable-based violation measure for assignments .. 33
Table 2.2 Summarizing other applications which apply basic CP based CG in the
literature [64] .. 52
Table 3.1 Part of a weekly roster in a nurse-day view.. 64
Table 4.1 Shift types and demand during a week. .. 80
Table 4.2 Summary of constraints in the benchmark nurse rostering problems............. 80
Table 4.3 Summary of the global constraints in modelling nurse rostering problems ... 87
Table 4.4 An illustrative example of weekly (partial) roster. ... 98
Table 4.5 Characteristics of the benchmark nurse rostering problems......................... 103
Table 4.6 Results of pure CP and hybrid CP approaches to nurse rostering problems of
different characteristics... 104
Table 4.7 Results with random and heuristic variable and value selection rules in the
hybrid CP approach. Mean values of 6 running results are presented.......................... 105
Table 4.8 Evaluation of six variable ordering heuristics for problem Gpost................ 105
Table 4.9 Results from the hybrid CP approach ... 108
Table 5.1 Results from the pre-processing method .. 123
Table 5.2 Comparison of solution improvement and computational time of LNS with
different fragment sizes for problem ORTEC .. 127
Table 5.3 Results compared with other methods in the literature. The best results are
shown in bold.. 128
Table 6.1 Parameter settings for the CP-CG approach... 145
Table 6.2 DDS with and without cost thresholds in CP-CG .. 146
Table 6.3 Numerical results of CP-CG with DFS, DDS and DDS + adaptive cost
threshold.. 148
Table 6.4 Existing approaches on ORTEC benchmarks in the literature, best results
shown in bold.. 150
Table 7.1 Properties of problem instances for portfolio selection problems 167
Table 7.2 Branch rule and node selection heuristics without layer the B&B tree 170
Table 7.3 Layered B&B, search aborts after finding the first feasible solution at the top
layer .. 172
Table 7.4 Layered B&B. search aborts after obtaining the optimal solution 173
Table 7.5 Comparisons of the layered B&B with existing approaches in the literature
.. 177
Table 8.1 Properties of problem instances.. 197
Table 8.2 Size of the original MIQP problem and MIQP subproblems 198
Table 8.3 Information of subproblem processing... 199
Table 8.4 Comparisons of default B&B and local search branching B&B 204

Abstract

- vii -

Abstract

This thesis focuses on the construction of effective and efficient hybrid methods based

on the integrations of Constraint Programming (CP), Integer Programming (IP) and

local search (LS) to tackle two combinatorial optimisation problems from different

application areas: the nurse rostering problems and the portfolio selection problems.

The principle of designing hybrid methods in this thesis can be described as: for the

combinatorial problems to be solved, the properties of the problems are investigated

firstly and the problems are decomposed accordingly in certain ways; then the suitable

solution techniques are integrated to solve the problem based on the properties of

substructures/subproblems by taking the advantage of each technique.

For the over-constrained nurse rostering problems with a large set of complex

constraints, the problems are first decomposed by constraint. That is, only certain

selected set of constraints is considered to generate feasible solutions at the first stage.

Then the rest of constraints are tackled by a second stage local search method.

Therefore, the hybrid methods based on this constraint decomposition can be

represented by a two-stage framework “feasible solution + improvement”. Two

integration methods are proposed and investigated under this framework. In the first

integration method, namely a hybrid CP with Variable Neighourhood Search (VNS)

approach, the generation of feasible initial solutions relies on the CP while the

improvement of initial solutions is gained by a simple VNS in the second stage. In the

second integration method, namely a constraint-directed local search, the local search

is enhanced by using the information of constraints. The experimental results

demonstrate the effectiveness of these hybrid approaches.

Based on another decomposition method, Dantzig-Wolfe decomposition, in the third

integration method, a CP based column generation, integrates the feasibility reasoning

of CP with the relaxation and optimality reasoning of Linear Programming. The

experimental results demonstrate the effectiveness of the methods as well as the

knowledge of the quality of the solution.

Abstract

- viii -

For the portfolio selection problems, two integration methods, which integrate Branch-

and-Bound algorithm with heuristic search, are proposed and investigated. In layered

Branch-and-Bound algorithm, the problem is decomposed into the subsets of variables

which are considered at certain layers in the search tree according to their different

features. Node selection heuristics, and branching rules, etc. are tailored to the

individual layers, which speed up the search to the optimal solution in a given time limit.

In local search branching Branch-and-Bound algorithm, the idea of local search is

applied as the branching rule of Branch-and-Bound. The local search branching is

applied to generate a sequence of subproblems. The procedure for solving these

subproblems is accelerated by means of the solution information reusing. This close

integration between local search and Branch-and-Bound improves the efficiency of the

Branch-and-Bound algorithm according to the experimental results.

The hybrid approaches benefit from each component which is selected according to the

properties of the decomposed problems. The effectiveness and efficiency of all the

hybrid approaches to the two application problems developed in this thesis are

demonstrated. The idea of designing appropriate components in hybrid approach

concerning properties of subproblems is a promising methodology with extensive

potential applications in other real-world combinatorial optimisation problems.

Acknowledgements

- ix -

Acknowledgements

I would like to acknowledge so many people who helped me accomplish this thesis.

First of all, I would like to thank my supervisor, Dr Rong Qu, for her constant guidance,

support and encouragement throughout this research, and for giving me a wonderful

opportunity to study at the University of Nottingham.

I would like to thank every staff and researcher in the Automated Scheduling,

Optimisation and Planning (ASAP) research group for their help and assistance. I would

like to thank Dr. Andrew Parkes for the discussions that directly or indirectly contribute

to my work.

I would also like to thank Mick Pont, the deputy manager of NAG development division

and David Sayers, the principal technical consultant of NAG, because they gave me the

opportunity to work on the portfolio selection project, and to validate on this project

where many of the ideas in this thesis are presented.

I would like to thank my husband, Lin. He not only gave me consistent help and support

during my PhD study, but also made the last few years a truly wonderful time with his

love and company.

I would like to thank my parents and brother for believing in me and supporting me in

all that I have done. Without their love and support, I could not have made it this far.

Finally, to the new member of our family, Emily my love, who was born at the same

time as this thesis, Mummy loves you forever!

Chapter 1 Introduction

- 1 -

Chapter 1 Introduction

This thesis focuses on the construction of effective and efficient hybrid methods to

tackle two combinatorial optimisation problems from different application areas. These

two problems both come from real-world applications where essential and complex

features of problems are present. The first one is the nurse rostering problem which is a

type of o personnel scheduling problem and the second one is the portfolio selection

problem in the financial domain.

Although these two problems come from different application domains, they share some

common features: (1) they are complex due to the presence of the large set of

constraints which represent the real-world restrictions, e.g. logical restriction, and

resources restriction, etc. For example, in the nurse rostering problem, large set of

logical restrictions regulate the working patterns, such as an early shift should not be

assigned after a late shift, etc. In the portfolio selection problem, resources restriction

regulates that the amount of assets can be invested in a portfolio should be within the

budget, etc. (2) they tend to be large. For example, in the nurse rostering problem,

usually, a variety of shifts needs to be assigned along the scheduling horizons. The

number of nurses that need to be scheduled is usually large. In the portfolio selection

problem, hundreds of assets in the finance market need to be optimised.

Due to these two main features of the problems, in general, solving these problems is

computationally challenging. To tackle these complex and large-scale problems

efficiently, we construct hybrid solution methods in this thesis. These hybrid methods

integrate and take the advantage of different techniques from different disciplines.

1.1 Hybrid methods to Nurse Rostering Problem

The Nurse Rostering Problem (NRP) consists of assigning a certain set of tasks to a

certain set of nurses, subject to a large set of constraints which are related to the

working regulations and personnel preferences. On the one hand, this problem

Chapter 1 Introduction

- 2 -

represents an important administration activity in modern hospitals, thus solving the

problem efficiently is important for both practitioners and administrators in hospitals,

and has a positive impact on nurses’ working conditions, which is firmly related to the

quality of the healthcare [1]. On the other hand, most of NRPs in real-world are NP-

hard [2]. In computational complexity theory, NP stands for nondeterministic

polynomial. NP is the class of the problems that can be solved in polynomial time by a

nondeterministic algorithm. NP-hard is the class of the problems that “at least as hard as

any problem in NP”. Solving the complex NRPs which are NP-hard efficiently can

make great contributions to the research community.

Usually, a variety of shifts needs to be assigned along the scheduling horizons. The

number of nurses that need to be scheduled is usually large. Most importantly, the

number of constraints in the problems is large. These constraints which are related with

working regulations and personnel preferences make the problem over-constrained.

These are key features of NRPs.

1.1.1 Constraint Programming method to NRPs

Constraint Programming, originated from Artificial Intelligence, is a solution method to

the combinatorial optimisation problems from different applications [3]. It models the

problem as a set of variables which take values in their finite domains and are linked by

a set of constraints that can be mathematical or symbolic. Global constraints which

capture the interesting substructure of a problem have fundamental modelling capability

in a Constraint Programming system. What’s more, constraint propagation algorithms

which are embedded in each global constraint can reduce the search space by removing

the value assignments that are proven to be infeasible, which is called feasibility

reasoning. The effectiveness of global constraints has been shown for solving practical

problems such as rostering and scheduling, etc. in literature [4, 5].

Chapter 1 Introduction

- 3 -

Due to the key features of NRPs we introduced above, Constraint Programming

techniques are chosen as main techniques in this thesis to solve NRPs for following

reasons:

 Constraint Programming has the strength of modelling the problem with

global constraints [5]. Global constraints serve declaratively as building

blocks of the problem modelling. It has been shown in the literature that

global constraints can model the complex constrained NRPs well [1].

 Propagation algorithms of the global constraints have been shown to be

efficient to find feasible solutions to the problem, i.e. propagation

algorithms enable the powerful feasibility reasoning of Constraint

Programming. This feasibility reasoning of Constraint Programming is

well recognized in literature and we will take the advantage of it in the

construction of the hybrid methods in this thesis.

 Most importantly, the solution approach of Constraint Programming

which consists of modelling, propagation and searching in the solution

procedure makes it easy to be integrated with other techniques. This

paves the way of hybridizing other techniques to solve NRPs.

1.1.2 Hybrid methods to NRPs

In literature, solution methods to NRPs based on Constraint Programming have been

widely investigated where NRPs are usually modelled as Constraint Satisfaction

Problems [1, 6, 7]. The feasibility reasoning of Constraint Programming plays an

important role in these methods.

However, the real-world large-scale NRPs we tackle in this thesis are over-constrained.

That is, nurses have conflicting preferences. A feasible solution does not exist that

satisfies all the preferences when we model the problem as a Constraint Satisfaction

Problem. Hence, Constraint Satisfaction Problem model cannot be applied directly,

because no solutions can be found. However, we still want to find some solutions,

preferably one that minimizes the total number of conflicts. In this thesis, soft

Chapter 1 Introduction

- 4 -

constraints are applied to model the conflicting preferences of nurses. We seek an

(optimal) feasible solution that minimizes the violation of soft constraints.

Constraint Programming is powerful with respect to feasibility reasoning due to the

efficient propagation algorithms associated with constraints [3, 4]. But it is less efficient

on optimality reasoning without the dedicated cost propagation [4]. This motivates us

to hybridize other techniques to tackle the optimality reasoning in over-constrained

NRPs in this thesis.

Based on the above description of features of the complex and large-scale NRPs and

features of Constraint Programming techniques, we investigate two different ways of

decomposition of NRPs. After the problem is decomposed, the hybrid methods are

designed where the suitable solution techniques are integrated to solve the problem

according to the decompositions.

The first way to decompose NRPs is designed according to the constraint of the

problem. That is, we are first concerned with certain selected set of constraints only.

First, a feasible solution is generated by Constraint Programming techniques with

respect to this set of constraint first. Then the rest of constraints are tackled by a second

stage local search method. Therefore, this hybrid method can be represented by a two-

stage framework “feasible solution + improvement”.

Due to their efficiency, a great variety of local search and meta-heuristics methods have

been applied to complex and large-scale NRPs [1, 6, 7]. A local search algorithm

typically starts from an initial solution (an assignment of values to all the decision

variables) and iteratively moves to their neighbouring solutions, defined by

neighbourhood operator(s), with the hope of improving the quality of the solution

measured by a function f. Many advanced heuristic approaches, called meta-heuristics

(or extensions of local search), have been developed to prevent simple local search

methods from getting trapped at local optima [6]. In this thesis, we investigate the

integration of Constraint Programming with local search methods under the two-stage

Chapter 1 Introduction

- 5 -

framework “feasible solution + improvement”. With this two-stage framework, two

hybrid methods are proposed and investigated. In the first hybrid method, the feasible

solution is constructed by applying the feasible reasoning of Constraint Programming at

the first stage. A simple Variable Neighourhood Search method is applied at the second

stage to improve the feasible solution in limited computational time by taking the

advantage of efficient optimality reasoning of local search. The effort is focus on the

construction of feasible solution by Constraint Programming techniques in this hybrid

method.

Another hybrid method is investigated under the same “feasible solution +

improvement” framework. The local search in the second stage is enhanced by using the

information of constraints.

Local search and meta-heuristics are efficient for heuristically improving solutions.

However, optimality cannot be guaranteed or proven. We desire to know the quality of

solutions, e.g. how far obtained solution is away from the optimal one. Therefore, we

propose another decomposition method and corresponded hybrid solution method to

NRPs.

The second decomposition method comes from Operational Research. As classic

methods for solving combinatorial optimisation problems, Operational Research

methods have been used for a long time. They are based on the mathematical

representation of the problem, which is typically modeled as an Integer Program. The

Integer Programming method, by relaxing some constraints (e.g. in the form of Linear

Program), defines a new problem that usually can be optimally solved. The value of the

optimal solution to the relaxed problem represents an optimistic estimation of the

optimal solution to the original problem, and it can be used to reduce the search space.

This shows the strength of optimality reasoning. Our integration of feasibility reasoning

in Constraint Programming and optimality reasoning in the form of Linear Program

relaxation is well motivated. Both of them can be used to solve combinatorial

optimisation problems and they have complementary strengths. OR techniques are

Chapter 1 Introduction

- 6 -

expert at relaxation techniques and optimality analysis. Constraint programming is

distinguished by its inference techniques and modeling power[5]. Rather than choose

between these methods, we will integrate them to tackle the problems in this thesis.

NRPs can be modelled as Integer Programs. For these large-scale Integer Programs, one

classic decomposition method, Dantzig-Wolfe decomposition, can be applied to

decompose them. The column generation is an efficient algorithm for solving the

decomposed problem efficiently. We apply a Constraint Programming based column

generation method to NRPs. The complex NRPs are decomposed and modeled based

on the column generation scheme, where the master problem is formulated as an Integer

Program and the pricing subproblem is modeled and solved in Constraint Programming

paradigm.

1.2 Hybrid methods to Portfolio Selection Problem

The second problem we investigate in this thesis is the Portfolio Selection Problem

(PSP). PSPs arise in the financial domain. The problem is primarily concerned with

finding a combination of assets that satisfies an investor’s needs the best. These needs

can be basically expressed as minimizing the risk and guaranteeing a given level of

returns [7].

The basic problem of PSP can be modelled and solved by Linear Programming or

Quadratic Programming. However, in reality the investors usually have to include side

constraints which reflect the restrictions of the market into the basic model of the

problems and the problems quickly become too computationally expensive for exact

methods.

The key feature of the problems is the discrete optimisation feature due to the presence

of these side constraints. Branch-and-Bound method is a classic method to solve the

problem and seeks the optimal solution to the problem while the computational time is

not restricted. However, the investors highly desire to seek good quality solutions, not

Chapter 1 Introduction

- 7 -

necessarily the optimal one, in a very limited computational time. At the same time, the

investors desire to have the knowledge of the quality of this solution. That is, the quality

of the solution should be measurable, e.g. it can be measured by the gap between this

solution and optimal solution (or lower bound of the optimal solution).

As recognized by many researchers, the efficiency of Branch-and-Bound highly relies

on the branching rule heuristic and the node selection heuristic, etc. Therefore, in this

thesis, we aim to investigate how to integrate heuristic search into Branch-and-Bound

algorithm in the forms of node selection heuristics, and branching rules, etc. to obtain

measurable quality solutions in a given time limit.

Two integration methods, which integrate Branch-and-Bound algorithm with heuristic

search, are proposed and investigated in this thesis. In layered Branch-and-Bound

algorithm, the problem is decomposed into the subsets of variables which are

considered at certain layers in the search tree according to their different features. Node

selection heuristics, and branching rules, etc. are tailored to the individual layers, which

speed up the search to the optimal solution in a given time limit. In local search

branching Branch-and-Bound algorithm, the idea of local search is applied as the

branching rule of Branch-and-Bound. The local search branching is applied to generate

a sequence of subproblems. The procedure for solving these subproblems is accelerated

by means of the solution information reusing. This close integration between local

search and Branch-and-Bound improves the efficiency of Branch-and-Bound algorithm

according to the experimental results.

1.3 Scope and aim

The aim of this thesis is to investigate how to efficiently integrate Constraint

Programming, Operational Research techniques and heuristic search methods to solve

the two combinatorial optimisation problems from real-world applications—the Nurse

Rostering Problem and the Portfolio Selection Problem, taking the advantage and the

strengths of each well developed component. The design of the integration methods

Chapter 1 Introduction

- 8 -

needs to consider the strength and weakness of each component, as well as the

interface/interaction between them. Therefore, the design procedure of the hybrid

methods in this thesis starts from the observations of the features of each problem. The

problem is firstly decomposed into subproblems in certain ways, and then the suitable

methods are chosen to solve the subproblems. At last the solution to the original

problem is obtained by merging the solutions to the subproblems.

1.4 Structure of the thesis

This thesis investigates the construction of hybrid methods to tackle two combinatorial

optimisation problems from different application domains. This thesis begins with an

overview to combinatorial optimisation in chapter 2. Chapter 3 presents an introduction

to two application problems we investigate in this thesis.

Chapter 6
CP-CG to
NRP Chapter 5 Constraint-

directed LS to NRP

Chapter 7 Layered B&B to PSP
Chapter 8 LS branching B&B to PSP

CP
feasibility reasoning

Local searchOR (IP/LP, CG)
optimality reasoning

Chapter 4 Hybrid CP
with VNS to NRP

efficiency

Fig. 1.1 Structure of the thesis

The structure of main body of this thesis, consisting of chapter 4 to chapter 8, is showed

in Fig. 1.1. The three vertices of the triangle represent the three techniques which are

investigated in this thesis. The three edges represent the integration of each two

techniques which are investigated in the corresponding chapters denoted on the edges.

The right edge of the triangle in Fig. 1.1 represents the first decomposition of the NRPs

and the corresponding hybrid method we investigate. This decomposition is based on

the constraint. That is, certain set of constraints are considered only to generate feasible

Chapter 1 Introduction

- 9 -

solution. Then the rest of constraints are tackled by a second stage local search to obtain

the improvement solution. Therefore, this hybrid method can be represented by a two-

stage framework “feasible solution + improvement”. Both chapter 4 and chapter 5 are

based on this two-stage framework.

In chapter 4 we propose a hybrid Constraint Programming (CP) with Variable

Neighourhood Search (VNS) solution approach to the NRPs in CP paradigm.

The model is built with primitive and global constraints. The solving of the model

mainly depends on the feasibility reasoning of CP. Therefore, we first tested a small

instance of NRPs. For larger-scale instances, the decomposition approach which is

based on constraint is applied. The feasible solution subject to a subset of constraints

only is firstly generated by solving the corresponding CSP model. Then the complete

feasible solution is constructed using an iterative forward search method. The further

improvement of the feasible solution is gained by using a second stage local search

method.

The aim of this chapter is to investigate three fundamental and important elements in

CP: (1) how to model the problem as a Constraint Satisfaction Problem (CSP), (2)

design the search heuristics (variable/value ordering heuristic) and (3) design the search

strategy. The experimental results show the strength of our CP approach on feasibility

reasoning, as well as the weakness on optimality reasoning.

In chapter 5, we integrate Constraint Programming with local search to implement a

constraint-directed local search to NRPs. The local search is enhanced by using the

information of constraints (i.e. violation of a constraint and the set of variables violating

the constraint) to detect and re-optimise the fragment (set of variables) that need to be

improved. With this information we can define the neighbourhood of local search more

generally, and the search can be guided by the cost function of these constraints.

Different fragment selection strategies and the search effort that need to re-optimise the

corresponding fragment are investigated. The proposed approach benefits from both the

Chapter 1 Introduction

- 10 -

feasibility reasoning of CP and efficiency of local search. The experimental results

show the proposed approach is simple yet efficient to large and constrained NRPs.

In chapter 6, a Constraint Programming based Column Generation (CP-CG) approach

is proposed to solve the NRPs. The complex NRPs are decomposed and modeled based

on the column generation scheme, where the master problem is formulated as an Integer

Program and the pricing subproblem is modeled and solved in CP paradigm. It

integrates the relaxation and optimality reasoning of Linear Programming with the

powerful expressiveness and feasibility reasoning of Constraint Programming to model

and solve the complex constrained NRPs. To increase the efficiency of column

generation procedure, we propose two strategies in solving the CP pricing subproblem.

A Depth Bounded Discrepancy Search is employed to obtain diverse columns. A cost

threshold which is adaptively tightened based on the information collected during the

search is used to generate columns of good quality. These strategies show the

contribution to a faster convergence in the CP-CG approach.

In the next two chapters, we investigate the integration approaches to another

application problem - PSPs. The basic form of the problem, modeled as a Mixed Integer

Quadratic Program, is usually solved by Branch-and-Bound algorithms. Therefore, the

integration methods to the extended form of the problems are mainly based on Branch-

and-Bound algorithm, integrated with heuristic/local search methods as node selection

heuristic, and branching rules, etc. The integration of heuristic/local search methods into

Branch-and-Bound can potentially improve the efficiency of Branch-and-Bound.

In chapter 7, we study the PSPs based on the extended classical Markowitz’s mean-

variance model. We consider several real-world trading constraints simultaneously in a

single model. These trading constraints are modelled using integer variables (binary

variable and general integer variable) that lead to a Mixed Integer Quadratic Program.

The PSP with these real-world trading constraints thus has variables with different

features. In this chapter we propose a multi-level Branch-and-Bound algorithm, named

as layered Branch-and-Bound. The problem is decomposed into the subsets of

Chapter 1 Introduction

- 11 -

variables, and layered to several levels in the tree according to their different features.

The search is firstly performed on the top layer to produce partial solutions which

define the interesting neighbourhoods of complete solutions in the search space. It then

goes down to the deeper layers to obtain the complete solutions. Two branching

heuristics and one node selection heuristic are tailored to the individual layers in the tree,

which speed up the search to the optimal solution in given limited time.

In chapter 8, we study the PSP with non-convex transaction cost based on the extended

mean-variance model using a new hybrid approach which integrates local search into

Branch-and-Bound algorithm. The PSP is modelled as a Mixed Integer Quadratic

Program and solved heuristically by solving a sequence of subproblems. The problem is

decomposed into subproblems using variable fixing. The variables to be fixed are the

core variables of the problem which are selected according to the property of the

problem. The newly proposed local search branching strategy is performed on this set of

core variables to generate a sequence of subproblems. Then intense Branch-and-Bound

search dives into these restricted subproblems which are easier to solve compared with

the original one. Due to the inherent similar structures of the subproblems, the solution

information reusing accelerates the Branch-and-Bound solving procedure in solving the

subproblems. The upper bound identified at early stage can prune more nodes in the tree

to speed up the search to the optimal solution.

Chapter 9 concludes the thesis. The contributions of the research are summarised and

the possible future research directions are discussed.

Chapter 2 Preliminaries: an overview of optimisation techniques

- 12 -

Chapter 2 Preliminaries: an overview of optimisation

techniques

2.1 Introduction

This chapter introduces the fundamental concepts and solution approaches to the

combinatorial optimisation problems.

Firstly, we give the definitions of the general optimisation problem and the general

combinatorial optimisation problem. Then we define the scope of the research in this

thesis by listing several important classes of combinatorial optimisation problems.

These particular classes of combinatorial optimisation problems capture the basic

structures of the two application problems that will be extensively investigated in this

thesis. Hereafter, the term “combinatorial optimisation problems” refer to this list of

particular problems. Secondly, we summarize the solution approaches to the

combinatorial optimisation problems by generally categorising the techniques into two

groups: exact solution approaches and heuristic solution approaches. Thirdly, we

examine the Constraint Programming techniques to solve the combinatorial

optimisation problems. The important concepts and techniques in Constraint

Programming are introduced. Fourthly, we present another exact solution approach--

Integer Programming and the related techniques from Operational Research. Fifthly, we

present an introduction to heuristics and local search/meta-heuristics. Then we present

decomposition methods and the corresponding solution approaches. These methods

include domain independent, general decomposition methods as well as ones related

with the application problems we will tackle in this these. Finally, we review the current

mainstream integration approaches based on Constraint Programming, Integer

Programming and local search. We do not intend to give an exclusive review of the

integration methods. We focus on the integration methods related with the two

application problems we will tackle in this thesis.

Chapter 2 Preliminaries: an overview of optimisation techniques

- 13 -

2.2 Combinatorial optimisation problems

The optimisation problem

In mathematics and computer sciences, an optimisation problem, or a mathematic

program, is the problem of finding the best solution from all the feasible solutions[8].

More formally, an optimisation (minimization) problem can be stated as:

min{ () / }nf F x x R (2-1)

where nx R is the vector of problem variables, R denotes the real number, nR denotes

an n-dimensional vector space over R , F is the feasible region (the set of all feasible

solutions), and f: F  R is the objective function. Every Fx is called a feasible

solution to (2-1). If there is a * Fx satisfying:

*() (),f f F  x x x

then *x is called the (global) optimal solution and *()f x is called the (global) minimum

with regard to (2-1).

Equivalently, an optimisation problem can be stated as follows where Fx is

explicitly expressed by constraint (2-2) and (2-3):

min ()f x

. . () 0; 1...is t g i n x (2-2)

() 0; 1...jh j m x (2-3)

where ig and jh are the functions n R R , and (2-2) (2-3) represent the constraints of

the optimisation problem.

The combinatorial optimisation problem

When an optimisation problem has a finite number of feasible solutions, the problem is

called combinatorial optimisation problem [8]. Several important classes of

combinatorial optimisation problems will be extensively investigated in this thesis.

Chapter 2 Preliminaries: an overview of optimisation techniques

- 14 -

These problems capture the basic structures of the two application problems we will

tackle in this thesis. They are listed as follows:

 Linear Program: a combinatorial optimisation problem is a Linear Program if the

objective function f in (2-1) and constraints ig , jh in (2-2) and (2-3) are the

linear functions.

 Finite domain optimisation problem: a combinatorial optimisation problem is a

finite domain optimisation problem if the domain of variable x is a finite set:

[,], 1...i i ix a b i n  . In this thesis, the Constraint Satisfaction Problem and

Constraint Optimisation Problem in Constraint Programming paradigm are finite

domain optimisation problems.

 Integer Program: If the unknown variables are all required to be integers, then

the problem is called an Integer Program or Integer Linear Program.

 Quadratic Program: If the objective function f is a quadratic function and

constraints ig , jh are linear functions, the problem is a quadratic program. When

some or all of the variables are required to be integers, the problem is called

Mixed Integer Quadratic Program or Integer Quadratic Program. In this thesis,

we only focus on the convex quadratic objective function.

Linear Program is a special class of combinatorial optimisation problem and can be

solved efficiently using the standard well-known algorithms (e.g. the Simplex algorithm)

[8].

The Quadratic Program with convex quadratic objective function (for minimisation

problem) can also be efficiently solved by a group of algorithms such as the extension

of Simplex algorithm, etc [8].

We obtain an Integer Program (IP) when the integrality constraint is added on the

variables of Linear Program. To solve the IP, We can relax the integrality constraint to

obtain the Linear Program relaxation of the problem. If the solution to the Linear

Program relaxation is integer, the Integer Program is solved. This happens with certain

Chapter 2 Preliminaries: an overview of optimisation techniques

- 15 -

network problems [8]. In general, however, when the integrality constraint is added, the

problems are much harder, especially in many practical situations where variables are

bounded. Therefore, in this thesis we focus on the integrality (discrete) feature of the

problem. With regard to the convex quadratic term, since the algorithms solving Linear

Program can be extended and are well studied to solve the linear system with convex

quadratic objective function, the algorithms and solution techniques we investigated and

proposed for Integer Program and finite domain optimisation problem can also be

applied to the Mixed Integer Quadratic Program.

2.3 Summary of solution approaches to combinatorial

optimisation problems

To summarise the solution approaches to the combinatorial optimisation problems, we

can generally categorise the techniques into two groups: the exact solution approaches

and the heuristic solution approaches. The exact solution approaches refer to the

techniques that can obtain the optimal solution and prove its optimality. In the scope of

this thesis, we refer solution methods from Constraint Programming as exact methods.

Integer Programming techniques (e.g. Branch-and-Bound algorithm etc.) which are one

branch of Operational Research are also referred as exact methods.

In general, the solution approach to the combinatorial optimisation problems requires

the exploration of the search space represented by all the possible combinations of the

assignments of values to the variables. The search space is explored to find the feasible

solutions and the optimal solutions. Some parts of the search space can be pruned (no

need to be visited). This can be done based on the feasibility or optimality. The

feasibility prune (also called constraint propagation) is based on the feasibility

reasoning which removes the assignments of values to variables that do not lead to any

feasible solutions [3]. Actually, this is the main strength of Constraint Programming.

Integer Programming techniques can also be seen as exact solution approaches [8].

Branch-and-Bound algorithm is a classic method to solve the Integer Program [8]. It

Chapter 2 Preliminaries: an overview of optimisation techniques

- 16 -

systematically enumerates all candidate solutions through a tree search. The main idea

of Branch-and-Bound is to avoid visiting a large subset of unpromising candidates

during the tree search by using estimated upper and lower bounds of the objective

function being optimised.

Actually, the Branch-and-Bound framework has been extensively used in both

Constraint Programming and Operational Research; while in general, Constraint

Programming emphasizes more on feasibility reasoning and Operational Research on

optimality reasoning (based on the relaxation). This Branch-and-Bound framework will

be described in more detail in both Constraint Programming and Integer Programming

in the following sections with regard to their emphases in each domain.

The search space can be explored completely or incompletely depending on the

requirement of the proof of optimality (the proof of optimality is when an optimal

solution has been found, we need to prove that there is no solution that can be obtained

better than that). An exact method explores the search space completely so that the

optimal solution can be found with the proof of optimality. An incomplete method

explores the search space (usually guided by some heuristics) to find good solutions but

without the guarantee of optimality. They are used to heuristically and efficiently solve

large combinatorial optimisation problems. Local search belongs to this class of

methods.

Local search approaches solve the combinatorial optimisation problems from a very

different angle from the systematic Branch-and-Bound applied by Constraint

Programming and Integer Programming. It explores the search space by moving from

solutions to neighbourhood solutions in the hope improving the value of the objective

function [6]. Theoretically, it cannot guarantee the quality of the solution, but it is

particularly appropriate to find good solutions for large-scale problems with reasonable

time constraints.

Chapter 2 Preliminaries: an overview of optimisation techniques

- 17 -

In the following sections, we will give an introduction to each solution method as well

as basic notations, concepts and techniques.

2.4 Constraint Programming

In this thesis, the term of Constraint Programming (CP) refers to the techniques that

are used to represent and solve the Constraint Satisfaction Problem and Constraint

Optimisation Problem arising from Artificial Intelligence. This section gives a brief

introduction and basic notation of CP. A large part of this section is written based on the

books [3] and [4].

Definition 1 (Variable and domain): Let x be a variable. The domain of x is a set of

values that can be assigned to x. A single value is assigned to a variable. In this thesis

we only consider the variables with finite domains.

Example 1: x1 x2 x3 are variables and their respective domains are D1= {2, 3}, D2= {1, 2,

3, 4}, D3= {1, 2}.

Definition 2 (Constraint): Consider a finite sequence of variables X = x1, x2 … xn

where n > 0, with respective domains D = D1, D2… Dn such that xi Di for all i. A

constraint C on X is defined as a subset of the Cartesian product of the domains of the

variables in X, i.e. C D1×D2×…× Dn. A constraint C is called a unary constraint if it

is defined on one variable. A constraint C is called a binary constraint if it is defined on

two variables. If C is defined on more than two variables, we call it a global constraint.

Example 2: On variables x1 x2 x3 we impose the binary constraint x1+x2 ≤4 and the

global constraint AllDifferent(x1, x2, x3). The latter states that the variables x1 x2 x3

should be pair wise different.

Definition 3 (Constraint Satisfaction Problem): A Constraint Satisfaction Problem

(CSP), is defined by a finite sequence of variables X = x1, x2… xn with respective

Chapter 2 Preliminaries: an overview of optimisation techniques

- 18 -

domains D = D1, D2… Dn, together with a finite set of constraints C, each on a

subsequence of X. So a CSP can be denoted as P=(X, D, C).

Example 3(CSP): Based on the variables given in Example 1 and constraints given in

Example 2, we denote the resulting CSP as:

1 2 3

1 2

1 2 3

{2,3}, {1,2,3, 4}, {1,2}

4,

(, ,)

x x x

x x

AllDifferent x x x

  

 

Definition 4 (Satisfaction): For a CSP P=(X, D, C) with X = x1, x2… xn, D = D1, D2…

Dn, and set of constraint C, a tuple (d1, d2,… dn)  D1×D2×…× Dn satisfies a constraint

C on the variables
1 2
, ,...

mi i ix x x if
1 2

(, ,...)
mi i id d d C . A tuple (d1, d2… dn)  D1×D2×…×

Dn is a solution to a CSP if it satisfies every constraint C in P=(X, D, C).

Example 4: For the CSP given in Example 3, a tuple (3, 1, 2) satisfies both of the

constraints. It is a solution to the CSP.

Definition 5 (Constraint Optimisation Problem): Often we want to find a solution to

a CSP that is optimal with respect to a certain criteria. A Constraint Optimisation

Problem (COP) is a CSP(X, D, C) where D = D1, D2… Dn, together with an objective

function f: D1×D2×…× Dn  R to be optimised. An optimal solution to a constraint

optimisation problem is a solution to P that is optimal with respect to f. The objective

function value is often represented by a variable z, together with maximizing z or

minimizing z for maximization or a minimization problem, respectively.

In CP, the goal is to find a solution (or all solutions) to a given CSP, or an optimal

solution (or all optimal solutions) to a given COP. The solution process interleaves

constraint propagation or propagation in short, and search.

In summary, we can list a basic structure of CP program describing an optimisation

problem as the following:

 definition of variables and domains;

Chapter 2 Preliminaries: an overview of optimisation techniques

- 19 -

 posting of the constraints among variables;

 definition of the objective function and its link with the problem decision

variables;

 definition of the search strategy (which is interplayed with the constraint

propagation).

2.4.1 Propagation

Constraint propagation removes (some) inconsistent values from their corresponding

domains, based on the considerations on the individual constraints. By doing so, the

search space can be significantly reduced. Hence, constraint propagation is essential to

make constraint programming solvers efficient.

Let C be a constraint on the variables x1, x2… xn with respective domains D = D1, D2…

Dn, a propagation algorithm for C removes the values from D = D1, D2… Dn that do not

participate in a solution to C.

Let P=(X, D, C) be a CSP. We transform P into a smaller CSP P’ by repeatedly

applying the propagation algorithms for all constraints in C until there is no more

domain reduction. This process is called constraint propagation. When the process

terminates, we say that each constraint, and the CSP, is locally consistent and that we

have achieved a notion of local consistency on the constraints and the CSP. The term

local consistency reflects that we do not obtain a globally consistent CSP, but a CSP in

which each constraint is locally consistent.

We begin by introducing the node consistency that deals with the unary constraints.

Then we introduce the most popular notion of local consistency, the arc consistency that

deals with the binary constraints. Then we discuss its natural generalisation to arbitrary

constraints, called the hyper-arc consistency (also called generalised arc consistency

GAC). Other consistency and a thorough description of the process of constraint

propagation are given by [3].

Chapter 2 Preliminaries: an overview of optimisation techniques

- 20 -

Definition 6 (node consistent): We call a CSP node consistent if for every variable x,

every unary constraint on x coincides with the domain of x.

Example 5 (node consistent): Consider a CSP with constraints defined in the form (C,

x1≥0… xn≥0; 1 ... nx N x N ),where C does not contain any unary constraints and N

denotes the set of natural numbers. This CSP is node consistent, since for each variable

its unique unary constraint is satisfied by all the values in the variable domain.

Definition 7 (arc consistent): Consider a binary constraint C on the variables x and y

with a domain of Dx and Dy respectively, that is x yC D D  . We call C arc consistent

if

, , (,) ,

, , (,) ,

x y

y x

a D b D a b C

b D a D a b C

    

    

We call a CSP arc consistent if all its binary constraints are arc consistent.

Example 6 (arc consistent): Consider a CSP with two variables x and y over the

domain Dx= [5…10] and Dy= [3…7], and only one constraint, x<y. This CSP is not arc

consistent. For instance, take the value 8 on the domain of x, there is no y in domain

such that 8<y.

Definition 8 (generalised arc consistent): The notion of arc consistency can be

generalised in a natural way to arbitrary constraints. A constraint C is generalised arc

consistent if for every involved domain, each element of it participates in a solution to C.

We call a CSP generalised arc consistent if all its constraints are generalised arc

consistent.

Example 7 (generalised arc consistent): Consider again the CSP in Example 3, i.e.

1 2 3

1 2

1 2 3

{2,3}, {1,2,3, 4}, {1, 2},

4, (2-4)

(, ,) (2-5)

x x x

x x

AllDifferent x x x

  

 

Chapter 2 Preliminaries: an overview of optimisation techniques

- 21 -

We apply constraint propagation until both constraints are generalised arc consistent:

1

2

3

{2,3}

{1, 2,3,4} (2 4)

{1,2}

x

x

x



 





1

2

3

{2,3}

{1,2} (2 5)

{1,2}

x

x

x



 





1

2

3

{3}

{1,2} (2 4)

{1,2}

x

x

x



 





1

2

3

{3}

{1} (2 5)

{1,2}

x

x

x



 





1

2

3

{3}

{1}

{2}

x

x

x







The two constraints are examined sequentially, as indicated above by the arcs. We first

examine constraint (2-4), and deduce that values 3 and 4 in D2 do not appear in a

solution to it. Then we examine the constraint (2-5) and remove value 2 from D1. This is

because x2 and x3 saturate values 1 and 2. Next we need to re-examine constraint (2-4)

and remove value 2 from D2. Then we consider constraint (2-5) again and remove value

1 from D3. The resulting CSP is generalised arc consistent. In fact, we have found a

solution to the CSP.

Constraint propagation algorithms are the algorithms that achieve local consistency. In

the literature, it is also called filtering algorithm. There are general constraint

propagation algorithms to achieve the node consistency and arc consistency, etc. (see

book [3]). Arc consistency is the basic propagation mechanism that is used in almost all

solvers. The most well-known algorithm for arc consistency is AC3[9], proposed by

Mackworth for the binary constraint network and was extended to GAC in arbitrary

constraints in [10].

The main component of GAC3 (illustrated in Fig. 2.1) is the revision of an arc, that is,

the update of a domain with respect to a constraint. Updating a domain Di of variable xi

with respect to a constraint C means removing every value in its domain which is not

consistent with C. The function Revise(xi , C) takes each value di in Di in turn (line 2),

and looks for a support on C for di (line 3). If such a support is not found, di is removed

from the domain Di and the fact that Di has been changed is flagged (line 4-5). The

function returns true if the domain has been reduced, false otherwise (line 6).

Chapter 2 Preliminaries: an overview of optimisation techniques

- 22 -

Fig. 2.1 AC3/GAC3 [4]

The main algorithm is a simple loop that revises the arcs until no change occurs, to

ensure that all domains are consistent with all constraints. To avoid too many useless

calls to Revise function (as this is the case in every basic AC algorithm such as AC1or

AC2 [9]), the algorithm maintains a list of Q of all the pairs (xi , C) for which we are not

guaranteed that Di is arc consistent on C. In line 7, Q is filled with all possible pairs (xi ,

C) such that ()ix X C . Then the main loop (line 8) picks the pairs (xi , C) in Q one by

one (line 9) and calls Revise (xi , C) (line 10). If Di is wiped out, the algorithm returns

false (line 11). Otherwise, if Di is modified, it can be the case that a value for another

variable xj has lost its support on a constraint C’ involving both xi and xj. Hence, all

pairs (xj, C’) such that , (')i jx x X C must be again recorded in Q (line 12). When Q is

empty, the algorithm returns true (line 13) as we are guaranteed that all arcs have been

revised and all remaining values of all variables are consistent with all constraints.

Algorithm: AC3/GAC3

Function Revise (in xi: variable; C: constraint): Boolean:
Begin
1: CHANGE=false;

2: for each ()i id D x do

3: if value id does not have a support on constraint C then

4: remove id from ()iD x
5: CHANGE=true
6 : return CHANGE

Function AC3/GAC3(in X): Boolean:
Begin
/*initialization*/

7: {(,) C, ()}i iQ x C C x X C   ;

/* propagation*/

8: while Q   do

9: select and remove (,)ix C from Q

10: if Revise (,)ix C then

11: if ()iD x  then return false:

12: else {(, ') ' C ' , (') }j i jQ Q x C C C C x x X C j i        

13: return true
end

Chapter 2 Preliminaries: an overview of optimisation techniques

- 23 -

AC4 is proposed by Mohr and Henderson to improve the time complexity [11] [12]. AC

6 and AC 2001 are other improvements of the arc consistency algorithms. Here we only

present the main techniques to enforce arc consistency. Other techniques exist to reduce

the cost of arc consistency. They are usually based on one of the arc consistency

algorithms presented above to improve its performance. For more details about the

algorithms we refer to [4].

There are also specific constraint propagation algorithms tailored for certain global

constraints. Actually, this is the field that attracts research on the integration of CP with

OR techniques. The integration of specialized graph algorithms, such as matching and

network flow algorithms [13] for reducing variable domains in global AllDifferent and

cardinality constraint are some of such successful examples.

Constraint propagation is usually applied each time when a domain has been changed.

Consequently, the propagation algorithm that we apply to make a CSP locally consistent

should be as efficient as possible. However, a propagation algorithm does not need to

remove all such values, as this may lead to an exponential running time due to the

nature of some constraints (see the complexity analysis of arc consistency in [4]).

2.4.2 Search

After constraint propagation, we usually encounter three kinds of scenarios:

 the problem is inconsistent, which means no feasible solution exist;

 there is only one value in each variable’s domain, which means we found the

solution;

 there is more than one value in each variable’s domain, which means we have to

start to search for the solution.

The solution process of CP uses a search tree, which is a particular rooted tree. The

vertices of search trees are often referred to as nodes. The arcs of search trees are often

Chapter 2 Preliminaries: an overview of optimisation techniques

- 24 -

referred to as branches. Further, if (u, v) is an arc of a search tree, we say that v is a

direct descendant of u and u is the parent of v.

Definition 9 (Search tree): Let P be a CSP. A search tree for P is a rooted tree such

that:

 its nodes are CSPs,

 its root is P,

 if P1… Pm where m>0 are all direct descendants of P0, then the union of the

solution sets of P1… Pm is equal to the solution set of P0.

We say that a node P of a search tree is at depth d if the length of the path from the root

to P is d.

Definition 9 is a very general notion. In CP, a search tree is dynamically built by

splitting a CSP into smaller CSPs, until we reach a failed or a solved CSP. A CSP is

split into smaller CSPs either by splitting a constraint (for example a disjunction) or by

splitting the domain of a variable. For more information about splitting we refer readers

to [3]. In this thesis we only apply the latter.

At each node in the search tree we apply constraint propagation to the corresponding

CSP. As a result, we may detect that the CSP is inconsistent, or we may reduce some

domains of the CSP. In both cases fewer nodes need to be generated and traversed, so

the propagation can speed up the solution process. An example of a search tree in which

we refer explicitly to constraint propagation and splitting is depicted in Fig. 2.2.

In Fig. 2.2, the constraint propagation (as introduced in section 2.4.2) and splitting are

applied in an alternated fashion. Such a general definition allows to model arbitrary

forms of constraint propagation and splitting [3]. The most common form of domain

splitting consists of labeling of the domain of a variable. Informally, it consists of

taking a variable, say x, and splitting its domain into singleton sets. Each such singleton

set, say {a}, corresponding to a CSP in which the domain of the variable x is replaced

by {a}. Another domain splitting consists of enumerating a domain of a variable,

Chapter 2 Preliminaries: an overview of optimisation techniques

- 25 -

known as binary tree. In the implementation of the algorithms, binary tree is applied in

the solver system we applied.

Fig. 2.2 A search tree for a CSP [4]

Variable and value ordering heuristics

To split the domain of a variable, we first select a variable and then decide how to split

its domain. This process is guided by variable and value ordering heuristics. Heuristic is

defined as a ‘rule of thumb’ based on domain knowledge from a particular application,

which gives guidance in the solution of a problem [6]. Heuristic plays an important role

in solving procedure not only in CP paradigm, but also in local search and meta-

heuristics which will be detailed in section 2.7.

Variable and value ordering heuristics impose an ordering on the variables and values,

respectively. The order in which variables and values are selected has a great impact on

the search process. A variable ordering heuristic imposes a partial order on the variables

with non-singleton domains. An example is the “most constrained first” variable

ordering heuristic. It orders the variables with respect to the number of their appearance

in the constraints. A variable that appears the most often is ordered first. It is likely that

changing the domains of such variables will cause more values to be removed by

constraint propagation. Another variable ordering heuristic is the “smallest domain

Chapter 2 Preliminaries: an overview of optimisation techniques

- 26 -

first” heuristic. This heuristic orders the variables with respect to the size of their

domains. A variable that has the smallest domain is ordered first. The advantages of this

heuristic are that less nodes are needed to be generated in the search tree, and that

inconsistent CSPs are detected earlier. In case two or more variables are incomparable,

we can for example apply the lexicographic ordering to these variables and obtain a

total order.

A value ordering heuristic induces a partial order on the domain of a variable. It orders

the values in the domain according to a certain criterion. An example is the

lexicographic value ordering heuristic, which orders the values with respect to the

lexicographic ordering [6]. Another example is the random value ordering heuristic,

which orders the variables randomly. In case a value ordering heuristic imposes a partial

order on a domain, we can apply the lexicographic or random value ordering heuristic to

incomparable values to create a total order. A value ordering heuristic is also referred to

as a branching heuristic because it decides the order of the branches in the search tree.

Search strategies

A search strategy defines the traversal of the search tree. In this thesis we apply the

search strategies such as Depth First Search and Limited Discrepancy Search. We

assume that all direct descendants of a node in a search tree are totally ordered, for

example based on the value ordering heuristic.

First we describe Depth First Search (DFS) [3] which starts at the root node and proceed

by descending to its first descendant. This process continues until a leaf is reached.

Then it backtracks to the parent of the leaf and descends to its next descendant, if it

exists. This process continues until it backtracks to the root node and all its descendants

have been visited.

Next we describe Limited Discrepancy Search (LDS), introduced by Harvey and

Ginsberg [14] (illustrated by Fig. 2.3). LDS is motivated by the following idea. Suppose

Chapter 2 Preliminaries: an overview of optimisation techniques

- 27 -

we have good heuristics to build the search tree, i.e. the first leaf that the search visits is

likely to be a solution. If this leaf is not a solution, it is likely that only a small number

of mistakes were made along the path from the root to this leaf. Hence, LDS visits the

nodes next to the leaf whose paths from the root differ only in one choice from the

initial path. LDS continues this process by gradually visiting the leaves with a higher

discrepancy from the initial path. Formally, let P0 be a node with ordered descendants

P1, P2…Pm. The discrepancy of Pi is the discrepancy of P0+i-1 for i = 1; 2…m. The

discrepancy of the root node is 0. LDS can now be described as:

 Set the level of discrepancy k = 0. Start at the root node and proceed by

descending to its first descendant provided that its discrepancy is not higher than

k. This process continues until the search reaches a leaf. Then it backtracks to

the parent of the leaf and descends to its next descendant, provided that it exists

and its discrepancy is not higher than k. This process continues until it

backtracks to the root node and all its descendants whose discrepancy is not

higher than k have been visited. Set k = k + 1 and repeat this process until it is

back at the root node and all its descendants have been visited.

a. discrepancy 0 b. discrepancy 1

c. discrepancy 2 d. discrepancy 3

Fig. 2.3 Limited Discrepancy Search [14]

In CP, constraint modelling, variable/value order heuristics and search strategies interact

in the whole procedure of problem solving. None of these decisions can be made

independently from the others.

Chapter 2 Preliminaries: an overview of optimisation techniques

- 28 -

Constraint Optimisation Problem

The search for an optimal solution (or all optimal solutions) to a Constraint

Optimisation Problem (COP) is performed similar to the search for a solution to a CSP.

Recall that a COP consists of a CSP together with an objective function f to be

optimised (see Definition 5). Assume (without loss of generality) that we want to

minimize f. The objective function value is represented by a variable z. When we find a

solution to the CSP, the corresponding value of z, say z = a, serves as an upper bound

for the optimal value of f. We then add the constraint z < a to all CSPs in the search tree

and continue.

Perhaps the most widely used technique for solving COP is Branch-and-Bound, a well

known method in both CP and OR. Next we give a brief introduction to the Branch-and-

Bound in CP.

The Branch-and-Bound uses bounding heuristic to prune the search space. This (lower

or upper) bounding heuristic, denoted by h, is a function that maps assignments (even

partial assignments) to a numeric value to serve as an estimate of the objective function

[15]. More precisely, h applied to some partial assignment is an estimate of the best

values of the objective function applied to all solutions (complete assignments) that rise

by extending this partial assignment [15]. Naturally, the efficiency of the Branch-and-

Bound method is highly dependent on the availability of good heuristics. In such a case,

the Branch-and-Bound algorithm can prune the search subtrees where the optimal

solution does not settle. Note that there are two possibilities when the subtree can be

pruned:

• there is no solution in the subtree at all,

• all solutions in the subtree are suboptimal only (they are not optimal).

Of course, the closer the heuristic is to the objective function, the larger the subtree that

can be pruned. On the other hand, we need a reliable heuristic ensuring that no subtree

where the optimal solution settles is pruned. This reliability can be achieved easily if the

Chapter 2 Preliminaries: an overview of optimisation techniques

- 29 -

heuristic is admissible. That is, in case of minimization problem, the heuristic (i.e. the

lower bounding heuristic) is an underestimation of the optimisation function, i.e. the

value of the heuristic function is not higher than the value of the objective function. In

case of maximization problems, we require the heuristic (the upper bounding heuristic),

to be an overestimation of the objective function. In both cases, we can guarantee the

soundness and completeness of the Branch-and-Bound algorithm [15].

There exist several modifications of the Branch-and-Bound algorithm; we will present

here the depth first Branch-and-Bound method that is derived from the backtracking

algorithm for solving a COP. The algorithm uses two global variables to store the

current upper bound (when minimizing the optimisation function) and the best solution

found so far. It behaves like chronological backtracking algorithm except that the value

of the heuristic function, i.e. lower bound is computed as soon as a value is assigned to

the variable. If this lower bound value exceeds the upper bound, then the subtree under

the current partial assignment is pruned immediately. Initially, the bound is set to (plus)

infinity and during the computation it records the value of the objective function for the

best solution found so far.

2.4.3 Global constraint

A global constraint is a constraint that captures the relationship among a number of

variables. The same relationship can be expressed by a conjunction of several simpler

constraints (primitive constraint). For example, global constraint AllDifferent(x1,x2,x3)

specifics that the values assigned to variables x1,x2,x3 must be pair wise distinct. It also

can be expressed by the conjunction of the simpler constraints as x1≠x2, x2≠x3, x3≠x1.

Global constraints capture the interesting substructures of a problem. It serves as

building blocks for both of the problem modelling and the problem solving. A number

of global constraints are practically useful and the efficient propagation algorithm exists

with them. These global constraints usually encapsulate propagation algorithms.

Industrial implementations of global constraints have been shown the effectiveness of it

Chapter 2 Preliminaries: an overview of optimisation techniques

- 30 -

for solving practical problems in different areas such as rostering, scheduling, resource

allocation and configuration.

Example 8: Global cardinality constraint (gcc) is also named as distribute (see [5]

pages 420-450). It bounds the number of times of the certain values been taken by

variables. It is written as:

Consider for example the constraint cardinality ((x1, x2, x3, x4),(a, b, c),(1,1,0),(2,3,2))

with domains Dx1= Dx3={a}, Dx2={a, b, c}, Dx4= {b, c}. The constraint requires that at

least one, and at most two, of the variables x1, x2, x3, x4 take the value a, and analogously

for values b and c. Obviously a must be assigned to x1 and x3, which means a cannot be

used again and therefore can be removed from the domain of x2. It will be seen shortly

that no other values can be removed from the domains.

The domain consistency filtering algorithm for cardinality is based on a network flow

model and is presented in [16]. Some improved algorithms appear in [17], which shows

that achieving domain consistency for cardinality is NP-hard. The algorithm in [18] also

computes bounds consistency for cardinality.

There are other global constraints that have been proposed and studied, such as

sequence, and stretch, etc. These global constraints are especially useful in the domain

of personnel scheduling problem. We will study these constraints in detail in the

following chapters.

2.4.4 Soft constraint

Many real-life problems are over-constrained. In NRPs for example, nurses often have

conflicting preferences. To such problems there does not exist a feasible solution that

cardinality(x/v, l, u)
where x is a set of variables (x1, …, xn); v is an m-tuple of domain values of the variables
x; l and u are m-tuples of nonnegative integers defining the lower and upper bounds of
times the value v been taken for variable x, respectively. The constraint defines that, for j
= 1, …, m, at least lj and at most uj of the variables take the value vj.

cardinality(x, v, l, u)
where x is a set of variables (x1, …, xn); v is a set of domain values of the variables x; l
and u are nonnegative integers defining the lower and upper bounds of times of the
value v been taken for variable x, respectively. The constraint defines that, for j = 1, …,
m, at least lj and at most uj of the variables take the value vj.

Chapter 2 Preliminaries: an overview of optimisation techniques

- 31 -

respects all the preferences. However, we still want to find some solutions, preferably

one that minimizes the total number of conflicts. In case of the NRP example, we may

want to construct a roster in which the number of respected preferences is satisfied as

many as possible among the employees.

In classic CSP, we seek feasible solutions to a given problem. Hence, we cannot apply

CSP directly to the over-constrained problems, because no solutions can be found.

There have been several methods proposed as remedies. Most of these methods use so-

called soft constraints that are allowed to be violated. The constraints that are not

allowed to be violated are called hard constraints.

Valued-CSPs [19] and semi-rings-CSPs [20] are two generic paradigms for over-

constrained CSP. They can be seen as extensions of the classic CSP, which allow

tackling over-constrained problems or preferences between solutions to be dealt with.

There are various specific frameworks for over-constrained CSP. The simplest

framework, Max-CSP framework tries to maximize the number of satisfied constraints.

In this framework all constraints are either violated or satisfied, the objective is

equivalent to minimizing the number of violated constraints. Max-CSP has been

extended to the Weighted-CSP framework by [21] and [22], associating a degree of

violation (not just a Boolean value) to each constraint and minimizing the sum of all the

weighted violations. The Possibilistic-CSP framework proposed by [23] associates a

preference to each constraint (a real value between 0 and 1) representing its importance.

The objective of the framework is the hierarchical satisfaction of the most important

constraints, i.e. the minimization of the highest preference level for a violated constraint.

The Fuzzy-CSP framework proposed by [24-26] is somewhat similar to the

Possibilistic-CSP but a preference is associated to each tuple of each constraint. A

preference value of 0 means the constraint is highly violated and 1 stands for

satisfaction. The objective is to maximize the smallest preference value induced by a

variable assignment. All above mentioned frameworks can be described as a

specification of the two generic paradigms. For more information about how the generic

Chapter 2 Preliminaries: an overview of optimisation techniques

- 32 -

and specific frameworks model and solve the over-constrained CSPs, we refer to several

surveys and tutorial papers [27-29].

Another approach to model and solve over-constrained problems was proposed by [27]

and refined by [28]. The idea is to identify a “cost" variable z with each soft constraint c,

and replace the constraint c by the disjunction (((0) ((0))c z c z     where c is a

constraint of the type ()z c for some violation measure ()c depending on c. The

newly defined problem is not over-constrained anymore.

If we are asked to minimize the (weighted) sum of violation costs, we can solve the

problem with a traditional CP solver. In this thesis, we follow the scheme proposed by

Regin et al. [27] to soften global constraints.

A violation measure for a soft constraint c(x1…xn) is a function  . This measure is

represented by a cost variable z, which is to be minimized. There exist several useful

violation measures for soft constraints, such as variable-based violation measure and

decomposition-based violation measure [29]. The variable-based violation measure

counts the minimum number of the variables that need to change their values in order to

satisfy the constraints. The decomposition-based measure counts the number of the

constraints in the binary decomposition that are violated. In this thesis, we introduce and

apply variable-based measure for soft constraints.

Example 9 (variable-based violation measure): Problem

1 2

3 4

1 2 3 4

{ , }, { , }

{ , }, { , }

(, , ,)

x a b x a b

x a b x b c

alldifferent x x x x

 

 

is an over-constrained CSP. We need to soften the AllDifferent constraint by defining

some violation measure, say . The variable-based violation measure var is defined as

the minimum number of variables that need to change values in order to satisfy the

constraint. So for each assignment, we have the variable-based violation measure as

shown in Table 2.1:

Chapter 2 Preliminaries: an overview of optimisation techniques

- 33 -

Table 2.1 Variable-based violation measure for assignments

1x 2x 3x 4x var

a a a b 2

a a b b 2

a a b c 1

a b a c 1

… … … … …

2.5 Operational Research techniques

Instead of following a definition, we will use the term Operational Research to specify a

particular set of methods and solution techniques for the combinatorial optimisation

problems listed in section 2.2. This set includes for example the techniques from Linear

Programming, Integer Programming and Convex Quadratic Programming.

2.5.1 Linear Programming

There are many textbooks on Linear Programming and Integer Linear Programming.

A very good introduction to Linear Programming and Integer Programming are given

by Wolsey and Nemhauser [8].

Linear Program: A Linear Program (LP) problem is characterized by a linear objective

function in decision variables and by constraints described by linear inequalities or

equations:

1 1

11 1 1 1

21 1 2 2

1 1

1

min ...

. ...

...

...

...

,... 0

n n

n n

n n

m mn n m

n

c x c x

s t a x a x b

a x a x b

a x a x b

x x

 

  

  

  



or using matrix notation, the compact form is:

min{ , 0}T A  c x x b x

Chapter 2 Preliminaries: an overview of optimisation techniques

- 34 -

where nx R is the vector of decision variables, mc R is the cost coefficient vector,

mb R is the constraint vector and A is the constraint coefficient matrix with elements

ija . For simplicity, we assume n m , and the columns of A are indexed by the set I=

{1,…n}.

Let AB be a basis of A, i.e. a non-singular square sub matrix of A, where the set B

indexes over the columns. Let AN be the sub matrix of A indexed by the columns in

N=I/B. Then the set of constraints Ax b can be written as:

B B N NA x A x b 

A solution to this equation is given by 1
B Bx A b and 0Nx  . This solution is called a

basic solution, and it is feasible if 1 0BA b  . The vector Bx contains the basic variables

and the vector Nx constrains the non-basic variables. The reduced cost vector Tc is

defined as:

1T T T
B BA A c c c

The importance of the reduced cost vector is described by the following fundamental

theorem: (,)B Nx x x is an optimal solution if and only if 0c .

2.5.2 Integer Programming

Suppose that we have some problem instance is a minimization problem. If, as shown in

Fig. 2.4, we draw a vertical line representing the objective value (the higher up this line,

the larger the value), the objective value of optimal solution to the problem we are

considering is somewhere on this line.

Chapter 2 Preliminaries: an overview of optimisation techniques

- 35 -

Heuristics

Interchange
Tabu search
Simulated annealing
Genetic Algorithms
Problem specific

Relaxations

Linear programming

Lagrangean

Objective
value

Objective value of
optimal solution
to the problem
(minimisation problem)

Upper bound

Lower bound

Fig. 2.4 Solution quality in a minimization problem

We do not know exactly where on this line the objective value of optimal solution lies.

We denote this optimal value as * arbitrarily on the line. This optimal solution value

conceptually divides the value line into two parts:

• above the optimal solution value are upper bounds, values which are above the

(unknown) optimal solution value ;

• below the optimal solution value are lower bounds, values which are below the

(unknown) optimal solution value.

In order to discover the optimal solution value, the algorithm that we develop must

address both of the issues i.e. computing upper bounds and lower bounds. In particular

the quality of these bounds is important to the computational success of the algorithm:

• we would like to find upper bounds that are as close as possible to the objective value

of the optimal solution, i.e. as small as possible

• we would like to find lower bounds that are as close as possible to the objective value

of the optimal solution, i.e. as large as possible.

Chapter 2 Preliminaries: an overview of optimisation techniques

- 36 -

Upper bound

Techniques for generating upper bounds are essentially beyond the scope of this thesis.

Typically upper bounds are found by searching for feasible solutions to the problem.

A number of well-known general heuristic techniques are available to find feasible

solutions to combinatorial optimisation problems, for example: interchange, tabu

search, simulated annealing, and genetic algorithms, etc [30].

In addition, for any particular problem, we may well have techniques which are specific

to the problem being solved.

Lower bound

One well-known general technique to find lower bounds is Linear Programming

relaxation. In Linear Programming relaxation we take an Integer (or mixed-integer)

Programming formulation of the problem and relax the integrality requirement on the

variables. This gives a Linear Program which can be solved exactly using a standard

algorithm (e.g. Simplex). The solution value obtained to this Linear Program gives a

lower bound on the optimal solution to the original problem.

Another well-known (and well-used) technique to find lower bounds is Lagrangean

Relaxation [31].

Tree search

The Branch-and-Bound algorithm is the classic tree search method to solve the Integer

Programming with the help of lower bound and upper bound introduced above. In

Branch-and-Bound, a tree search is used to recursively decompose the problem P into a

disjunction of smaller subproblems Pi. This decomposition, or splitting procedure,

creates child nodes from parent nodes of the tree, which is called branch. A

Chapter 2 Preliminaries: an overview of optimisation techniques

- 37 -

subproblem is not further decomposed when the node is either pruned (by feasibility or

optimality pruning) or a leaf node is reached (all variables have value assignments).

In Branch-and-bound, bound (upper bound and lower bound) is used to prune the

unpromising nodes. Every time when a feasible solution is found, such solution imposes

an additional constraint, so that further solutions must have a better objective function

value.

Lower bound (in a minimization problem) is an optimistic estimation of the objective

function value of the optimal solution to the problem Pi. Suppose we have a method

that can obtain the lower bound, if the lower bound is worse than the best solution found

so far (i.e. upper bound), there is no need to solve the problem Pi. This is called bound.

The method used to find the optimistic estimation of the optimal solution to the problem

Pi is usually to solve a relaxed problem R(Pi) which has the characteristics of problem Pi

but is easier to solve.

Relaxation

There are various methods to generate a relaxation R(P) of a problem P. In the

following we describe two techniques for modifying a problem and obtaining a

relaxation. As we stated above, a relaxation can be used to obtain a lower bound which

is important in Branch-and-Bound algorithm.

If the original problem P is described by linear constraints over integer variables, the

removal of the integrity constraints for all integer variables leads to a Linear Relaxation

and it can be solved by Linear Programming techniques such as Simplex algorithm.

Another common relaxation is Lagrangian Relaxation. In Lagrangian Relaxation, a set

of constraints are removed from the problem and added to the objective function. The

aim is to obtain an easier problem in which, however, the information associated to the

Chapter 2 Preliminaries: an overview of optimisation techniques

- 38 -

removed constraints is not lost. In fact, the addition of the constraints into the objective

function allows penalising the solution that violates them.

2.5.3 Quadratic Programming

Quadratic Program problems have linear constraints, but the objective function f must

be quadratic. Thus, the only difference between such a problem and a Linear Program

problem is that some of the terms in the objective function involve the square of a

variable or the product of two variables.

A number of special algorithms based upon the extending Simplex method have been

developed for the Quadratic Program with convex quadratic objective function (for the

minimization problem) [32]. These algorithms have been implemented in many

Quadratic Program solvers.

2.6 The IBM ILOG suite

This thesis is the result of three years of research that was conducted and implemented

based on IBM ILOG optimisation suite [33]. The IBM ILOG optimisation suite we

applied in this thesis includes the following:

IBM ILOG Solver 6.2 is a C++ CP solver. It is a C++ library for CP. It includes:

 predefined classes of variables;

 predefined classes of mathematic, symbolic, and global constraints, with

associated one (or more) propagation algorithm, together with a mechanism to

implement new constraints;

 predefined search algorithms, together with a mechanism to write user defined

tree search methods

The solver provides integer variables, enumerated variables (variables with finite set of

domain), Boolean variables, and set variables (variables whose domain is a set of sets).

Chapter 2 Preliminaries: an overview of optimisation techniques

- 39 -

A constraint links the domain variables, with associated propagation algorithms. The

completeness of propagation algorithms to a constraint varies and a trade-off can be

made between the completeness of the propagation and the computational time.

Search in IBM ILOG Solver is typically a tree search. It provides a set of control

methods that allow users to implement their own search algorithms.

When the CP system lacks a (often global) constraint that is needed to formulate a

particular combinatorial optimisation problem, usually we have the choice of (1)

switching to another CP system that has all required global constraints, (2) solving the

relaxed model that does not require the lacking global constraints, (3) implementing the

lacking constraint in the low level constraints in the current CP system, or (4)

implementing a new global constraint in the system.

In this thesis, we apply the third option in a general way to tackle the combinatorial

optimisation problem.

In this thesis, our algorithms are implemented based on the IBM ILOG Solver system.

The individual global constraints and their filtering algorithms are embedded in the CP

Solver systems. The CP Solver system provides a wide range of low level, primitive

constraints along with the propagation algorithms for these constraints. The CP Solver

system also provides the mechanism for combining the primitive constraints. In the

state-of-art of CP Solver system, the propagation for the combining of primitive

constraints is still very efficient by certain extension of the constraint propagations on

the primitive constraints [34].

Therefore, Our research focus on how to apply available global constraints in the IBM

ILOG Solver system and how to implement the lacking constraints in the low level

constraints by combining them in the current CP system, instead of designing and

implementing of new constraint and its propagation algorithm. We rely on the

feasibility reasoning of the CP system and focus on how to design search algorithms

which can be integrated with other techniques, i.e. OR or local search.

Chapter 2 Preliminaries: an overview of optimisation techniques

- 40 -

IBM ILOG CPLEX 10.0 is a C++ language solver for Linear Programming, Quadratic

Programming and Mixed Integer Programming. Several optimisers (algorithms) are

embedded in the CPLEX, such as Simplex, and Barrier, etc. for different problems. The

optimisers can be chosen to solve the problems at hand according to the property of the

problems. The CPLEX together with Concert Technology provide mechanism for user

to write user defined search heuristics (branching rules, and node selection heuristics,

etc.) for Branch-and-Bound to solve the Mixed Integer Programming, e.g. using

callback to monitor and query information at each node of the Branch-and-Bound tree

search. In this thesis we rely on the IBM ILOG optimisation products for implementing

the proposed algorithms.

2.7 Heuristics and local search approaches

Except the exact methods we introduced above, a combinatorial optimisation problem

coming from real life can be solved efficiently by heuristic methods which are generally

based on two basic principles: heuristics/constructive heuristics and local search

methods.

As we introduced in section 2.4.2, in the dictionary [35], heuristic is defined as “a ‘rule

of thumb’ based on domain knowledge from a particular application, which gives

guidance in the solution of a problem.... Heuristics may thus be very valuable in most of

the time but their results or performance cannot be guaranteed.”

Reeves [31] defines heuristic as “a technique which seeks good (i.e. near-optimal)

solutions at a reasonable computational cost without being able to guarantee either

feasibility or optimality, or even in many cases to state how close to optimality a

particular feasible solution is”.

Heuristics/constructive heuristics are typically the fast approximate methods. They

generate the solutions from scratch by opportunely defined solution components to an

Chapter 2 Preliminaries: an overview of optimisation techniques

- 41 -

initially empty solution. This is being done iteratively until a solution is completed or

other stop criteria are met. A well known constructive heuristic is greedy heuristic. An

example of greedy heuristic is the nearest neighbour heuristic for the travelling

salesman problem.

Constructive heuristics are usually very fast, but they often return the solutions of

inferior quality. Local search methods start from some initial solutions and iteratively

try to replace the current solution with a better one in an appropriately defined

neighbourhood of current solution. Fig. 2.5 presents the high-level template of local

search [36]. In the generation phase, a set of candidate solutions are generated from the

current solution s. This set C(s) is generally obtained by local transformations of the

solution. In the replacement phase, a selection is performed from the candidate solution

set C(s) to replace the current solution. This process iterates until a given stop condition

[6]. The common concepts for local search are the definition of the neighbourhood

structure and the initial solution.

Fig. 2.5 High-level template of local search [36]

The definition of the neighbourhood is a common and important ingredient of local

search. The neighbourhood structure plays a crucial role in the performance of local

search. If the neighbourhood structure is not adequate to the problem, local search

maybe fail to solve the problem [6, 36].

Definition 10 Neighbourhood A neighbourhood function N is a mapping N: S→ 2S that

assigns to each solution s of S a set of solutions N(s)S.

High-level template of local search

Input: initial solution s0.

t=0;
Repeat

Generate (C (st));// generate candidate solutions
st+1=Select (C (st));// select solution from C (st) to replace the current solution st

t=t+1;
Until stopping condition met
Output: Best solution found

Chapter 2 Preliminaries: an overview of optimisation techniques

- 42 -

A solution s’ in the neighbourhood of s (s’N(s)) is called a neighbour of s. A

neighbour is generated by the application of a move operator that performs a small

perturbation to the solution s. For more properties and design of neighbourhood

structure, we refer to book [36].

Usually, two main strategies are used to generate initial solution: a random and a greedy

approach. There is always a trade-off between the use of random and greedy initial

solution in terms of the quality of solutions and computational time. Generating a

random initial solution maybe quick, but the local search may take much larger number

of iterations to converge. In some constrained optimisiation problems, it is difficult to

generate random solutions that are feasible. In this case, greedy algorithms are an

alternative to generate feasible initial solutions [6].

The most basic local search method is usually called iterative improvement local search,

since each move is only performed if the resulting neighbour solution is better than the

current solution. There are typically two ways to choose the neighbour. One is first-

improvement. A function scans the neighbourhood of current solution and returns the

first solution that is better than current solution. The other is best-improvement. It

explores the neighbourhood and returns the solution with best objective function value.

To prevent these simple local search methods from getting trapped at local optima,

many advanced heuristic approaches, called meta-heuristics (or extensions of local

search), have been developed [6, 30, 37]. In this thesis, the term local search includes

the meta-heuristics.

In [6], meta-heuristics are defined as: “solution methods that orchestrate an interaction

between local improvement procedures and higher level strategies to create a process

capable of escaping from local optima and performing a robust search of a solution

space” or “… any procedures that employ strategies for overcoming the trap of local

optimality in complex solution space, especially those procedures that utilise one or

Chapter 2 Preliminaries: an overview of optimisation techniques

- 43 -

more neighbourhood structures as a mean of defining admissible moves to transition

from one solution to another or to build or destroy solutions in constructive and

destructive processes”.

Heuristic and meta-heuristic methods have been investigated in recent years for tackling

many hard problems, especially those combinatorial in nature. During the last 20 years

many meta-heuristic approaches have been proposed. One commonly used classification

distinguishes between single-point and population-based [38]. The former refers to the

search methods that only maintain a single solution at each iteration while the latter

manipulates a population of solutions. Examples of single-point approaches include

simulated annealing, tabu search, Variable Neighourhood Search and large

neighbourhood search, etc. [30]. Evolutionary algorithms, ant colony optimisation, and

scatter search [6] can be regarded as population based methods.

2.8 Decomposition and solution algorithm

In this section, we review the decomposition methods and corresponding solution

algorithms applied to solve the two combinatorial optimisation problems. We first

introduce domain independent general decompositions methods and corresponding

solution algorithms. These methods include Danzig-Wolfe decomposition and column

generation algorithm, variable fixing applied as decomposition method when solving a

MIP. We then introduce some ideas of decomposition methods applied in solving a

specific application problem, NRPs. The detailed review of problem dependent methods,

i.e. decomposition methods applied to NRP will be introduced in chapter 4 and those to

PSP will be introduced in chapter 7 and 8.

2.8.1 Dantzig-Wolfe decomposition

Dantzig-Wolfe decomposition was introduced by Dantzig and Wolfe [39] and consists

of reformulating a Linear Program problem into a master problem and a pricing

problem for improving the tractability of large-scale problems. The master problem

Chapter 2 Preliminaries: an overview of optimisation techniques

- 44 -

typically has fewer constraints than the original problem, but the number of columns

may be very large. The pricing problem generates columns for the master problem,

which have the potential to improve the current solution.

Airline crew scheduling problem is a well know example which can be Dantzig-Wolfe

decomposed and solved by column generation. The solution approach has also been

applied to personnel scheduling problem, employee timetabling problems, etc. [40-43].

All problems tackled by Dantzig-Wolfe decomposition and column generation share

some similar feature that the problem can be inherently decomposed. This can be seen

as to select a subset of individual patterns (columns) from a huge pool of all possible

weighted patterns (columns) to construct the best complete solution to the problem. The

individual patterns should present some desired features of the problem [44]. For

example, in airline crew scheduling problems, each schedule for the crew should satisfy

a large set of working regulations. NRP is a type of personnel scheduling problem

which shares similar features with the crew scheduling problem. This makes the

Dantzig-Wolfe decomposition and column generation a good solution approach to

NRPs. It also provides the possibility of hybrid methods based on the Dantzig-Wolfe

decomposition where the subproblem can be solved by different techniques. This topic

will be reviewed in the section 2.9.1.

More formally, in order to Dantzig-Wolfe decompose a problem; the constraint matrix

should take on a certain structure and consist of a number of independent constraints

and a number of connecting constraints. The independent constraints define certain

specific features of the problem. Connecting constraints bind the columns together.

Consider the problem:

min (2-6)

. . (2-7)

j j
j

j i
j

j

c x

s t Ax b

Dx d









(2-8)

(2-9)jx R

Chapter 2 Preliminaries: an overview of optimisation techniques

- 45 -

Where xj represents decision variables; cj represents objective function coefficients; bi

and d represent right hand side coefficients; and matrix A represents constraint

coefficients aij; iI = {1, …, n}, jJ = {1, …, m}. (2-7) represents the connecting

constraints and (2-8) represents the independent constraints.

For example, in NRPs, the independent constraints can be those constraints which

regulate working pattern and personal preferences for an individual nurse. The

connecting constraints can be the constraints that regulate the whole roster.

We can define { , }j jX x R Dx d   and rewrite the problem into:

min

. . (2-10)

(2

j j
j

j i
j

j

c x

s t Ax b

x X









-11)

Note that this problem only contains the connecting constraints (2-10). The variables xj

must satisfy the independent constraints, which thus are left out. The model holds fewer

constraints than the original formulation, but the number of columns and variables may

be very large.

Column generation is an efficient algorithm for solving Linear Programs with a large

number of variables. The basic idea is to exploit problem substructures by decomposing

a Linear Program into two complementary components: a master problem and a pricing

subproblem. The master problem has a compact Linear Program formulation as defined

by (2-9) (2-10) and (2-11) above.

Due to the large number of variables xj, it is often impossible to solve the master

problem directly. Column generation provides a way to obtain the solution indirectly [8,

45]. We define a much smaller problem, termed as restricted master problem (RMP) as

follows:

Chapter 2 Preliminaries: an overview of optimisation techniques

- 46 -

(RMP) min CX (2-12)

subject to AX B 

0X 

where A A is subset of m’ columns and X are the corresponding variables. The

restricted master problem has less variables X , and is much smaller than the original

master problem. An optimal solution to the restricted master problem provides dual

values λi of each constraint i.e.
ij j i

j J

a x b


 , of the original Linear Program.

We then need to add variables to X and the corresponding columns to A to yield a

linear problem with the same solution value as the original master problem. In Linear

Programming techniques, reduced cost is used to measure the improvement of the

objective function coefficient for the change of the corresponding variable’s value. The

Linear Programming duality theory proves that only columns with negative reduced

cost (i < 0) can be candidates to A . This is the way that the Simplex algorithm chooses

columns internally for its basis. It can also be used to generate external columns in the

column generation method [45].

Let vector α = (α1, …, αn)
T represents a new column that we need to generate for the

corresponding variables X of the master problem. α are variables of the pricing

subproblem that characterize columns of A. Let F denote the feasibility region of the

combinatorial objects represented by the columns of A, and let cα denote the objective

function coefficient associated to column α. With the optimal dual values λi associated

with constraints
ij j i

j J

a x b


 , we have the following pricing subproblem (PSub):

(PSub)
1

0
i n

i i i
i

c 




  
(2-13)

αF

Chapter 2 Preliminaries: an overview of optimisation techniques

- 47 -

where α are the decision variables of the pricing subproblem. Each vector α encodes

combinatorial objects and solution characteristics. As stated in the pricing subproblem,

αF means α is a valid solution for the subproblem.

Fig. 2.6 illustrates the column generation procedure for a Linear Program. Theoretically,

it is necessary to generate all possible negative reduced cost columns before the

generation phase terminates (i.e. {α(1), …, α(k)}= Ø). However, in practice the generation

procedure is usually terminated when some conditions are met, i.e. a total number of

iterations or time limit, and the master problem is then regarded as being solved [46, 47].

Fig. 2.6 The column generation method for Linear Program [45]

The variables of the Linear Program in the above defined column generation are

continuous. If the column generation method is applied to solve Integer Programs, then

the additional integer constraint xjZ+ is added.

The solution we obtained through column generation to the master problem is the

Linear Program relaxation solution to the Integer Program. It quite often is not a valid

solution due to the integer constraint xjZ+. In practice, two general approaches are

usually used to generate integer solutions to the master problem. A standard Branch-

and-Bound procedure to the restricted master problem with the current columns can be

used to produce feasible integer solutions although the optimality is not guaranteed.

Another approach, known as the Branch-and-Price approach [46], generates columns at

each node of the search tree after branching to find the optimal solution.

Algorithm 1. Column Generation for Linear Program

:A subset of feasible columns of A
: dual values

{α(1), …, α(k)}: columns with negative reduced cost

:A  obtain initial columns
Repeat

λ := solve the restricted master problem A to obtain dual values λ
{α(1), …, α(k)} := solve the pricing subproblem based on λ to obtain columns
with negative reduced costs
add columns {α(1), …, α(k)} to matrix A

Until ({α(1), …, α(k)} = Ø) or termination condition is met

Chapter 2 Preliminaries: an overview of optimisation techniques

- 48 -

2.8.2 Variable fixing

(Hard) variable fixing or diving has been used in MIP context to divide a problem into

subproblems [48]. It assigns values to a selected restricted subset of variables of the

original problem. A formal description of variable fixing is given in [48, 49]. In this

thesis, variable fixing is applied to decompose the problem which will be detailed in

chapter 8.

In the literature, tailored heuristics are designed based on the selection of a restricted

subset of variables. The selected restricted subset of variables can reduce the analysis of

the whole solution space to a promising region. This can be seen as a decomposition

approach to the problem. Examples of such approach can be found for the knapsack

problems. In the work [50], the authors propose the core concept (i.e. selected restricted

subset of variables) for the 0/1 multidimensional knapsack problem. It has been shown

to be very effective for heuristically solving the problem, achieving higher quality

solution in shorter running time compared to the general IP methods. The core concept

is extended to general 0/1 Integer Programming later. The extended core concept aims

to reduce the original problem to a core set of variables.

Kernel search [51] is a decomposition solution framework which combines heuristic

algorithms with an exact MILP solver. The steps of the kernel search are: (1) apply

certain heuristics to identify the kernel, i.e. a restricted set of core variables, of the

problem; (2) solve the relatively small kernel MILP problem exactly by a solver (which

works as a black box); (3) identify further variables (by certain heuristics) to be inserted

into the kernel; and (4) solve the updated kernel exactly again. The procedure continues

until the size of kernel reach the computational limit of the exact solver.

The core concept will be applied in chapter 7 and 8 to PSPs.

Chapter 2 Preliminaries: an overview of optimisation techniques

- 49 -

2.8.3 Decomposition in NRPs

The idea of intelligently breaking up larger problems into smaller, easier to handle

subproblems and then dealing with each subproblem in turn has been shown to work

well on nurse rostering [52] and on other scheduling/timetabling problems [53].

In [54], constraints are categorised into shift constraints (which considered the number

of staff and the skill category required for each shift), and nurse constraints (which

considered the workload for each nurse including nurse preferences, consecutive shifts

and the intervals between shifts). The nurse constraints were used to produce all feasible

shift patterns of the whole scheduling period for each nurse, independently from shift

constraints. The best combinations of these shift patterns are found using mathematical

programming and meta-heuristics [54].

In [55], all the feasible weekly shift patterns are pre-defined and associated with costs

which are related with preferences, requests, and the number of successive days, etc.

These shift patterns are then used to construct nurse rosters by employing different

heuristic decoders within a genetic algorithm to schedule both shifts and patterns for the

best permutations of nurses.

In [56], high quality pre-defined schedules are employed to construct cyclic schedules

for a group of nurses with the same requirements. Based on these partial cyclic

schedules, the rest of the shifts are assigned to the rest of the nurses with different

requirements. The problems can thus be seen as being decomposed into cyclic and non-

cyclic parts.

2.9 The integration of CP and OR with LS

In this section, we review the current mainstream integration methods based on CP, OR

and LS in the literature.

Chapter 2 Preliminaries: an overview of optimisation techniques

- 50 -

There are several survey papers reviewing the hybrid methods coming from different

disciplines. Raidl and Puchinger review [57] the solution approaches combining Integer

Programming with meta-heuristics for general combinatorial optimisation. Focacci et al.

review [58] local search integrated with CP. Wallace [59] reviews the hybrid methods in

CP.

In this thesis, we follow the structure of our research illustrated in Fig. 1.1 to categorise

the researches in the literature. We have made an effort to highlight the key and

interesting points which have not been previously studied. We do not intend to review

exclusively the hybrid methods in literature; some more problem specific methods in

related work (i.e. methods to nurse rostering problems or portfolio selection problems)

are reviewed in the following corresponding chapters.

2.9.1 Integration of two exact methods

The combination of two exact methods, e.g. OR and CP, is a natural idea, because both

methods can be used to solve the same problems, and they have complementary

strengths and weaknesses [5]. Many different combinations have been studied in the

past. They range from the specialized hybrid algorithms for specific problems up to the

general integration in the two fields. The successful results have led to an annual

international workshop on “The Integration of Artificial Intelligence and Operations

Research Techniques in Constraint Programming for Combinatorial Optimisation

Problems” (CP-AI-OR), started in 1999, and became a conference in 2004. We refer to

[5, 60, 61] for a collection of successful combinations.

OR techniques consist of a large set of methods and solution techniques for

combinatorial problems. This set includes for example the techniques graph theory,

(Integer) Linear Programming and semi-definite programming, etc. In this thesis, we

focus on combining CP and IP/LP, one of the most efficient combinations in hybrid

optimisation.

Chapter 2 Preliminaries: an overview of optimisation techniques

- 51 -

The first form of the combination of CP with IP is CP based column generation or

Branch-and-Price, where the subproblem is solved with CP. We refer this combination

as CP-CG.

The CP-CG framework has been independently introduced by Junker et al. [42] and

Yunes et al. [43] in two research groups both working on the crew management

problems. In the last decade, the CP-CG framework has been applied to several

different applications, such as crew assignment, bin packing, and graph coloring, etc.

Here we generally categorise the application of it in two groups: basic approaches and

enhanced methods. The basic approaches mainly are concerned with the modeling

aspect of the problem while the enhanced methods are concerned with more advanced

issues such as accelerated techniques and convergence issue of column generation.

Basic CP-CG

The pricing subproblem can be modeled in CP paradigm and the CP techniques can be

used as a black box solver to solve the pricing subproblem.

In Yunes et al. [43], for the crew management problem, the master problem is

formulated as a set partition problem, where each column of matrix A in (2-12)

represents a roster of a crew member over a given planning horizon. The pricing

subproblem is formulated as a constrained shortest path problem. The subproblem is

usually solved by dynamic programming which is quite time consuming for the

auxiliary graph model [43]. The CP techniques as an alternative are used to model and

solve the pricing subproblem with finite domain integer variables and two global

constraints: element and atmost. The first fail variable selection heuristic is the most

effective method for this problem.

In Gabteni & Gronkvist [62], the problem is to find the minimum cost assignment of

each aircraft to a set of flights. The master problem is formulated as a set partition

Chapter 2 Preliminaries: an overview of optimisation techniques

- 52 -

problem, where each column of matrix A in (2-12) represents an admissible sequence of

flights. The partitioning constraints force each flight to be assigned to a unique aircraft.

The pricing subproblem is defined over an acyclic connection network, where each

possible flight to flight connection is an arc between two flights. The pricing

subproblem is efficiently solved as a standard resource constrained shortest path

problem. CP is used as a preprocessing algorithm to eliminate the infeasible arcs of the

network to reduce the size of feasible solution.

In Easton et al. [63] for the traveling tournament problem (i.e. scheduling of games that

involves the minimum traveled distances among team venues), a parallel solving

procedure is proposed. The master problem is formulated as a set partition problem to

force each team to be assigned to a single tour. The pricing subproblem consists of

generating tours for each team that satisfy the sequencing constraint over home and

away games. The parallel algorithm is used to check a pool of columns if the negative

reduced cost columns are present. If they are present, a fixed number of columns are

selected and added to the restricted master problem. Otherwise, the pool is refilled by

CP column generator.

Table 2.2 Summarizing other applications which apply basic CP based CG in the literature [64]

Application References

Urban Transit Crew Management Yunes et al.[43, 65]

Airline Planning Gronkvist [66, 67]

Gabtebi and Gronkvist [62]

Traveling Tournament Problems Easton et al. [63]

Two Dimensional Bin Packing Pisinger and Sigurd [68]

Airline Crew Assignment Junker et al. [42]

Fahle et al. [45]

Sellmann et al. [69]

Hansen and Tomas [70]

Vehicle Routing Problem with Time Windows Rousseau et al. [71]

Employee Timetabling Demassey et al. [44]

Chapter 2 Preliminaries: an overview of optimisation techniques

- 53 -

Enhanced CP-CG

The bottleneck of the column generation algorithm is usually the solution to the pricing

subproblem. A common technique to speed up the solution to the CP pricing

subproblem is to use optimisation constraints that reduce the domain of each variable by

both feasibility and optimality reasoning.

In Fahle et al. [45], the CP-CG is applied to solve an airline crew assignment problem

(i.e. assigning each crew member of an airline to a set of activities). The pricing

subproblem consists of generating rosters that satisfy a set of complex rules and

regulations. The pricing subproblem is formulated as a CP model and solved by a CP

solver. The authors propose a new global constraint with cost, called path-constraint to

improve the efficiency of the subproblem solving. The effects of an incremental

implementation of filtering algorithms developed for path-constraint are significant. The

path-constraint is used together with other constraints to guarantee the feasibility of the

generated rosters.

In Demassey et al. [44], the CP-CG approach is applied to an employee timetabling

problem. The problem assigns a given set of tasks to a number of employees and

minimizes the number of working employees. The master problem is formulated as a set

partition problem, where the columns of matrix A in (2-12) represent feasible employee

timetables. The pricing subproblem generates the minimum reduced cost timetable,

defended as a sequence of activities satisfying ordering and cardinality constraints. The

CP use cost-regular global constraint to model the pricing subproblem and a cost based

domain filtering algorithm is designed to update both the upper bound and lower bound

of the cost variables.

In solving large-scale IP problems by column generation, it becomes a critical issue to

balance the computation time required to solve the LP relaxation with that required to

compute an integer solution. In the context of CP-CG, this trade-off can be achieved by

using special heuristics for solving the pricing subproblem.

Chapter 2 Preliminaries: an overview of optimisation techniques

- 54 -

The Lowest Reduced-Cost First (LRF) is a heuristic introduced by Fahle et al. [45] that

consists of ordering the variables by decreasing reduced cost. The purpose of this

strategy is to speed up the solution to the LP relaxation of the master problem by trying

to generate columns that are good in terms of reduced cost. Unfortunately, this strategy

is effective only during the first iterations of column generation, and becomes time

consuming when the restricted master problem approaches its optimal value.

Other two labeling heuristics are introduced by Gendron et al.[72], the so-called dual

strategy and the master strategy. The first strategy, dual strategy is similar to the LRF

heuristic; it also sorts the variables by their reduced cost. Different from LRF, it

considers the fact that CP-CG tends to generate similar columns. So it introduces

randomization by a pseudo-random number i to choose not the smallest variable but the

variable having the ith smallest reduced cost. This approach is concerned with the

diversity of the columns. The master strategy is a heuristic that takes into account the

constraints of the master problem to select the next variable to be assigned. The

intuition is to generate columns that shall positively contribute to the solution to the

integer master problem. For instance, when the master problem is a set partition

problem, it is advantageous to generate columns that have nonzero coefficients

uniformly distributed over each row. To achieve this aim, the master strategy first

enumerates how many columns cover each row, and then it generates a column that

considers the less covered rows. The computational results show that both the dual and

the master strategy are useful. However, a combination of the two strategies could be

even more effective and is worth investigating in future as suggested by the authors.

In CP-CG approach, slow convergence is another important issue affecting the

performance of the approach. The slow convergence is partially due to the generation of

the similar columns, particularly frequent in CP rather than other techniques [64]. The

generation of very similar columns is mainly related with the standard CP search

strategy, that is, depth first search.

Chapter 2 Preliminaries: an overview of optimisation techniques

- 55 -

In Sellmann et al. [69], to obtain diverse column, the problem dependent "diversity

constraints" are added. These constraints are used to limit the times that a row is

covered by every column. This idea is similar to the master strategy introduced above

[72]. Limited discrepancy search is used as tree traverse strategy in a pure CP model to

obtain diverse solution to the pricing subproblem.

In Rousseau et al. [73], a preliminary computational study on the vehicle routing

problem with time windows showed that indeed the limited discrepancy search has an

effect on the generation of diverse solution to the problem.

In Gualandi [74], the author proposes a shuffled static order of the decision variables to

generate diverse columns: at each iteration of column generation, before the constraint

solver begins the tree search, the vector of the decision variables is shuffled. This

shuffled static order can be viewed as an implicit random breaking-ties strategy. The

effect of shuffling is shown that it can dramatically reduces the number of iterations,

since it produces distinct columns as the consequence of the constraint propagations.

2.9.2 Integration of exact method with local search

In [57], Raidl et al. present a general classification of existing approaches combining

exact and (meta) heuristic algorithms for combinatorial optimisation. The two main

categories are distinguished, see also Fig. 2.7.

 Collaborative combinations. In a collaborative environment, the algorithms

exchange information, but are not part of each other. Exact and heuristic

algorithms can be executed sequentially.

 Integrative Combinations. In integrative models, one technique is the embedded

component of other techniques.

Here, we follow the classification to review the integration of exact methods with local

search. Some of them has also been reviewed in [75].

Chapter 2 Preliminaries: an overview of optimisation techniques

- 56 -

Fig. 2.7 Structural classification of exact methods and meta-heuristics combinations [57]

(1) Sequential execution:

A. Exact (CP, IP) then LS

In this class of integration, either the exact method is executed as a preprocessing before

the meta-heuristics, or vice-versa. Sometimes, it is difficult to say if the first technique

is used as the initialization of the second, or if the second is the post processing of the

solutions generated by the first. This is one of the most direct and simple integrations.

Here we present a brief review on it.

In [76], CP techniques is used to solve the relaxed problem of an original nurse

rostering problem which only consists of some of the constraints in the first phase. In

the second phase, adjustments with local search and tabu search are applied to improve

the solution from the first phase.

In [77], the nurse rostering problems are modeled by two generic constraints within the

CP paradigm to generate individual schedules. These individual schedules work as

chromosomes which are put into second stage-genetic algorithm to make improvement.

Chapter 2 Preliminaries: an overview of optimisation techniques

- 57 -

B. LS then exact method

In general, the most natural approach of applying local search before an exact approach

is that local search method can provide an upper bound for Branch-and-Bound (in a

minimization problem, or a lower bound in a maximization problem). The meta-

heuristic gives an initial solution (which serves as an upper bound) to define a reduced

search space to the Branch-and-Bound. This can speed up the Branch-and-Bound search.

Another class of combination is rarer comparing with the above. The idea is that the

local search procedure reaches a "plain" - an area where further improvement is hard to

achieve. At this point a change to a complete search procedure such as Branch-and-

Bound is possible. By learning which variable’s values have proven their utilities during

the local search procedure, the subsequent complete search can be restricted only to

admit the values with a higher utility [78].

(2) Cooperative execution:

A. Exact (CP, B&B) in LS

Pesant & Nuijten [79] propose a neighbourhood model to find the best non-tabued

neighbour of a given solution. A master problem model (local search model) and a

neighbourhood model (CP model) are interacted by interface constraints. CP's pruning

guides the local search to explore only the restricted, promising area of neighbourhood,

leading to good approximate results in a reasonable time limit.

Shaw [80] used a local search method named Large Neighbourhood Search to solve the

vehicle routing problems. During the exploring of the enlarged neighbourhood, limited

discrepancy search (in CP) is used in the search tree to re-insert the visits.

In constraint-based local search proposed by Hentenryck [81], the architecture of a

constraint-based local search algorithm consists of declarative and searching

Chapter 2 Preliminaries: an overview of optimisation techniques

- 58 -

components. The declarative component is used to maintain properties that can be

queried to evaluate the effect of local moves. The searching component supports various

abstractions to specify heuristics and meta-heuristics. A software toolkit named Comet

has been developed.

In [82], the guided local search builds up penalties during a search. It uses the penalties

to help local search algorithms escaping from local minima and plateaus. When the

given local search algorithm settles in a local optimum, the guided local search modifies

the objective function using a specific scheme. Then the local search will be operated

using an augmented objective function, which is designed to bring the search out of the

local optimum. The key of this method is in the way that the objective function is

modified.

Cotta et al. [83] propose a framework which lays on the cooperation between genetic

algorithm and a Branch-and-Bound algorithm. The Branch-and-Bound is used as an

operator in the genetic algorithm. The resulting hybrid operator cleverly explores the

dynastic potential (possible children) of the solutions being recombined, providing the

best combination of the genome.

Jahuira et al. [84] propose hybridization between genetic algorithms and exact methods

applied to the travelling salesman problem. The cooperation is introduced in the genetic

functions as the authors replace the genetic crossover by a Branch-and-Bound algorithm

and a minimal spanning tree algorithm.

Large neighbourhood search algorithms [80] are typically cooperation algorithms.

These algorithms can be viewed as local search algorithms which use a large

neighbourhood to improve the efficiency of the search. The exploration of this large

neighbourhood can be either heuristic or exact. A survey of these methods can be found

in [85]. Several studies propose applying exact methods to explore these large

neighbourhoods to find the best solution in a subspace of the global search space to the

optimised problem. These types of approaches have been proposed by Bent and Van

Chapter 2 Preliminaries: an overview of optimisation techniques

- 59 -

Hentenryck to solve the asymmetric travelling salesman problem [86], or Shaw for

vehicle routing problem [80].

B. LS in exact(CP, B&B)

If we consider the cooperation between exact and heuristics methods, one of the most

natural approaches is to design a heuristic to improve the search strategy of the exact

method. An example of this type of cooperation has been proposed by Augerat et al.

[87]. In this study, a Branch-and-Cut algorithm is proposed to solve a capacitated

vehicle routing problem. The cutting plane generation is a crucial part of Branch-and-

Cut algorithm. Indeed, it greatly determines their efficiency. The authors remark that the

linear inequality resulting from the constraint capacities are those which provide the

best cutting planes. So they propose different heuristic approaches (constructive

heuristics, greedy algorithms, and tabu search algorithms) to extract a set of violated

capacity constraints of the relaxed problem.

This advanced cooperation is not widely used for cooperative methods between exact

algorithms and heuristic approaches. Indeed, in many studies, the authors use simple

(node exploration) or specific heuristics (column generation) to optimise the exact

search strategy.

Very recently, a new series of “matheuristics” workshop is proposed as a primary forum

for researchers working on the hybrid methods based on mathematical programming

and local search/ (meta) heuristics. The research exploits mathematical programming

techniques in a (meta) heuristic framework, granting to mathematical programming

approaches the problem robustness and time effectiveness which characterize

metaheuristics. It also exploits the mathematical programming model formulation in the

customization of a metaheuristic for the specific or general problems. We refer to [88]

for a collection of successful combinations.

Chapter 2 Preliminaries: an overview of optimisation techniques

- 60 -

2.10 Conclusions

This chapter presents a review of optimisation techniques: CP, OR techniques and local

search, which will be extensively investigated in the following chapters of this thesis.

CP and Integer Programming are exact optimisation methods to combinatorial

optimisation problems. Global constraints, together with their propagation algorithms,

serve as building blocks for both the problem modelling and the problem solving. They

can be well used to model and solve the complex and large set of constraints presented

in real-world combinatorial optimisation problems. The OR techniques, e.g. Linear

Programming, can perform optimality reasoning through the solution to the relaxed

problem of the original one, and they can also be used to reduce the search space of the

problem.

Therefore, we will investigate hybrid CP approach to the NRPs in chapters 4, 5 and 6.

The hybrid approach proposed in chapter 4 belongs to the category of “Sequential

execution: Exact (CP, IP) then LS” introduced in section 2.9.2. These approaches are

designed based on the properties of the problem and take the advantages of each

component technique. We will also investigate a hybrid method which integrates CP

with local search to get good feasible solutions, not necessarily the optimal solution, in

a reasonable computational time in chapter 5. This hybrid approach falls in the category

of “Cooperative execution, Exact (CP, B&B) in LS”. CP-CG proposed in chapter 6

belongs to the category of “Integration of two exact methods” introduced in section

2.9.1.

For another application problem – the PSP, the basic problem can be modelled and

solved by Linear Programming or Quadratic Programming. For the complex problems

with side constraints, Branch-and-Bound algorithm, integrated with heuristics, i.e. node

selection heuristic, and branching rules, etc. will be investigated in chapter 7. Another

more general integration, where local search serves as branching rule in Branch-and-

Bound will be investigated in chapter 8. Both of the hybrid approaches fall in the

Chapter 2 Preliminaries: an overview of optimisation techniques

- 61 -

category of “Cooperative execution, LS in Exact (CP, B&B)”. These hybrid methods

can seek good quality solutions, not necessary the optimal one, in a very limited

computational time. At the same time, we can have the knowledge of the quality of this

solution.

Chapter 3 Introduction to the application problems

- 62 -

Chapter 3 Introduction to the application problems

3.1 Introduction

This chapter introduces two application problems we tackle by the integration methods.

Firstly, we introduce the Nurse Rostering Problem (NRP) with terms used in the context.

Then we present a brief overview of the modelling issues of NRP. We then review the

previous research on the solution approaches to the NRP, categorised the methodologies

used.

Secondly, we introduce the portfolio selection problem (PSP). The modelling issues and

solution approaches are also introduced.

3.2 The nurse rostering problem

There is no formal definition of NRP due to the fact that a variety of the problems are

present in the application. Usually the problem is described informally. In the

description of NRP, some of the key terms and expressions are frequently used in

literature. Here we first make a distinction between schedule and roster. In practice, the

two words are often used interchangeably, but in this thesis, we denote a line-of-work

for a nurse within the scheduling period as the individual nurse’s schedule; whereas the

overall timetable for all nurses (all schedules) is denoted as the nurse roster.

NRP is to assign each available nurse in a specific category to an individual schedule,

i.e. a sequence of day-on and day-off duties. On each day-on, the nurse can be assigned

to a particular shift (e.g., early, day, evening or night shift). The problem data such as

the number of personnel in a ward, the number of personnel in each skill category, the

demand of each category of nurses and the definition of shift types, etc. are determined

at the earlier stage of staff planning, which is the first stage of the overall nurse

workforce management [1, 89, 90].

Chapter 3 Introduction to the application problems

- 63 -

There are two general types of nurse rostering: cyclical and non cyclical scheduling [91].

Each one has its advantages and disadvantages and is suitable for different situations. In

cyclical scheduling, a single schedule for a fixed planning period is created, and

assigned to all employees. The scheduling restarts once the end of the planning period is

reached. Cyclical scheduling has a number of advantages. As everyone has the same

schedule, nurses cannot feel whether their schedule is worse than that of anyone else.

Secondly, once a good cyclical scheduling is produced, it can be reused until the

scheduling requirements change. Cyclical scheduling does have disadvantages too. It is

more challenging when the covering requirements are different from day to day, or

week to week. The largest drawback in cyclical scheduling is that individual requests

and preferences are very difficult to be taken into consideration and to be satisfied. So

cyclical scheduling is less popular in practice[91].

Non cyclical scheduling, as the name suggests, is opposite to cyclical scheduling. Each

nurse has a schedule which satisfies their personal preferences and requests. So it is

more flexible than cyclical scheduling. However, it is generally much more difficult to

solve. In this thesis, the NRPs investigated are all non cyclical.

The constraints in NRPs can vary from one hospital to another while the objectives can

also vary. These have resulted in a whole range of NRP models and, correspondingly, a

wide range of solution approaches that have been developed for these models.

In the following section of this chapter, we give a brief overview of the modeling issues

of NRP. Then, we review the methods that have been used to solve NRPs of varying

complexity.

Chapter 3 Introduction to the application problems

- 64 -

3.2.1 Modelling the nurse rostering problem

Decision variables and domains

The nurse rostering is commonly described by a nurse-day view which is a direct

depiction of two-dimensional duty rosters. Accordingly, the decision variables can be

defined for each nurse on each day as sij, where i indexes the nurses and j indexes the

days within the scheduling period. The domains of the variables consist of day-on and

day-off duties.

This type of decision variable and domain are widely used in CP. For example, an off

shift with 3 day-on (i.e. early, late, night) shifts can be defined as:

0;

1;

2;

3;

ij

if nurse i take Off shift on day j

if nurse i take Early shift on day j
s

if nurse i take Late shift on day j

if nurse i take Night shift on day j

 
 
 

  
 
  

Table 3.1 shows part of a weekly roster where the shifts are allocated to the (total

number of 8) nurses in a nurse-day view.

Table 3.1 Part of a weekly roster in a nurse-day view

Nurse Mon Tue Wed Thu Fri Sat Sun

A 1 1 1 1 0 0 0

B 3 3 0 0 2 2 2

C 2 2 0 0 1 1 1

…

For 0-1 model applied in IP/MIP, the decision variables are usually customized to be sijk,

where i, j are the same indexes as that for sij, k indexes the possible shifts in a day. In

the above example, sijk is binary:

1,

0,
ijk

if nurse i work shift k on day j
s

otherwise

 
  
 

Chapter 3 Introduction to the application problems

- 65 -

Constraints

Constraints vary from different hospitals. Researchers and practitioners tend to define

the constraints according to the requirements and situation of their own organizations.

This can be seen in a large amount of literature in NRPs. Therefore, it is usually

difficult to have a fair comparison among the different solution approaches. In order to

provide a test bed for the algorithms we developed in this thesis, we choose to

investigate a set of benchmark NRPs. These problems, on the one hand, are from real-

world thus reflecting the request of hospitals; on the other hand, they are also tested by

other researchers, accordingly the different solution approaches can be analyzed and

compared fairly. Next, we present the constraints we are going to investigate in this

thesis. These constraints commonly occur in the benchmark NRPs.

1. The shift coverage requirements must be fulfilled

2. Minimum rest time between shifts

3. Maximum number of shift assignments within the scheduling period

4. Maximum number of consecutive working days

5. Minimum number of consecutive working days

6. Maximum number of consecutive non-working days

7. Minimum number of consecutive non-working days

8. Maximum number of hours worked

9. Minimum number of hours worked

10. Maximum number of a certain shift type worked (e.g. maximum seven night

shifts for the scheduling period)

11. Maximum number of a certain shift type worked per week (same as above but

for each individual week)

12. Valid number of consecutive shifts of the same type

13. Free days after night shifts

14. Complete weekends (i.e. shifts on both Saturday and Sunday, or no shift over

the weekend)

15. No night shifts before free weekends

16. Identical shift types during the weekend

Chapter 3 Introduction to the application problems

- 66 -

17. Maximum number of consecutive working weekends

18. Maximum number of working weekends in four weeks

19. Shift type successions (e.g. Is shift type A allowed to follow B in the next day,

etc)

20. Requested days on or off

21. Requested shifts on or off

Objective functions

Typically, we use standard objective functions in models, such as those in mathematical

programming. For example, the objective min ij ijp s , where pij is the penalty cost of

nurse i working on day j, sij are the decision variables, defines the purpose to minimize

the total penalty cost for all nurses. In other situations, a penalty function can be used

when feasibility cannot be guaranteed. The function is the penalty for violating

constraints. This widely happens in over-constrained NRPs.

3.2.2 Solution approaches to nurse rostering problems

Several recent surveys of employee scheduling provide a large amount of information

about problem models and solution methods [1, 89, 90]. In this section we review the

key methods investigated in the thesis (i.e. CP, IP, and hybrid approaches) that have

been used to solve NRPs of varying complexity. Some of the papers reviewed here are

also reviewed in [1, 90]. In order to provide a new contribution to the research

community, we have made an effort to review the papers by highlighting the key points

about the feature of the problem and that of the solution methods.

(1) OR approaches: LP, and MIP, etc

In this section we review the publications which use Linear Programming and Integer

Linear Programming methods to tackle the NRPs. These methods are usually used to

solve the 0-1 model. The Integer Program problems are usually solved by Branch-and-

Chapter 3 Introduction to the application problems

- 67 -

Bound algorithm, column generation, or Branch-and-Price algorithm, etc. The

procedures such as branching strategy, bounding procedure, and column generation

procedure are critical to the success of the algorithms.

One of the first exact optimisation approaches to NRPs was presented by Warner and

Prawda [92]. The problem is formulated as a Mixed Integer Quadratic Programming

problem. A solution to the problem represents a staffing pattern which specifies the

number of nurses to cover the shifts for six wards. The goal is to minimize the nurse

shortage costs while satisfying the total nursing personnel capacity, and the integral

assignment constraint. The problem is decomposed into linear 0-1 programming master

problem and small quadratic programming subproblems. Each feasible solution to the

subproblems is a candidate solution for the master problem.

Bailey [93] presents an approach which combines the problem of shift planning and the

assignment of those shifts to employees while considering some basic work pattern

constraints. The objective is to minimize the understaffing subject to a fixed workforce

size and overtime restriction. Linear Programming is efficient to identify the optimal

shifts and on-off patterns. The shifts are then matched to the patterns heuristically,

aiming to minimize the difference in a nurse’s shift start time over the period.

Mason and Smith [40] describe column generation methods to efficiently solve a NRP

using linear and Integer Programming techniques. Columns are generated by dynamic

programming solving the shortest path problems with respect to the nurse’s preferences

for different shifts, and consecutive on-off pattern, etc.

Jaumard et al [41] solve a NRP with the objective of reducing salary cost, improving

nurse preference satisfaction. They also use column generation techniques where the

columns correspond to individual schedules for each nurse. The subproblem is a

resource constrained shortest path problem.

Chapter 3 Introduction to the application problems

- 68 -

Bard and Purnomo [94] combine the heuristic and Integer Programming methods to

solve a NRP with up to 100 nurses and approximately 13 hard and soft constraints. The

objective of the problem is to minimize the costs incurred from employing outside

nurses and to maximize the satisfaction of nurses’ working preferences. High quality

individual nurse schedules are created by using a single or double shift swapping

heuristic on a base schedule. These columns are then used to form a set covering

problems which is solved by Branch-and-Bound. The authors find that, for most of the

instances that the algorithm is tested on, the majority of the computational time is spent

on generating columns rather than Branch-and-Bound. More recently, Bard and

Purnomo propose a nurse rostering model which combines cyclic and preference

scheduling in [95]. The problem is solved using Lagrangian relaxation and Branch-and-

Price. Maenhout and Vanhoucke [96] present an exact Branch-and-Price algorithm for

NRP incorporating different branching strategies.

As we can see from the publications discussed above, column generation is often used

in OR approaches to NRPs. This is due to the feature of the NRPs. The columns in

NRPs represent the possible work patterns for individual nurses. In the earlier

publications, a restricted set of columns is predefined for assignment. More recently, the

columns are generated by OR algorithms, such as shortest path algorithm, dynamic

programming. And the heuristics can be integrated into the column generation

procedure by modifying other columns via swapping assignments. More sophisticated

methods such as Constraint Programming based column generation emerge more

recently.

(2) Constraint Programming

Darmoni et al [97] use CP to solve the scheduling problems in a French hospital. The

model is build based on Charme, a Constraint Programming language, consisting of a

certain level of constraints to be satisfied. The solution procedure of the CP model

consists of three main parts. Constraint propagation is first performed on each variable

domain to deduce reduced domain. The smallest domain first heuristic is applied as the

Chapter 3 Introduction to the application problems

- 69 -

variable selection heuristic in Charme. A search strategy trying to ensure fair scheduling

among nurses is applied. The approach is able to produce satisfactory schedules over a

planning horizon up to 6 weeks.

Weil et al [98] apply a CP solver: ILOG solver to solve a NRP with only a number of

typical constraints such as minimum day off and consecutive shift pattern constraints.

The authors present how to model the constraints in ILOG solver as a CSP. The system

can find one feasible solution or all feasible solutions according to the request of the

user. With respect to the soft constraints, the system can only provide the solution

satisfying hard constraints and indicate if the solution violates soft constraints or not.

Cheng et al [99] present a CP method for solving a week long NRP in a Hong Kong

hospital. A redundant modeling idea is described, which involves formulating the same

problem in two distinct ways (shift to nurse and nurse to shift assignment). During the

search, both formulations are simultaneously updated and fed back into each other. For

each soft constraint, a branching decision is posted. One branch is to add the soft

constraint to the model; the other branch is without the soft constraint. A final result to

the problems is presented by the percentage of the satisfaction of soft constraints.

Metivier et al [100] propose a hybrid approach which emphasizes the application of soft

global constraints. The interaction among the global constraints is investigated through

the communication among them. The filtering algorithm can be more efficient when the

constraints which share a common set of variables are considered together.

Wong and Chun [101] apply CP to solve the NRP with the help of meta-level reasoning

and probability-based order heuristic. The meta-level reasoning is executed before the

search to generate redundant or implied constraints from the existing constraints. These

new constraints can help in further reducing the search space. Probability-based

ordering is used as a value ordering heuristic. It approximates the probability of value

assuagements occurring in the solution set and thus uses this information to guide the

search.

Chapter 3 Introduction to the application problems

- 70 -

(3) Hybrid approaches

Hofe [102] combines the ideas of heuristic local search with CP techniques to create an

automated nurse rostering system tested in a German hospital. It models the problem as

a Hierarchical Constraint Satisfaction Problem (HCSP) with fuzzy constraint. The

constraints are organised into hierarchies of different priorities to reflect their

importance. The fuzzy constraint allows a constraint to be partially satisfied and

partially violated. The HCSP are solved by heuristics which are used to identify and

repair violations.

Li et al. [76] present a hybrid AI approach to a class of over-constrained NRPs. Their

approach has two phases. The first phase solves a relaxed version of the problem which

only includes hard rules and part of the nurses’ requests for shifts. It applies a forward

checking algorithm with non-binary constraint propagation, variable ordering, random

value ordering and compulsory back-jumping. In the second phase, the adjustments are

made by descend local search and tabu search to improve the solution. The experiments

show that the approach is able to solve this class of problem well.

Demassey et al. [44] investigate a CP based column generation approach which

emphasizes the cost-filtering algorithms of optimisation constraint. The authors

introduce a new optimisation constraint- cost regular for a global constraint- regular.

The optimisation constraint links a cost to the decision variable assignments. Its filtering

algorithm is based on the computation of the shortest and longest paths in a layered

directed graph. The approach is applied to an employee timetabling problem where the

columns are generated with the help of cost-regular constraint.

Sellmann et al. [69] develop two different algorithms to tackle the large-scale

optimisation problem of airline crew assignment. The first one is an application of the

CP based column generation framework. The second approach performs a CP based

heuristic tree search.

Chapter 3 Introduction to the application problems

- 71 -

The literature listed here includes general approaches to NRPs. More related work with

each of the algorithms we proposed will be introduced in the following corresponding

chapters.

3.3 The portfolio selection problem

Portfolio selection is one of the most relevant and studied topic in finance. The problem

is primarily concerned with finding a combination of assets that satisfies an investor’s

needs the best. These needs can be basically expressed as minimizing the risk and

guaranteeing a given level of returns. The foundation to portfolio selection as we know

today is laid by Harry M. Markowitz by a quadratic optimisation model - mean–

variance model (MV). The basic MV model selects the composition of assets which

either achieves a predetermined level of expected return while minimizing the risk, or

achieves the maximum expected return within a pre-defined level of risk.

Some aspects of the financial theory underlying the Markowitz’s model and related

models are out of the scope of our research. These financial theories include: the

assumption about the independence of the investor’s believes and the expected return

and risk of assets, the assumption about the investor’s utility functions etc. Our research

focuses on the algorithm design and problem solving based on the Markowitz’s model.

3.3.1 Modelling the portfolio selection problem

The basic model: Markowitz mean-variance model

Markowitz’s mean-variance (MV) model [103] is concerned with a trade-off between

the expected return and the risk. In this formulation, the risk of the portfolio is measured

by the covariance among the selected assets. The MV formulation provides a

fundamental basis for the modern portfolio selection theory in financial investment.

The Markowitz MV model is as follows:

Chapter 3 Introduction to the application problems

- 72 -

1 1

1

1

min (3-1)

. . (3-2)

1

j ni n

ij i j
i j

i n

i i
i

i n

i
i

w w

s t r w R

w




 

















 (3-3)

0 1, 1,...iw i n  

Where n is number of assets A = { a1, …, an }. Each asset ai is associated with an

expected return (per period) ri, and each pair of assets < ai, aj > has a covariance
ij .

The covariance matrix
n n 

is symmetric and each diagonal element
ii represents the

variance of asset ai, while the covariance
ij represents the correlated risks between

pairs of assets. A positive value R represents the expected return.

To obtain the expected return, rational investors should pick a combination of

diversified assets, i.e. a portfolio, to reduce the risk which is measured by the covariance

of the combined portfolios. A portfolio can be represented by a set W = { w1, …, wn },

where wi represents the percentage wealth invested on asset ai. The value

1 1

j ni n

ij i j
i j

w w


 
 represents the variance of the portfolio, and is considered as the measure of

the risk associated with the portfolio.

Variables and domains

In the basic MV model, the variables wi are real and their domain is 0 1iw  ,

represents the percentage wealth invested on the asset.

In practice, there are a wide range of real-world trading constraints. These include the

cardinality constraint (a limit on the total number of assets hold in the portfolio), the

minimum position size constraint (bounds on the amount of each asset), the minimum

trade size constraint (bounds on the amount of transaction occurred on each asset) and

transaction costs, etc. When such constraints are considered and added to the basic MV

Chapter 3 Introduction to the application problems

- 73 -

model, usually integer variables are needed. These will be investigated in chapters 7 and

8.

Objective functions

In the basic MV formulations, the objective can be either to minimize the risk (3-1)

(satisfying a given return), or maximize the return (not exceeding a given maximum

risk), or both. In the former cases the problem is single-criterion, while in the latter case

it is multi-criteria. The problem can be modeled as a multi-objective problem with two

conflicting objectives: minimize the variance, denoting the risk associated with the

portfolio, whilst maximizing its profits. Essentially, the optimization problem is to find

portfolios amongst the n assets that satisfy these two objectives simultaneously. An

optimal portfolio is one that has the maximum return with the minimum risk and the set

of all these optimal portfolios will form the efficient frontier illustrating the trade-off

between the conflicting objectives, as represented by the line in Fig. 3.1. This efficient

frontier will be used to evaluate the quality of solutions in chapter 7 and 8.

Fig. 3.1 Efficient Frontier (EF) which defines the trade-off between returns and risk in a portfolio

of assets

In this thesis, we focus on the single-criterion problem. The applications on the single-

objective formulation (in which the risk has to be minimized) very often solve a

Chapter 3 Introduction to the application problems

- 74 -

portfolio selection problem instance with given expected return R. Solving the instance

for R ranging over values from a finite set can give an estimation of the efficient

frontier.

In the basic MV model, covariance is applied as risk measure in the objective function.

Applying which term to measure the risk associated with the portfolio, to a certain

extent, determines the complexity of the model built. Besides applying covariance as

the risk measure of the portfolio, several other risk measures have been investigated in

the literature and practice. In [104], the authors propose to use the mean absolute

deviation as a measure of risk and formulate the first Linear Programming model for the

problem. They show that the mean absolute deviation model, under the assumption of a

normal distribution of the return, is equivalent to the quadratic MV model. Later on, in

[105] the mean absolute semi-deviation is proposed instead of the mean absolute

deviation as a risk measure to reduce the constraints in the mathematic model. More

recently, some researchers focus on other risk measures such as value at risk and

conditional worst expectation [106, 107].

Constraints

There are two constraints in the basic MV model: return (3-2) and budget (3-3)

constraints. They are the most important constraints in portfolio selection problems,

because they characterize the essential part of the problems. Return constraint (3-2)

presents that the expected return should be met. Budget constraint (3-3) means that all

the capital must be investigated.

As we stated before, in practice, there are wide range of real-world trading constraints.

These include the cardinality constraint, the minimum position size constraint, the

minimum trade size constraint and the transaction costs, etc. We illustrate all of the

portfolio selection model attributes (variables, objectives and constraints) that will be

investigated in this thesis in Fig. 3.2.

Chapter 3 Introduction to the application problems

- 75 -

Fig. 3.2 Variables, objective and constraints of portfolio selection problems

3.3.2 Solution approaches to portfolio selection problems

In literature, different techniques and approaches to PSPs can be generally categorised

into three groups according to which and how the techniques are applied: (1) heuristics,

(2) local search hybridised with exact methods in a sequential manner, and (3) exact

method as the main body with the assistance of heuristics.

Heuristic (or meta-heuristic) methods have been applied to constrained PSPs, especially

for those of large-scale. In [108], a simulated annealing algorithm is proposed to solve

the MV model with additional constraints. Moving operators (direction of moves and

amplitude of moves) are designed with domain knowledge to deal with the different

constraints. For constraints that must be strictly satisfied, an “all-feasible” approach is

applied to enforce the satisfaction of the constraint and forbid the generation of any

Chapter 3 Introduction to the application problems

- 76 -

solutions violating the constraint. The other constraints are handled by a “penalty”

approach which adds a penalty for each violated constraint in the objective function.

In [109], the authors highlight the different shapes of the constrained efficient frontiers

compared with that of unconstrained problem, and show that certain portions of the

efficient frontier are disconnected. What’s more, three heuristic algorithms, which are

genetic algorithms, tabu search and simulated annealing, are used to plot the efficient

frontier.

In [110], different neighbourhood relations (i.e. structures) such as idR(increase,

decrease, Replace), idID(increase, decrease, Insert, Delete) and TID(Transfer, Insert,

Delete) are devised to define the quantity of the move in a tabu search algorithm. The

results are improved compared with those in [109].

In another group of approaches, exact methods are hybridised with local search

algorithms. For example, in [111], local search is used as the master solver to select the

assets to be included in the portfolio, and quadratic programming is used as the slave

solver to minimize the risk (variance).

In [106], an exact Branch-and-Bound approach is proposed based on a heuristic

partition of the initial problem into two subproblems, and a simple local search is used

to construct the initial solution.

Both of the above two groups of approaches, i.e. pure local search techniques [108-110]

and hybrid approaches where the local search serves the main role [106, 111], cannot

guarantee or provide a measure of the solution quality. We do not know how far we are

from the optimal solution(s). To achieve a measurable solution quality in a reasonable

computational time, exact methods with heuristics are applied to the constrained PSPs.

In [112] and [113], exact B&B solution approaches are proposed for the problem

subject to the buy-in threshold constraint, lots constraint and cardinality constraint.

However, these constraints are considered separately which leads to three independent

Chapter 3 Introduction to the application problems

- 77 -

models. In [114], an exact solution approach is proposed to the PSP under stochastic

and integer constraints. A static branching rule and a dynamic branching rule are

proposed for Branch-and-Bound in order to obtain the optimal solution, where these

constraints are also considered separately.

Chapter 4 Hybrid CP with Variable Neighourhood Search approach to nurse
rostering problems

- 78 -

Chapter 4 Hybrid CP with Variable Neighbourhood

Search approach to nurse rostering problems

4.1 Introduction

This chapter and the following chapters 5 and 6 present three integration methods to our

first application problem – the nurse rostering problem.

The research starts from the property of the NRPs. A large set of constraints (i.e.

working regulations and personnel preferences) are present in the NRPs. Some of them

are logic constraints and very complex. This key property of the problem makes CP

techniques a good option to model the complex constraints and solve the problem.

What is more, the real-world NRPs we are tackling are over-constrained. That is, there

is no feasible solution if all of the constraints must be satisfied. Therefore, soft

constraints are applied to model the conflicting preferences of nurses. We seek an

(optimal) feasible solution that minimizes the violation of soft constraints.

As introduced in section 1.1, in this chapter, we decompose the problem according to

the constraints. That is, we first consider certain set of constraints only. A feasible

solution is generated by CP techniques with respect to this set of constraints first, and

then the rest of constraints are handled by a second stage local search. Therefore, this

hybrid method can be represented by a two-stage framework “feasible solution +

improvement”.

Under this framework, a feasible initial solution is first constructed directly by solving a

CSP model which consists of all of hard constraints. However, this initial solution

cannot be efficiently improved by the second stage local search shown by our

experiments. We propose a sequence based initial solution generation method to

construct feasible initial solutions. The basic idea of this approach is based on the

Chapter 4 Hybrid CP with Variable Neighourhood Search approach to nurse
rostering problems

- 79 -

observations that high quality nurse rosters consist of high quality shift sequences.

Therefore, at the first stage, constraint satisfaction model is used to generate weekly

rosters that consist of high quality shift sequences satisfying a subset of constraints. An

iterative forward search is then adapted to extend them to build the complete feasible

solutions. Variable and value selection heuristics are employed to improve the

efficiency. At the second stage, a simple Variable Neighourhood Search is used to

quickly improve the feasible solution obtained. By decomposing the problems into

solvable subproblems for CP, the search space of the original problems is significantly

reduced. Thus the feasible solutions are generated efficiently by CP while the

optimisation of the feasible solutions relies on the second stage local search.

4.2 Problem description

Here, we first describe one of the benchmark NRPs we will tackle in this thesis. The

benchmark NRP (named ORTEC) we are tackling are derived from real-world problems

in intensive care units at a Dutch hospital. The problem consists of assigning a

predefined number of shifts of four types (i.e. early, day, late and night shifts) within a

scheduling period of 5 weeks to 16 nurses of different working contracts in a ward.

Twelve of the full-time nurses work 36 hours per week. One and other three part-time

nurses work maximally 32 and 20 hours per week, respectively. The problems have a

number of variants with respect to the number of nurses, the number of shift types, the

number of skill levels and the length of scheduling period, etc., but the main constraints

are similar. We define the main problem here and test a number of its variants and

several other problems in the experiments. More details can be found in [115] and at

http://www.cs.nott.ac.uk/~tec/NRP/. Table 4.1 presents the definitions and the daily

coverage demand of the four shift types in the problems.

Chapter 4 Hybrid CP with Variable Neighourhood Search approach to nurse
rostering problems

- 80 -

Table 4.1 Shift types and demand during a week. Each shift covers 9 hours including one hour of

resting time, except that the night shift contains no resting time. So there are 8 actual working hours for

each of these shift types.

shift type Start time End time Demand

Mon Tue Wed Thu Fri Sat Sun

Early 07:00 16:00 3 3 3 3 3 2 2

Day 08:00 17:00 3 3 3 3 3 2 2

Late 14:00 23:00 3 3 3 3 3 2 2

Night 23:00 07:00 1 1 1 1 1 1 1

We present a summary of the constraints in ORTEC in Table 4.2, followed by the

explanations of them. Details of all constraints in different problems we are concerned

with in this thesis are listed in Appendix.

Table 4.2 Summary of constraints in the benchmark nurse rostering problems, more details in

Appendix.

Hard constraints Only one shift on the same day for each nurse

Exact coverage requirement (no over/under cover)

Working time

Shift patterns

Soft constraints Workload balance

Pattern preferences

Shift patterns

Constraint

Hard constraints (denoted by H)

H1 Demand needs to be fulfilled (i.e. all the requested shifts in Table 4.1 must be

covered).

H2 For each day, one nurse can only be assigned to one shift.

H3 Within a scheduling period, a nurse is allowed to exceed the number of hours for

which he/she is available for his/her department by at most 4 hours.

H4 The maximum working time per week is on average 36 hours over a period of 13

consecutive weeks.

H5 The maximum number of night shifts is 3 per period of 5 consecutive weeks.

Chapter 4 Hybrid CP with Variable Neighourhood Search approach to nurse
rostering problems

- 81 -

H6 A nurse must receive at least 2 weekends off duty per 5 week period. A weekend

off duty lasts 60 hours including Saturday 00:00 to Monday 04:00.

H7 The length of a series of consecutive night shifts is at least 2. Following them, a

42 hours rest is required.

H8 The number of consecutive night shifts is at most 3.

H9 The number of consecutive shifts (workdays) is at most 6.

Soft constraints (denoted by S) Weight

S1 For the period of Friday 23:00 to Monday 0:00, a nurse should have

either no shifts or at least 2 shifts (Complete Weekend).

1000

S2 Avoid sequence of shifts with length of 1 for all nurses. 1000

S3 For all nurses, the length of a series of night shifts should be within

the range [2, 3]. It could be part of, but not before, another sequence

of shifts.

1000

S4 The rest after a series of day, early or late shifts is at least 2 days. 100

S5a For nurses with availability of 30-36 hours per week, the number of

shifts is within the range [4, 5] per week.

10

S5b For nurses with availability of 0-30 hours per week, the number of

shifts is within the range [2, 3] per week.

10

S6a For nurses with availability of 30-36 hours per week, the length of a

series of shifts should be within the range of [4, 6].

10

S6b For nurses with availability of 0-30 hours per week, the length of a

series of shifts should be within the range [2, 3].

10

S7 For all nurse, the length of a series of early shifts should be within the

range [2, 3]. It could be within another series of shifts.

10

S8 For all nurse the length of a series of late shifts should be within the

range of [2, 3]. It could be within another series of shifts.

10

S9a An early shift after a day shift should be avoided. 5

S9b An early shift after a late shift should be avoided. 5

S9c A day shift after a late shift should be avoided. 5

S10 A night shift after an early shift should be avoided. 1

Chapter 4 Hybrid CP with Variable Neighourhood Search approach to nurse
rostering problems

- 82 -

These constraints are extracted from the descriptions of the working regulations, rules

and personal preferences from head nurses and administrations of the hospital. These

constraints are categorised into two groups: hard constraints and soft constraints, as

defined below:

Hard constraints must be satisfied in order to obtain the feasible solutions for use in

practice. A roster satisfying all hard constraints is usually termed as feasible.

Soft constraints are not obligatory but are desired to be satisfied as much as possible.

In real life, a roster which satisfies all hard and soft constraints usually does not exist.

The violations of soft constraints in the roster can thus be used to evaluate the quality of

the solutions. Common soft constraints in NRPs aim to generate rosters with a balanced

workload so that human resources are used efficiently.

The categories of hard and soft constraints, indicated above by S and H, are given by

ORTEC, as well as the weights of the soft constraints. Actually, the boundary between

the hard and soft constraints is vague in different real-world NRPs. In this thesis we

apply the benchmark data set to test our algorithms.

The objective of NRPs can be defined as to find a feasible roster (i.e. which satisfy all

hard constraints) with the lowest possible penalty caused by soft constraint violations,

i.e. to minimize a weighted sum of the penalties from all violations of soft constraints.

4.3 CP approach to NRPs

As we reviewed in chapter 3, the solution approaches from different disciplines to NRPs

have been intensively investigated. Due to the presence of the large set of constraints

(i.e. working regulations and personnel preferences), NRPs are computationally

challenging. This key property of the problem makes CP techniques a good option to

solve the problem due to the following facts:

Chapter 4 Hybrid CP with Variable Neighourhood Search approach to nurse
rostering problems

- 83 -

 CP has the strength of modelling the problem with the global constraints

as introduced in chapter 2. Several global constraints, such as cardinality,

and sequence, etc. capture the structure of the NRPs well.

 Propagation algorithms of these global constraints make them efficient to

find feasible solutions to the problem.

 Most importantly, the solution approach of CP consists of modelling,

propagation and searching and it can be integrated with other techniques.

Therefore, in this chapter we investigate a hybrid CP approach to NRP where CP plays

a key role in the solution procedure.

In real nurse rostering settings, we noticed that the problems are nearly always over-

constrained. Some of the early research works reviewed in chapter 3 are effective in

solving small scale problems with fewer constraints, but are not flexible to deal with

large-scale problems with more complex constraints. We start our investigation by

applying the CP techniques to NRPs and testing pure CP’s ability of solving the large-

scale, over-constrained NRPs.

In this section, we first present how to model the constraints in NRPs within the CP

paradigm by applying the global constraint that can capture the structure of NRPs. Then

we model the problem as a COP and solve it by pure CP. The aim of this pure CP

approach is two-fold: firstly, we can test CP’s ability of handle the problem at hand.

That is, how many constraints can by handled by pure CP techniques. Secondly, based

on the observation of this pure CP approach, we propose a pre-processing that can be

applied as an initialization heuristic to generate initial solution which will be applied in

chapters 5 and 6.

4.3.1 Modelling the constraints

We first present notions that will be applied in the models as follows:

--N: set of nurses (index i)

Chapter 4 Hybrid CP with Variable Neighourhood Search approach to nurse
rostering problems

- 84 -

--D: set of days in the scheduling period (index j)

--S: set of shift types, i.e. Early, Day, Late, Night, Off.

For each nurse i and each day j in the scheduling period, we define an assignment

variable sij that indicates which shift is assigned to nurse i on day j. This decision

variable has finite domain, i.e. D (sij) = S.

In addition to the assignment variables, we define some auxiliary variables in order to

implement the constraints of the problems. These auxiliary variables will be introduced

and explained in the context of constraint representation and implementation.

CP is a very flexible technique to model a rich set of constraints due to its powerful

declarative ability. In the most simple and straightforward way, we could define the

constraints in NRPs by using primitive constraints, e.g. use “if sij = late, sij+1 ≠ early” to

express that no early shift is allowed after a late shift.

Global constraint in NRPs

Global constraint is a substitute of a set of primitive constraints and is usually equipped

with efficient propagation algorithms to remove inconsistent values from variables’

domains. A list of global constraints with propagation algorithms have been presented

for different application domains in [116]. In this work we use the global constraints

and the soft versions of some global constraints to model some of the constraints in our

problems. NRP is a nice application domain for CP because it showcases several of the

global constraints developed over the years. We first review these global constraints that

are needed, establishing a notation and concentrating on their implementation and

filtering capability (in IBM ILOG Solver as we introduced in chapter 2 section 2.6). We

then go back to the constraints listed in section 4.2, and model the NRPs we are tackling

by using these global constraints.

Sum constraint [page 445 of [5]] considers a set of variables x = (x1, …, xn); the

constraint Sum(x) returns the sum of the values of variables.

Chapter 4 Hybrid CP with Variable Neighourhood Search approach to nurse
rostering problems

- 85 -

Global Cardinality constraint (gcc) is also named as distribute (see [5] pages 420). It

bounds the number of times of certain values being taken by variables. It is written as

follows:

cardinality(x, v, l, u)

where x is a set of variables (x1, …, xn); v is a m-tuple of domain values of the variables

x; l and u are m-tuples of nonnegative integers defining the lower and upper bounds of

the times value v being taken by variable x, respectively. The constraint defines that, for

j = 1, …, m, at least lj and at most uj of the variables x take value vj.For example, the

constraint that a nurse i should work at most 3 night shifts in the whole period j=1…n

can be expressed as cardinality(xij, Night, 0, 3), j=1…n.

Stretch constraint (see [5] pages 444) is written as follows:

stretch(x, v, l, u, P)

where x is a set of variables (x1, …, xn); v is a m-tuple of possible domain values of x; l

and u are m-tuples of lower and upper bounds for x, respectively. P is a set of patterns,

i.e. pairs of values (vj, vj‘), requiring that when a stretch of value vj immediately

precedes a stretch of value vj‘, the pair (vj, vj‘) must be in P.

A stretch is a sequence of consecutive variables that take the same value, i.e., xj-1 ≠ v,

xj, …, xk = v and xk+1 ≠ v. This constraint also restricts that any stretch of value vj in x,

should a length within the range [lj, uj]. Thus the stretch constraint puts bounds on how

many consecutive days a nurse can work on each shift, and which shifts can

immediately follow another. The constraint can omit the restriction on pattern P which

represents no restriction on the pattern.

For example, the following constraint

stretch(sij, Night, 2, 3, P), P = {(Night, Off)}, j=1…n

Chapter 4 Hybrid CP with Variable Neighourhood Search approach to nurse
rostering problems

- 86 -

restricts a nurse having consecutive night shifts within the length [2, 3], and the only

shift type allowed following the night shift is off (as given in P).

Sequence constraint is written as follows:

sequence(x, v, l, u, w)

where x is a set of variables (x1, …, xn); v is a m-tuple of possible domain values of x; l

and u are m-tuples of lower and upper bounds for x, respectively. This constraint also

restricts that any sequence of value vj in x with a length of w , the length should be

within the range [lj, uj].

The difference between sequence and stretch is that the stretch constraint counts

consecutive variables of a certain value, while sequence does not have this restriction.

Table 4.3 summarises the global constraints we applied in modelling and solving the

NRPs, including their corresponding implementation in IBM ILOG Solver. We list the

level of consistency that is claimed to be achieved by the Solver. However, we do not

necessary to achieve these consistency levels because this may lead to a very expensive

running time. We made a balance between the level of consistency and the execution

time spends on it.

As we introduced in section 2.6, the ILOG Solver system provides a wide range of low

level, primitive constraints along with propagation algorithms for these constraints. The

CP Solver system also provides the mechanism for combining the primitive constraints.

In this state-of-art of CP Solver system, the propagation for the combining of primitive

constraints is efficient by certain extension of constraint propagation on primitive

constraints [34]. Therefore, in this thesis, the stretch constraint is implemented based on

two constraints: IloSequence and IloIfThen, where IloSequence is used to restrict

assignments of a certain value and IloIfThen is used to identify the consecutive

variables.

Chapter 4 Hybrid CP with Variable Neighourhood Search approach to nurse
rostering problems

- 87 -

Table 4.3 Summary of the global constraints in modelling nurse rostering problems

Global

constraint

Implementation in ILOG

solver

Level of consistency Filtering algorithm

Sum IloSum Bound consistency AC [4]

Cardinality IloDistribution General arc consistency Regin [16]

Sequence IloSequence General arc consistency Regin [117]

Stretch IloSequence &IloIfThen General arc consistency Regin [16]

Soft global constraint

The crisp (hard) version of global constraints defines the CSP, i.e. a tuple of values is

either allowed or not allowed. When we deal with the preferences in the problem (soft

constraint in our NRPs), soft constraints are applied, where the objective is to minimize

the violation of these soft constraints by using the associated violation measure.

Therefore, the global constraint has to be extended to handle the constraint violations.

We use ~ hereinafter to denote the soft version of the constraint.

To define violation measure of ~gcc(x, d, l, u), we introduce a “shortage” function s and

an “excess” function e [29] for each domain value to measure the negative and positive

deviation with respect to the lower bound l and upper bound u:

,
(,)

0,

l x v if x v l
s x v

otherwise

    
 


,
(,)

0,

x v u if x v u
e x v

otherwise

    
 


where x v denotes the times that variable x takes value v.

Then the violation measure for ~gcc(x,d,l,u) is defined as follows:

~ (,) (,)gcc

v D

s x v e x v


 

Chapter 4 Hybrid CP with Variable Neighourhood Search approach to nurse
rostering problems

- 88 -

For example, if nurse i prefers to work on day shifts within range [4, 5] per week,

represented by ~gcc(sij, Day, 4, 5), j=1…7 , and a schedule below or over this range

leads to a penalty of weight 100, then for the schedule of a week l = [Day, Day, Day,

Off, Off, Off, Off] for nurse i, a penalty can be calculated as w~gcc(l) = 100  (4 – 3) =

100, where ijs Day = 3, lower = 4 and upper = 5 and the violation measure for

~gcc(sij, Day, 4, 5), j=1…7 is 1.

In our model of NRPs, we implement the ~stretch constraint with auxiliary variables

and a mapping which have been successfully applied in [102, 118], to measure the

violations of constraints. For a given sequence l, a variable is used to indicate the

starting point of the shift concerned. The shortage function s(x, v) and excess function

e(x, v) as applied above in ~gcc are used to measure the violations of ~stretch. Although

this implementation leads to an increased number of variables, the resulting constraints

are linear and easy to solve in the CP system.

4.3.2 CP approach to NRPs

Based on the hard and soft version of global constraints we introduced above, we model

the ORTEC problem as a COP which consists of all of the constraints listed in section

4.2.

Model (Pure CP Complete COP)

Decision variable: , () , , {1, 2,3,4,5,6,7......}ij ijs D s S i N j  

Djk: coverage demand of shift type k on day j, {1, 2,3,4,5,6,7......},j k S  , given in

Table 4.1.

Objective:

Minimize e

e

e

C
C

C C

w 



Chapter 4 Hybrid CP with Variable Neighourhood Search approach to nurse
rostering problems

- 89 -

where eC is violation measure for soft constraint Ce. wCe is the weight of soft

constraint Ce. It subject to the following constraints:

H1 Coverage constraint. A number of different shifts must be covered throughout the

scheduling period in order to guarantee the coverage of service. This constraint is

modeled as gcc(sij, S, Djk, Djk), , {1,2,3, 4,5,6,7......},i N j k S  

H2 For each day, one nurse can only be assigned to one shift. This constraint is

implicitly satisfied by assigning exactly one value to each constrained variable.

H3 Within a scheduling period, a nurse is allowed to exceed at most 4 hours more than

his/her available working time. Each shift has 8 hours working time. This constraint

is modeled as sum (8 fij) ≤hm+4 ,j=1…n, where
1,

0,

ij

ij

if s off
f

otherwise


 


. hm is the

available working hours for a nurse of category m in the scheduling period.

H4 Maximum 36 hours working time per week. This constraint is modeled as sum(8

fij) ≤36, j={1….7…}

H5 Maximum 3 night shifts in the scheduling period. This constraint is modeled as

gcc(sij, Night, 0, 3), j={1….7…}. This constraint applies to the whole scheduling

period, but it also restricts weekly scheduling.

H6 At least 2 weekends off in the scheduling period. This constraint is modeled as

gcc(sij, Off, 2, 5), in conjunction with a If-Then constraint: if sij=off, then sij+1=off,

j=6,13,20,27,34

H7,H

8

The length of a series of consecutive night shifts is at least 2. Following them, a 42

hours rest is required. At most 3 consecutive night shifts in the scheduling period.

These two constraints are modeled as a single constraint stretch(sij, Night, 2, 3, P),

P = {(Night,Off)}, j={1….7…}

H9 At most 6 consecutive working days. This constraint is modeled as stretch(sij, ~Off,

1, 6), j={1….7…}. Here ~off represents not off shift, and P is omitted that

represents no restriction on the pattern.

S1 Complete weekend. From Friday 23:00 to Monday 0:00, a nurse should have either

no shifts or 2 shifts. The violation measure of this soft constraint is

11
1,

0,

ij ijS
ij

if s s

otherwise



 


and
6,13,20,27

(1)i ij
j

u S u


 

S2 Avoid a sequence of shifts of length 1 for all nurses. The violation measure of this

Chapter 4 Hybrid CP with Variable Neighourhood Search approach to nurse
rostering problems

- 90 -

soft constraint is 1 22
1, , ,

0,

ij ij ijS
ij

if s off s off s off

otherwise


   
 


and j=1…n-3.

S3 For all nurses, a series of night shifts should be within [2, 3]. It could be part of, but

not before, another sequence of shifts. This constraint is implicitly satisfied by

constraint H7 and H8.

S4 At least 2 days off after a series of day, early or late shifts. This is modeled as

~stretch (sij, Off, 2, 5), j=1…n and the violation measure is calculated as introduced

before.

S5 For full time nurses, the number of working shifts should be within [4, 5] per week.

This is modeled as ~gcc(sij, ~Off, 4, 5), j=1…7, j=8….14…for the corresponded

week. ~Off represents a day-on. For part time nurses, the number of labor shifts

should be within [2, 3] per week. This is modeled as ~gcc(sij, ~Off, 2, 3), j=1…7,

j=8….14…for the corresponding week.

S6 For full time nurses, the length of a series of shifts should be within [4, 6]. This can

be modeled as ~stretch(sij, ~Off, 4, 6), j=1…n. For part time nurses, the length of a

series of shifts should be within [2, 3]. This can be modeled as ~stretch(sij, ~Off, 2,

3), j=1…n

S7 For all nurses, the length of a series of early shifts should be within [2, 3]. This is

modeled as ~stretch(sij, Early, 2, 3), j=1…n

S8 For all nurses, the length of a series of late shifts should be within [2, 3]. This is

modeled as ~stretch(sij, Late, 2, 3), j=1…n

S9 An early shift after a day shift should be avoided. The violation measure is

11, ,
(9)

0,

ij ij

ij

if s Day s Early
S

otherwise


 
 


and j=1…n. An early shift after a late shift

should be avoided. A day shift after a late shift should be avoided. This can be

modeled in a similar way.

S10 A night shift after an early shift should be avoided. This can be modeled in a similar

way as S9.

We do not implement any special designed propagation algorithms for the soft

constraints. This model is solved by pure CP techniques. The experimental results are

presented in section 4.5.

Chapter 4 Hybrid CP with Variable Neighourhood Search approach to nurse
rostering problems

- 91 -

From the experiments, it was observed that finding even just feasible solutions with

respect to all hard and soft constraints for the large-scale problem ORTEC is very time

consuming (see Table 4.6). Therefore, we design a heuristic relaxation approach to

construct feasible solutions to the problem.

As defined above, a violation measure can be used to model soft constraints in over-

constrained problems, where no feasible solution exist if all constraints have to be

satisfied. However, propagation upon these soft constraints, compared with that on hard

constraints, is not very efficient [119]. Specific propagation algorithms have been

designed in literature. In our work, we do not rely on the designing of these specific

propagation algorithms. An indirect constraint relaxation method is applied to obtain

initial solutions as shown in Fig. 4.1. Firstly soft constraints are sorted increasingly

according to their weights (importance). Then start by treating all soft constraints

crisply (which will obviously lead to no feasible solutions), we relax the soft constraint

with the least weight step by step until a feasible solution can be found. This method has

been shown to be very fast and efficient due to the powerful propagation in CP to find

feasible solutions.

This initial solution heuristic will be applied in chapters 5 and 6.

Fig. 4.1 Initial solution generation

4.4 Problem decomposition and hybrid CP approach to NRPs

As we introduced in section 1.1, we will decompose the NRP according to the

constraint of the problem. That is, we are first concerned with certain selected set of

constraints only. Feasible solution is generated by CP techniques with respect to this set

Algorithm. Initial solution generation
1: Sort the soft constraints increasingly according to their weights;
2: Add the sorted soft constraints and all the hard constraints into constraint set C;
3: Solve the problem P(X, D, C) as a constraint satisfaction problem by CP;

If P(X, D, C) = infeasible, then relax the soft constraint ci with the least weight, remove ci from C;
go to step 3;
Else return the feasible solution.

Chapter 4 Hybrid CP with Variable Neighourhood Search approach to nurse
rostering problems

- 92 -

of constraints first. Then the rest of constraints are tackled by a second stage local

search method. Therefore, this hybrid method can be represented by a two-stage

framework “feasible solution + improvement”.

4.4.1 Problem decomposition

Decomposition is one option to deal with large-scale problems with complex constraints.

Decomposition techniques have been investigated recently in NRPs. Since most of the

NRPs are over-constrained and difficult to solve directly, decomposing the original

problem into subproblems which are easier to solve is well motivated. There are several

ways of decomposition in the nurse rostering literature: (1) Decomposition by

constraints: construct solutions only subject to a subset of constraints of the problem.

Based on the solutions obtained, further adjustment or improvement is made to satisfy

the rest of the constraints. (2) Decomposition by variables: The roster for the whole

ward of nurses consists of the schedule for each nurse in the ward. So the personnel

schedule is first generated subject to all related constraints for each nurse. Then these

schedules are combined to construct the whole roster. The boundary between these two

types of decomposition is usually vague because of the nature of the NRPs. For example,

when the problem is decomposed by variables, i.e. to generate schedule for each nurse,

only the schedule related constraints are included (subset of constraints of the whole

problem), so it can also be seen as decomposed by the constraints.

The problem ORTEC we are solving has a very large search space, for which a

systematic tree search is computationally expensive and cannot provide a solution even

after one day’s computation which is shown by computational experiments in section

4.5 (see Table 4.6) by solving the Model (Pure CP Complete COP). We thus investigate

a two-stage hybrid CP approach:

 Stage I: Initial solution construction by CP.

 Stage II: A Variable Neighourhood Search is then used to improve the solution

built from stage I.

Chapter 4 Hybrid CP with Variable Neighourhood Search approach to nurse
rostering problems

- 93 -

We first present how to construct initial feasible solution under this two-stage

framework.

When we construct the initial feasible solutions, we can apply the initial solution

heuristic proposed in Fig. 4.1. This is a straightforward way to apply CP to construct a

feasible initial solution subject to certain set of constraints. Therefore, we name this

method as “direct” initial solution construction. Another more “indirect” initial solution

construction method is also investigated which is named as sequence based initial

solution construction.

Stage I: Initial solution construction

4.4.2 Direct initial solution construction

To apply this direct initial solution construction, we model the problem as a CSP

problem in Model (Direct Initial CSP) with all of the constraints identified by initial

solution generation heuristic presented in Fig. 4.1. In this Model (Direct Initial CSP), all

of the constraints can be formulated in a similar way as shown in Model (Pure CP

Complete COP). The initial feasible solution then is improved by the second stage local

search.

From the computational experimental results presented in Fig. 4.6 of section 4.5, we can

see that the violation of certain high weight soft constraints cannot be eliminated by the

local adjustment of the local search. The final solution after the local search still has

violation of high weight soft constraint which is presented by the high objective value.

The similar observation has also been identified by several researches in [102, 120, 121].

Therefore, we propose another initial solution construction method to obtain better

quality initial solutions.

Chapter 4 Hybrid CP with Variable Neighourhood Search approach to nurse
rostering problems

- 94 -

4.4.3 Sequence based initial solution construction

The underlying idea of this initial solution construction approach is based on some

common features of high quality rosters - they consist of high quality shift sequences

satisfying a set of constraints in the problems. Therefore, we generate these high quality

shift sequences first. Based on them, the initial feasible solution can be constructed.

In this work, we categorise the constraints into two groups: sequence and schedule

constraints, which are considered separately at different steps of the first stage of the

hybrid CP approach. In the first step, only sequence constraints are considered in the

CSP model Model (Sequence based Initial CSP) to generate weekly rosters with high

quality shift sequences. In the second step, both sequence and schedule constraints are

included in another COP model Model (Sequence based Initial COP) to extend the

weekly rosters to build the complete roster. The two groups of constraints are described

as follows:

 Sequence constraints are applied when generating shift sequences for each nurse

within weekly rosters, and

 Schedule constraints are applied when the weekly rosters are extended to the

complete rosters for all nurses.

Two groups of constraints are listed as follows:

Type Type

H1 Both* S1 Sequence
H2 Both* S2 Sequence
H3 Schedule S3 Sequence
H4 Sequence S4 Sequence
H5 Both* S5 Sequence
H6 Schedule S6 Schedule
H7 Both* S7 Schedule
H8 Both* S8 Schedule
H9 Both* S9

S10
Both*
Both*

We also define the following terms that are frequently used in the rest of the chapter:

Chapter 4 Hybrid CP with Variable Neighourhood Search approach to nurse
rostering problems

- 95 -

 Shift sequence is the sequence of shifts assigned to each nurse within weekly

rosters;

 Weekly roster is the one week roster consists of shift sequences for all nurses;

 Roster is the complete assignment of shifts within the scheduling period to all

nurses, i.e. the complete solution to the problem.

We decompose the problems into weekly subproblems, and then extend the weekly

rosters obtained to complete solutions. Two CP models are thus defined, where different

variables and their corresponding domains are given with respect to shift sequences in

weekly rosters and complete solutions.

The first model is Model (Sequence based Initial CSP) (subjects to a subset of

constraints). It models the decomposed problem which is concerned with weekly rosters.

It should be noted that some of the sequence constraints are soft constraints in the

problem (i.e. S1, S2, S3, S4, S5, S9, and S10). Since we try to build weekly roster as a

CSP model (In a CSP model, constraints are strictly satisfied or not. It cannot deal with

soft constraints), some of the sequence constraints in soft constraints (i.e. S5, S9 and

S10) are relaxed (not include in the Model (Sequence based Initial CSP)). Some of the

soft sequence constraints with high weights are restricted (they are modeled as hard

constraints in the Model (Sequence based Initial CSP)), such as S1, S2, S3 and S4. The

reason why we use this approach is that we try to consider as many constraints as

possible in the Model (Sequence based Initial CSP) model. An initial test showed that

restricting high weight soft constraints did not prevent the generation of feasible

solutions. If it did, we cannot model these soft constraints as hard ones.

Model (Sequence based Initial CSP)

Decision variable: , () , , {1, 2,3,4,5,6,7}ij ijs D s S i N j  

Djk: coverage demand of shift type k on day j, {1, 2,3, 4,5,6,7},j k S  , given in Table

4.1.

Chapter 4 Hybrid CP with Variable Neighourhood Search approach to nurse
rostering problems

- 96 -

The sequence constraints which we are concerned with in Model (Sequence based

Initial CSP) is modeled as following:

H1 Coverage constraint. A number of different shifts must be covered throughout the

scheduling period in order to guarantee the coverage of service. This constraint is

modeled as gcc(sij, S, Djk, Djk), , {1, 2,3,4,5,6,7},i N j k S  

H2 For each day, one nurse can only start one shift. This constraint is implicitly

satisfied by assigning exactly one value to each constrained variable.

H4 Maximum 36 hours working time per week. This constraint is modeled as sum(8

fij) ≤36, j={1….7}

H5 Maximum 3 night shifts in the scheduling period. This constraint is modeled as

gcc(sij, Night, 0, 3), j={1….7}. This constraint applies to the whole scheduling

period, but it also restricts weekly scheduling.

H7,H

8

The length of a series of consecutive night shifts is at least 2. Following them, a 42

hours rest is required. At most 3 consecutive night shifts in the scheduling period.

These two constraints are modeled as a single constraint stretch(sij, Night, 2, 3, P),

P = {(Night,Off)}, j={1….7}

H9 At most 6 consecutive working days. This constraint is modeled as stretch(sij, ~Off,

1, 6), j={1….7}. Here ~off represents not off shift, and P is omitted that represents

no restriction on the pattern.

S1(H) Complete weekend. From Friday 23:00 to Monday 0:00, a nurse should have either

no shifts or 2 shifts. This can be modeled as hard constraint: sij = sij+1 , i=6

S2(H) Avoid a sequence of shifts of length 1 for all nurses. This can be modeled as hard

constraint: if sij =Off and sij+1 =~Off, then and sij+2 =~Off, j={1….5}.

S3(H) For all nurses, a series of night shifts should be within [2, 3]. It could be part of, but

not before, another sequence of shifts. This constraint is implicitly satisfied by

constraint H7 and H8.

S4(H) At least 2 days off after a series of day, early or late shifts. This can be modeled as

hard constraint: stretch (sij, Off, 2, 5), j={1….7}.

As stated above, the soft sequence constraints with high weights are restricted (they are

modeled as hard constraints in the Model (Sequence based Initial CSP)), such as S1, S2,

S3 and S4, denoted by (H) above.

Chapter 4 Hybrid CP with Variable Neighourhood Search approach to nurse
rostering problems

- 97 -

Model (Sequence based Initial COP)

Decision variable siw: represents the shift sequence of one week length assigned to nurse

i in week w. The domain of variables is the permutations of the shift sequences

generated by the first model, i.e. {(0011444), (4400022), …}. The model is presented as

follows:

Objective:

Minimize e

e

e

C
C

C C

w 



where eC is violation measure for soft constraint Ce. wCe is the weight of soft

constraint Ce. It subject to additional constraints:

H3 Within a scheduling period, a nurse is allowed to exceed at most 4 hours more than

his/her available working time. Each shift has 8 hours working time. This constraint is

modeled as sum (8 fij) ≤hm+4 ,j=1…n, where
1,

0,

ij

ij

if s off
f

otherwise


 


. hm is the

available working hours for a nurse of category m in the scheduling period.

H6 At least 2 weekends off in the scheduling period. This constraint is modeled as gcc(sij,

Off, 2, 5), in conjunction with a If-Then constraint: if sij=off, then sij+1=off,

j=6,13,20,27,34

S5 For full time nurses, the number of labor shifts should be within [4, 5] per week. This

is modeled as ~gcc(sij, ~Off, 4, 5), j=1…7, j=8….14…for the corresponded week.

~Off represents a day-on. For part time nurses, the number of labor shifts should be

within [2, 3] per week. This is modeled as ~gcc(sij, ~Off, 2, 3), j=1…7, j=8….14…for

the corresponding week.

S6 For full time nurses, the length of a series of shifts should be within [4, 6]. This can

be modeled as ~stretch(sij, ~Off, 4, 6), j=1…n and the violation measure is calculated

as introduced before. For part time nurses, the length of a series of shifts should be

within [2, 3]. This can be modeled as ~stretch(sij, ~Off, 2, 3), j=1…n

S7 For all nurses, the length of a series of early shifts should be within [2, 3]. This is

modeled as ~stretch(sij, Early, 2, 3), j=1…n

S8 For all nurses, the length of a series of late shifts should be within [2, 3]. This is

Chapter 4 Hybrid CP with Variable Neighourhood Search approach to nurse
rostering problems

- 98 -

modeled as ~stretch(sij, Late, 2, 3), j=1…n

S9 An early shift after a day shift should be avoided. The violation measure is

11, ,
(9)

0,

ij ij

ij

if s Day s Early
S

otherwise


 
 


and j=1…n. An early shift after a late shift

should be avoided. A day shift after a late shift should be avoided. This can be

modeled in a similar way.

S10 A night shift after an early shift should be avoided. This can be modeled in a similar

way as S9.

Here we only present the Model (Sequence based Initial COP) with soft constraints

(denoted by ~) but without the implementation and optimisation of soft constraints. The

optimizing of the soft constraints in the Model (Sequence based Initial COP) is fulfilled

by a Variable Neighourhood Search which will be detailed later.

Weekly roster construction

Weekly rosters which consist of high quality shift sequences are firstly generated by

Model (Sequence based Initial CSP). The algorithm used is a systematic backtracking

Depth First Search. The first-fail principle is used as the variable order heuristic. One

illustrative example of weekly roster generated by Model (Sequence based Initial CSP)

is given in Table 4.4. These shift sequences for each nurse satisfy all the sequence

constraints in Model (Sequence based Initial CSP), so they are of high quality and are

desired to be preserved in the final complete solution. By using Model (Sequence based

Initial CSP), thousands of weekly rosters can be generated in seconds (8.7E5

approximately, see experiments in section 4.5). We randomly select 50 initial weekly

rosters to build the complete solutions by using the iterative forward search.

Table 4.4 An illustrative example of weekly (partial) roster.

Mon Tue Wed Thu Fri Sat Sun
Nurse 1 O O D D N N N
Nurse 2 N N O O O E E

… …

Chapter 4 Hybrid CP with Variable Neighourhood Search approach to nurse
rostering problems

- 99 -

Roster construction by Iterative Forward Search

Iterative forward search [122] works upon feasible incomplete solution (weekly rosters

generated by the above step). It iteratively extends these blocks into a complete solution.

Fig. 4.2 presents the pseudo code of the search algorithm.

The algorithm extends the current partial solutions by assigning values to variables until

all the variables have been assigned values. If it succeeds, the one-week roster will be

extended to a two-week roster and we continue in the same way. The number of outside

iterations corresponds to the number of weeks in the whole roster (4 iterations to build 5

weeks’ roster in the problem here). The inside iterations of the procedure assign values

to the variables iteratively. When a conflict occurs after a value has been assigned to a

variable, the latest variable is un-assigned and another value is tried (backtracking). If

all the values have been tried and the search cannot continue consistently, the search

starts from the outside iteration and attempts another set of initial weekly roster blocks

(for example, another 50 initial weekly rosters will be chosen randomly) to continue.

Fig. 4.2 Pseudo-code of the iterative forward search algorithm

Procedure IFS (initial weekly roster block i = 1)
outside iteration repeat

iteration = 0;
current solution = initial weekly roster i;
inside iteration repeat

select variable and value; //with or without heuristic selection
assign value to variable;
current solution = initial weekly roster i + assigned variable;
un-assign conflict variable;

until(allWeeklyVariableAssigned)
if(canContinue(initial weekly roster i))

iteration = iteration + 1;
else

initial weekly roster block i = i + 1;
until(allVariableAssigned)
complete solution = current solution

end procedure

Chapter 4 Hybrid CP with Variable Neighourhood Search approach to nurse
rostering problems

- 100 -

The above algorithm is parameterized by two heuristics, variable selection and value

selection heuristics. In this work we compare these two heuristics with a random rule

and evaluate their effects within our hybrid CP approach:

1. Randomly select variables and values during the search

2. Select variables and values by following heuristics:

a) Variable selection heuristic: first-fail principle, by which the nurses with heavier

workload from previous iteration are selected first;

b) Value selection heuristic: night shift sequences first.

The variable selection heuristic chooses the next variable in the search based on the

information collected in the previous iterations of the search. The shift sequences

assigned to each nurse are recorded and the nurses are ranked by their workloads. The

heavier workload the nurses have received, the more likely a conflict will occur later

with respect to the workload constraint. Therefore we follow the first-fail principle to

consider the heavier workload nurses first in the next step of the search.

The night shift is the most important shift in the problems, due to the fact that it is

involved in a number of hard constraints (H5, H7, and H9) and soft constraints (S2, S3)

with high weights of 1000. Therefore we assign night shift sequences first. The rest of

the sequences are of the same importance and are randomly selected and assigned to the

nurses.

Stage II: Variable Neighourhood Search

4.4.4 Second stage local search

A simple Variable Neighbourhood Descent is applied to improve the solution built from

Stage I. Two neighbourhood structures are employed in the algorithm; both have been

widely used in meta-heuristics in the nurse rostering literature [115]. Note that this work

is mainly a hybrid CP approach rather than designs elaborated meta-heuristics. The two

neighbourhoods are defined by the following moves upon a complete roster (illustrated

in Fig. 4.3):

Chapter 4 Hybrid CP with Variable Neighourhood Search approach to nurse
rostering problems

- 101 -

 Neighbourhood structure 1: re-assign a shift to a different nurse working on the same

day.

 Neighbourhood structure 2: swap shifts assigned to two nurses on the same day.

Fig. 4.3 Two neighbourhood structures. A small part of the scheduling period is shown. An arrow

denotes a possible move in the neighbourhood [123].

The pseudo-code of the Variable Neighourhood Search is presented in Fig. 4.4. The

neighbourhoods (by the smaller neighbourhood structure 1) are repeatedly examined for

possible improving moves. When there are no improving moves by using

neighbourhood structure 1, neighbourhoods by larger neighbourhood structure 2 are

examined. Then the search switches back to neighbourhood structure 1 again. This

process is repeated until there are no improving moves left by using both

neighbourhood structures 1 and 2.

Fig. 4.4 Pseudo-code of the Variable Neighourhood Search algorithm [124]

Initialization select neighbourhood structures Nk, k = 1,2...kmax;
construct an initial solution x;
Repeat until no improvement is obtained:

(1) Select k = 1;
(2) Repeat the following steps until k = kmax:

(a) Explore to find the best neighbour x’ of x (x’Nk(x));
(b) Move or not. If the solution thus obtained x’ is better than x,

set x = x’ and k = 1; otherwise, set k = k + 1;

Chapter 4 Hybrid CP with Variable Neighourhood Search approach to nurse
rostering problems

- 102 -

The Variable Neighourhood Search searches upon the feasible solutions built from the

first stage. The feasibility of the solutions is preserved during the search by considering

all the constraints in the problem.

4.5 Experimental results

We evaluate our hybrid CP approach upon a set of benchmark NRPs instances, publicly

available at http://www.cs.nott.ac.uk/~tec/NRP, where a range of problems collected

from industry and scientific publications are presented. These chosen benchmarks have

been the mostly tested problems in the literature due to their complex constraints. The

rules, regulations and objectives have been directly taken from the real-world cases and

preserved with the essential characteristics, see Table 4.5.

It is important to note that the difficulty of the problems not only depends on the

number of shift types, the number of nurses and the length of the scheduling period, but

also on the complex constraints involved (see all constraints in Appendix). In Table 4.5,

the largest problem ORTEC presents to be the most difficult, where 12 instances (of 12

months) have been widely tested by a number of approaches in literature. The other two

simpler problems, i.e. Gpost and Valouxis, although highly constrained, are of relatively

smaller size. Instances A, B, and C are variants of Gpost with relaxation on some

constraints. Instances ORTEC#1 to #4 are variants of ORTEC with relaxation on some

constraints. They are used to tune our CP search and provide insight of the effects of

different components. The same set of problems, i.e. Gpost, Valouxis, and ORTEC will

be tested in chapters 5 and 6 to evaluate other proposed hybrid approaches.

For all problems, 6 runs are carried out on an Intel(R) Core(TM) 2CPU 1.86GHz

machine with 1.97GB memory, from which average results are presented.

Chapter 4 Hybrid CP with Variable Neighourhood Search approach to nurse
rostering problems

- 103 -

Table 4.5 Characteristics of the benchmark nurse rostering problems. Instances A, B, and C are

variants of Gpost with relaxation on some constraints. Instances ORTEC#1 to #4 are variants of ORTEC

with relaxation on some constraints.

Number of Shift

types

Number of

Nurses

Period of

Schedule(day)

Number of Skill

Levels

A 2 8 7 1

B 2 8 28 2

C 2 8 28 2

Gpost 2 8 28 1

Valouxis 3 16 28 1

ORTEC#1-#4 4 16 35 1

ORTEC#Jan-#Dec 4 16 35 1

Experiment I. Pure CP and Hybrid CP Approaches.

We first evaluate the hybrid CP approach compared to the pure CP approach to the

benchmark problems presented in Table 4.5. Here the so-called pure CP approach uses a

complete COP model Model (Pure CP Complete COP) in which all hard and soft

constraints are included to solve this set of problems of the original size without

decomposition. The depth-first Branch-and-Bound search is used as the search

algorithm. Table 4.6 presents the results and demonstrates their abilities to handle

constraints in different problems. The column “problem size” in the table gives the

number of variables and the number of constraints in the CP model. It is observed that

the pure CP approach can only handle small scale instances (measured by the number of

variables and constraints) but cannot produce solutions for large-scale instances even

after 24 hours running. The hybrid CP approach can obtain results for all these large-

scale instances within 1 hour.

Chapter 4 Hybrid CP with Variable Neighourhood Search approach to nurse
rostering problems

- 104 -

Table 4.6 Results of pure CP and hybrid CP approaches to nurse rostering problems of different

characteristics. “-” indicates that no solutions can be obtained within 24 hours.

Data Problem Size Pure CP

(within 1 hour)

Hybrid CP

(within 1 hour)Variables Constraints

A 722 2109 8 8

B 3460 4600 0 0

C 3639 4612 10 10

Gpost 7897 5866 5 5

Valouxis 8321 9867 - 120

ORTEC#1 6672 22380 - 616

ORTEC#2 8208 28562 - 786

ORTEC#3 8624 29108 - 650

ORTEC#4 8720 29234 - 616

Experiment II. Variable and Value Selection in the Hybrid CP Approach.

Another set of experiments is carried out to evaluate the effect of variable and value

selection heuristics in the CP search upon problem instances presented in Table 4.5. It is

observed that random selection rule can easily cause a large number of violations to the

high weight penalty constraints, mainly due to the bad assignments of night shifts. The

solutions produced by using this rule cannot be further improved in the second stage.

Table 4.7 presents the results of the CP search by using different variable and value

selection rules. Both of them can obtain results within 1 hour.

Chapter 4 Hybrid CP with Variable Neighourhood Search approach to nurse
rostering problems

- 105 -

Table 4.7 Results with random and heuristic variable and value selection rules in the hybrid CP

approach. Mean values of 6 running results are presented.

Problem Random Selection Heuristic Selection

Gpost 18 8

Valouxis 160 80

ORTEC#1 1686 616

ORTEC#2 1035 786

ORTEC#3 635 650

ORTEC#4 705 616

Table 4.8 presents the evaluation of six basic variable ordering heuristics in the Solver

for problem Gpost. The number of choice points and fails encountered during the search

indicates that the MinSizeInt and MinMaxInt heuristics perform the best, with no

statistically significant differences. The MinSizeInt heuristic is randomly picked and

used in the following CP search procedures.

Table 4.8 Evaluation of six variable ordering heuristics for problem Gpost

Heuristics No. of

choice points

No. of fails CPU

(sec)

Variable ordering strategies

MinSizeInt 8966 7995 1.3 the smallest domain first

MaxSizeInt 10706 9723 1.5 the largest domain first

MinMinInt 10703 9720 1.5 the least minimal bound first

MaxMinInt 11978 10995 1.8 the greatest minimal bound first

MinMaxInt 9290 8319 1.2 the least maximal bound first

MaxMaxInt 126003 11620 1.8 the greatest maximal bound first

The value ordering heuristic we applied is night shift first. The night shift is the most

important and complicated shift in the problems, due to the fact that it is involved in a

number of hard constraints (H5, H7, and H9) and soft constraints (S2, S3) with high

costs of 1000. Therefore we assign night shift first. The rest of the shifts are of the same

importance and are randomly selected and assigned to the nurses.

Chapter 4 Hybrid CP with Variable Neighourhood Search approach to nurse
rostering problems

- 106 -

Experiment III. The Hybrid CP Approach on Large-scale Benchmarks.

According to the results in Table 4.6, we can see a pure CP model for the entire problem

cannot produce good solutions if there is a realistic runtime restriction. In addition, the

basic VNS alone is not applicable as it cannot produce feasible solutions for all data

instances.

The behaviour of hybrid CP approach is illustrated in Fig. 4.5 on the ORTEC January

and February instances. The initial feasible solutions with cost 1639 on the January

instance and cost 5361 on February are generated by CSP and iterative forward search.

Fig. 4.5 depicts the improvement of the solution cost for the hybrid CP approach on the

January and February instances. Although the values differ among other various

instances, the characteristic shapes of the curves are similar.

Fig. 4.5 Behaviour of the hybrid CP approach on the ORTEC January and February instances

Initial solutions of different quality have been tested in order to investigate the

influences of the quality of initial solution to the quality of final solution as shown in

Fig. 4.6(based on the ORTEC January instance).

Four initial solutions with different quality, i.e. objective value, are tested. Initial

solutions #1, #2 and #3 are generated by our iteration forward search based on the

sequence generated by Model (Sequence based Initial CSP). Initial solution #4 is a

randomly selected solution generated by Model (Direct Initial CSP). These initial

solutions are fed into the second stage VNS with the same computational time. The

Chapter 4 Hybrid CP with Variable Neighourhood Search approach to nurse
rostering problems

- 107 -

behaviour is illustrated in Fig. 4.6. It can be seen that initial solution #1, #2, #3

generated by iterative forward search based on Model (Sequence based Initial CSP) can

be improved by VNS step by step. The violation of soft constraints can be eliminated by

the local adjustment of VNS. For the randomly selected initial solution #4 generated by

Model (Direct Initial CSP), the violation of the hard constraint cannot be eliminated by

the local adjustment of VNS. The final solution after VNS still has violation of hard

constraint which is represented by the high objective value.

There are several possible reasons to explain this phenomenon. Firstly, the nurses in the

same category (i.e. full time or part time) have same constraints and preferences.

Therefore, there is symmetry between the generated lines of schedules of two nurses in

the same category. Because of this symmetry, in VNS, swap of single shift between two

nurses in the same category may not make any improvement. Secondly, swap of single

and two shifts between two nurses is inefficient. More sophisticated neighbourhood

structure is needed. This is also observed by other researchers. In [102, 120, 121], the

authors highlight the disadvantages of some of the basic local search algorithms which

change one variable assignment at a time. The effectiveness of simultaneously making

multiple value assignment changes is showed. This leads to our investigation of how to

improve the second stage local search in following chapter 5.

Fig. 4.6 Behaviour of the hybrid CP approach on the ORTEC January instances with different

initial solutions

Chapter 4 Hybrid CP with Variable Neighourhood Search approach to nurse
rostering problems

- 108 -

Table 4.9 Results from the hybrid CP approach, compared to current approaches in the literature, best

results are in bold.

Problem instances

ORTEC#Jan-#Dec

Hybrid GA [125]

(1 hour)

Hybrid VNS [115]

(1 hour)

Hybrid IP[123]

(1hour)

Hybrid CP approach

(½ hour)

Jan 775 735 460 616

Feb 1791 1866 1526 1736

Mar 2030 2010 1713 2766

Apr 612 457 391 956

May 2296 2161 2090 1786

Jun 9466 9291 8826 8700

Jul 781 481 425 650

Aug 4850 4880 3488 2171

Sep 615 647 330 1300

Oct 736 665 445 616

Nov 2126 2030 1613 1620

Dec 625 520 405 496

Table 4.9 presents the results from the hybrid CP approach compared to those from

other current approaches on twelve large real-world NRP instances (ORTEC#Jan-#Dec).

The first approach is a hybrid genetic algorithm which has been developed by ORTEC,

Netherlands in the commercialised software HarmonyTM [125]. The second approach

is a hybrid Variable Neighourhood Search with a heuristic ordering as the construction

method [115]. Hybrid IP [123] is a method which applies IP model to construct initial

solution and a Variable Neighourhood Search to make improvement to them. The meta-

heuristic algorithms (e.g. genetic algorithms and Variable Neighourhood Search) have

been delicately designed using the domain knowledge to solve the problem. This

domain knowledge has been applied in both the designing of initial solutions and

Chapter 4 Hybrid CP with Variable Neighourhood Search approach to nurse
rostering problems

- 109 -

delicate neighbourhood structures. Our hybrid CP with VNS mainly relies on CP, while

only a simple VNS is used to improve the solutions obtained by CP.

In our hybrid approach, CP in the first stage generates weekly rosters in a short time (on

average of 370 seconds, depending on the number of constraints in the model). These

blocks are the permutations of high quality shift sequences. The iterative forward search

procedure with Model (Sequence based Initial COP) terminates when a complete

solution is found. Then the simple Variable Neighourhood Search obtains the improved

solution within 1 minute. The overall process takes up to 30 minutes. Hybrid IP [123]

performed best among all of the approaches with a longer computational time (i.e. 1

hour), compared with our approach. The Hybrid IP method spent most time on solving

the IP model intensely which explains its better performance. Within a much shorter

computational time, our hybrid CP approach obtained the best results for 3 out of 12

problems compared to the current best approaches in the literature. This result is

satisfactory since our hybrid CP with VNS only applies a very simple neighbourhood

structure.

We have also test the performance of our hybrid CP approach with longer running time

either by extending the number of initial solutions or allowing extra running time in

Stage II for improvement. It is observed that the extra number of initial solutions has no

impact upon the final solution mainly because all the selected initial solutions are of

similar quality as shown in Fig. 4.6. The Variable Neighourhood Search usually

improves the initial solutions within minutes; it did not show significant improvement

in longer running times. What is more, based on the conclusion drawn on Fig. 4.6, in

VNS, swaps of single and two shifts between two nurses are inefficient. More

sophisticated neighbourhood structure is needed. It is a disadvantage that the basic

neighbourhood structure changes only one or two variable assignments at a time. This

motivates us to make multiple value assignment changes. We will investigate how to

improve the second stage local search in following chapter 5.

Chapter 4 Hybrid CP with Variable Neighourhood Search approach to nurse
rostering problems

- 110 -

4.6 Conclusions

In this chapter, we model and solve the nurse rostering problems by a hybrid CP

approach. The work has been published at Applications and Innovations in Intelligent

Systems XVI, see List of Publications.

Several fundamental elements in CP approach to the nurse rostering problem are

investigated. A model is built with primitive and global constraints. This pure CP

approach is firstly tested on small scale instances and it can provide solutions within 1

hour. For the large-scale instances, this pure CP approach cannot provide solution in 1

hour due to the complex constraints. Therefore, a decomposition and hybrid approach is

proposed. The decomposition is based on some common features of high quality rosters

- they consist of high quality shift sequences satisfying a set of constraints in the

problems. The feasible solution subject to only a subset of constraints is firstly

generated by solving the corresponding CSP model. Then the complete feasible solution

is constructed using an iterative forward search. The further improvement of the feasible

solution is gained using a second stage local search method.

The experimental results demonstrated that global constraints can model the complex

regulations in NRPs well. For the global constraints applied in NRPs, efficient

propagation algorithms associated with them in IBM ILOG Solver enable the efficient

feasible solution generation. However, in this hybrid approach, the second stage local

search is a rather simple VNS. Two simple neighbourhood structures are applied in the

VNS. Our experimental results motivate the further investigation of the second stage

local search in the following chapter 5.

Chapter 5 Constraint-directed Large Neighbourhood Search to nurse rostering
problems

- 111 -

Chapter 5 Constraint-directed Large Neighbourhood

Search to nurse rostering problems

5.1 Introduction

In chapter 4, we decompose the problem by constraints and design the first hybrid

method under the framework “initial solution +improvement”. In chapter 4, the effort is

focus on the construction of feasible solution by Constraint Programming techniques in

the hybrid method.

In this chapter, the local search in the second stage is further enhanced by using the

information of constraints. We start the research from the identification of potential

issues in local search that can be improved while solving the NRPs.

A local search algorithm typically starts from an initial solution (an assignment of

values to all the decision variables) and iteratively moves to neighbouring solutions,

defined by neighbourhood operator(s), with the hope of improving the quality of the

solution measured by a function f. Function f measures the quality of solutions to the

problem at hand with regard to different requirements and constraints.

A wide range of research issues have been addressed with the aim of achieving

efficiency of local search algorithms. Among these we are focusing on three of them in

this work: (1) Neighbourhoods: neighbourhoods are potential successor states of the

incumbent solution in the search. (2) Function f: the function f measures the quality of

solutions to the problem. The values of the function are usually used to direct the search

to better states. (3) Feasibility: one of the critical issues in local search is to consider the

feasibility while reasoning the optimality of the solution [81, 126], especially for those

highly constrained real-world combinatorial optimisation problems.

Chapter 5 Constraint-directed Large Neighbourhood Search to nurse rostering
problems

- 112 -

The most basic and common neighbourhood structures in nurse rostering problems are

single shift neighbourhood and block neighbourhood. These basic neighbourhood

structures have also been applied in our second stage VNS in chapter 4. Existing

research shows the inefficiency of them for large and complex nurse rostering problems

[102, 120]. This is also observed through our experiments in chapter 4.

For highly constrained and large-scale nurse rostering problems, very large-scale

neighbourhood search techniques [85] have been successfully applied to the problems.

Dowsland [127] shows that the chain neighbourhoods (i.e. a sequence of on/off day

swaps between nurses) are able to lead the search to escape from local optima that

single on/off day swaps cannot escape from. Louw et al. [120] use an ejection chain

approach where compound move is applied instead of single move. Burke et al. [120]

defines several heuristics to identify chains of swaps of on/off day between nurses in

their work of variable depth search and the experiment results show its efficiency.

However, these methods, especially the design of neighbourhood structures are tailored

to the problem instances at hand.

All of these local search techniques have shown their efficiency to solve large and

constrained nurse rostering problems. However, there is a scope of improvement with

respect to the three research issues mentioned above for the following reasons: (1) For

large and constrained nurse rostering problems, it is quite common that highly

sophisticated and problem-tailored neighbourhoods are needed, such as the chain of

moves in [120]. However, extensive expertise is needed to design dedicated

neighbourhood operators, especially for the problems having various constraints [85].

(2)Value of function f quite often provides a very limited guidance of the unknown

search space. It neglects other information which may be useful during the search (such

as the satisfaction of constraints [128]). (3) At each move of the local search, solutions

need to be checked to preserve feasibility (or neighbourhood operators need to be

defined so that only feasible neighbours can be generated) [126].

Chapter 5 Constraint-directed Large Neighbourhood Search to nurse rostering
problems

- 113 -

Using the information of constraint to direct local search presents an interesting attempt

to make the search procedure more general and informative. For example, optimal

solution of Linear Programming relaxations are often exploited to repair integral

infeasible solutions [57]. Another successful example is the usage of global constraint

in the CP paradigm for local search algorithms [128]. The global constraints can support

local search approaches from two aspects: (1) Using constraints to define the

neighbourhoods. For example, in [80], constraints are used to define the neighbourhood

so that only feasible neighbours can be generated. (2) Applying the violation measure of

the constraint as evaluation function to direct the search. In the local search approach

for constraint satisfaction [81], the conflicts of an assignment are used to direct the local

search to move to the assignments with less conflicts.

In chapter 4, a hybrid CP approach is applied to the large and constrained nurse

rostering problems, where a meta-heuristic algorithm - VNS is applied to improve the

initial solution obtained by the first stage CP search. In this chapter, we still take the

advantages of CP’s feasibility reasoning which has been proved in chapters 4. What is

more, the constraint itself is utilised in the procedure of local search in a more close and

interplayed manner, so that the proposed approach can benefit from both CP’s

feasibility reasoning and local search’s efficiency.

In this chapter, we develop a constraint-direct large neighbourhood search approach

which integrates the constraint into Large Neighbourhood Search algorithms with

respect to the three research issues mentioned above. (1) For the problem at hand, we

define general neighbourhood structures by constraint. That is, instead of setting

tailored neighbourhood operators, we use the violations of constraints to detect the

fragment (variables) of the solution which needs to be improved. This (usually) large

neighbourhood area is re-optimised by using the search in CP. (2) In local search, for an

unconstrained optimisation problem, a function f can easily express the objective of the

problem. However, for highly constrained problems, function f needs to be modified to

properly measure the infeasibility of the candidate solutions. We distinguish the

objective function and evaluation function in this work. Each global constraint has its

Chapter 5 Constraint-directed Large Neighbourhood Search to nurse rostering
problems

- 114 -

corresponding evaluation function and it is used to measure the feasibility or optimality

(in terms of violation measure) of an assignment. Therefore, there are more than one

evaluation functions, so that more information can be utilised to guide the search. The

objective function aggregates the violations of constraints into a single summed value.

(3) With CP we can restrict the search to the feasible solution space.

5.2 Literature review on global constraints applied to local

search

The information about global constraint can be utilised in local search in different ways.

As introduced in chapter 2, a global constraint is defined on a set of lower-level

primitive constraints, so it presents some features that cannot be presented by individual

primitive constraints. This means using global constraint for local search allows us to

revise a current state of search on a more global level [128]. A simple example is that,

in a CSP with global constraint AllDifferent, we can associate the constraint

AllDifferent a cost, which depends on the variables’ assignments. The satisfaction of

the constraint AllDifferent can be transformed as minimization of the cost. A value of

zero for the cost means satisfaction. The constraint AllDifferent knows how to reduce

this cost in local search by the operations associated with the constraint (such as domain

reduction, and achieving arc consistency, etc.).

Several related work in the literature have been investigated to use constraint

information during the search procedures.

In [128], the global constraints are used to exploit the domain-specific information in

dynamic job shop scheduling problems by inducing two constraint-specific search

controls. The first constraint-specific search control is based on the global Resource

constraint. It uses the cost of the Resource constraint to guide the search to reassign the

values to variables. The second constraint-specific search control is based on Task

constraint; the domain inconsistency information of the constraint guides the search to

reassign the values. Experiment results show that, with the inconsistency information of

Chapter 5 Constraint-directed Large Neighbourhood Search to nurse rostering
problems

- 115 -

global Resource constraint and Task constraint, the local search has better

understanding of the search space (the cost distribution of each constraint is illustrated)

and moves to good solutions much faster.

In [129], the authors propose to generate more general and automatic neighbourhood in

local search, instead of designing trivial neighbourhood tailored to the problem. The

neighbourhood is defined automatically by the volume of propagation of a constraint.

This idea provides a different perspective view of local search by guiding the search

based on the properties (i.e. consistency of the constraints) of the current solution to the

problem.

In [130], the neighbourhood is viewed from a constraint perspective, as opposed to a

variable perspective which is often the case. To construct a neighbourhood from a

variable perspective, we usually start from a set of variables and apply changes to one or

more of these variables, while evaluating the effect of these changes to the objective

function of the problem. From a constraint perspective, the neighbourhood is obtained

from a set of constraints. The authors exploit the structure of the constraints and based

on that, decreasing, preserving and increasing neighbourhoods are designed for the

constraints.

In the new architecture of constraint solver Comet [81], the constraint not only serves a

natural tool to express the problems, but also plays a novel role in the search. The

constraints maintain a number of properties incrementally and they provide algorithms

to evaluate the effect of various operations (i.e. value reassignment, and swap values for

two variables, etc.) on these properties. Typical properties include the violation degree

of a constraint and the set of variables violating the constraint. In this architecture, the

search is driven by these properties to feasible solution or optimal solution in the search

space.

In this proposed work, we integrate CP with local search within a Large Neighbourhood

Search (LNS) scheme. A pre-processing procedure is performed to identify hard

Chapter 5 Constraint-directed Large Neighbourhood Search to nurse rostering
problems

- 116 -

constraints from soft ones of the nurse rostering problems according to the feasibility

reasoning by the CP solver. Then we apply a two-stage approach to the problem. In the

first stage, an initial solution is constructed by solving the Model (Direct Initial CSP)

given in chapter 4. In the second stage, LNS is implemented on the problem considering

soft constraints (i.e. Constraint Optimisation Problem). The key feature of the second

stage is that we also use the information of constraints to direct the local search as

shown in the referred work above [81, 128-130]. The difference to the above work is

that, instead of implementing an ad-hoc search/propagation algorithm for each global

constraint, we only use the properties of the constraints to identify the fragment (set of

variables) need to be optimised. Then the conventional tree search in CP is used to re-

optimise the selected area. By doing this, we can take the advantage of the powerful

feasibility reasoning of the CP solver and efficient search ability of the local search at

the same time. Our proposed approach is easy to implement and maintain, and benefits

from both CP and local search.

5.3 Modelling nurse rostering problems

We implement a pre-processing approach which utilises the feasibility reasoning of the

CP solver. This procedure is illustrated by Fig. 4.1 where it is used to generate initial

solution. The feasible solution obtained from this pre-processing is served as the initial

solution for the local search.

How to model the problem with global constraints and soft global constraints has been

described in detail in chapter 4.

5.4 Constraint-directed Large Neighbourhood Search

5.4.1 The framework

As we stated in the introduction, it is important to distinguish the objective function

from the evaluate function in the local search. The former represents the objective to be

Chapter 5 Constraint-directed Large Neighbourhood Search to nurse rostering
problems

- 117 -

optimised to the problems, while the latter represents the function guiding the search

process over the search space. There can be more than one evaluate function to guide

the search process over the search space. In most meta-heuristic algorithms in nurse

rostering problems, the objective function is used as the evaluation function. But when

it combines feasibility and optimality measures, using individual evaluate function can

give better guiding of the search toward promising solutions [81, 128].

In this work, we use costs of global constraints as the evaluation function in local search.

The evaluation function is defined as the violation of each global constraint. The

objective function is to minimize the total sum of evaluation functions. The information

of constraints such as the cost and violation are used as indicators to select the

neighbourhood (the set of variables) and implement the move (re-optimise).

LNS is firstly proposed by Shaw [80] to solve the vehicle routing problem. The basic

idea of LNS is to iteratively relax (destruct) and then re-optimise (reconstruct) a part of

the solution, with the hope to find better solutions over iterations. CP is used to generate

the new assignment for this relaxed part of variables and add bound to the search to

ensure that the new solution found is better than the current one.

Fig. 5.1 presents the two-stage approach we employ which embeds CP into LNS to

solve nurse rostering problems. In the first stage, a feasible initial solution is constructed

based on Model (Direct Initial CSP), i.e. with only hard constraints. In the second stage,

LNS is used to improve the initial solution iteratively considering the cost of soft

constraints. The LNS is parameterized with different strategies to choose the fragment

which represents the low quality part (poor assignment of variables) of the solution to

be re-optimised to obtain improved solutions iteratively.

Chapter 5 Constraint-directed Large Neighbourhood Search to nurse rostering
problems

- 118 -

Fig. 5.1 The large neighbourhood search scheme with CP as the re-optimiser

The success of the LNS depends on two main factors: (1) The identification of the

fragment of appropriate size with regard to the crucial part of the solution; (2) The

search effort needed to optimise this fragment. The crucial part of the solution

(assignment to subset of variables) can be indicated by the violation of the global

constraints put on these variables. So it is straightforward that we reassign values to the

variables that violate constraints involved according to their current inconsistency.

After the fragment is selected, Branch-and-Bound search in CP is applied to re-optimise

the selected fragment.

5.4.2 Fragment selection strategies

As observed by several researchers, the key issue in designing efficient LNS is the

selection of the fragment, i.e. set of variables to be relaxed and re-optimised. For

instance, in job shop scheduling problems, the fragments usually include the critical

path of the schedules [131]. In routing problems, cluster removing techniques have been

used [132]. To a certain extent, the success of LNS depends on the adequacy of this

fragment with regard to the problematic parts of the solution.

The roster (solution) we construct for nurse rostering problems has a 2-Dimensional

row/column structure as introduced in section 3.2.1. Each row represents the schedule

for a nurse and each column represents a day assignment in the scheduling period. The

constraints in the model can thus be categorised as row/horizontal constraints and

column/vertical constraints. In our problem, there is only one hard constraint, coverage

Stage 1: construct initial solution: solve (Model (Direct Initial CSP)) // Model is presented in chapter 4;
Stage 2:
While stopping criteria not met do

Choose the low quality fragment to be relaxed with strategy i //test the strategies one by one;
Freeze the remaining variables // fix the variables which are outside the fragment to their current values;
Re-optimize the fragment using CP by solving Model (Pure CP Complete COP) // Model is presented in chapter 4;

If found improved solution
Update solution

End if
End while

Chapter 5 Constraint-directed Large Neighbourhood Search to nurse rostering
problems

- 119 -

constraint, which can be seen as a column constraint. All other constraints which are

related with shift patterns and preferences can be seen as row constraints. This 2-

Dimensional structure of rosters determines the basic structure of the fragment selected.

Strategy 1: sliding window

The first fragment selection strategy selects all nurses on certain length of days. We

denote the size of the fragment as s, s=n×l where n is the total number of nurses and l

is the number of days selected in the fragment. Fig. 5.2 presents a simple example of

this strategy. The n is set to 8 which is the total number of nurses and l is set to 7. This

fragment looks like a time window on all of the nurses. We slide this window one week

by another along the whole schedule period to select different fragment of the problem.

So we name this strategy as sliding window.

Fig. 5.2 Fragment selection strategy 1: sliding window

In this strategy, we always set n as the total number of nurses in the problem. The size

of l can be adjusted according to the size of the different problems to keep a manageable

size of fragment s. That is, the larger the n is (i.e. larger number of nurses), the smaller l

is.

Fragment selected by this strategy makes it possible to swap certain length l of shifts

between any nurses, sot that it can cover neighbourhood structures as single shift swap

neighbourhood and block swap neighbourhood investigated in [120].

Chapter 5 Constraint-directed Large Neighbourhood Search to nurse rostering
problems

- 120 -

If l is fixed, the sliding window strategy selects fragment in a deterministic way. The

different parts of the problem are selected and re-optimised one by one.

Strategy 2: sliding window with overlap

In strategy one, the sliding widow slides along the horizon of the rosters and usually

leads to violations of constraints over the variables at the boundaries of the window.

This is because of the interleaving of the constraints over the same variable on the

boundary. For example, in Fig. 5.3, if we relax and re-optimise the variables within the

sliding window while freezing all variables outside of the window, the night shift N on

January 14 and 15 in the shift sequence of NNN for nurse H will possibly be adjusted in

the re-optimisation subject to the sequence constraint without seeing the one N shifts on

January 16 which lies outside of the window. Strategy 2 considers the overlap between

variables over the boundaries of the sliding windows by adding the additional variables

over the boundaries to the fragment.

Fig. 5.3 Fragment selection strategy 2: sliding window with overlap

Strategy 3: selection according to the cost of horizontal constraints

Both of above two strategies select fragment of all the nurses in the problem. When the

problem is large, more general and efficient strategy is needed to enable an efficient re-

Chapter 5 Constraint-directed Large Neighbourhood Search to nurse rostering
problems

- 121 -

optimisation within the LNS procedure. Strategy 3 utilises the information of

constraints themselves to direct the LNS search. Those nurses who have the highest cost

(i.e. the most violated horizontal constraints) are selected, and the variables restricted by

these constraints are selected into the fragment.

Fig. 5.4 Fragment selection strategy 3: selection according to the cost of horizontal constraints

Fig. 5.4 presents an example of how strategy 3 is used to select the fragment by cost.

Firstly the cost of constraints for each row (nurse) is calculated. The k rows of the most

violations will be re-optimised. In this strategy, l is the length of the whole scheduling

period, and n is defined as k, which is a parameter in the LNS algorithm. Starting with

an initial value, k remains the same if the search makes improvement in the current

iteration, and is increased by 1 if no improvement can be made. By increasing the value

of k, larger areas of the search space can be explored.

We investigate three strategies in this work to choose the fragment of variables. The

first two strategies cover all nurses in the selected days, so it is possible to swap certain

length of shifts between any nurses. The third strategy covers all days for selected

nurses, so it is possible to swap any blocks of shifts between certain nurses. The

fragment selected by these strategies can cover all neighbourhood structures applied in

nurse rostering problems, such as single shift neighbourhood, block neighbourhood, and

even chains neighbourhood in the literature [120]. What is more, it is more general than

those specifically designed neighbourhoods.

Chapter 5 Constraint-directed Large Neighbourhood Search to nurse rostering
problems

- 122 -

5.4.3 Re-optimisation on the fragment

In [132], the influence of the size of the fragment on the performance of LNS is

investigated. The advantages of a small fragment are that the fragment can be re-

optimised much quickly and lead to an improving solution if one exists. The advantage

of a larger fragment is that it is more likely that an improving solution does exist in the

fragment, but more computational time is needed.

We can apply the Branch-and-Bound of CP to re-optimise the fragment. We investigate

the relation between the fragment size and search strategies (measured in computational

time) in section 5.5.

5.5 Experimental results

5.5.1 Pre-processing and framework

The first step of our constraint-directed LNS approach is a pre-processing procedure to

identify solvable set of constraints. The solution from this pre-processing is served as

the initial solution of the LNS at the next stage, where the remaining small set of soft

constraints is to be optimised.

We first evaluate our initialization method in terms of the solution quality and

computational time, results shown in Table 5.1. All the problems tested are over-

constrained, i.e. no solution can be found if all constraints are imposed crisply. By

relaxing soft constraints with different weights (importance) in an increasing order, a

feasible solution can be obtained where the least important constraints are relaxed. Due

to the strong propagation in CP to detect infeasibilities, this initialisation method is very

efficient, i.e. computational time is close to zero second.

Chapter 5 Constraint-directed Large Neighbourhood Search to nurse rostering
problems

- 123 -

Table 5.1 Results from the pre-processing method. For problem Gpost, “-” indicates feasible solutions

have been found so there is no need to relax more soft constraints.

Problem All constraints Relax w 10 Relax w  40 Relax w100

obj CPU(sec) obj CPU(sec) obj CPU(sec) obj CPU(sec)

Gpost infeasible 0 18 50 - - - -

Valouxis infeasible 0 infeasible 0 1120 65 - -

ORTEC infeasible 0 infeasible 0 Infeasible 0 1686 112

5.5.2 Test on fragment selection strategies in the constraint-directed

LNS

Fig. 5.5 presents the improvement of solutions at each iteration of LNS by using the

three fragment selection strategies on small problem Gpost. Strategy 1 (sliding window)

performs the worst, making very limited improvement. Strategy 2 (sliding window with

overlap) and Strategy 3 (selection according to the cost of horizontal constraints) have

similar performance although they use quite different ways to select the crucial

fragment. Both of them make improvement at the early stage of search.

Fig. 5.5 The decrease of objective function value over iterations of LNS using three different

fragment selection strategies for problem Gpost

Chapter 5 Constraint-directed Large Neighbourhood Search to nurse rostering
problems

- 124 -

To obtain more insights, we test our algorithm on the large problem ORTEC. All the

following experiments and discussions are based on this large problem ORTEC. Fig.

5.6 presents the information of the performance from the three fragment selection

strategies. The strategies are tested based on the same initial solution. The terminations

of the first two strategies are deterministic. That means the number of iterations

executed is fixed after l (the length of sliding window) is settled. The number of

iterations equals to the length of scheduling period divided by l. Strategy 3 terminates in

a different way. It picks out k rows of the schedules with the highest cost to re-optimise

iteratively until the time limit is reached. From Fig. 5.6 we can see that Strategy 1 can

improve solution from 1639 to 929 while strategy 2 can improve solution from 1639 to

610. Strategy 3 performs the best, improving the initial solution to 435.

Chapter 5 Constraint-directed Large Neighbourhood Search to nurse rostering
problems

- 125 -

Fig. 5.6 The decrease of objective function value over iterations of LNS using three different

fragment selection strategies for problem ORTEC

5.5.3 Test on the effort of search

We test the CPU time spent on each iteration in different size of the fragment with

respect to each strategy.

Chapter 5 Constraint-directed Large Neighbourhood Search to nurse rostering
problems

- 126 -

Fig. 5.7 shows the improvement of solutions over the iterations with different fragment

size for Strategies 1 and 2. As stated above, the size of the fragment is denoted by s = n

× l. For Strategies 1 and 2, n is fixed as 16 (the number of nurses in the problem) and

different l are compared in Fig. 5.7. For Strategy 3, l is fixed as 35 (the length of the

scheduling period) and n is distributed within [4, 12], illustrated in Fig 5.8. The

improvement of solutions over iterations with Strategy 3 can be seen from the last plot

in Fig 5.6.

Fig. 5.7 The decrease of objective function value over iterations of LNS with different fragment size

for strategies 1 and 2 for problem ORTEC

Fig. 5.8 Size of fragment for strategy 3, denoted by n for problem ORTEC

Table 5.2 presents the improvement of solutions and their corresponding CPU time with

different fragment sizes for Strategies 1, 2, and 3.

Chapter 5 Constraint-directed Large Neighbourhood Search to nurse rostering
problems

- 127 -

It can be seen that the sizes of fragment has significant impact on both the quality of

solutions and the computational time. With larger fragments, the objective value

improvements more, but the corresponding computational increases.

Table 5.2 Comparison of solution improvement and computational time of LNS with different

fragment sizes for problem ORTEC

Fragment strategy and its size Avg CPU time/iteration Total CPU time Improved obj value

Strategy 1 s=16×2 0.1 1.8 1129

Strategy 1 s=16×3 20 300 929

Strategy 2 s=16×2 0.1 3.2 964

Strategy 2 s=16×3 24 760 610

Strategy 3 s=7(Avg)×35 0.4 115 435

5.5.4 Comparison with other approaches in the literature

We compare our results with other methods in the literature in Table 5.3. Hybrid GA,

Hybrid VNS and Hybrid IP are the same methods which are compared with in previous

chapter 4. Hybrid CP is a CP approach hybridised with a Variable Neighourhood Search,

investigated in chapter 4.

Since both chapter 4 (i.e. hybrid CP with VNS) and chapter 5 (i.e. hybrid CP with LNS)

are under the two-stage hybrid approach framework “feasible initial solution +

improvement”, we first make a comparison between these two methods. In order to

have a fair comparison, we set the computational time limit as ½ hour, the same as that

in Hybrid CP in chapter 4. Comparing to the Hybrid CP with VNS in chapter 4 [133],

using the same computational time, the constraint-directed LNS obtained better results

for 9 out of 12 instances. Comparing to the approaches in [115, 123, 125], our

constraint-directed LNS can obtain better results on 6 out of the 12 instances within

only half of computational time. These competitive results obtained within much less

computational time limit demonstrate the efficiency of the constraint-direct LNS.

We also emphasize that in all other approaches, i.e. [115, 123, 125], the design of

neighbourhood is very delicate. It requires experts in the domain knowledge. However,

Chapter 5 Constraint-directed Large Neighbourhood Search to nurse rostering
problems

- 128 -

in the hybrid CP with LNS proposed in this chapter, the LNS is enhanced by constraints.

More specifically, the design of neighbourhood is very general and the search is guided

by the information of constraints. In conclusion, the results demonstrate that the

integration of CP with LS can find good quality solutions in less computational time for

highly constrained NRPs.

Table 5.3 Results compared with other methods in the literature. The best results are shown in bold.

Method Hybrid

GA[125]

Hybrid

VNS[115]

Hybrid

IP[123]

Hybrid CP with

VNS[133]

CP+LNS

CPU

time

1 hour 1 hour 1 hour ½ hour ½ hour

Jan 775 735 460 616 395

Feb 1791 1866 1526 1736 1261

Mar 2030 2010 1713 2766 1831

Apr 612 457 391 956 731

May 2296 2161 2090 1786 2111

Jun 9466 9291 8826 8700 6201

Jul 781 481 425 650 751

Aug 4850 4880 3488 2171 2121

Sep 615 647 330 1300 851

Oct 736 665 445 616 395

Nov 2126 2030 1613 1620 1136

Dec 625 520 405 496 1101

Recall that the initial solution of LNS actually applies the Model (Direct Initial CSP) in

chapter 4. Comparing the computational time shown in Table 5.1 and the direct initial

solution generation method of chapter 4 (i.e. nearly 30 minutes), it can be seen that the

sequence based initial solution generation strategy proposed in chapter 4 can generate

better quality initial solution than the direct initial solution generation strategy.

However, it needs more computational time to construct a feasible solution.

There is a trade-off between the quality of the initial solution and the search effort on

the second stage local search. The larger is the neighbourhood, the less is the sensitivity

Chapter 5 Constraint-directed Large Neighbourhood Search to nurse rostering
problems

- 129 -

of the initial solution to the performance of the local search. More specifically speaking,

although the quality of the initial solution generated by the direct initial solution

generation strategy (fed to LNS) is worse than the sequence based initial solution

generation strategy, the second stage LNS can produce better improved solution

comparing with VNS (with the sequence based initial solution generation strategy).

5.6 Conclusions

In this chapter, we implement a constraint-directed local search in a LNS scheme to

large and constrained nurse rostering problems. The search is restricted in feasible

region preserved by CP and iteratively improved by LNS. Three different fragment

selection strategies are proposed to select crucial part of solution to be relaxed and re-

optimised. The issue of how much search effort should put to re-optimise the fragment

is also investigated in order to get good solutions in reasonable computational time. The

experiment results show that the proposed constraint-directed LNS is a simple yet

efficient algorithm to provide good quality solution in less computational time for nurse

rostering problems. This chapter is based on the work published at Proceeding of the 6th

International Workshop on Local Search Techniques in Constraint Satisfaction

(LSCS'09) at the 15th International Conference on Principles and Practice of Constraint

Programming (CP’09).

The problem decomposition in both chapters 4 and 5 are based on the constraints. A

two-stage hybrid approach framework “feasible initial solution + improvement” are

applied in both of the chapters.

Chapter 6 CP based column generation approach to nurse rostering problems

130

Chapter 6 CP based column generation approach to

nurse rostering problems

6.1 Introduction

6.1.1 Background

In chapters 4 and 5, hybrid methods are investigated under the framework “initial

solution + improvement”. CP is efficient to construct initial feasible solutions while

local search and meta-heuristics are efficient to heuristically improve the solutions.

However, optimality cannot be guaranteed or proven. We desire to solve the problem

efficiently, as well as know the quality of solutions, e.g. how far obtained solution is

away from the optimal one.

NRPs can be modeled and solved by OR techniques such as Linear Programming [134],

Integer Programming [135] and Mixed-Integer Programming [136] due to their

strengths in optimality reasoning and relaxation. For these large-scales Integer Program,

one classic decomposition method, Dantzig-Wolfe Decomposition, can be applied to

decompose the large-scale Integer Program. The column generation is an efficient

algorithm for solving the decomposed problem efficiently as we introduced in section

2.8.1 of chapter 2.

As we introduced before in chapter 2, airline crew scheduling problem is a well know

example which can be Dantzig-Wolfe decomposed and solved by column generation.

The solution approach has also been applied to personnel scheduling problem,

employee timetabling problems, etc.[40-43]. All problems tackled by Dantzig-Wolfe

decomposition and column generation share some similar feature that the problem can

be inherently decomposed. This can be seen as to select a subset of individual patterns

(columns) from a huge pool of all possible weighted patterns (columns) to construct the

best complete solution to the problem. The individual patterns should present some

Chapter 6 CP based column generation approach to nurse rostering problems

131

desired features of the problem [44]. For example, in airline crew scheduling problems,

each schedule for the crew should satisfy a large set of working regulations. NRPs

which belong to personnel scheduling problem share similar feature with crew

scheduling problem. This makes the Dantzig-Wolfe decomposition and column

generation a good solution approach to NRPs.

In early related works, the pricing subproblem is usually solved by dynamic

programming [40]. However, in the works of [42] and [43], the results shown that using

dynamic programming in pricing subproblem solving is very time consuming due to the

large set of constraints presented in the problem. Hence, The CP based CG approach

has been firstly introduced in [42] and [43] to model and solve the crew assignment

problem. It is a hybrid decomposition approach where CP is used to solve the pricing

subproblem and CG is used to handle the master problem. The CP-CG approach has

since been widely applied to airline crew scheduling [65], vehicle routing [71] and bin

packing [68] problems.

Due to its ability of strong modelling and feasibility reasoning, CP within the CP-CG

approach is used to generate the large pool of patterns subject to the constraints in the

problem. The selection procedure of patterns is processed by column generation. Integer

variables in the master problem represent which columns are chosen to construct the

complete solution to the problem. The Linear Program relaxation of the Integer Program

master problem is used to iteratively derive the optimality and solve the problem of

subset of columns. Through the integration, the hybrid CP-CG approach benefits from

both the feasibility reasoning of CP and the optimality reasoning of Linear

Programming.

In the literature, CP-CG is mainly applied to airline crew assignment problems [42, 43,

45] at the early stage. Research mainly focused on solving the pricing subproblem

which is captured by a shortest path constraint. The efficiency of the CP-CG algorithms

mainly rely on the development of efficient cost filtering algorithms for this shortest

path constraint.

Chapter 6 CP based column generation approach to nurse rostering problems

132

CP-CG has also been applied to personnel scheduling or personnel timetabling

problems, where some of them also focus on the cost filtering algorithms in CP

subproblem solving. In [44], a cost-regular constraint is used to model the key features

of a set of personnel scheduling problems. Its cost filtering algorithm is calculated based

on the shortest path of the layered directed graphs. The complexity of the constraints is

not presented in the work. For the subproblem, the shift scheduling problem, all

constraints are modelled as hard constraints. In a real-world case study of personnel

timetabling for a bank, the authors pointed out that the cost-regular constraint is

inefficient when the working regulations are complex and scheduling period is long,

which are often the case in real-world problems.

In [72], instead of only focusing on the cost filtering in CP as in most of the previous

work [42, 43, 45], the authors proposed two search strategies to tackle the problem of

slow convergence and the difficulty of reaching integer solutions in CP-CG. To speed

up the reduction of the objective value of the linear relaxation of the master problem,

the dual strategy selects the shift with the l largest dual value to drive the search towards

solutions with negative reduced cost. To speed up the convergence to integer solutions,

the master strategy stores the information of shifts that have been assigned, and choose

and assign the less used shift first. This strategy can be seen as a heuristic which choose

diverse columns to help obtain integer solutions.

6.1.2 Motivations

As indicated in [46, 47], theoretically, the pricing subproblem asks for the columns with

the minimum negative reduced cost at each iteration of CG until all of the columns with

negative reduced cost have been found. The pricing subproblem is thus a minimization

problem. However, in practice, the pricing subproblem is usually solved as a decision

problem. That is, any column which has negative reduced cost (i.e. more than one

column and not necessarily with the minimum reduced cost) can serve as the candidates

to enter the restricted master problem.

Chapter 6 CP based column generation approach to nurse rostering problems

133

Generating feasible columns instead of optimal ones presents an easier problem.

However, feasible but not optimal columns lead to a slower convergence to the

optimum with respect to the number of required iterations of column generation. This

slow convergence in the CG approaches is the first issue we try to address in this

chapter.

Another issue we face in developing efficient CP-CG is that the CP pricing subproblem

tends to generate similar columns [46, 47] due to the default depth first search in CP.

This leads to the difficulty of reaching integer solutions of the master problem.

With regard to the above mentioned research issues, we aim to present in this chapter an

application of the CP-CG approach to complex nurse rostering problems. In order to

deal with the slow convergence of the CP-CG, we propose to apply a cost threshold,

working together with the negative reduced cost constraint, to price out good quality

columns. That is, not only the generated columns have negative reduced cost, but also

their original costs (i.e. cost coefficient in the objective function) are below a threshold.

This cost threshold is repeatedly updated (reduced) according to the solution

information collected during the procedure of the CG. With regard to the similarity of

the generated columns, we apply the Depth Bounded Discrepancy Search to obtained

diverse columns. This strategy, to some extent, contributes to reaching integer solutions

of the master problem. The main contributions of the chapter are as follows:

 We propose a CP-CG solution procedure where a complete model formulates all

constraints in several real-world benchmark nurse rostering problems which we are

concerned with.

1. Various constraints have been modeled in the CP paradigm by using primitive

and (soft) global constraints;

2. Instead of generating columns for each nurse, we only generate columns to each

category of nurses to eliminate symmetry.

 We apply the Depth Bounded Discrepancy Search in CP-CG to obtain diverse

columns for the master problem concerning the integrality. An adaptive bound

Chapter 6 CP based column generation approach to nurse rostering problems

134

tightening strategy is devised to adaptively obtain high quality columns during the

problem solving.

6.2 Modelling the nurse rostering problem

In this section, we first present the model of the master problem within the CP-CG

framework. As stated above, a nurse roster consists of the assignment of schedules (a

sequence of day-on shifts and day-off) to each nurse to ensure that sufficient employees

are present to perform the shift duties required (coverage constraint). The master

problem can thus be formulated as an Integer Program to pick subsets of feasible

schedules to construct a complete roster with the minimal cost. At this stage, we do not

need to consider the detailed constraints which restrict the working patterns, etc. All

these constraints are encapsulated as the features of columns {α(1), …, α(k)} as shown

in Fig. 2.6. These features of columns will be formulated and taken care of in the CP

paradigm within CP-CG.

6.2.1 Formulating the master problem as Integer Program

Problem size parameters:

--N: set of nurses (index i)

--D: set of days in the scheduling period (index j)

--S: set of shift types, i.e. Late, Early, Night, Off, etc (index k)

Nurse parameters:

--G: set of nurse categories (i.e. different working contracts, e.g. 20, 32 or 36 hours per

week, respectively) (index m)

--Fm: set of feasible schedules for nurse category m with respect to related constraints of

contract stipulations (index l)

Chapter 6 CP based column generation approach to nurse rostering problems

135

--ailmjk: is 1 if schedule l for nurse i in category m covers the required shift k on day j; 0

otherwise

--cil: penalty of schedule l violating the related constraints of contract stipulations of

nurse i

Demand coverage parameter:

--Rjk: coverage demand of shift type k on day j

Decision variables:

-- yil: binary decision variables in the master problem, taking value 1 if nurse i is

assigned to schedule l; 0 otherwise.

With the above parameters and notations we have the Master Problem Formulation

(NRPs MP):

(NRPs MP) min
m

il il
m G i N l F

c y
  
 (6-1)

s.t. , ,
m

ilmjk il jk
m G i N l F

a y R j D k S
  

    (6-2)

1,
m

il
l F

y i N


   (6-3)

In the nurse rostering problems MP, the objective function is linear over the schedules

yil. The penalty of the entire solution (roster) is defined as the sum of the penalties of the

selected schedules, i.e. objective (6-1) of this master problem aims to minimize the sum

of penalties associated with the individual schedules yil the nurses are assigned to.

Constraint (6-2) defines the required number of nurses for each shift on each day (exact

coverage). Formulating the coverage constraint as such allows flexible substitutability

between nurses, i.e. schedules are exchangeable among nurses of the same category m.

Constraint (6-3) assigns exactly one schedule to each nurse that is feasible to his or her

specific related constraints. The similar formulation of the restricted master problem has

also been applied in [96]. One thing should be note that constraint (6-2) works as the

connecting constraint as we introduced in section 2.8.1.

Chapter 6 CP based column generation approach to nurse rostering problems

136

In the above seemingly simple model, a large amount of complexity is actually hidden

in the definition of schedule l in yil, i.e. all the constraints in Appendix are implicitly

modeled by the definition of schedule l, and the generation of each column (feasible

schedule) must be subject to these constraints. The definition of schedule l works as the

independent constraints as we introduced in section 2.8.1. Since all related constraints

are encapsulated into schedule l, there is no need to change the master problem within

CP-CG with respect to different instances of nurse rostering problems.

6.2.2 Formulating the pricing subproblem in CP

Now we consider the features of these columns, i.e. to model the subproblem

concerning all constraints (except the coverage constraint). As stated in the introduction

of column generation, the pricing subproblem with the general form:

(P)
1

0
i n

i i i
i

c 




   ; (6-4)

F  ; (6-5)

concerns two groups of constraints, the negative reduced cost (6-4) and the feasibility

constraints (6-5).

Considering the reduced cost constraint (6-4), we define the reduced cost il in our

problem as follows:

m

il il i jk ilmjk
m G i N l F

c a  
  

   (6-6)

--il is the reduced cost of column l for nurse i

--cil is the cost coefficient of column l for nurse i

--i is the dual value of constraint (6-3) for nurse i

--jk is the dual value of constraint (6-2) for shift k on day j

--ailmjk corresponds to the coefficients matrix in (6-2) of the master problem

Chapter 6 CP based column generation approach to nurse rostering problems

137

In the equation of the reduced cost il in (6-6), i and jk are the dual values obtained

from the Linear Program solution of the master problem (NRPs MP) (known). cil and

ailmjk need to be obtained from the solution of the pricing subproblem (unknown). Each

schedule l for nurse i is a sequence of shifts that satisfy all the related constraints (l 

Fm) and introduces a new column in the master problem with cost coefficient cil (we use

the term “cost” in the CP pricing subproblem which corresponds to “penalty” in the

master problem).

The modeling of feasibility constraint (6-5) in our CP-CG requires careful consideration

for the complex nurse rostering problems. The issue of how to efficiently model the

complex constraints in CP has been studied in our previous work in chapter 4. The

cardinality (x, v, l, u) and stretch(x, v, l, u, P) constraints, together with primitive

constraints are applied to model the problem.

We now model our CP pricing subproblem within CP-CG by defining the detailed

feasibility constraint (6-5)   F.

The nurse rostering problems which we are concerned with are defined as the follows:

(NRPs P) () ()e

e

e

C
il C

C C

c E l w l


  

where E(l) represents the evaluation of schedule l. C is the set of constraints. The

evaluation of soft constraint Ce is calculated by ()e

e

C
Cw l , where wCe is the weight of the

constraint given in Appendix and μCe(l) is the violation measure of soft constraint.

The constraints we modeled here are from one of most complex benchmark nurse

rostering problems ORTEC which is given in chapter 4. It can be modeled in a similar

way in this pricing subproblem. Therefore, we do not present the suproblem here.

In our CP-CG framework, we are concerned with two different types of decision

variables, namely binary variables in the Integer Program model and finite domain

variables in the CP model. A communication variable has thus been introduced to link

Chapter 6 CP based column generation approach to nurse rostering problems

138

these two types of decision variables and reflect the interactions between the two

models:

--ximjk: binary variables as communication variables between the master problem and the

pricing subproblem. It takes value 1 if nurse i in category m is assigned to shift k on

day j; 0 otherwise. For example, if sij = k, where nurse i is in category m, then ximjk =1.

Note that ximjk serves the role of extracting ailmjk coefficients from sij.

After (NRPs P) is solved and the values of cil and sij have been obtained, the

communication variable ximjk transforms sij in the pricing subproblem to the coefficient

ailmjk in the master problem. For example, schedule l = [Day, Day, Night, Night, Off,

Off, Day] can be transferred as a column [11000010011000]T. Values of cil and ailmjk are

used to calculate the reduced cost il in (6-6).

6.3 Solution Procedure

As stated above, in the CP-CG approach CP is used to solve the subproblem (NRPs P)

to generate columns for the master problem. To combine these columns (schedules)

generated by the subproblem into a complete roster, the master problem (the binary

Integer Program problem NRPs MP) tries to minimize the total cost (the sum of costs

from all chosen schedules) by choosing exactly one line of schedule for each nurse,

while satisfying the coverage constraint.

The overall solution procedure of CP-CG is illustrated in Fig. 6.1. A feasible solution is

firstly generated and fed into the restricted master problem (NRPs MP). Each column in

the initial solution is associated with a cost calculated by () ()e

e

e

C
il C

C C

c E l w l


   , and the

highest cost is used as the threshold in the CP pricing subproblem. The candidate

columns which preserve feasibility and have a cost of below the cost threshold are

generated by solveCPSubProblem(c~ , DDS) using the Depth Bounded Discrepancy

Search (DDS) strategy[137]. Columns with negative reduced costs are then priced out

from these candidate columns and added to the restricted master problem to solve the

Chapter 6 CP based column generation approach to nurse rostering problems

139

Linear Program problem again. New lower bound of Linear Program relaxation and the

new dual value λ are derived in the Linear Program, as shown in the inner loop in Fig.

6.1.

Within the outer loop in Fig. 6.1, the Branch-and-Bound is run based on the generated

columns to obtain an integer solution yil. The solution serves as the upper bound of the

master problem. The cost threshold is then updated as the highest cost of all columns in

the current solution. The column pool is then emptied and DDS restarts to generate

columns with a tightened bound. The parameters of DDS direct the search to different

sections of the tree. If the cost threshold remains the same, parameters of the DDS

search will be adjusted to find columns in different parts of the search tree. This bound

tightening mechanism aims to avoid generating columns of high costs. The whole

procedure will stop until certain condition is met (no improvement of cilyil in a certain

number of iterations). An integer solution with certain gap to the Linear Program

relaxation is obtained.

In the literature, the integer solutions to the master problem are obtained by either

running the Branch-and-Bound on the Linear Program relaxation or running the Brand-

and-Price algorithm. In our CP-CG, instead of running Branch-and-Price at each node

to derive optimal solutions, we run Branch-and-Bound on the generated diverse

columns which are of good quality by using search strategies for the CP to derive

integer solutions to the master problem.

Chapter 6 CP based column generation approach to nurse rostering problems

140

Fig. 6.1 The CP based column generation solution procedure

To illustrate more clearly what are columns of good structure, i.e. diverse columns, we

present a small example here. Assume that we already have a set of columns as follows:

l1 = [Day, Day, Night, Night, Off, Off, Day]

l2 = [Day, Day, Day, Day, Off, Off, Off];

l3 = [Day, Day, Day, Off, Off, Off, Off];

l4 = [Day, Day, Day, Day, Day, Off, Off].

The master problem (NRPs MP) chooses exactly one column for each nurse to construct

a whole roster which satisfies the coverage constraint (for example, 3 Day shift and 1

Night shift are assigned on the first day). It can be seen that all of current columns

l1l2l3l4 have Day assignment on the first day. To satisfy the coverage constraint, new

column such as l = [Night, Night, Day, Day, Off, Off, Day[which has Night shift

assignment on the first day (of course all these columns need to have negative reduced

cost as well) are expected.

Algorithm. CP based Column Generation Approach

:A subset of feasible columns of A
: dual values

{α(1), …, α(k)}: columns generated by CP
:c cost threshold of columns

:A = get initial columns // see section 3.1

:c = initial cost threshold
Repeat

Repeat
Ap := empty column pool
λ := solve the RMP A

Ap :={α(1), …, α(k)} = solveCPSubProblem(c~ , DDS) // see section 3.2
price columns with negative reduced costs from Ap and add them to A

Until stop condition is met (number of iteration)
yil = solve the integer solution of MP A

~ using B&B
update the cost threshold c~ // see section 3.3

Until termination condition is met (without improvement of cilyil)

Chapter 6 CP based column generation approach to nurse rostering problems

141

6.3.1 Initial solution

We apply our initial solution generation strategy proposed in our previous work in

chapter 4 here to generate initial solution for CG.

6.3.2 Depth Bounded Discrepancy Search to obtain diverse columns

In CP, Depth First Search (DFS) [3] a standard search strategy. It traverses the search

tree by searching down to the leaf of one branch before starting another branch.

Whenever a dead-end of a branch with no solution is reached, the search goes back to

an upper depth of the search tree, i.e. backtracking, and continues to search down

another branch. The main drawback of DFS is that, given a limited computational time,

even for problems of moderate size, it can only explore a very small part of the search

tree before moving to another part, returning very similar solutions (with only the last

several variables taking different values) [3, 69].

Limited Discrepancy Search (LDS) [14] is an alternative search strategy to explore the

search tree iteratively based on the innovative idea of discrepancy. A discrepancy is

“any decision point in a search tree where we go against the heuristic”[14]. Assume a

heuristic orders the branches in a left-to-right manner by estimating which branch is

more likely to contain solutions. For convenience, we assume that taking the left branch

follows the heuristic. Taking the right branches breaks the heuristic, i.e. a discrepancy.

LDS explores the search tree in a series of DFS with k discrepancies, where each DFS

defers the heuristic k times (i.e. going to the right branches k times), k = 0,…,(d–1), d is

the depth of the tree. LDS thus has the chance to explore the right part of the search tree

and is likely to find the solution quicker compared to the standard DFS [14, 69, 73].

LDS treats all the discrepancies the same irrespective of the depth at which the

discrepancies happened. However, heuristics tend to be less informative and make more

mistakes near the root of the search tree [137]. Based on the idea of LDS, the Depth

Bounded Discrepancy Search (DDS) [137] is also an iterative process (d iterations of

Chapter 6 CP based column generation approach to nurse rostering problems

142

DFS). However, discrepancies in DDS happen at early stage of the search, bounded by

depth i in iteration i, i = 0,…,(d – 1), i.e. all discrepancies must happen at and above

depth i, not allowed below depth i. That is, at depth i of the tree, the search must take

the right branch (discrepancy) of the node. At depth above i, the search explores both

the right and left branches. Below depth i, the search must take the left branch (i.e.

follow the heuristic, no discrepancy allowed in the later stage) at all nodes. The latest

discrepancy in DDS happens at depth i in the tree. This controls (forces) the search to

traverse to different parts of the tree, resulting into diverse solutions.

Fig. 6.2 illustrates how DDS traverses the tree. Without loss of generality, the binary

tree represents assignments of the simplified variables sj, j = 1,…,5, and the domain of

sj is (Day, Off). We assume the left and right branch takes the value Day and Off,

respectively. In the first iteration of DDS, depth i = 0, so no discrepancy happens. The

search takes the left branch at all nodes, leading to path (1) DDDDD. In the second

iteration, depth i = 1, DDS obtains path (17) ODDDD by taking the discrepancy at

depth 1 (i.e. takes the value Off at the right branch). In the third iteration, the

discrepancy must happen at depth i = 2, thus leading to paths (9) DODDD and (25)

OODDD. Following the same rule, it can be seen that the paths explored by DDS

(illustrated at the bottom of Fig. 6.2) lead to diverse assignments, i.e. early variables in

the assignments also take different values.

In the default settings in ILOG Solver, based on the standard Depth Bounded

Discrepancy Search (DDS)[29], an extended DDS search is defined by introducing three

additional parameters (depth, width, MaxDiscrepancy) as follows. The first parameter

depth restricts the depths the search explores to be between depth×i and depth×(i+1) in

iteration i. That is, in the first iteration, i = 0, the search explores the nodes at depths

above depth. In the second iteration, i = 1, it explores the nodes between depth and

depth×2, and so on. The second parameter width is used to restrict the number of paths

explored by limiting the number of discrepancies occur between depth×i and

depth×(i+1). The third parameter, Max Discrepancy, restricts the total number of

Chapter 6 CP based column generation approach to nurse rostering problems

143

discrepancies, i.e. it defines the total number of times the search is forced (diversified)

to different parts of the tree.

Fig. 6.2 Depth Bounded Discrepancy Search

6.3.3 Pricing subproblem with threshold

In our CP-CG approach, it is easy to generate feasible candidate columns due to the

efficient constraint handling in CP. However, among the huge number of columns, most

are of poor quality with high cost, and are not helpful to reduce the objective function

value. The issue of selecting “good” candidate columns to reduce the computational

time in column generation was first discussed in [138]. In [139], existing columns with

reduced cost of zero have been used with fast local improvement algorithms to construct

columns with positive reduced costs for their maximization problem.

To eliminate poor columns in CP-CG, we introduced an additional cost bounding

constraint, threshold c , to the pricing subproblem. The enhanced model for the

subproblem based on (NRPs P) is presented as follows:

(En NRPs P): l  F

i < 0

ci < c

Chapter 6 CP based column generation approach to nurse rostering problems

144

This (En NRPs P) model is solved by CP as a constraint satisfaction problem to seek

feasible solutions as candidate columns. This cost threshold plays an important role in

the search procedure. In the research of cost filtering algorithms for Constraint

Optimisation Problems (or the problem with soft constraints), the algorithm associated

with the (global) constraints can be used to filter the domain of the cost variables AND

decision variables (we refer to Focacci’s work [140] for further discussion). To achieve

these propagations, cost filtering algorithms need to be implemented for each soft

constraint in the model, as in the work in [44, 119, 141]. However, there is a trade-off

between the time needed and the efficiency of the algorithm.

As we stated before, in our work, we do not implement cost filtering algorithm of each

soft constraint to filer the domain of cost variable cil. Rather we use this cost (i.e. the

violation measure of soft constraint) to filter the domain of decision variables sij. The

filtering rule is: if the cost of a sequence of assignment at node i is greater than the

upper bound (cost threshold), we remove this value from its domain, i.e. the node i is

pruned.

We should note that this cost threshold does not completely prevent the generation of

columns with bad (large) original cost which may have good reduced cost. These

columns may make other columns fit in very nicely to help reaching the integer

feasibility of the master problem. The bound tightening mechanism adaptively tightens

the bound. At the beginning of the solution procedure, the cost threshold is set at a

relatively high value thus columns with large cost also have the chance to enter the

master problem. By adaptively tightening the cost threshold, the search gradually

accepts better columns with smaller cost.

This filtering rule, working with the feasibility pruning (the domain consistency rule)

can help to accelerate the tree search. The traverse in the tree (i.e. the generation of

columns) is controlled by both the search strategy DDS (with its parameters) and the

upper bound of the columns (the cost threshold) to obtain good quality columns.

Chapter 6 CP based column generation approach to nurse rostering problems

145

6.4 Experimental results

6.4.1 Algorithm setting

The hybrid CP-CG approach is implemented in C++, linking ILOG CPLEX 10.0 to

solve the Linear Program and Brand-and-Bound for the Inter grogram problem, and

ILOG Solver 6.2 to solve the CP pricing subproblem as well as to provide initial

solutions. Default parameters have used in all the CPLEX software packages unless

otherwise stated. The parameter settings in the CP-CG approach for all problems are

given in Table 6.1. The total computational time is set as one hour, the same as that of

existing methods in the literature (see Table 6.4). Other parameters are set based on

observations of the approach on small problems Gpost and Valouxis by a number of

initial tests. To control the size of the master problem solved by Branch-and-Bound

after column generation, the maximum number of columns is set as 10000.

Table 6.1 Parameter settings for the CP-CG approach

Parameters Values

Total CPU time limit 1 hour

Maximum CPU time for CP solver per iteration 60(sec)

Maximum number of iterations 50

Maximum number of columns in LP 10000

6.4.2 Performance of strategies in CP-CG

First, we comment on the number of columns processed. Table 6.2 presents the number

of columns generated by DDS with and without the cost threshold. The settings of these

threshold values for different problems are based on the weights of the soft constraints

shown in the Appendix. These weights decide the original cost cil of columns l of each

problem, see the equation () ()e

e

e

C
il C

C C

c E l w l


   in section 6.2.2.Without the cost

threshold, a large number of columns with quite large cost can be generated. However, a

large part of these columns has no contribution to the restricted master problem. The

last column in Table 6.2 demonstrates that with the help of cost threshold, a large

Chapter 6 CP based column generation approach to nurse rostering problems

146

number of columns with costs above the threshold can be discarded to provide good

columns at each iteration without the loss in the solution quality. It can be clearly seen

from the faster convergence of DDS with cost threshold in Fig. 6.3 that “good” columns

make the real contribution to the search procedure. Fig. 6.3 presents the decrease of the

objective function value over the iterations of column generation. Since the maximum

CPU time per iteration in the CP solver is settled as shown in Table 6.1, Fig. 6.3 can

also illustrate the relationship between the objective value and CPU time.

Table 6.2 DDS with and without cost thresholds in CP-CG. “up to limit” indicates that the search

stopped after reaching the maximum number of columns 10000, as shown in Table 6.1.

Problem Without threshold With adaptive threshold

total no. of columns threshold

values

no. of

columns

no. of discarded

columns

Gpost 5862 2 2567 7433

Valouxis 8562 40 3860 6140

ORTEC up to limit 100 4586 5414

Chapter 6 CP based column generation approach to nurse rostering problems

147

Fig. 6.3 The decrease of objective function value over iterations of CP-CG with different search

strategies for the three problems. “16n*5s*35d” denotes problem with 16 nurses, 5 shift types and 35

days.

Next we comment on the decrease of Linear Program lower bound in CP-CG with four

search strategies, namely DFS, DDS, DDS with static threshold and DDS with adaptive

threshold as shown in Fig. 6.3. DDS with static cost threshold continuously decrease the

Linear Program lower bound comparing with DFS and pure DDS. The performance is

further improved by the threshold tightening strategy which adaptively updated the

Chapter 6 CP based column generation approach to nurse rostering problems

148

threshold according to information collected during the search. With the adaptive cost

threshold, less number of columns is being processed, so less iterations of CG are

executed comparing with DFS and pure DDS.

To provide an in-depth analysis of the search strategies in CP-CG on the improvement

of the Linear Program lower bound and integer solution obtained after Branch-and-

Bound, Table 6.3 compares detailed numerical results of DFS, DDS and DDS with the

adaptive threshold. For each strategy, objective values of solutions after the

initialization, Linear Program relaxation and Branch-and-Bound are presented. In terms

of Linear Program lower bound, DDS with the adaptive cost threshold makes the most

improvement to initial solutions, although both DFS and DDS strategies can also

improve initial solutions to a certain scope. In terms of integer solution after Branch-

and-Bound, for the small problem Gpost, integer solutions can be found by all the three

strategies, where the optimal solution has been only found by using DDS with adaptive

cost threshold. However, for larger problems, integer solutions can only be obtained by

DDS or DDS with adaptive cost threshold within the time limit, of which the latter

obtained much better results for both problems.

Table 6.3 Numerical results of CP-CG with DFS, DDS and DDS + adaptive cost threshold. Optimal

results are shown in bold. Avg CPU(sec): the average time of a single iteration of column generation by

CP; ZIN: the objective value of the initial solution; ZLP: the objective value of the best solution of the LP

relaxation of the master problem ob3tained at the end of column generation procedure; ZIP: the objective

value of the best integer solution obtained after applying B&B on generated columns.

Problem Strategy
IN

Z
LP

Z
IP

Z Avg CPU(sec)

Gpost DFS 18 16 16 5.62

DDS 18 10 14 3.58

DDS + adaptive cost threshold 18 3 3 3.68

Valouxis DFS 1120 860 -- 8.21

DDS 1120 460 540 4.20

DDS + adaptive cost threshold 1120 40 60 4.28

ORTEC DFS 1686 1240 -- 18.75

DDS 1686 860 -- 9.24

DDS + adaptive cost threshold 1686 300 401 8.78

Chapter 6 CP based column generation approach to nurse rostering problems

149

6.4.3 CP-CG compared with existing approaches in the literature

We finally evaluate our CP-CG approach on the most constrained ORTEC problem. In

the literature, 12 instances of the problem of different scheduling periods, i.e. 28, 30 or

31 days of 12 months, have been widely tested. To evaluate the CP-CG as a general

approach, we first model the problem as of 5-week length and produce 5-week columns

in one go for all the instances rather than implementing the algorithm for each instance

(denoted as CP-CG I). Based on these 5-week columns the real solutions of 28-31 days

for each month have been obtained by removing the extra days at the beginning / end of

the schedule.

We compare our CP-CG I approach with current existing approaches in the literature on

the 12 real-world instances in Table 6.4. In all the other approaches in Table 6.4, meta-

heuristic algorithms (e.g. genetic algorithms and Variable Neighourhood Search) have

been either delicately designed using domain knowledge to solve the problem [115,

125], or used as a part to improve the solutions obtained by Integer Programming or CP

[123, 133]. It is interesting to see that both the hybrid Integer Programming [123] and

hybrid CP [133] have combined Variable Neighourhood Search to the solutions

obtained from exact mathematical methods in a sequential manner. Our CP-CG

approach does not employ any advanced meta-heuristic algorithm sequentially, but

embeds the heuristic search DDS more closely within the column generation procedure.

Chapter 6 CP based column generation approach to nurse rostering problems

150

Table 6.4 Existing approaches on ORTEC benchmarks in the literature, best results shown in bold. P.d. stands for the percentage deviations from the best

results. The threshold is set as c = 40 in the search of CP-CG. Hybrid GA: a genetic algorithm hybridised with local search. It has been developed in the

commercial software HarmonyTM, developed at ORTEC, and was compared with the hybrid VNS in [115]. Hybrid VNS: a hybrid Variable Neighourhood Search

(VNS) algorithm. Hybrid IP: IP solutions improved by a VNS with four neighbourhoods. Hybrid CP: a CP approach followed a VNS with two neighbourhoods.

Original results in chapter 4 were obtained within 0.5 hours and cited here. CP+LNS: a CP integrated with LNS presented in chapter 5.

instances Hybrid GA [125] HybridVNS [115] Hybrid IP[123] Hybrid CP [133] CP+LNS CP-CG I CP-CG II

1 hour 1 hour 1 hour ½ Hour ½hour 1 hour 1 hour

Obj p.d. Obj p.d. Obj p.d. Obj p.d. Obj p.d. Obj p.d. Obj p.d.

Jan 775 157% 735 144% 460 53% 616 105% 395 31% 301 0% 301 0%

Feb 1791 42% 1866 48% 1526 21% 1736 38% 1261 0% 1261 0% 1261 0%

Mar 2030 19% 2010 17% 1713 0% 2766 61% 1831 7% 3111 82% 1975 15%

Apr 612 57% 457 17% 391 0% 956 145% 731 87% 621 59% 621 59%

May 2296 29% 2161 21% 2090 17% 1786 0% 2111 18% 1941 8% 1941 8%

Jun 9466 52% 9291 49% 8826 42% 8700 40% 6201 0% 6231 0% 6231 0%

Jul 781 84% 481 13% 425 0% 650 53% 751 77% 751 77% 751 77%

Aug 4850 123% 4880 125% 3488 61% 2171 2% 2121 0% 5901 172% 2171 2%

Sep 615 86% 647 96% 330 0% 1300 294% 851 158% 1811 449% 401 22%

Oct 736 145% 665 121% 445 48% 616 105% 395 31% 301 0% 301 0%

Nov 2126 34% 2030 28% 1613 1% 1620 2% 1136 0% 2251 42% 1590 40%

Dec 625 54% 520 28% 405 0% 496 22% 1101 172% 1676 314% 450 11%

Chapter 6 CP based column generation approach to nurse rostering problems

151

By CP-CG I, we obtain the best solution by for 4 out 12 instances (with 0% deviation

from the best results). For some particular instances, i.e. Mar, Aug, Sep, Nov and Dec,

solutions of CP-CG I are much worse than that of other methods. This is due to the

underlying problem characteristics that violations of constraints occur at the boundaries

of the scheduling period. As stated above, this CP-CG I generates 5-week columns in

one run for all 12 instances. The removing of extra days in the schedule for each month

easily leads to violations of constraints which are related to specific weekdays at the

boundaries of the month. For example, removing a Sunday shift at the end of 5-week

columns may leave a single Saturday shift for the weekend in the current calendar

month, thus causes a large cost in the roster.

The above mentioned problem can be easily resolved by generating columns for each

individual month. We run CP-CG for those instances (Mar, Aug, Sep, Nov and Dec),

and the results are presented under column CP-CG II in Table 6.4. Within the same

computational effort, results obtained by the CP-CG II are good, especially considering

that the CP-CG approach is built upon the complete hybrid model formulating all

constraints, and solution quality does not rely on advanced meta-heuristic algorithns. In

our CP-CG approach, no meta-heuristic improvement algorithms have been applied

afterwards. The idea is to provide a clear indication of the guaranteed effectiveness of

the pure CP-CG approach. Hybridizations of our CP-CG approach with meta-heuristics

can be investigated in our future work, and is out of the scope of this chapter.

6.5 Conclusions

In this chapter, we investigate a hybrid column generation approach, where constraint

programming (CP) is integrated to solve the highly constrained real-world nurse

rostering problems. The work has been submitted to Computers & Operations Research,

see List of Publications.

The complex nurse rostering problems have been modeled based on the column

generation scheme, where the master problem is formulated as an Integer Program

Chapter 6 CP based column generation approach to nurse rostering problems

152

problem and the pricing subproblem is modeled and solved in the CP paradigm.

In the standard column generation procedure, the quality of columns is only measured

by reduced cost. Those columns which satisfy constraints of the pricing subproblem

enter the restricted master problem. This usually leads to the slow convergence in the

column generation. In this chapter, we propose two strategies which aim to generate

good and diverse columns. A cost threshold has been introduced, and is adaptively

tightened during the search to choose those columns of good quality, i.e. only columns

with a cost below the threshold and is negative reduced cost enter the master problem.

Depth bounded discrepancy search have been used in the CP procedure to produce

diverse columns. Experimental results demonstrate that a much less number of columns

is processed by using DDS compared with DFS. What is more, even with these less

columns, the reduction of objective value of linear relaxation by applying DDS in the

pricing subproblem is faster than applying DFS. Further speed up of convergence of

linear relaxation has also been obtained by applying DDS with the cost threshold.

The effectiveness and efficiency of our CP-CG approach have been demonstrated by a

set of comprehensive experiments on three real-world benchmark nurse rostering

problems with different profiles. Comparison results against several existing approaches

have demonstrated and justified the adopted strategies based on the analysis of the

strength of different approaches on the benchmark nurse rostering problems tested.

The main focus of this work is to design efficient search strategies which speed up the

Linear Program relaxation convergence while also try to satisfy the integrality request

of the master problem. In this work, the Branch-and-Bound search is applied at the root

node within the CP-CG approach to produce integer solutions with a certain gap. Given

more computational time, our CP-CG may be plugged at each node of the tree to derive

optimal integer solutions to the problem, i.e. by using the Branch-and-Price algorithm.

Other future research directions include investigations on hybridizations of the CP-CG

approach with more advanced search algorithms such as meta-heuristics with problem

specific neighourhoods and move strategies, etc., as well as more efficient cost

propagation in solving the CP pricing subproblem.

Chapter 6 CP based column generation approach to nurse rostering problems

153

CP-CG integrates CP with column generation to find solutions to the problems. It not

only demonstrates how to solve the problem with exact methods (instead of relying on

meta-heuristic algorithms), which makes a valuable contribution to the research

community, but also provides a quality measure of the solution obtained. That is, the

lower bound of the solution can be obtained from the optimal solution of the LP

relaxation. Since the optimal solution of the nurse rostering problem is unknown due to

its computational complexity, this quality measure is very important. This lower bound

provides us with some knowledge of how far the obtained solution is away from the

optimal one.

Chapter 7 A Layered Branch-and-Bound algorithm to portfolio selection problems
with real-world constraints

154

Chapter 7 A Layered Branch-and-Bound algorithm to

portfolio selection problems with real-world

constraints

7.1 Introduction

In this chapter and chapter 8, we investigate another real-world combinatorial

optimisation problem: the portfolio selection problem.

As we introduced in section 3.3.1, Markowitz’s mean–variance model (MV) of

portfolio selection is one of the best-known models in modern finance. The basic MV

model selects the composition of assets which either achieves a predetermined level of

expected return while minimizing the risk, or achieves the maximum expected return

within a pre-defined level of risk.

From a practical point of view, however, the MV model is often considered to be too

basic, as it ignores many constraints, such as trading limitations and size of the portfolio,

etc, faced by real-world investors. Adding such constraints into the basic MV

formulation results into a nonlinear mixed integer quadratic programming problem

(MIQP), which is considerably more difficult to solve than the basic model.

In this chapter, these real-world constraints are considered simultaneously in one single

model, which leads to a MIQP model with both binary variables and general integer

variables. Comparing with the relevant models [112-114] in the literature, our model

consists of all three constraints thus more closely reflects the need of investors.

However, this obviously leads to a more complex model than those in [112-114], and

thus demands more efficient solution approach for the MIQP model. As observed by

many researchers, the efficiency of Branch-and-Bound (B&B) highly relies on the

branching rule heuristic (to choose which variable to be branched on) and the node

Chapter 7 A Layered Branch-and-Bound algorithm to portfolio selection problems
with real-world constraints

155

selection heuristic (to choose which value to be traversed first)1. The MIQP model of

the portfolio selection problem has different variables of different features. This

motivates our work to apply different branching rules and node selection rules

according to the different features of these variables.

In this chapter, we try to solve the portfolio selection problems by a multi-level

exploitation in the search tree. This proposed layered B&B algorithm can be seen as a

decomposition approach, where variables are decomposed according to their different

features and layered into certain levels/layers in the search tree. The search is performed

layer by layer in the tree. Several benefits can be achieved. Firstly, search will be

performed intensively on those variables with a higher priority (at the higher layer).

Intuitively, this means we focus on the core variables of problem first, and then deal

with the rest of the variables. Secondly, a heuristic which works well for one subset of

variables of the problem may not be appropriate for the other variables. By layering the

tree (decomposing the variables of the problem), we can easily devise different efficient

heuristics to different layers. Thirdly, search is more easily manipulated within the

given time limit by aborting it at each layer accordingly. Of course, the optimality of

solution will be sacrificed, but the quality of the solution can still be measured by the

gap between the incumbent solutions and the optimal solution.

7.2 Problem formulation

In the basic version of the Markowitz MV model, we have a given set of n assets A =

{a1, …, an }. Each asset ai is associated with an expected return (per period) ri, and each

pair of assets < ai, aj > has a covariance
ij . The covariance matrix

n n 
is symmetric

and each diagonal element
ii represents the variance of asset ai. A positive value R

represents the expected return.

1 The tightness of the lower bound and the upper bound also plays a key role in B&B, but this issue is not
discussed here. We apply the optimal solution of continuous relaxation as the lower bound and the
incumbent solution as the upper bound.

Chapter 7 A Layered Branch-and-Bound algorithm to portfolio selection problems
with real-world constraints

156

In the modern MV portfolio theory, the variance of asset represents the risk of investing

asset ai; while the covariance
ij represents the correlated risks between pairs of assets.

To obtain the expected return, rational investors should pick combination of diversified

assets, i.e. a portfolio, to reduce the risk which is measured by the covariance of

combined portfolios.

A portfolio can be represented by a set W = { w1, …, wn }, where wi represents the

percentage wealth invested on asset ai. The value
1 1

j ni n

ij i j
i j

w w


 
 represents the variance of

the portfolio, and is considered as the measure of the risk associated with the portfolio

[7, 103]. Consequently, the portfolio selection problem can be defined as to minimize

the overall variance, while ensuring the expected return R. The formulation of the basic

problem can thus be defined as the following.

1 1

1

1

min

. .

1

0 1, 1,...

j ni n

ij i j
i j

i n

i i
i

i n

i
i

i

w w

s t r w R

w

w i n




 













  







(7-1)

The covariance ij is positive semi-definite, so the minimization problem (7-1) is a

convex optimisation problem. More specifically, it is a convex Mixed Integer Quadratic

Programming (MIQP) problem.

The quadratic programming problem is NP-complete [142], but nowadays can be solved

optimally by using some existing commercial tools2. Plotting the risk of a portfolio by

solving (7-1) for each corresponding expected return R, we obtain the so-called

2 There are a lot of state-of-art solvers for the quadratic programming, such as IBM CPLEX, Matlab
computational libraries, and NAG’s routines [www.nag.co.uk].

Chapter 7 A Layered Branch-and-Bound algorithm to portfolio selection problems
with real-world constraints

157

unconstrained efficient frontier that provides for each expected return the minimal

associated risk.

In our formulation, we consider the following additional three types of constraints.

By using the basic MV model, an obtained optimal portfolio may contain very small

investments in a (large) number of assets [7]. However, it is found that such small

positions have very limited impact on the overall performance of the portfolio. What’s

more, in practice, it is quite costly to establish and maintain these small positions [143]

due to the cost of tracking, monitoring, and brokerage, etc [7, 143]. In our model, we

introduce the buy-in constraint that prevents investors from holding very small positions

by defining a prescribed proportion limit wmin of the available capital. That is, holding a

position strictly less than wmin in a portfolio is forbidden. To model such a constraint, we

first introduce n extra binary variables zi, zi = 1 if the investor holds asset ai (i.e. wi > 0),

zi = 0 otherwise:

i iw z (7-2)

Then small positions in portfolios are forbidden by introducing the following buy-in

constraint:

min i iw z w (7-3)

Investors can also put a limit on the number of assets, k, that compose the portfolio,

named as cardinality constraint, and expressed as the follows:

1

i n

i
i

z k




 (7-4)

Real-world investors usually purchase large blocks of individual financial assets. This is

not only because such blocks are more easily traded than the smaller holdings, but also

for liquidity reasons, investors want to avoid the risk of getting stuck in a small, poor

liquid holding of an asset [7]. Another reason to buy stocks by lots of large quantity is

that brokers require a premium for lot trades. So, it is very important to develop an

approach that effectively handles the lot constraint within the optimisation procedure. In

Chapter 7 A Layered Branch-and-Bound algorithm to portfolio selection problems
with real-world constraints

158

our portfolio optimisation model, we define the lots constraint that requires the purchase

of assets by batches or lots of M.

To each risky asset ai, we associate a general integer variable loti, and define the

following lots constraint:

i ix lot M (7-5)

imposing that the amount xi of asset ai in the portfolio is a multiple of M (a real number).

By denoting the face value of asset ai by pi and the total available capital by K (a real

number), we have i
i

i

w K
x

p
 . By replacing xi in (7-5) with i

i

w K

p
, we reformulate (7-5) as

the follows:

i i
i

p lot M
w

K
 (7-6)

Problem (7-1) thus becomes:

1 1

1

1

min

1

min (7-7)

. .

1

j ni n

ij i j
i j

i n

i i
i

i n

i
i

i i

i i

i n

i
i

i

w w

s t r w R

w

w z

w z w

z k

w




 

































0 1, 1,...

{0,1}, 1,...

, 1,...

i i

i

i

i

p lot M

K

w i n

z i n

lot Z i n

  

 

 

In model (7-7), three additional constraints are considered simultaneously which leads

to a MIQP model with three types of variables, the continuous variables wi, the binary

variables zi and the general integer variables loti.

Chapter 7 A Layered Branch-and-Bound algorithm to portfolio selection problems
with real-world constraints

159

7.3 The Layered Branch-and-Bound algorithm

7.3.1 The Branch-and-Bound algorithm

As we introduced in section 2.3, The B&B algorithm is a general technique for finding

optimal solutions of various optimisation problems, especially in integer and

combinatorial optimisation. It systematically enumerates all candidate solutions through

a tree search. The main idea of B&B is to prune large subsets of unpromising candidates

(branches) by using estimated upper and lower bounds of the objective function to be

optimised [8].

The B&B algorithm generally consists of two main procedures [144]. The first one,

called branching, is a splitting procedure that creates child nodes from the parent node

in the tree. The other procedure, called bounding, computes the upper and lower bounds

of the objective function during the search.

We calculate the lower bound in our convex MIQP by replacing the integer variables

with continuous ones. This relaxation of the MIQP is Quadratic Programming with

linear constraints and its quadratic matrix is positive semi-definite. Therefore, it is easy

to solve with various solution methods (such as extensions of the Simplex method and

interior point method, etc). We denote the optimal solution values of this continuous

relaxation as x .

If x are integer values, then x represents the optimal solution and the problem is solved.

Otherwise, those integer variables xi with non-integer values are chosen for branching.

One of the most common ways of branching is to create two subproblems (or nodes) on

the floor value
ix   (the largest integer smaller than xi) and the ceiling value ix   (the

smallest integer larger than xi), respectively. These two subproblems are stored in a list

of open nodes. Then, at each subsequent iteration of the algorithm, a subproblem is

chosen, and the continuous relaxation of the current node is solved, providing a lower

Chapter 7 A Layered Branch-and-Bound algorithm to portfolio selection problems
with real-world constraints

160

bound. The enumeration at the current node stops if any of the three following

conditions are met:

• The continuous relaxation is infeasible (pruning by infeasibility);

• The optimal solution of the continuous relaxation (lower bound) is not better than the

value of the best integer feasible solution found so far (upper bound) (pruning by

bounds);

• The optimal solution of the continuous relaxation is integer (pruning by optimality).

If the optimal solution of the continuous relaxation cannot be pruned, one of the integer

variables with infeasible values is then chosen for branching, and two new subproblems

are then added to the list of open nodes. This iterative process in the search tree

continues until the list of open subproblems is empty. Fig. 7.1 presents the B&B

algorithm.

Fig. 7.1 The Branch-and-Bound algorithm [8]

The pseudo code in Fig.7.1 describes how B&B algorithm exploits the nodes in the tree

by the branching and bounding procedures. There are various branching and bounding

procedures investigated in research. These branching heuristics [145] and bounding

methods [146] are plugged in the B&B algorithm in Fig. 7.1, i.e. line 9 and line 4

correspondingly.

1: Incumbent :=  ; Open :={ (P0, )}; // set the upper bound as  , Open: the list of open nodes
2: Repeat until Open =  ;
3: Select the node P from Open to be processed; Open := Open \ {P};
4: Bound P: LBP := g(P) // function g(P) calculates the lower bound of P
5: If LBP = f(X) for a feasible solution X and f(X) < Incumbent then
6: Incumbent := f(X); Solution := X;
7: go to EndBound;
8: If LBP  Incumbent then prune P
9: Else Branch on P, generating P1…, Pk;
10: Open := Open  {(Pi; LBP)}, i = 1, …, k;

11: EndBound;
12: OptimalSolution := Solution; OptimumValue := Incumbent;

Chapter 7 A Layered Branch-and-Bound algorithm to portfolio selection problems
with real-world constraints

161

7.3.2 The Layered Branch-and-Bound algorithm

One of the key factors in the B&B procedure is the branching rule, i.e. which variable to

branch first. The MIQP model we build contains additional constraints defined by three

different groups of variables: continuous variables wi, binary variables zi and general

integer variables loti. To each asset ai, zi indicates if the asset is held; loti indicates how

much to hold. We can thus solve the problem by firstly deciding which assets will be

held, and then deciding how much of each asset should be held. This motivates the

devise of our proposed layered B&B algorithm.

…...

…...

…...

…...

V1

V2

Fig. 7.2 Illustration of layered B&B algorithm. Spots without descendant nodes represent the leaf

nodes and circles represent the open nodes as shown in Fig. 7.1

The idea of the layered B&B is that we split the B&B tree into certain layers which

correspond to subsets of variables V1, V2 …. The variables with the same feature are

solved within the same layer of the tree, and different ones are processed in different

layers. Fig. 7.2 illustrates this idea, where the first layer consists of the binary variables

zi, and continuous variables wi. The general integer variables loti is added to the second

layer. The B&B search will perform on the top layer firstly to instantiated the binary

variables zi, and continuous variables wi. Based on the instantiations of zi, and wi, the

Chapter 7 A Layered Branch-and-Bound algorithm to portfolio selection problems
with real-world constraints

162

search goes down to the second layer where the general integer variables loti are present.

By layering the tree, we actually perform an implicit decomposition on the process of

solving the original problem. The idea is that we focus on the core variables of the

problem first, and perform intensive search on them before we deal with the rest of the

variables.

The pseudo-code of the layered B&B is outlined in Fig. 7.3. The first three lines define

the branch and node selection heuristics which are applied to different layers of the

search tree. Firstly, model V1 (corresponds to layer one) is built that only consists of

binary variables zi and continuous variables wi. The problem is solved with the help of

branch and node selection heuristics (line 5). When the stopping condition is met, (i.e. a

feasible or the optimal solution of problem V1 is obtained), the search on the top layer is

terminated and the incumbent solution is saved. Next, problem V1 is modified by adding

variables on the second layer, the general integer variables loti, to build problem V2. The

search is continued on the second layer for problem V2 with its own heuristics (line 9).

Note that the search performed on the second layer does not start from scratch, but is

based on the solution obtained from the previous layer (line 8).

There is certain restriction in creating this layered B&B for the problem at hand. The

variable in the objective function (i.e. wi) must be all instantiated in the top layer. This is

ensured by building the model V1 on the top layer on binary variables zi and continuous

variables wi. After the search on the top layer, the incumbent solution (i.e. value

assignments to zi and wi) is saved and fed to the second layer to continue the search.

Fig. 7.3 The pseudo-code of the layered B&B algorithm

1: void L-BranchRule();
2: void L-NodeSelection();
3: void L-RoundHeuristic();

4: model(V1);
5: if (B&B(V1, L-BranchRule(),L-NodeSection()) == feasible or optimal
6: solutionVector := getIncumbentSolution();
7: V2 = modify model(V1);
8: setSolution(solutionVector);
9: B&B (V2, L-RoundHeuristic())

Chapter 7 A Layered Branch-and-Bound algorithm to portfolio selection problems
with real-world constraints

163

7.3.3 Branching rules and the node selection heuristic

Finding good branching strategies is the core of successful B&B algorithms and for

solving the MIQP [144]. Based on the most popular and common branching rules in

MIP, we propose the branching rules employed in our layered B&B for the MIQP

problem.

a. The Most Infeasible Branching Rule

The most infeasible branching rule is still a very common branching rule in MIP. It

chooses the variable with the largest fraction (closest to 0.5) to branch first. The reason

behind this is that we should firstly select a variable for which the least tendency can be

recognized. This is similar to choosing the most constrained variable first in solving

constraint satisfaction problems.

b. The Pseudocost Branching Rule

Pseudocost branching is a more sophisticated rule proposed in [144]. It estimates the

changes of the objective function value caused by fixing the fractional variable to its

floor value or ceiling value, which is represented by the following:

,j j

j j j j

z z
p p

x x x x

  
 

       

.

The initial value of ,j jp p  for the integer variable xj is set as the coefficient ci in the

objective function. Different strategies can be used to update ,j jp p  if xj is branched on

for more than once. More details of this pseudocost branch rule can be found in [144].

c. Branching Rules in the Layered B&B Algorithm

The most infeasible branching rule focuses on the integer infeasibility of variables. It

tries to firstly branch on the variable with the most integral infeasible value. The

pseudocost branching rule tries to predict which variable will improve the objective

Chapter 7 A Layered Branch-and-Bound algorithm to portfolio selection problems
with real-world constraints

164

function value the most. Our first branching rule L-BranchRule() for binary variables zi

combines the most infeasible rule and the pseudocost rule.

We choose the variable with the largest objective coefficient among those with the

largest integer infeasibility. The integer infeasibility is measured by the difference

between the fractional value xi and its floor value
ix   or ceiling value

ix   . For example,

in the case that we have two fractional values x1 = 0.2 and x2 = 0.4 with their

corresponding objective coefficients 0.6 and 0.8, we will choose x2 to branch first. This

branching rule is similar to the static branching rule in [114] that considers the objective

coefficient. The difference is that in our study we also take the integer infeasibility into

account.

For the general integer variables loti, the branching rule L-BranchRule() may not

perform so well. For example, assume we have two fractional values x1 = 50.8 and x2 =

1245.1. Because of the different scales, it is difficult to say which one has larger integer

infeasibility. We therefore do not branch on these variables but apply a round heuristic

to the variable in our L-RoundHeuristic().

In [145] the author reviews most of the existing round heuristics. Experimental results

on general MIP problems show that among these round heuristics, the Simple Rounding

heuristic is the fastest. The Simple Rounding heuristic looks at each fractional integer

variable of a given primal feasible point, and round down or round up the fractional

value to its floor or ceiling value. It operates on the fractional integer variables within

their feasible domains. Another efficient round heuristic, the ZI round heuristic in [147],

attempts to round each fractional integer variable to integer value while using row

slacks to maintain the feasibility of the constraints. In this chapter, we propose a L-

RoundHeuristic() which combines the Simple Round heuristic and the idea of ZI round.

We apply the row slack to measure if a variable can be rounded down or up while

maintaining the feasibility of the constraints.

Chapter 7 A Layered Branch-and-Bound algorithm to portfolio selection problems
with real-world constraints

165

To explain the L-RoundHeuristic() rule, we first define some terms for a MIP in the

following form:

min CX

subject to AX ≤ B

X ≥ 0

XZ

For each constraint
ij j i

j

a x b , a row slack si, defined as
ij j i i

j

a x s b  , indicates

how much the value
ij j

j

a x can be changed while maintaining the feasibility of this

constraint.

The L-RoundHueristic() first calculates the range that a variable xj can be changed while

maintaining the feasibility of the constraint. xj cannot be changed to over the bound

min { , 0}i
i ij

ij

s
a

a
 . Likewise, xj cannot be changed to below min { , 0}i

i ij

ij

s
a

a


 . After we

obtained these bounds, for each variable xj with a fractional value, we check if its

ceiling value
ix   or flooring value

ix   is within the range defined by the above bounds.

If such a variable is found, we then set it to its corresponding
ix   or

ix   to improve the

integer feasibility while maintaining the feasibility of constraints. If such variable

cannot be found, we abort the heuristic.

After branching on the variables with fractional values, two subproblems are created

and inserted to the list of open nodes. Next, we decide how to choose the node to

process in our node selection heuristic L-NodeSelection(). Within our layered B&B, the

search is based on the depth first search but with the consideration of integer

infeasibility. In the list of open nodes, the node that is the deepest in the tree and with

the maximal integer infeasibility is chosen.

Chapter 7 A Layered Branch-and-Bound algorithm to portfolio selection problems
with real-world constraints

166

The search of the overall layered B&B can be controlled by deciding how much search

effort to put on each layer. As presented in line 5 of the pseudo-code of the layered

B&B in Fig. 7.3, we can terminate the search on the top layer as soon as we find the

first feasible solution. The search then dives into the second layer based on the feasible

solution obtained from the top layer. Alternatively, we can terminate the search on the

top layer until the optimal solution is found (under the condition that solving the top

layer problem is not too time-consuming). The solution obtained when the top layer is

solved to optimality may be closer to the optimal solution of the original problem

comparing with the solution obtained when the top layer is solved to be feasible. We

investigate the performance of the layered B&B under both settings of the stopping

criteria in our experimental study.

7.4 Experimental results

7.4.1 Test problems

To build the testing data for our algorithm, we extended the portfolio optimisation

instances, publicly available in the OR Library [148]

at http://people.brunel.ac.uk/~mastjjb/jeb/info.html, by adding the three additional real

life constraints (e.g. cardinality, buy-in threshold and lots) to the benchmark.

Table 7.1 presents the extended five datasets. In the original problem datasets in the OR

Library, the expected return rates and covariance matrices of assets have been provided.

We set the minimum proportion of the wealth wmin to be invested on an asset to 1% for

the small instances Hang Seng (Hong Kong) and Dax (Germany), and 0.1% for the rest

of the instances. The available capital K is set to 10,000k. The minimum trading amount

of asset M is set to 5, 10, and 50 arbitrarily, and the face values pi for assets are set

within the range of 3.50-53.50 arbitrarily without loss of generality. We test different

values of k in the cardinality constraint, ranging from 10 to 90 with respect to different

sizes of the portfolio. In total, 13 instances have been built to test the algorithm. Note

Chapter 7 A Layered Branch-and-Bound algorithm to portfolio selection problems
with real-world constraints

167

that the values of K, M and pi will not affect the difficulty of the problem but the value

of cardinality k does affect the selection of portfolios. This will be discussed in the

following subsections.

Table 7.1 Properties of problem instances for portfolio selection problems

Dataset
Instances No. of assets Minimum proportion wmin Cardinality k

Hang Seng Port 11 31 0.01 10

Port 12 31 0.01 28

Port 13 31 0.01 31

DAX Port 21 85 0.01 50

Port 22 85 0.01 65

FTSE Port 31 89 0.001 60

Port 32 89 0.001 29

S&P Port 41 98 0.001 64

Port 42 98 0.001 80

Nikkei Port 51 225 0.001 20

Port 52 225 0.001 60

Port 53 225 0.001 10

Port 54 225 0.001 90

7.4.2 Evaluation of the Layered Branch-and-Bound algorithm

In our experiments, we compare the results obtained from the standard B&B algorithm

in CPLEX10.0 solver with those from our layered B&B. The layered B&B is

implemented in C++ with the concert technology in CPLEX on top of CPLEX10.0. All

experiments have been carried out on an Intel(R) Core(TM) 2CPU 1.86GHz machine

with 1.97GB memory.

7.4.2.1 Evaluation of the Performance without Layering the B&B Tree

First, we test the branching heuristic L-BranchRule() and the node selection heuristic

Chapter 7 A Layered Branch-and-Bound algorithm to portfolio selection problems
with real-world constraints

168

L-NodeSelection() without decomposing the problems into layers in the B&B tree.

Table 7.2 reports the results obtained from the three solution approaches listed below on

the 13 problem instances based on model (7-7).

 Default B&B in CPLEX: all the parameters in B&B are set to default values.

B&B itself will choose the node selection and branching direction. We refer this

approach as Def hereinafter.

 B&B with our branching rule, without layering the tree: our L-BranchRule() is

applied to all the integer variables in the model. We refer this approach as BR

hereinafter.

 B&B with our branching rule and node selection heuristic, and without layering

the tree. Our proposed L-BranchRule() and L-NodeSelection() are applied to all

the integer variables in the model. We refer this approach as BR&NS hereinafter.

The same computational time, 60 seconds, is set for all approaches. For each problem

instance and solution approach, Table 7.2 reports:

 The node of the B&B tree at which the first feasible solution is obtained and its

corresponding optimality gap.

 The node at which the best feasible solution (optimal solution) is obtained and

its corresponding optimality gap.

 The computing time (in CPU seconds) needed to solve the problem to obtain the

best solution.

For example, in Table 7.2, for problem instance Port 11 solved by the default B&B in

CPLEX, the first feasible solution is obtained at node 20 with a 4.80% optimality gap.

The best feasible solution is obtained at node 40 with a 0.00% optimality gap, and the

computing time is 0.03 seconds.

First, we comment on which method can find the first feasible solution by traversing the

least number of nodes. From Table 7.2 we can see that Def can find the first feasible

Chapter 7 A Layered Branch-and-Bound algorithm to portfolio selection problems
with real-world constraints

169

solution by exploring the least number of nodes for 6 out of 13 instances, while BR can

find the first feasible solution for 4 out of 13 instances by searching the least number of

nodes and BR&NS can find 6 out of 13. One thing should be mentioned here is about

the feature of instance Port 13. The cardinality constraint k in Port 13 is the same as the

total number of assets, which means that the binary variables zi play no role in the

model (all variables zi will take the value of 1). This has been shown by the fact that all

three methods obtain the same results, as all variables take the value of 1 automatically

thus our branching rule will not be applied.

We then comment on the quality of these first feasible solutions found by different

approaches. It can be seen that although BR finds the first feasible solution later than

Def, the quality of the first solution found by BR is better than Def for most of problem

instances e.g. Port 1-4. For problem instances Port 5, although Def found the first

feasible solution later than BR, the quality is better than that of BR.

Chapter 7 A Layered Branch-and-Bound algorithm to portfolio selection problems with real-world constraints

170

Table 7.2 Branch rule and node selection heuristics without layer the B&B tree

Instance Default CPLEX B&B (Def) With branch rule (BR) With branch rule and node selection heuristic

(BR&NS)

First

node

Gap Best

node

Gap Time First

node

Gap Best

node

Gap Time First

node

Gap Best

node

Gap Time

Port 11 20 4.80% 40 0.00% 0.03 52 0.00% 52 0.00% 0.03 40 9.02% 4679 0.13% 1.0

Port 12 19 2.20% 1267 0.00% 0.3 19 2.20% 1276 0.06% 0.3 19 2.20% 4204 0.00% 0.9

Port 13 26 0.00% 26 0.00% 0.02 26 0.00% 26 0.00% 0.02 26 0.00% 26 0.00% 0.02

Port 21 53 2.16% 84 0.42% 0.21 165 1.86% 698 0.30% 1.09 2927 2.52% 16971 1.01% 60

Port 22 204 0.39% 1461 0.12% 0.99 434 0.18% 434 0.18% 0.55 222 1.80% 2681 0.22% 2.89

Port 31 37 1.83% 117 0.04% 0.26 82 0.84% 184 0.00% 0.38 92 12.29% 8777 0.13% 7.45

Port 32 36 4.01% 123 0.14% 0.25 46 7.12% 2545 0.37% 2.24 50 21% 39708 0.16% 28.4

Port 41 594 0.02% 594 0.02% 1.30 81 6.27% 205 0.57% 0.55 81 6.27% 4591 1.91% 60

Port 42 1019 0.08% 1019 0.08% 2.00 1511 0.04% 1511 0.04% 4.29 247 0.70% 1590 0.44% 4.02

Port 51 764 2.01% 853 1.08% 4.50 776 1.80% 2414 1.01% 16.2 701 0.89% 701 0.89% 6.9

Port 52 240 0.10% 240 0.10% 2.7 114 4.97% 4647 0.30% 18.0 2361 5.96% 9107 5.03% 60

Port 53 26 0.93% 145 0.33% 0.6 25 6.77% 499 0.00% 1.8 25 6.77% 2795 0.27% 4.7

Port 54 344 3.22% 1825 0.04% 5.3 5615 7.78% 13273 1.58% 60 227 5.01% 9619 0.09% 30

Chapter 7 A Layered Branch-and-Bound algorithm to portfolio selection problems
with real-world constraints

171

Comparing the best solution (the optimal solution with a certain optimality gap) found

by these three methods, we can see that Def can find the best solution more quickly as

well as with a better quality.

Considering all the factors on how fast the first and the best solution can be found and

how good these solutions are, we can conclude that the performance of BR and BR&NS

is not consistently good. This means that our proposed branching rule which is designed

to certain type of variables does not work efficiently for all of the variables in the model.

7.4.2.2 Evaluation of the Layered B&B

In this subsection, we apply the branching rule and node selection heuristics in the

layered B&B where the tree has been layered according to different groups of variables.

Table 7.3 reports the results of Def and the layered B&B on the 13 problem instances as

follows:

 Def: Default B&B in CPLEX, same as the above

 Layered B&B: our proposed layered B&B with L-BranchRule() and L-

NodeSelection() applied to binary variables zi and L-RoundHueristic() applied

to general integer variables loti

The evaluation criteria reported in Table 7.3 are the same as those in Table 7.2, i.e. the

node at which the first and best solutions obtained and their corresponding quality.

As we introduced in section 7.3, in addition to applying different branching rules and

heuristics to different groups of variables, we can also easily control the search by

putting appropriate search effort on different layers of the tree. In Table 7.3, the layered

B&B is terminated after the first feasible solutions are found at the top layer.

Chapter 7 A Layered Branch-and-Bound algorithm to portfolio selection problems
with real-world constraints

172

Table 7.3 Layered B&B, search aborts after finding the first feasible solution at the top layer

Instance Default B&B Layered B&B (feasible at the top layer)

First

node

Gap Best

node

Gap Time First

node

Gap Best

node

Gap Time

Port 11 20 4.80% 40 0.00% 0.03 164 1.02% 164 1.02% 0.1

Port 12 19 2.20% 1267 0.00% 0.3 19 2.20% 1267 0.00% 0.3

Port 13 26 0.00% 26 0.00% 0.02 26 0.00% 26 0.00% 0.02

Port 21 53 2.16% 84 0.42% 0.21 2136 4.52% 2136 4.52% 3.82

Port 22 204 0.39% 1461 0.12% 0.99 3443 0.26% 3443 0.26% 1.99

Port 31 37 1.83% 117 0.04% 0.26 143 0.00% 143 0.00% 0.88

Port 32 36 4.01% 123 0.14% 0.25 45 3.63% 45 3.63% 0.30

Port 41 594 0.02% 594 0.02% 1.30 46 0.14% 46 0.14% 0.90

Port 42 1019 0.08% 1019 0.08% 2.00 24 0.22% 24 0.22% 0.80

Port 51 764 2.01% 853 1.08% 4.50 21 0.06% 21 0.06% 0.40

Port 52 240 0.10% 240 0.10% 2.7 249 3.78% 249 3.78% 2.0

Port 53 26 0.93% 145 0.33% 0.6 0 0.56% 0 0.56% 0.1

Port 54 344 3.22% 1825 0.04% 5.3 127 0.11% 127 0.11% 1.3

We highlight the first feasible solutions obtained by two methods in Table 7.3. It can be

seen that the layered B&B can obtain the first feasible solutions with better quality for 7

out of 11 instances. This indicates that the layered B&B with our proposed heuristics

can find better first feasible solutions than Def. This is quite satisfied result because we

devote a much less search effort on the layered B&B (i.e. the search is terminated as

soon as the first feasible solution is found). For the same reason, not surprisingly, Def

obtains better quality optimal solutions than the layered B&B. In Table 7.3, the same

performance is achieved for two instances Port 12 and Port 13 due to the properties of

these instances. The cardinality constraint k in Port 13 is the same as the total number of

assets, which means that the binary variables zi play no role in the model (all variables zi

will take the value of 1). This is shown by the fact that Default B&B and Layered B&B

obtain same results. Instance Port 12, the cardinality constraint k is 28, which is very

close to the size of portfolio 31. The Layered B&B can produce the result at the top

layer of the tree without applying L-RoundHueristic() to the general integer variables

loti. Therefore, the results obtained by Layered B&B are the same as those obtained by

Default B&B.

Chapter 7 A Layered Branch-and-Bound algorithm to portfolio selection problems
with real-world constraints

173

More search effort can be put on the top layer of the layered B&B to achieve improved

best solutions. That is, the subproblem on the top layer can be solved to optimal before

the search dives into the second layer. The optimal solution from the top layer is saved,

based on which the search on the second layer is performed. From the results reported

in Table 7.4, we can see that the layered B&B found better solutions in term of

optimality gap for all instances except Port 12 and Port 31 (we set the optimality gap

tolerance as 0.01%).

Note that when the initial solutions are fed to the B&B, CPLEX will apply repairing

heuristics on the solutions to derive feasible solutions before starting the tree search. In

Table 7.4, we can see that the repairing heuristic succeeds for 2 problem instances (Port

21 and Port 22) thus the tree search does not need to continue to layer two.

Table 7.4 Layered B&B. search aborts after obtaining the optimal solution

Instance Layered B&B (feasible top layer) Layered B&B (optimal top layer)

Heuristic repair

succeed

Heuristic repair failed

F
ir

st
no

d
e

G
ap

B
es

t
n

o
d

e

G
ap

T
im

e

N
o

d
e

G
ap

F
ir

st
no

d
e

G
ap

B
es

t
n

o
d

e

G
ap

T
im

e

Port 11 164 1.02% 164 1.02% 0.1 -- -- 67 0.19% 80 0.00% 0.15

Port 12 19 2.20% 1267 0.00% 0.3 -- -- 0 0.01% 0 0.01% 0.45

Port 13 26 0.00% 26 0.00% 0.02 -- -- 0 0.00% 0 0.00% 0.03

Port 21 2136 4.52% 2136 4.52% 3.82 0 0.00% -- -- -- -- 0.2

Port 22 3443 0.26% 3443 0.26% 1.99 0 0.22% -- -- -- -- 0.32

Port 31 143 0.00% 143 0.00% 0.88 -- -- 20 0.20% 20 0.20% 0.87

Port 32 45 3.63% 45 3.63% 0.30 -- -- 30 0.32% 30 0.30% 0.50

Port 41 46 0.14% 46 0.14% 0.90 -- -- 50 0.87% 190 0.04% 1.90

Port 42 24 0.22% 24 0.22% 0.80 -- -- 30 0.68% 70 0.14% 1.20

Port 51 21 0.06% 21 0.06% 0.40 -- -- 0 0.00% 0 0.00% 0.7

Port 52 249 3.78% 249 3.78% 2.0 -- -- 0 0.01% 0 0.01% 1.7

Port 53 0 0.56% 0 0.56% 0.1 -- -- 0 0.14% 0 0.14% 1.1

Port 54 127 0.11% 127 0.11% 1.3 -- -- 0. 0.10% 0 0.10% 1.4

Chapter 7 A Layered Branch-and-Bound algorithm to portfolio selection problems
with real-world constraints

174

Based on the results presented in Tables 7.2, 7.3 and 7.4 we can draw the following

conclusions:

 The branching rule and node selection heuristic do play an important role on the

performance of B&B algorithms

 Applying the branching rule and node selection heuristic on different types of

variables at different layers of the tree greatly improves the solutions obtained

 The search can be more easily controlled in the layered B&B

 Based on the solutions of subproblems, better or optimal solutions can be easily

obtained within similar computational time compared with standard B&B.

7.4.3 The efficient frontier

In this section, we compare of the performance of the standard B&B and layered B&B

algorithms by examining their performance on obtaining the efficient frontiers of the

five problems. We plot the efficient frontiers for the five instances Port 11, Port 21, Port

31, Port 41 and Port 51. For each instance, we have computed the mean-variance

frontier by setting the expected return from 0.2% to 0.8% with the step of 0.012 (50

portfolios are thus plotted for each efficient frontier). Linear interpolation is used to plot

the intermediate values.

To obtain the exact efficient frontier for the constrained problem, model (7-7) needs to

be solved optimally for each expected return R. However, as we stated before, this is not

achievable due to the introduction of the integer constraints. We therefore use the

CPLEX 10.0 solver to compute an approximate efficient frontier for model (7-7) by

running the algorithm for a long computational time. For each point on the efficient

frontier, the running time limit is set as 60 seconds. We denote this as the default

efficient frontier.

Fig. 7.4 illustrates the default efficient frontiers calculated by the default CPLEX solver

with a long running time, and the efficient frontiers obtained from the layered B&B.

Chapter 7 A Layered Branch-and-Bound algorithm to portfolio selection problems
with real-world constraints

175

Here, in the layered B&B, we solve the subproblem at the top layer to optimal before

going down to the second layer. The time spent on each point on the efficient frontier is

given in Table 7.4, i.e. around 0.02 to 2 seconds for each point. This is much less than

the time limit for the default CPLEX solver which is 60 seconds.

Fig. 7.4 Efficient frontiers from the default B&B and layered B&B

From Fig. 7.4 we can see that the quality of solutions from the layered B&B is

extremely good. For instance Hang Seng, the average gap between the default efficient

frontier and our layered B&B efficient frontier is under 0.01%. For instance DAX, the

Chapter 7 A Layered Branch-and-Bound algorithm to portfolio selection problems
with real-world constraints

176

gap for portfolios with lower risk is larger than those of with higher risk, but the overall

gap is still quite small. The gaps for instances FTSE and S&P are quite small as well.

However, for large instances Nikkei, the gap is relatively larger.

Due to the additional constraints introduced in our problem formulations, it is difficult

to compare the results against those from other approaches in the literature. Even for

approaches that are tested on the same OR Library instances, a fair comparison is still

difficult to conduct as, to the best of our knowledge, all the existing approaches in the

literature analyze the results of problems with only a single additional constraint. Our

approach considers the model with all three constraints simultaneously for the first time.

In order to more accurately compare our results against the default frontier obtained by

B&B with a long running time, we compute the percentage deviations of each portfolio

from the default frontier by calculating the distance between the risk obtained by our

layered B&B algorithm and that on the default frontier. This measure represents the

deviation of the obtained solution from an approximation of the exact solution, and is

also used in [109] [112] to evaluate the quality of results and provide an indication of

the performance of the algorithm. Table 7.5 presents the comparisons between heuristic

approaches.

In Table 7.5, the genetic algorithm, tabu search and simulated annealing methods

investigated in [109] are pure metaheuristic methods. Pooled (GA, TS, SA) method,

also investigated in [109], combines the three sets of non-dominated points given by the

three algorithms into one set. Those points which are dominated are eliminated from

this new set. In [112], the integer restart method applies the previous integer solution of

QP as the first feasible solution and the upper bound of the following QP.

In Table 7.5, the percentage deviations of our method are quite small compared with

other approaches. One thing to note is that the problems solved by the integer restart

method are formulated in three independent models; each consisting of one of the three

additional constraints investigated in this chapter, while our model consists of all the

Chapter 7 A Layered Branch-and-Bound algorithm to portfolio selection problems
with real-world constraints

177

three additional constraints. Compared with these simpler models, the percentage

deviations of our solutions are still highly competitive.

Table 7.5 Comparisons of the layered B&B with existing approaches in the literature

Instance Solution method Percentage

deviation

Hang Seng GA 0.94570

TS 0.99080

SA 0.98920

Pooled (GA,TS,SA) 0.93320

Integer restart 0.01415

Layered B&B 0.00008

DAX GA 1.9515

TS 3.06350

SA 2.42990

Pooled (GA,TS,SA) 2.19270

Integer restart 0.01399

Layered B&B 0.00992

FTSE GA 0.87840

TS 1.39080

SA 1.13440

Pooled (GA,TS,SA) 0.77900

Integer restart 0.01141

Layered B&B 0.02074

S&P GA 1.71570

TS 3.16780

SA 2.69700

Pooled (GA,TS,SA) 1.31060

Integer restart 0.01586

Layered B&B 0.03079

Nikkei GA 0.6431

TS 0.9891

SA 0.6370

Pooled (GA,TS,SA) 0.5690

Integer restart 0.00618

Layered B&B 0.03901

Chapter 7 A Layered Branch-and-Bound algorithm to portfolio selection problems
with real-world constraints

178

7.5 Conclusions

In this chapter, we extend the Markowitz mean-variance portfolio selection problems

with three additional real-world trading constraints simultaneously in a single model.

The resulting formulation, which is a Mixed Integer Quadratic Programming problem,

thus has different features corresponding to different groups of integer variables (i.e.

binary variable and general integer variable). These features motivate the development

of a decomposition approach, layered Branch-and-Bound (layered B&B) algorithm, for

solving the problem which we are concerned with. The work has been submitted to

Journal of Heuristics, see List of Publications.

In the B&B search tree, sets of variables are layered (decomposed) according to their

different features, and search is performed on one layer before another in sequence.

Two tailored branching heuristics and one node selection heuristic are applied to

individual layers of the B&B tree in order to speed up the search for optimal solutions.

The performance of the layered B&B is analyzed and compared based on the extended

instances in the OR Library with all three additional constraints. The efficient frontiers

are plotted for each instance to provide a graphic illustration of the results. It can be

seen that the quality of solutions from the layered B&B algorithm is extremely good,

with a much less computational time, compared with the default B&B.

The layered B&B algorithm can be seen as firstly searching on the top layer of the tree

(subproblem of a set of variables) then diving into a particular region of the search space

in order to explore it intensively. In this chapter, both layers are searched by the B&B,

and with different tailored branching rules to the corresponding layer, i.e. these

branching rules are tailored explicitly to the features of the variables.

The layered B&B for the portfolio selection problems with integer constraints is

proposed based on the features of different variables in the problem, i.e. the B&B tree is

layered to multi-levels accordingly to the binary variables and general integer variables.

Chapter 7 A Layered Branch-and-Bound algorithm to portfolio selection problems
with real-world constraints

179

For problems without this specific feature, the layered B&B technique can still be

generalized and applied to solve the problem accordingly.

One possible generalization of the layered B&B is to apply it in solving problems

represented as decomposed constraint graphs. Constraint graph has been widely used in

the literature, especially in constraint satisfaction, where nodes represent variables and

edges represent constraints. By decomposing the constraint graph (e.g. using the clique

partition), the problem can be partitioned into subproblems (e.g. cliques). Search can

then be applied on each layer corresponding to each subproblem. This generalised

framework of layered B&B provides the possibility of applying different search

methods on each layer. It is not necessary to perform the B&B on all layers. In the next

chapter, different algorithms including local search will be introduced into the layered

B&B algorithm, with the exact B&B search, to solve different decomposed

subproblems in the layered tree.

Chapter 8 A hybrid local search and Branch-and-Bound approach to constrained
portfolio selection problems

180

Chapter 8 A hybrid local search and Branch-and-

Bound approach to constrained portfolio selection

problems

8.1 Introduction

In this chapter, we consider the single-period portfolio selection problem, taking into

account transaction costs and a set of trading constraints. In the problem which we are

concerned with, a number of transactions can be carried out to adjust the portfolio

during the trading period. The goal of the problem is to minimize the risk of the

adjusted portfolio with the presence of transaction costs, while satisfying a set of trading

constraints in feasible portfolios.

If the transaction cost function is linear, then the problem is generally easy to solve.

However, a function which better reflects realistic transaction costs is usually non-

convex [149]. Some research show that realistic transaction costs usually include a fixed

fee, and thus the cost is relatively higher when the amount of transaction is smaller

[149, 150]. The transaction cost is thus usually represented by linear piecewise concave

function, leading to non-convex optimisation problems which are more difficult to

solve.

A common approach to handle a linear piecewise concave cost function is to introduce a

number of additional binary variables and solve the resulting mixed Integer

Programming (MIP) [151]. However, due to the introduction of these additional

variables, the problem becomes larger and is difficult to solve when the portfolio

consists of a large number of assets.

There has been a considerable progress recently in the development of exact methods

for solving general MIP. To certain extent, this progress is mainly due to the integration

of heuristics into the B&B method. There are a large variety of heuristics proposed for

Chapter 8 A hybrid local search and Branch-and-Bound approach to constrained
portfolio selection problems

181

general MIP in the literature (see [8, 152, 153]). The heuristics can be applied as

branching rules and node selection heuristics, etc, to accelerate the search in the tree

[145, 154, 155]. Heuristics can also be applied as improvement methods which start

from one or more feasible solutions and try to find feasible solutions with a better

objective value [49, 156-158].

In this chapter, we propose a new hybrid approach which integrates local search into the

B&B algorithm to solve the non-convex portfolio selection problem heuristically. In the

integrated B&B, we propose a new branching scheme which applies local search. We

thus name this branching scheme local search branching. Instead of branching on a

single variable, the local search branching scheme branches on a set of core binary

variables of the problem iteratively to generate a sequence of subproblems. The

subproblems are then solved in sequence by the default B&B in a general solver. The

best solution among them approximates optimal solution to the original problem.

Our main contribution is the tight integration of local search to B&B. The idea is to

identify a set of core variables in the problem, perform computationally inexpensive

search on the surface of these core variables, and then explore the subproblems defined

by variable fixings to completion. The inherent similar structures of the subproblems

facilitate efficient and successful solution information reusing in solving the

subproblems. It is well known that the sooner a tight upper bound can be found, the

more efficient a B&B search will be [8]. Therefore, Local Search Branching B&B

search can be further improved by a heuristic which identifies the subproblem who has a

tight upper bound.

8.2 Problem description

8.2.1 Portfolio selection problem with transaction cost

In financial practice, the transaction cost has significant effects on the optimal portfolio

in portfolio selection. It has been shown in [159] that ignoring the transaction cost

Chapter 8 A hybrid local search and Branch-and-Bound approach to constrained
portfolio selection problems

182

results into inefficient portfolios. This has also been justified by the experimental study

in [160].

The linear transaction cost function, which leads to a convex optimisation problem, is

relatively easy to solve, while the non-convex optimisation problem is more

challenging. Some researchers [106, 149-151, 160-162] investigate the portfolio

selection problem with non-convex transaction cost functions under the linear risk

measure. In [151], the piecewise linear concave cost function is approximated by the

convex envelop function, and the convex optimisation problem is solved by B&B. In

[161, 162], the reduced costs of assets are used as a heuristic to reduce the mixed integer

Linear Program model. Assets with the highest reduced cost are selected to construct a

reduced problem which is solved by B&B. In [106], the reduced cost of the model is

also used as a heuristic measure to decompose the problem into subproblems. The assets

with reduced costs which are under a certain threshold are selected to construct a

subproblem P1 and the rest of them forms the other subproblem P2. The subproblems

are them solved separately by B&B.

Solution approaches to the portfolio selection problem with transaction costs where

covariance is used as risk measure are less applied than those using linear risk measures.

To the best of our knowledge, there are only limited research attention on the problem

with non-convex cost function based on the MV model [163, 164]. In [163], a

Lagrangian relaxation is applied to derive the lower bound in B&B. In [164], a convex

envelop cost function and an iterative heuristic method are applied to approximate the

non-convex cost function and solve the problem by B&B.

In this chapter, we investigate the MIQP portfolio selection problem based on the MV

model. The quadratic term in the objective function (i.e. covariance) makes the problem

a Quadratic Program, which can be easily solved by any current solver (through

extended Simplex, etc.) So the difficulty of the MIQP problem lies on the discrete

aspect of the problem. In this chapter, we thus focus on the aspects of algorithm design

and performance analysis of our proposed new local search branching B&B to tackle

Chapter 8 A hybrid local search and Branch-and-Bound approach to constrained
portfolio selection problems

183

the MIQP problem. More specifically, we focus on the discrete optimisation aspects of

the problem, instead of a theoretical study on risk measures, which is not in the scope of

this work.

8.2.2 Problem formulation

Consider that an investor is holding a portfolio that consists of a set of n assets. To

respond to changes in the market, the investor must review its current portfolio, with the

view to carry out a number of transactions. It is assumed that the new portfolio will be

held for a fixed time period. The investor’s goal is to minimize both the transaction

costs occurred and the risk of the assets in the portfolio at the end of the investment

period, while satisfying a set of constraints. These constraints typically include meeting

the target return, the minimum position size (bounds on the amount of each asset), and

the minimum trading size (bounds on the amount of the transaction occurred on each

asset).

Let wi be the percentage of capital invested in asset i. We shall use a weight vector

0 0 0 0
1 2(, ,...,)T

nw w w w to denote a portfolio. The amount transacted in each asset is

specified by x = (x1, x2…, xn)
T , xi < 0 means selling and xi >0 means buying. After the

transaction, the adjusted portfolio is w = w0 + x, and is held for a fixed period of time.

At the end of the investment period, we denote the return of asset i at the end of the

investment period as ri. We denote its variance in return as ii . We further define

()x as the sum of individual transaction costs associated with each xi and σij as the

covariance between assets i and j. Based on the basic MV model, the portfolio selection

problem with transaction costs can thus be modeled as follows:

1 1

1

0

min + () (8-1)

. . (8-2)

(

j ni n

ij i j
i j

i n

i i
i

w w x

s t r w R

w w x F

 


 







  





8-3)

Chapter 8 A hybrid local search and Branch-and-Bound approach to constrained
portfolio selection problems

184

where objective (8-1) is to minimize the risk of the portfolio and the transaction costs

incurred. F in (8-3) represents the set of feasible portfolios subject to all the related

constraints detailed next.

The transaction cost

The transaction cost is the sum of the transaction cost associated with each asset traded:

1

() ()
i n

i i
i

x x 





As shown in [149, 150, 160], in practice, the transaction cost usually includes a fixed

fee, and the function can be linear piecewise concave as the cost decreases relatively

when the trading amount increases. In this chapter, we consider a model that includes a

fixed fee plus a linear cost, thus leads to a non convex function. Our method is readily

extendable to handle more complex transaction costs. The fixed fee charged for buying

and selling asset i is denoted as i
 and i

 , and the cost rates associated with buying

and selling asset i are denoted as i
 and i

 . The transaction cost function is given in (8-

4), and shown in Fig. 8-1:

0, 0;

() , 0;

, 0;

i

i i i i i i

i i i i

x

x x x

x x

  

 

 

 




  


 

(8-4)

Fig. 8.1 The transaction cost function

As we stated before, the amount transacted in each asset is specified by x = (x1,

x2…,xn)
T . xi < 0 means selling and xi > 0 means buying. To denote the transaction, we

Chapter 8 A hybrid local search and Branch-and-Bound approach to constrained
portfolio selection problems

185

introduce new variables 0buy
ix  and 0sell

ix  , and thus buy sell
i i ix x x  . We assume that

the investor does not invest additional capital during the transaction process, i.e. we

have constraint

1 1

() 1 (8-5)
i n i n

i i i
i i

w x
 

 

  

Trading constraints

The minimum position constraint prevents investors from holding very small positions

by introducing a prescribed proportion minw of the available capital. That is, holding a

position strictly less than minw is forbidden. To model such constraint, we first introduce

n extra binary decision variables hold
iz to indicate if an asset is held or not. hold

iz =1 if

the investor hold asset i (i.e. 0iw ), hold
iz = 0 otherwise. The below constraint is firstly

introduced:

hold
i iw z (8-6)

Then small investments can be forbidden by introducing the following constraint:

min
hold
i iw z w (8-7)

Investors can also put a limit on the number of assets, k , that compose the portfolio,

named as cardinality constraint. It can be expressed as the following:

1

i n
hold
i

i

z k




 (8-8)

In addition, the minimum trading constraint is also used to prevent investors from

trading very small amount of assets by minx . Same as the above way of modelling the

minimum position constraint, we introduce additional binary variables buy
iz and sell

iz to

represent the buying or selling of the corresponding asset i. The minimum trading

constraint can then be expressed as the follows:

min
buy buy
i ix z x (8-9)

min
sell sell
i ix z x (8-10)

We can add additional constraints to define the relation between binary variables and

continuous variables as the follows:

Chapter 8 A hybrid local search and Branch-and-Bound approach to constrained
portfolio selection problems

186

sell sell
i ix z (8-11)
buy buy
i ix z (8-12)

We also need the exclusive constraint to prevent buying and selling the same asset at the

same time:

1buy sell
i iz z  (8-13)

Problem model with transaction cost and trading constraints

With these additional constraints which define a feasible portfolio F, we have the

complete problem model (PSP) as follows:

i the number of assets

Parameter
0w Current position of portfolio

ij Covariance between i and j

R Expected return

,i i   Fixed cost for buying or selling asset i

,i i   Variable cost rate for buying or selling asset i

minw Minimum hold position

k Number of assets in portfolio after transaction

Variable Feature Type Domain Core
variable

wi Position of portfolio
after transaction

Decision
variable

Continuous [0,1] No

buy
ix Amount of buying

asset i
Decision
variable

Continuous [0,1] No

sell
ix Amount of selling

asset i
Decision
variable

Continuous [0,1] No

hold
iz Hold asset i or not Dependent

variable
Binary {0,1} Yes

buy
iz Buy asset i or not Dependent

variable
Binary {0,1} No

sell
iz Sell asset i or not Dependent

variable
Binary {0,1} No

Chapter 8 A hybrid local search and Branch-and-Bound approach to constrained
portfolio selection problems

187

1 1 1

0

1

1 1

min

min + () PSP

. .

() 1

j ni n i n

ij i j i i
i j i

buy sell
i i i i

i n

i i
i

i n i n

i i i
i i

hold
i i

hold
i i

h
i

w w x

s t

w w x x

r w R

w x

w z

w z w

z

 



 

  





 

 

  



 





 



 

1

min

min

1

0 1, 1,...

0 1, 1,...

0 1, 1,...

, , {0,1}, 1,...

i n
old

i

buy buy
i i

buy buy
i i

sell sell
i i

sell sell
i i

buy sell
i i

i

buy
i

sell
i

hold buy sell
i i i

k

x z

x z x

x z

x z x

z z

w i n

x i n

x i n

z z z i n















 

  

  

  

 



There two group of variables in the formulation of the problem, as denoted by the

“feature” column. wi , buy
ix , sell

ix are decision variables. hold
iz , buy

iz , sell
iz are dependent

variables which are used to formulate the constraints. The column “core variable”

denotes which decision variables are core variables. We will describe it in the following

sections.

8.3 Related work of hybrid local search with B&B

The B&B algorithm is an exact method to find optimal solutions for various

optimisation problems, especially in integer and combinatorial optimisation [8].

Chapter 8 A hybrid local search and Branch-and-Bound approach to constrained
portfolio selection problems

188

Recently, there have been successive improvements in B&B, such as Branch-and-Cut

[165], Branch-and-Price [166] and Lagrangian relaxation [8], etc. However, many large-

scale MIP problems still cannot be solved within a reasonable time limit by these exact

methods. Consequently, heuristics and local search have attracted great research

attention as possible complements to the exact methods.

The simplest method which integrates heuristics and exact methods is to employ

heuristics as branching rules, node selection heuristics and cut-off bound to improve the

B&B tree search. This showed to significantly improve the efficiency of current B&B

algorithms.

More closely integrated approaches apply the idea of local search within B&B [49, 156,

158]. These researchers have tried to bring the idea of local search to B&B. More

specifically, the way that local search explores the neighbourhood of a solution can be

adapted in B&B to explore the nodes of the tree. In this section, we review several main

and important success in the area, including the local branching [156], relaxation

induced neighbourhood search [157] and several other related approaches.

8.3.1 Local Branching

Local branching [156] is a branching strategy for exploring an explicit neighbourhood

of a MIP solution. The idea of local branching is based on the observation that the

neighbourhood of an integer feasible solution often contains valid or better solutions of

the problem.

The neighbourhood x’ of a current incumbent x can be defined by introducing an

additional constraint H(x, x’) < r, where r represents a neighbourhood radius

parameter, and H(x, x’) is a generalized notion of Hamming distance,

(, ') 'j j
j B

H x x x x


  . In another word, local branching defines the neighbourhood of x

by adding a linear constraint H(x, x’) < r. All the solutions which satisfy this constraint

Chapter 8 A hybrid local search and Branch-and-Bound approach to constrained
portfolio selection problems

189

are the neighbourhood of x. This can be also seen as a soft variable fixing [49], and the

neighbourhood is actually a sub-MIP. Local branching combines local search with a

generic MIP solver for solving exactly the MIPs.

8.3.2 Relaxation Induced Neighbourhood Search (RINS)

Another innovation which brings the idea of local search to explore the neighbourhood

in MIP is Relaxation Induced Neighbourhood Search (RINS) [157]. RINS defines and

explores the neighbourhood in MIP based on two solutions: the incumbent solution and

the solution of continuous relaxation.

An incumbent solution during search is feasible with respect to the integerality

constraint but it is often not optimal until the global optimal integer solution has been

found. On the other hand, a solution of continuous relaxation at the current node is very

often not an integer solution, but its objective value is always better than or the same as

that of the incumbent [157]. Thus, the incumbent solution and the solution of

continuous relaxation each achieves one and fails the other of the following conflicting

goals: integrality and optimisation of the objective value. While some variables clearly

take different values in the solutions of the incumbent and relaxation, it is important to

note that many take the same values, as observed in [157]. The analysis of these two

solutions showed that a small neighbourhood of the incumbent is likely to contain better

feasible solutions.

Based on the above idea, the RINS strategy is thus simple. At a node of the B&B tree,

RINS performs the following procedure: (1) fix the values of the variables which are the

same in the current continuous relaxation and the incumbent integral solution; (2) set

the objective cut-off value (bound) to the objective value of the current incumbent

solution; and (3) solve the sub-MIP on the remaining variables.

Chapter 8 A hybrid local search and Branch-and-Bound approach to constrained
portfolio selection problems

190

8.3.3 Other approaches

Recently, some approaches have emerged following the similar idea of applying local

search to approximately explore the nodes of B&B. Variable Neighourhood Search

Branching (VNSB) [158] is a heuristic search for solving the general MIP problem,

using the general-purpose MIP solver CPLEX. It can be seen as a special variant of

local branching. Compared with local branching, in VNSB, the neighbourhoods are

changed according to the rules of the general VNS in a more systematic manner.

Variable Neighbourhood Decomposition Search (VNDS) [49] is a hybrid heuristic for

solving MIP. It combines Variable Neighourhood Search with a general-purpose MIP

solver, e.g. CPLEX in [49]. VNDS also performs systematic variable fixing, and can be

seen as an improved version of VNSB. The variables to be fixed are chosen based on a

non-decreasing order of the difference between their values in the LP-solution and the

incumbent solution, i.e. they are chosen according to the distance of their values to

those in the corresponding linear relaxation solution. Subproblems are obtained by

successively fixing a certain number of variables in the order obtained. The subproblem

thus consists of the remaining free variables (uninitiated variables) which are the

furthest from their linear relaxation values. These subproblems are then solved exactly

or within the CPU time limit by B&B in CPLEX.

8.4 Local search branching B&B algorithm

8.4.1 Framework of Local search branching B&B

In this chapter, we propose a new hybrid approach, named Local Search Branching

B&B, the pseudo-code of which is presented in Fig. 8.2. Instead of branching on just

one variable at a time (as it is done in standard branching schemes) to create two

subproblems, the local search branching scheme branches on a set of variables at the

same time.

Chapter 8 A hybrid local search and Branch-and-Bound approach to constrained
portfolio selection problems

191

First, in the initialization phase of the approach (line 1), the original problem is

decomposed into subproblems by variable fixing on the core variables zi
hold . Variables

of a subset of zi
hold, S, are assigned values 1. The exclusive set of S, denoted as S’,

comprises the rest of variables. The variables in S’ are assigned values 0 (see section

8.4.3 and pseudo code in Fig. 8.3). Next, the lower bound of the subproblem Psubi is

computed by a general LP solver, which relaxes the subproblem to be a continuous

problem (line 3). The default B&B algorithm in the MIQP solver in CPLEX10.0 is

applied to solve the subproblems to optimality. The objective value of the feasible

solution to the concerned subproblem Psubi serves as the upper bound of the original

problem. The objective value of the optimal solution to the relaxed continuous

subproblem Psubi serves as the lower bound (line 3). If the lower bound of a subproblem

is above the current upper bound found so far, we can prune this subproblem during the

search (line 4). Otherwise, these subproblems are solved exactly by a standard B&B in

an IP solver (line 7). The solutions to the subproblems together with the assignments of

core variables constitute feasible solutions to the complete original problem (line 7).

Local search is next performed on this set of core variables to generate new value

assignment for each variable zi
hold (line 9) (see section 8.4.4 and pseudo code in Fig.

8.4). The elements of subsets S and S’ are updated (line 10). Each move of the local

search updates the subsets S and S’ thus a sequence of subproblems is created (line 11).

These subproblems are solved in sequence and the best solution among them

approximates the optimal solution to the original problem (line 13). The whole

procedure terminates by terminating the local search on the zi
hold. Therefore, the search

is an incomplete search. It cannot guarantee optimality of the solution due to the nature

of the local search on core variables zi
hold.

Each of the subproblems itself is still a MIQP problem due to the presence of binary

variable zi
buy and zi

sell. However, due to the assignment to variable zi
hold by the variable

fixing (see section 8.4.2), the size of the subproblem is much smaller compared to the

original one. Therefore, subproblems can be handled by the default B&B.

Chapter 8 A hybrid local search and Branch-and-Bound approach to constrained
portfolio selection problems

192

What is more, the inherent similar structures of the subproblems enable a very

successful reuse of solution information, so the repairing heuristics embedded in the

solveB&B (line 7) are evoked to improve the search (see section 8. 4.3).

Local Search Branching B&B is further improved by a heuristic which identifies the

subproblem which has a tight upper bound at the early stage to help pruning more nodes

in the tree (see initialization phase, section 8.4.3).

In the hybrid local search and B&B approach, the neighbourhood defined is usually a

sub-MIQP, intensively searched by B&B. The default B&B in a general solver can

usually be used as a black box solver to solve the subproblems. In our work, we also

apply the default B&B to solve the subproblem as some other researchers have done

[158] [49] . We place our focus on the identification of tight upper bounds and the

reusing of solution information which contributes to the success of repairing heuristics.

Fig. 8.2 Local Search Branching B&B algorithm for minimization

Local search branching B&B

LB: lower bound;
UB: upper bound;
(h, x,w,z): a solution (x,w,z) of the problem with a corresponding objective value h;
solveB&B: the default B&B solver in CPLEX 10.0;
S and S’: two exclusive subsets of Z, i.e. S  S’= Z: set of zi

hold;
Porg: orginal problem defined by model (PSP);
Psubi: subproblem defined by variable fixing;

1: Initialization phase // see section 3.2.3
2: while (stop condition is not met)
3: If (LB (Psubi) ≥ UB)
4: prune the subproblem Psubi; // see section 3.2.3
5: go to line 13;
6: Else

7: (h, x,w,z) = solveB&B(Psubi)  (zi
hold = 1), zi

hold S;

8: set UB = ;

9: perform Local search phase on the space of Z ; // see Fig. 4
10: update elements in set S;
11: generate subproblems by variable fixing: Psubi = Porg  (zi

hold = 1), zi
hold S; // see

section 3.2.2
12: go to line 2;
13: set (x*, w*, z*) as the best solution among all (x, w, z) and h* be the corresponding

objective value;

Chapter 8 A hybrid local search and Branch-and-Bound approach to constrained
portfolio selection problems

193

8.4.2 Notations and definitions of variable fixing

(Hard) variable fixing or diving has been used in MIP context to obtain a reduced

problem [48]. It assigns given values to a subset of variables of the original problem. A

formal description of variable fixing is given in [48, 49]. In this work, variable fixing is

applied to decompose the problem. Firstly, we define the original problem Porg on

model PSP in section 8.2 .2 as follows:

: min

. . ;

{0,1},

[0,1],

T
org

j

j

P c x

s t Ax b

x j B

x j C



   

  

where x is the vector of variables which are partitioned into two subsets: B corresponds

to binary variables and C corresponds to continuous variables.

We denote S and S’ as two exclusive subsets of B, i.e. 'S S B . The original problem

Porg is thus decomposed into two subproblems Psub1 and Psub2 by fixing variables in

subsets S and S’ to 1 and 0, respectively:

1 : min

. . ;

1,

[0,1],

T
sub

j

j

P c x

s t Ax b

x j S B

x j C



     

  

2 : min

. . ;

0, '

[0,1],

T
sub

j

j

P c x

s t Ax b

x j S B

x j C



     

  

For the problem modeled by PSP in section 8.2.2, we apply variable fixing on the core

binary variables zi
hold .

8.4.3 Solution information reusing and cut-off bound

The local search branching scheme creates a sequence of subproblems which have very

similar structures. They only differ in the coefficient or the right-hand side of

constraints which are related to zi
hold. When solving this sequence of subproblems, the

solution information such as the basis list and basis factors from its simplex tableau (i.e.

Chapter 8 A hybrid local search and Branch-and-Bound approach to constrained
portfolio selection problems

194

we apply the extended tableau simplex algorithm in the default MIQP solver) for the

current problem are stored, and can be retrieved and applied to the successive

subproblems. This means the solution information (i.e. basis list and basis factors) of

the problem Psubi can thus be reused to obtain solution to Psubi’, so that Psubi’ do not need

to be solved again from scratch. This solution information reusing thus can evoke the

repairing heuristics embedded in the default IP solver (see section 8.5.2). This solution

information reusing has been shown to be extremely efficient in the algorithm in the

following experiment section.

Another important benefit we obtain with this approach is that, the subproblems

generated by the local search are solved in sequence so the objective value ih of

problem Psubi can be used as a cut-off upper bound for the subsequent problems Psubi’.

Therefore, it is important in our approach to delicately sequence the subproblems to

obtain efficient upper bounds as soon as possible. The earlier a subproblem with a tight

upper bound is obtained, the more subproblems can be pruned by applying the upper

bound.

Therefore, the selection of the first appropriate set S to construct the first subproblem

Psub is a critical step in the algorithm. We aim to find a good incumbent as early as

possible to reduce the number of nodes (subproblems) to be explored in Local Search

Branching B&B. This means the first subproblem should, with a high probability,

contain the subset of assets which are selected in the optimal solution.

In [106], it has been shown that, the set of assets selected by the continuous relaxation

problem often contain the assets included in the integer optimal solution. Based on this,

we propose a heuristic to select the first subset S to construct the first subproblem Psub

as the following. This heuristic is illustrated in Fig. 8.3:

Chapter 8 A hybrid local search and Branch-and-Bound approach to constrained
portfolio selection problems

195

Fig. 8.3 Initialization phase of Local Search Branching B&B approach

1. Relaxed problem solution: solve the continuous relaxed problem. Save the

solution vector w;

2. Sort on the assets: sort the assets in a non-decreasing order of the reduced

cost of the continues relaxation to model (PSP);

3. Select the assets: select the first k assets of the solution vector w. These

assets form the first subproblem.

This heuristic is applied in line 1 in the algorithm presented in Fig. 8.2 to ensure a

proper selection of the first subproblem.

8.4.4 Local search techniques

Our local search branching scheme performs on the binary variables zi
hold. In this

chapter, we apply a variation of Variable Neighourhood Search (VNS) [124] to carry

out the search on zi
hold. Theoretically, any local search technique can be applied to

search on zi
hold.

Initialization phase

R: linear relaxation of the problem;
solveLP: a Linear Programming solver in CPLEX 10.0;
k : the number of assets allowed in the portfolio, as defined in the model (PSP);

1: solve the continues relaxation problem R(PSP): solveLP(R(PSP));
2: sort the assets according to a sort rule;
3: consider the sorted assets to generate subproblems:
4: select the first k assets and add them into set S;
5: set S’=Z/S;
6: generate subproblems by variable fixing:

7: Psubi= Porg (zi
hold = 1), zi

hold S;

8: Psubi’= Porg (zi
hold = 0), zi

hold S’;

9: obtain lower bound of subproblem: LB (Psubi)= solveLP(Psubi);
10: set UB = ;

Chapter 8 A hybrid local search and Branch-and-Bound approach to constrained
portfolio selection problems

196

Fig.8.4 Steps of VNS local search

Three neighbourhood structures Nl are employed in the algorithm. N1 swaps one pair of

elements in S and S’. N2 and N3 swaps two and three pairs of elements, respectively. For

each current neighbourhood structure Nl, a given number of it2 iterations are carried out

before the search moves to the next neighbourhood structure Nl+1. This procedure

terminates after it1 iterations. Therefore, Local Search Branching B&B is an incomplete

search. It aims to seek near optimal solutions in a limited computational time.

8.5. Experimental results

8.5.1 Test problems

The extended model PSP based on the MV model in section 8.2.2 is concerned with

properties of a real-world portfolio selection problem derived from Société Générale

Corporate & Investment Bank. The problem takes a set of side constraints as well as

transaction costs into consideration.

To test our algorithm on more general benchmark instances, we also test in this paper

the portfolio optimisation instances publicly available in the OR library [148], with

additional constraints derived from the above real problem. Table 8.1 presents the

properties of these 6 instances tested in this work.

Local search phase
z: current assignment of zi

hold

1: Select the set of neighbourhood structures Nl, l = 1,…,lmax;
2: Provide an initial solution vector z (z represents the assignment of zi

hold)
3: Repeat the following steps for it1 iterations:
4: set l=1;
5: Repeat the following steps for it2 iterations:
6: Exploration of the neighbourhood Nl of z with the aim to update the assignment of

zi
hold : Find the first improved neighbour z’of z;

7: Move or not. If the new solution z’ is better than z, set z=z’ ; otherwise, set l= l+1;

Chapter 8 A hybrid local search and Branch-and-Bound approach to constrained
portfolio selection problems

197

Table 8.1 Properties of problem instances. n represents the total number of assets available; k

represents the number of assets to be held; w0 represents the current positions. We assume that the starting

portfolio has capital equally invested in all assets; therefore w0 is set to 1/n.

Instance n k w0

Société Générale 23 10 1/23
Hang Seng 31 20 1/31
DAX 85 40 1/85
FTSE 89 50 1/89
S&P 98 60 1/98
Nikkei 225 150 1/225

We set the minimum proportion of wealth to be invested in an asset, minw , to 0.01% and

the minimum transaction amount, minx , to 0.01%. We also set the parameters in the

transaction cost function i to 0.005 and i to 0.0001 (see section 8.2.2). Other values

of k in the cardinality constraint have been tested, ranging from 10 to 150 for different

size of portfolios.

8.5.2 Evaluations on the local search branching B&B algorithm

In our experiments, we analyze different aspects of the proposed approach, including

subproblem solving and overall problem solving, etc. The B&B algorithm with local

search branching scheme is implemented in C++ with concert technology in CPLEX on

top of CPLEX10.0 solver. All experiments have been carried out on an Intel Core

1.86GHz machine with 1.97GB memory.

8.5.2.1 The size of the original problem and subproblems

Firstly, we compare the size of the original problem and subproblems after the local

search branching. The purpose of this comparison is to assess the effectiveness of

problem decomposition by using the local search branching. Both of the original and

subproblems are MIQP problems. In Table 8.2, it can be seen that after fixing the values

for variable zi
hold by the local search branching, the resulting subproblems are much

smaller than the original ones (reduces up to 70% of the number of rows, columns and

nonzeros). It has been observed that the sizes of the subproblems are similar (Table 8.2

presents the average size of subproblems). Due to the smaller size, the MIQP

Chapter 8 A hybrid local search and Branch-and-Bound approach to constrained
portfolio selection problems

198

subproblems are all solvable within in seconds by the default B&B in CPLEX 10.0 in

our experiments. Note that in this work we aim to reduce the computational time of

solving the problem by heuristically decompose the original problem. The subproblems

produced still present to be NP-hard. However, as the problem size is significantly

reduced by using variable fixing on zi
hold, the subproblems can be easily solved

efficiently.

Table 8.2 Size of the original MIQP problem and MIQP subproblems

Instance Original problem Subproblem

No. of
rows

No. of
columns

No. of
nonzeros

No. of
rows

No. of
columns

No. of
nonzero

Société
Générale

164 115 401 52 40 124

Hang Seng 220 155 557 102 80 259
DAX 598 425 1529 202 160 519
FTSE 626 445 1600 525 200 649
S&P 689 490 1763 302 240 779
Nikkei 1578 1125 4048 752 600 1948

8.5.2.2 Details of the subproblem solving

In this section, we analyze the deferent behaviors (i.e. CPU time spend) of subproblem

solving. The deferent behaviors of subproblem solving can demonstrate the

effectiveness of information reusability we claimed in section 8.4.3.

In Local Search Branching B&B, each neighbourhood of the current solution is

evaluated by solving the corresponding subproblem by B&B. That is, after fixing values

for variables zi
hold by the local search branching scheme, the resulting MIQP

subproblem is created. It is solved in subsequently by the default B&B in CPLEX10.0.

When these subproblems are processed, four possible situations could emerge: (1) a

subproblem could be solved by B&B to optimality; (2) (2) the repairing heuristic

mechanism [74] imbedded in CPLEX could be evoked and applied to a subproblem to

obtain a feasible solution heuristically; (3) a subproblem could be pruned; this will

happen if the optimal solution under LP relaxation is larger than the current upper

bound; and (4) the solution of a subproblem could be infeasible.

Chapter 8 A hybrid local search and Branch-and-Bound approach to constrained
portfolio selection problems

199

Table 8.3 illustrates the behavior of the above four situations during the processing of

subproblems. The total CPU time of the algorithm is dependent upon the CPU time

needed for each situation.

Table 8.3 Information of subproblem processing

Instance Total
CPU time

subproblem solved subproblem repaired subproblem pruned subproblem
infeasible

Number Avg
CPU time
per subp

Number Avg
CPU

time per
subp

Number Avg
CPU

time per
subp

Number Avg
CPU

time per
subp

Société
Générale

3.16 56 0.01 398 0.006 86 0 60 0

Hang
Seng

3.09 184 0.01 178 0.005 120 0 118 0

DAX 9.00 296 0.02 121 0.01 112 0.01 71 0
FTSE 11.44 79 0.08 102 0.025 127 0.02 292 0
S&P 13.55 286 0.04 114 0.01 77 0 123 0
Nikkei 76.97 89 0.40 21 0.36 221 0.08 269 0.06

Table 8.3 clearly indicates that the CPU time for identifying infeasibility is negligible.

The CPU time for pruning the inferior subproblem (by calculating its optimal solution

of the LP relaxation) is quite efficient. Therefore, the more nodes pruned, the more

efficient the search is. It can be interpreted from Table 8.3 that solving subproblems

with repairing heuristics is quite efficient. These repairing heuristics are the results of

solution information reuse in B&B solver. Solving subproblem exactly is the most time

consuming situation comparing with other three situations.

The solution information shown in Fig. 8.5 can further demonstrate that the solution

information reusing makes the search procedure more efficient. Fig. 8.5 is a partial

CPLEX log file. It records the objective value of relaxation, objective value of integer

solution, and gap, etc on each node of the tree of the subproblems solved by B&B. In

Fig. 8.5, an asterisk (*) on the left-most column for any node indicates that an integer

feasible solution has been found. It also logs the successful application of repairing

heuristics on the node, and denotes by + the node where an integer feasible solution has

been generated by the heuristics. It can be seen that the integer feasible solution with a

small gap usually can be obtained at the root node of the tree with negligible CPU time.

Chapter 8 A hybrid local search and Branch-and-Bound approach to constrained
portfolio selection problems

200

Fig. 8.5 Part of a log file in CPLEX for solving a MIQP subproblem for Société Générale

8.5.2.3 The cut off bound in the local search branching B&B

The initialization heuristic proposed in section 8.4.3 is applied to construct the first

subproblem in Local Search Branching B&B. In this section, we assess the

effectiveness of the initialization heuristics.

Table 8.3 and Fig. 8.5 have shown that the CPU time of the search by pruning the

inferior subproblems (by calculating its optimal solution of LP relaxation) is less than

that of heuristics repairing, and much less than solving the subproblems exactly. This

demands an efficient heuristic to detect the first subproblem and provide a good bound,

as the more subproblems pruned, the more efficient the algorithm is.

Tried aggregator 1 time.
MIQP Presolve eliminated 147 rows and 66 columns.
…
…
Reduced MIQP has 52 rows, 40 columns, and 124 nonzeros.
Presolve time = 0.00 sec.
Root relaxation solution time = 0.00 sec.

Node Objective Best Integer Gap
0 0.0627 0.0627

* 0+ 0.0651 0.0627 3.67%

…
…
Reduced MIQP has 52 rows, 40 columns, and 125 nonzeros.
Presolve time = 0.00 sec.
MIP emphasis: balance optimality and feasibility.
Root relaxation solution time = 0.00 sec.

Node Objective Best Integer Gap

0 0.0558
* 0+ 0.0568 1.67%
* 0+ 0.0558 0.0558 0.05%
…
…

Chapter 8 A hybrid local search and Branch-and-Bound approach to constrained
portfolio selection problems

201

Fig. 8.6 presents the comparison between the heuristic initialization and a random

initialization. It plots the decreasing objective function values over the iterations of

Local Search Branching B&B. The total number of iterations corresponds to the total

number of subproblems being solved, either exactly or heuristically. That is, the total

number of iterations is the sum of subproblems solved and subproblems repaired.

Fig. 8.6 The local search branching B&B with heuristic initialization and random initialization

Chapter 8 A hybrid local search and Branch-and-Bound approach to constrained
portfolio selection problems

202

Fig. 8.6 demonstrates that for most of the instances, Local Search Branching B&B with

heuristic initialization converges faster than that of with random initialization. For

instances DAX, FTSE and S&P, although the initial objective value of heuristic

initialization is larger than that of random initialization, the decreasing rate of objective

values of heuristic initialization is higher than that of random initialization. The only

exception is the Nikkei instance. This may be due to that the cardinality constraint in

Nikkei requires the selection of a relatively large portion, 150 assets out of 225 assets.

Therefore, the random initialization has a higher chance of including more appropriate

assets in the optimal portfolio.

What is more important drown from Fig. 8.6 is that, Local Search Branching B&B with

heuristic initialization processes less number of subproblems than the one with random

initialization. This can be demonstrated by that the number of iterations of Local Search

Branching B&B with heuristic initialization is less than the one with random

initialization. The heuristic initialization speeds up Local Search Branching B&B.

8.5.2.4 Comparisons with the default B&B in CPLEX

Portfolio selection problem is one of the most studied topics in finance. A wide range of

models have been proposed to tackle the problems. Several variable definition,

objective functions, constraints, and data sets have been proposed. For this reason, fair

and exhaustive comparison of all the published papers cannot be performed. What is

more, to our best knowledge, our model with non-convex transaction cost formulation is

first time presented in the literature. In order to evaluate the quality of the solutions we

obtained from Local Search Branching B&B, we compare it against the optimal solution

to the problem.

It is worth noting that Local Search Branching B&B is a heuristic approach to the

problem. It cannot prove optimality of the solution due to the nature of the local search

on core variables zi
hold, although the subproblems can be measured by the optimality

gap. In order to evaluate the quality of the solutions we obtained from Local Search

Branching B&B, we compare it against the optimal solution to the problem. It is

Chapter 8 A hybrid local search and Branch-and-Bound approach to constrained
portfolio selection problems

203

however very difficult, if not impossible, to obtain and prove the optimal solution to the

problems. We therefore calculate the approximate optimal solution to the problem by

running the default B&B algorithm in CPLEX10.0 for an extensive amount of time.

We compare Local Search Branching B&B with the default B&B in Table 8.4 in terms

of the following criteria:

 The number of nodes being processed in B&B to obtain the best integer

feasible solution;

 The gap between optimality and the quality of the best feasible solution;

 If the repairing heuristic is evoked and succeed;

 The total CPU time required.

From Table 8.4 we can see that by decomposing the problem through variable fixing on

zi
hold, the repairing heuristics succeed in Local Search Branching B&B approach. The

repairing heuristics cannot be evoked by the default B&B while solving the original

problem.

Without the decomposition, the default B&B needs to explore a much larger number of

nodes in the tree to obtain feasible solutions, while Local Search Branching B&B with

decomposition requires much less time, shown in Table 8.4. For example, for the

largest instance Nikkei, more than 35500 nodes have been explored in the default B&B

to obtain a feasible solution with a gap of 0.44%.

The optimality gap of solution obtained by Local Search Branching B&B is calculated

by gap = (fLS-fLP)/ fLS , where fLS is the objective value obtained by Local Search

Branching B&B, and fLP is the objective value of LP relaxation. Table 8.4 shows that, to

achieve solutions of similar quality (as measured by the optimality gap), the CPU time

needed by the default B&B is much greater than that required by Local Search

Branching B&B (e.g. 600 CPU seconds as opposed to 76.97 seconds for Nikkie).

Chapter 8 A hybrid local search and Branch-and-Bound approach to constrained
portfolio selection problems

204

The comparison of Local Search Branching B&B with default B&B can be more clearly

illustrated in Fig. 8.7, which plots of the objective values of Local Search Branching

B&B and the approximate optimal values obtained by the default B&B with extensive

runtime (600 seconds).

Table 8.4 Comparisons of default B&B and local search branching B&B. + denotes that the repairing

heuristics are succeed. All the CPU time is measured in second.

Société
Générale

Hang
Seng

DAX FTSE S&P Nikkei

Default B&B
(original
problem)

No. of nodes
processed

30 50 150200 147100 130800 35500

Optimality
Gap

0.22% 1.06% 4.66% 3.65% 2.74% 0.44%

Repair
success

No No No No No No

CPU time 180

No. of nodes
processed

60 80 541800 486700 365800 105000

Optimality
Gap

0.1% 0.29% 4.66% 3.63% 2.74% 0.43%

Repair
success

No No No No No No

CPU time 600

LS branching
B&B
(subproblem)

No. of nodes
processed

0+ 0+ 50+ 30+ 30+ 50+

Repair
success

Yes Yes Yes Yes Yes Yes

Optimality
gap*

0.22% 1.07% 4.65% 3.67% 2.75% 0.44%

CPU time
total*

3.16 3.09 9.00 11.44 13.55 76.97

It can be seen that Local Search Branching B&B converges very well for instances

Société Générale, Hang Seng and Nikkei, where the gap between the objective values of

Local Search Branching B&B and approximate optimal is very small. For instance

DAX, the best solution of Local Search Branching B&B is even better than the

approximate optimal value. For instances FTSE and S&P, the gap is slightly larger.

However, it should be noted that Local Search Branching B&B spends significantly less

time (3-79 seconds) than the default B&B (180 and 600 seconds).

Chapter 8 A hybrid local search and Branch-and-Bound approach to constrained
portfolio selection problems

205

Fig. 8.7 The gap between the local search branching B&B and approximate optimal by default

B&B

8.6 Conclusions

In this chapter, we investigate a hybrid method named Local Search Branching B&B,

which can be seen as a decomposition method for the PSP. This new hybrid approach

effectively integrates local search into the B&B algorithm to implement an incomplete

search which aims to seek near optimal solution heuristically in a limit computational

time. A set of core variables of the problem are first selected according to the property

Chapter 8 A hybrid local search and Branch-and-Bound approach to constrained
portfolio selection problems

206

of the problem. Variable fixing is applied to these core variables to define the

subproblems. A new local search branching strategy is proposed and performed on

these core variables to decompose the problem into a sequence of subproblems. The

default B&B search then solves these restricted subproblems optimally due to their

reduced size comparing to the original one. Due to the inherent similar structures of the

subproblems, the reusability of solution information evokes the repairing heuristics in

the default B&B. This thus accelerates the B&B solving procedure of the subproblems.

The tight upper bound identified at early stage of the search can prune more nodes

(subproblems) in the tree. This speeded up Local Search Branching B&B search to the

optimal solution to the original problem.

In this chapter, we apply variable fixing to define the subproblems. As we introduced in

chapter 2 section 2.8.2, variable fixing assigns values to a selected restricted subset of

variables of the original problem. Therefore, we can reduce the analysis of the whole

solution space to a promising region. We apply variable fixing as a decomposition

approach to the problem in this chapter. Benders’ decomposition is an approach that

solves certain optimisation problem efficiently by inferring information from its dual

problem. The first step of Benders’ decomposition also consists of fixing certain amount

of variables in the original problem, hereby making the resulting subproblem easy to

solve. The essence of Benders’ decomposition lies in determining which variables to be

fixed so that results in easy to solve subproblem and the strongest bound can be derived

from its dual problem. The information derived from dual problem is added as Benders’

cut to the master problem. In this chapter, we do not utilize the information from the

dual problem. Choosing whether or not to impose this solving method depends heavily

on the knowledge of the potential simplicity of certain”easy” subproblems. The

Benders’ decomposition and Branch-and-Cut algorithm will be investigated in our

future work.

There is some similarity between our proposed local search branching scheme with the

existing schemes (e.g. local branching, RINS, VNSB and VNDS). The similar basic

mechanism can be concluded as: (1) the decomposition of the original problem due to

Chapter 8 A hybrid local search and Branch-and-Bound approach to constrained
portfolio selection problems

207

the variables fixing; and (2) the local search performed on specifically defined

neighbourhoods. In our approach, we decompose the problem by fixing core variables

zi
hold, and the local search is performed on zi

hold to generate sequence of subproblems.

The main contributions of our hybrid approach are: (1) In all the existing approaches

(local branching, RINS, VNSB and VNDS) in the literature, the definition of

neighbourhoods is based on the incumbent solution of the problem. That is, an integral

feasible solution is required, and these approaches can be seen as improvement heuristic

search methods. Our approach is executed without the request of feasible solution. It

works as a constructive search method (i.e. the subproblems are solved by B&B) as well

as an improvement search method (i.e. using local search to obtain the best solution).

(2) Our hybrid approach emphasizes the solution information reusing, demonstrated by

the succeed of repairing heuristics in the experiments to speed up the subproblems

solving; and (3) Our hybrid approach extends the basic mechanism by heuristically

identifying the subproblem which can provide a tight upper bound to prune more

subproblems thus significantly improve the efficiency of the algorithm on solving the

complex portfolio optimisation problem with real life trading constraints.

Chapter 9 Conclusions and future work

208

Chapter 9 Conclusions and future work

9.1 Conclusions

9.1.1 Research overviews

As we stated in section 1.3, the scope and the aims of this thesis are to investigate how

to efficiently integrate Constraint Programming, Operational Research techniques and

heuristic search methods to solve two combinatorial optimisation problems from real-

world applications, taking the advantages of each well developed component. We

identify problem/subproblem features and correlated suitable algorithms firstly. Then

we exploit several hybrid algorithms for each problem.

We demonstrate these integration methods on two real-world application problems.

Firstly, we apply three hybrid algorithms on nurse rostering problems, i.e. hybrid CP

with VNS approach in chapter 4, constraint-directed Large Neighbourhood Search in

chapter 5 and CP based column generation in chapter 6.

These three hybrid algorithms integrate different techniques with respect to the specific

features of the problem. Each hybrid algorithm emphasizes specific features of the

problem and correlated suitable algorithms. The hybrid CP algorithm in chapter 4

emphasizes the feasibility reasoning of CP. Chapter 5 emphasizes the usage of

information about constraints during the local search. The neighbourhood structure can

be generally defined by the constraints. The local search can be guided by the

evaluation functions that are the violation of the constraints. In chapter 6, the feasibility

reasoning is still handled by CP while the relaxation and optimality reasoning is handled

by IP/LP in the form of CP based column generation. Besides the complementation

benefits gained from CP and column generation, another benefit we gain is that we

derive a lower bound for the problem which cannot be obtained by pure local search or

Chapter 9 Conclusions and future work

209

meta-heuristic methods. With this lower bound we can have some knowledge of how

far away the current solution we obtained is from the optimal one.

We investigate two hybrid algorithms on the second application problem - portfolio

selection. The basic formulation of the problem is usually solved by Branch-and-Bound

algorithm. The additional feature of the problem, i.e. discrete feature due to the presence

of the side constraints requires the hybridization of heuristics and local search with

Branch-and-Bound. Experiments show the effectiveness of heuristics, i.e. branching

rule and node selection heuristic in the Branch-and-Bound algorithm in chapter 7. In

chapter 8, local search works as branching rule for Branch-and-Bound so that these two

techniques are integrated and interplayed more closely.

9.1.2 Research contributions

In chapter 4, a new decomposition approach to nurse rostering problems based on good

quality solution blocks is proposed to solve the problems successfully. This chapter

proposes a new solution route as following for nurse rostering problems. This solution

approach has the potential to be applied to other complex and large optimisation

problems with similar features to those of the nurse rostering problem:

1. Decompose the problem into subproblems according to the feature of the problem.

The subproblems may be easy to handle by certain techniques efficiently, e.g. CP. In

this chapter, the problem is decomposed by constraints. A CSP model is built to

generate feasible solutions to the subproblems.

2. Obtain the feasible solutions to the subproblems by CP, and then merge the solution

to the subproblems to get feasible solution to the complete problem. In this chapter,

we apply iterative forward search to merge the solution to the subproblem into the

solution to the complete problem.

3. Apply local search methods on the feasible solutions to get improved solution.

In chapter 5, a constraint-directed local search is proposed and successfully solves the

nurse rostering problems. The contributions can be concluded as following:

Chapter 9 Conclusions and future work

210

1. The neighbourhood in local search is defined in a more general way by constraints.

The local search approach asks for large-scale neighbourhood, e.g. changes of chain

of variables. The neighbourhoods we design in this chapter cover all these types of

neighbourhoods.

2. The search of neighbourhood is done by CP. Two benefits we can gain are: firstly,

we can take the advantage of CP’s search. Secondly, the search is easy to implement.

3. We apply the violation measure of constraints as evaluation functions during the

search which makes the search more informative.

In chapter 6, a CP based column generation to nurse rostering problems is proposed and

demonstrated. The contribution is listed as following:

1. Another decomposition method, column generation integrated with CP is applied to

nurse rostering problems. In this hybrid decomposition approach, we use CP to solve

the pricing subproblem and column generation to handle the master Integer Program

problem.

2. Two strategies which aim to generate good and diverse columns we proposed have

been demonstrated by the experimental results. These efficient search strategies

speed up the Linear Program relaxation convergence and satisfy the integrality

request of the master problem.

3. This approach provides a lower bound for the problems. Hence we can know how far

the current solution falls short of the optimal solution.

In chapter 7, we develop a decomposition approach, layered Branch-and-Bound

(layered B&B) algorithm, for solving the problem we investigate. In the B&B search

tree, sets of variables are layered (decomposed) according to their different features, and

search is performed on one layer before another in sequence. The layered B&B

algorithm can be seen as firstly searching on the top layer of the tree (subproblem of a

set of variables) then diving into a particular region of the search space in order to

explore it intensively. Several benefits are achieved in chapter 7:

Chapter 9 Conclusions and future work

211

1. Search is performed intensively on those variables with a higher priority (at the

higher layer). Intuitively, this means we focus on the core variables of the problem

first, and then deal with the rest of the variables.

2. A heuristic which works well for one subset of variables of the problem may not be

appropriate for the other variables. By layering the tree (decomposing the variables

of the problem), we can easily devise different efficient heuristics to different layers.

3. Search is more easily manipulated within the given time limit by aborting it at each

layer accordingly. Of course, the optimality of solution will be sacrificed, but the

quality of the solution can still be measured by the gap between the incumbent

solutions and the optimal solution.

In chapter 8, we propose a new hybrid approach which integrates local search into the

B&B algorithm. In this integrated B&B, we propose a new branching scheme which

applies the idea of local search. Instead of branching on a single variable, the local

search branching scheme branches on a set of core binary variables of the problem

iteratively to generate a sequence of subproblems. These subproblems are then solved in

sequence by the default B&B in a general solver and the best solution among them is

the approximate optimal solution of the original problem. The contribution can be

concluded as following:

1. The main contribution is the tight integration of local search with B&B. The idea is

to perform certain efficient and computational cheap search by local search

branching on the surface of the problem which consists of core variables, and then

dive into a particular region of the search space and explore it more intensively.

2. The proposed decomposition approach generates subproblems with similar

structures. The inherent similar structures of the subproblems facilitate efficient and

successful solution information reusing in solving the subproblems.

3. The local search branching B&B search is further improved by a heuristic that

identifies the subproblem which has a tight upper bound to help prune more nodes

(subproblems) in the tree.

Chapter 9 Conclusions and future work

212

9.2 Future work

In this section, we discuss the future research directions in two perspectives: firstly,

from the specific application problems perspective; and secondly, from the solution

techniques perspective.

9.2.1 Future research directions for nurse rostering problems

Continuity

An important issue in nurse rostering is the continuity from one rostering period to the

next. The nurse rostering benchmark instances we tested in this thesis are designed only

to produce rosters for an isolated period, applying penalties in accordance with the

convention that all potential violations are counted at the beginning of the period, and

ignored at the end. We recognise that the benchmark instances are intended as a basis

for comparison between alternative rostering methodologies, and that the consideration

of an isolated rostering period serves this purpose. However, in a practical environment,

information relating to one rostering period is carried forward to the next, creating

additional issues of ‘‘continuity”.

For example, although the rostering period is one month in length, the constraints do not

primarily relate to a one month period. In those constraints which relate to periods of

time, some relate to one week, others relate to a rolling 5-week period, or even a rolling

13-week period. Effective approaches need to be designed to handle the constraints

relating to various time periods.

Rerostering

In this thesis, we construct a deterministic personnel roster that determines the line-of-

work for each nurse member. However, administration systems in hospital typically

have to operate in a dynamic and uncertain environment where unexpected events may

occur. The rerostering problem is a scheduling type of problem that most hospitals

Chapter 9 Conclusions and future work

213

confront. When the unexpected events lead to schedule disruptions and infeasibilities,

rerostering is necessary to update the activity schedule. Therefore, rerostering is a very

important and interesting topic in the personnel scheduling environment. Decision

support systems that adequately react to unexpected events should be developed.

Multi-criteria problems

For many optimisation problems it is unclear what exactly should be optimised. For the

nurse rostering problems we tested in this thesis, the objectives and constraints are

extracted from real-world cases and preserved with the essential characteristics.

However, it is common, especially in the industrial context, that the problem may have

conflicting goals. The constraints are typically preferences rather than necessary

requirements. Therefore, Pareto-optimal solutions against different criteria are expected.

What is more, if the goal is to perform collaborative work on the problem, a more

practical approach is needed. For example, in exploring the “what-if” scenarios,

different set of solutions should be provided with different situations.

9.2.2 Future research for portfolio selection problems

Multi-period problem

In this thesis, we tackle the portfolio selection problem in a single period. Of many

other possible extensions, most worthy of mentioning are those with a multi-period

setting or continuous time. These are significantly more complex problems due to the

stochastic dynamics. The desirability of a trade in a given stock must then take into

account the alternative of delaying the trade. The challenge is to develop effective

numerical methods for the (approximate) solution of the resulting stochastic

programming (or optimal stopping) problems.

Chapter 9 Conclusions and future work

214

Risk measures

Applying which term to measure the risk associated with the portfolio, to a certain

extent, determines the complexity of the model. Besides applying covariance as the risk

measure of the portfolio, several other risk measures have been investigated in the

literature and in practice, such as mean absolute deviation, and mean absolute semi-

deviation etc. More recently, some researchers focus on other risk measures where

quantise and tail of the distribution of the return, such as value at risk and conditional

worst expectation, are used. Different risk measures which capture the features of the

market can be designed and applied in the portfolio selection model to reflect the

requirements of the investors more accurately.

9.2.3 Future research for hybrid algorithms

Integrate CP with other OR techniques

MIP offers several ideas that can benefit search in general. The majority among them is

the use of a relaxation, usually a continuous LP relaxation to guide the search. The

optimal solution of the LP relaxation is applied as the lower bound during the search to

prune unpromising parts of the search tree. Stronger relaxation makes it worth to invest

more processing time at each node of the search tree. Therefore, different relaxations

are worthy of investigation in future work.

The second lesson that can be learned from MIP is the use of duality. The LP dual,

Largrangean and many other duals can be used to construct a nogood or Benders cut

that directs the search away from poor solutions. CP based Bender decomposition

allows us to apply CP and OR techniques to different parts of the problem. The CP

search can learn from past experience by accumulating Benders cuts (in a form of

nogood).

Chapter 9 Conclusions and future work

215

Integrate CP or IP with heuristics

Applying meta-heuristics within exact methods can help to gain robustness and

constrained-CPU-time effectiveness. The research topic such as (conflict/heuristic)

information learning in the design of branching rule, node selection rule etc. in Branch-

and-Bound algorithm will be investigated in our future work.

In chapters 4 and 5, CP search is integrated with heuristic local search. In our future

work, more information can be inferred from the CP search. For example, by applying

specific designed heuristics, a “good” value can be associated with a variable. If all the

variables have heuristic values, then the further heuristic information can be derived,

such as conflicts between these values. This will enable more efficient propagation on

group of constraints. More efficient propagation algorithms which work on group of

constraints will be investigated in our future work.

In chapter 6, the generation of column is purely done by CP search. However, heuristic

construction method can be applied to gain more efficiency in the procedure of pricing

subproblem solving.

Based on the work that has been done in chapters 7 and 8, heuristic information can be

applied to tree search of IP to improve the efficiency of the search. For example, a linear

solver can be used to find specific values for the variables at which the linear relaxation

of the problem has an optimal solution.

Apply information of OR to meta-heuristics

The existing literature has demonstrated the possibility of using effective algorithmic

schemes, such as meta-heuristics, for solving hard optimisation problems. However,

current meta-heuristics make very limited use of explicit mathematical tools. We will

investigate the possibility of embedding sound mathematical techniques into robust

meta-heuristic approaches to optimisation. For example, some information obtained

Chapter 9 Conclusions and future work

216

from linear solver can be actually applied in the designing of meta-heuristics. For

example, reduced cost measures the influence on the optimal cost of changing the value

assigned to certain variables. This can be used in domain pruning and search heuristics.

This enables the information that the mathematical programming solvers extract from

the cost function to be exploited by other solvers or the search.

The investigation of the possibility of embedding sound mathematical techniques into

robust meta-heuristic approaches to optimization is also essential idea of

“matheurisitcs”. The hybrid methods investigated in this thesis have close relationship

with “matheuristics”, since both of them seek efficient integration of mathematic

methods with meta-heuristics. We will continue the research on this promising topic.

Appendix

217

Appendix

Hard and Soft Constraints in the Nurse Rostering Benchmarks

Hard

constraints

Category Details

Gpost One shift per day One shift per day (D, N, O)*

Coverage (no over/under cover) Weekday: 3D 1N; Weekend: 3D 1N

Working time Full time: 18 shifts; Part time: 10 shifts

Shift patterns Maximum consecutive working days: 6

Maximum consecutive N shifts: 3

Maximum consecutive working weekends: 3

After a series of work, at least 2 days off

Complete weekends, i.e. free or work on both days

After N shifts, at least 2 days off

Valouxis One shift on one day One shift one day (D, E, N, O)*

Coverage (no over/under cover) Weekday: 4D 4E 2N; Weekend: 3D 3E 2N

Working time 18 shifts

Shift patterns Maximum consecutive working days: 5

Maximum consecutive N shifts: 3

Maximum consecutive working weekends: 3

After a series of work, at least 2 days off

Complete weekends, i.e. free or work on both days

After N shifts, at least 2 days off

ORTEC One shift one day One shift on one day (E, L, D, N, O)*

Coverage (no over/under cover) Weekday: 3E 3D 3L 1N; Weekend: 2E 2D 2L 1N

Working time Group 1: 36 hours/week; Group 2: 32 hours/week; Group 3: 20

hours/week

Shift pattern Maximum consecutive working days: 6

Maximum consecutive N shifts: 3

Maximum consecutive working weekends: 3

After a series of work, at least 2 days off

Complete weekends, i.e. free or work on both days

After N shift, at least 2 days off

*D: day shift; E: evening shift; L: late shift; N: night shift; O: day off.

Appendix

218

Soft

constraints

Category Details Weights Violation measure

Gpost Balanced

workload

Full time: [4,5] shift/week

Part time: [2,3] shift/week

1 *Difference between the no. of shifts received and the acceptable no. of shifts

per week

Full time: series of shifts length [4,6]

Part time: series of shifts length [2,3]

1 *Difference between the no. of shifts received and the acceptable series length

Pattern preference No stand alone shift, i.e. single day on 100 Number of isolated shifts

No one shift over a weekend 100 Number of incomplete weekends

No one day off between shift series 10 Number of one day off

Valouxis Balanced

workload

No. of D shifts: [5, 8] in the schedule 100 Difference between the no. of shifts received and the acceptable no. of shifts

No. of E shifts: [5, 8] in the schedule 100 Difference between the no. of shifts received and the acceptable no. of shifts

No. of N shifts: [2, 5] in the schedule 100 Difference between the no. of shifts received and the acceptable no. of shifts

Pattern preference No stand alone shift, i.e. single day on 1000 Number of isolated shifts

No one shift over a weekend 1000 Number of incomplete weekends

A D after E should be avoided 1000 Number of D shifts after E shift

A E after N should be avoided 1000 Number of E shifts after N shift

A D after N should be avoided 1000 Number of D shifts after N shift

At least 2 days off between shift series 100 Number of one day off

Series of D/E/N shift length:3 40 Difference between the series length and the acceptable length

Series of D/E/N shift length: 3 20 Difference between the series length and the acceptable length

ORTEC Balanced

workload

Group 1: [4,5] shifts/week

Group 2: [4,5] shifts/week

Group 3: [2,3] shifts/week

10 *Difference between the no. of shifts received and the acceptable no. of shifts

per week

Appendix

219

Group1: length of shift series [4,6]

Group2: length of shift series [4,6]

Group3: length of shift series [2,3]

10 *Difference between the no. of shifts received and the acceptable series length

Pattern preference No stand alone shift, i.e. single day on 1000 Number of isolated shifts

No one shift at a weekend 1000 Number of incomplete weekends

Length of a series of N shifts: [2,3] 1000 Difference between the series length and the acceptable length

At least 2 days off between shift series 100 Number of one day off

Length of a series of E shifts: [2,3] 10 Difference between the series length and the acceptable length

Length of a series of L shifts: [2,3] 10 Difference between the series length and the acceptable length

A E after D should be avoided 5 Number of E shifts after D shift

A N after E should be avoided 1 Number of N shifts after E shift

* In order to have same evaluation functions for the solutions with other approaches in the literature, the constraints denoted by * is measured by quadratic function. That is, the

violation measure squared and multiplied by the corresponding weight

List of Publications

220

List of Publications

The research presented in this thesis has been published (or is currently under review) as

follows:

1. F. He, R. Qu, A Constraint Programming based Column Generation Approach

to Nurse Rostering Problems, under review at Computers & Operations

Research, 2011

2. F. He, R. Qu, A Layered Branch-and-Bound Algorithm to Portfolio Selection

Problems with Real-world Constraints, under review at Journal of Heuristics,

2011

3. F. He, R. Qu, A hybrid local search and Branch-and-Bound approach to

constrained portfolio selection problem, under review at INFORMS Journal on

Computing, 2011

4. F. He, R. Qu, A Constraint-directed Local Search Approach to Nurse Rostering

Problems, Proceeding of the 6th International Workshop on Local Search

Techniques in Constraint Satisfaction (LSCS'09) at the 15th International

Conference on Principles and Practice of Constraint Programming (CP’09),

Lisbon, Portugal, 20th-24th September, 2009

5. R. Qu, F. He, E. K. Burke, Hybridizing Integer Programming Models with an

Adaptive Decomposition Approach for Exam Timetabling Problems, Proceeding

of 4th Multidisciplinary International Scheduling Conference (MISTA2009),

Dublin, Ireland, 10th-12th August, 2009

6. R. Qu, F. He, A Hybrid Constraint Programming Approach for Nurse Rostering

Problems, Allen T., Ellis R. and Petridis M. (eds.) Applications and Innovations

in Intelligent Systems XVI. The Twenty-eighth SGAI International Conference

on Artificial Intelligence (AI-2008), 211-224, Cambridge, England, 9th-11th

December, 2008

References

221

References

1. Burke, E.K., et al., The state of the art of nurse rostering. Journal of Scheduling,
2004. 7(6): p. 441-499.

2. Osogami, T. and H. Imai, Classification of Various Neighbourhood Operations
for the Nurse Scheduling Problem Lecture Notes in Computer Science, 2000.
1969: p. 72- 83.

3. Apt, K.R., Principles of Constraint Programming. 2003: Cambridge University
Press.

4. Rossi, F., P.v. Beek, and T. Walsh, Handbook of Constraint Programming.
Foundations of Artificial Intelligence, ed. J.Hendler, H.Kitano, and B.Nebel.
2006: Elsevier.

5. Hooker, J.N., Integrated Methods for Optimization. 2007: Springer.
6. Glover, F. and G.A. Kochenberger, Handbook of Meta-Heuristics. 2003: Kluwer.
7. Maringer, D.G., Portfolio Management with Heuristic Optimization. 2005:

Springer.
8. Wolsey, L.A. and G.L. Nemhauser, Integer and Combinatorial Optimization.

1999: Wiley.
9. Machworth, A.K., Consistency in networks of relations. Artificial Intelligence,

1977. 8: p. 99-118.
10. Machworth, A.K. On reading sketch maps. in Proceedings IJCAI'77. 1977:

Cambridge MA.
11. R.Mohr and T.C.Henderson, Arc and path consistency revisited. Artificial

Intelligence, 1979. 28: p. 225-233.
12. R.Mohr and G.Masini. Good old discrete relaxation. in Proceedings ECAI'88.

1988: Munchen, FRG.
13. van Hoeve, W.J. and I. Katriel, Global Constraints, in Handbook of Constraint

Programming, F. Rossi, P.v. Beek, and T.Walsh, Editors. 2006, Elsevier B.V. p.
169-208.

14. Harvey, W.D. and M.L. Ginsberg, Limited Discrepancy Search, in Proceedings
of the Fourteenth International Joint Conference on Artificial Intelligence. 1995.
p. 607- 613.

15. Bartak, R. Constraint Propagation and Backtracking-based Search. Volume,
16. Regin, J.C., Generalized arc consistency for global cardinality constraint, in

National Conference on Artificial Intelligence. 1996, AAAI Press. p. 209-215.
17. Quimper, C.G., et al. Improved algorithms for the global cardinality constraint.

in Principles and Practice of Constraint Programming. 2004.
18. Katriel, I. and S. Thiel. Fast bound consistency for the global cardinality

constraint. in Principles and Practice of Constraint Programming. 2003:
Lecture Notes in Computer Science.

19. Schiex, T., H. Fargier, and G. Verfaillie. Valued Constraint Satisfaction
Problems: Hard and Easy Problems. in In Proceedings of the Fourteenth
International Joint Conference on Artificial Intelligence. 1995.

20. Bistarelli, S., U. Montanari, and F. Rossi, Semiring-based Constraint
Satisfaction and Optimization. Journal of the ACM, 1997. 44(2): p. 201-236.

21. Larrosa, J. Node and Arc Consistency in Weighted CSP. in Proceedings of the
Eighteenth National Conference on Artificial Intelligence and Fourteenth

References

222

Conference on Innovative Applications of Artificial Intelligence (AAAI /IAAI).
2002: AAAI Press / The MIT Press.

22. Larrosa, J. and T. Schiex. In the quest of the best form of local consistency for
Weighted CSP. in In Proceedings of the Eighteenth International Joint
Conference on Artificial Intelligence. 2003: Morgan Kaufmann.

23. Schiex, T. Possibilistic Constraint Satisfaction Problems or "How to handle soft
constraints ?" in In Proceedings of the 8th Annual Conference on Uncertainty in
Artificial Intelligence. 1992: Morgan Kaufmann.

24. Dubois, D., H. Fargier, and H. Prade. The calculus of fuzzy restrictions as a
basis for flexible constraint satisfaction. in In Proceedings of the Second IEEE
International Conference on Fuzzy Systems. 1993.

25. Fargier, H., J. Lang, and T. Schiex. Selecting preferred solutions in fuzzy
constraint satisfaction problems. in In Proceedings of the first European
Congress on Fuzzy and Intelligent Technologies. 1993.

26. Ruttkay., Z. Fuzzy constraint satisfaction. in In Proceedings of the First IEEE
Conference on Evolutionary Computing. 1994.

27. Regin, J.C., et al. An Original Constraint Based Approach for Solving over
Constrained Problems. in Proceedings of the Sixth International Conference on
Principles and Practice of Constraint Programming. 2000: Springer.

28. Beldiceanu, N. and T. Petit. Cost Evaluation of Soft Global Constraints. in
Proceedings of the First International Conference on the Integration of AI and
OR Techniques in Constraint Programming for Combinatorial Optimization
Problems. 2004: Springer.

29. Hoeve, W.-J.v., G. Pesant, and L.M. Rousseau, On global warming: Flow-based
soft global constraints. Journal of Heuristics, 2006. 12: p. 347- 373.

30. Burke, E.K. and G.Kendall, Search Methodologies. Introductory Tutorials in
Optimisation and Decision Support Techniques. 2005: Springer.

31. Reeves, C., Modern Heuristic Techniques for Combinatorial Problems. 1995,
NY, USA: John Wiley&Sons, Inc.

32. Rardin, R.L., Optimization in Operations Research. 1998: Prentice Hall, Inc.
33. IBM ILOG User's Manual.
34. Bacchus, F. and T. Walsh, Propagating Logical Combinations of Constraints, in

Proceedings of the 19th International Joint Conference on Artificial Intelligence
(IJCAI-2005). 2005. p. 35-40.

35. Oxford Dictionary of Computing. 1997: Oxford University Press.
36. Talbi, E., Metaheuristics, from design to implementation. 2009.
37. Osman, I.H. and J.P. Kelly, Meta-Heuristics: Theory and Applications. 1996:

Kluwer Academic Publishers.
38. Blum, C. and A. Roli, Metaheuristics in Combinatorial Optimization: Overview

and Conceptual Comparison. ACM Computing Surveys, 2003. 35: p. 268-303.
39. Gilmore, P.C. and R.E. Gomory, A linear programming approach to the cutting-

stock problem. Operations Research, 1961. 9: p. 849- 859.
40. Mason, A.J. and M.C. Smith. A Nested Column Generator forsolving Rostering

Problems with Integer Programming. in International Conference on
Optimisation: Techniques and Applicaitons. 1998. Perth, Australia.

References

223

41. Jaumard, B., F. Semet, and T. Vovor, A generalized linear programming model
for nurse scheduling. European Journal of Operational Research, 1998. 107: p.
1-18.

42. Junker, U., et al., A Framework for Constraint Programming Based Column
Generation, in Principles and Practice of Constraint Programming. 1999. p.
261- 275.

43. Yunes, T.H., A.V. Moura, and C.C. de Souza, Solving very large crew
scheduling problems to optimality, in ACM symposium on Applied computing.
2000. p. 446- 451.

44. Demassey, S., G. Pesant, and L.-M. Rousseau, A Cost-Regular Based Hybrid
Column Generation Approach. Constraints, 2006. 11(4): p. 315- 333.

45. Fahle, T., et al., Constraint Programming Based Column Generation for Crew
Assignment. Journal of Heuristics, 2002. 8(1): p. 59-81.

46. Barnhart, C., et al., Branch-and-price: Column generation for solving huge
integer programs. Operations Research, 1998. 46: p. 316- 329.

47. Lubbecke, M.E. and J. Desrosiers, Selected topics in column generation.
Operations Research, 2002. 53: p. 1007- 1023.

48. Bixby, R., et al., MIP:Theory and practice--closing the gap. system modelling
and optimization:methods,theory and applications, 2000. 174: p. 19-49.

49. Lazic, J., et al., Variable neighbourhood decomposition search for 0-1 mixed
integer programs. Computers &Operations Research, 2009. 37(6): p. 1055-
1067.

50. Puchinger, J., G. Raidl, and U. Pferschy. The core concept for the
multidimensional knapsack problem. in Evolutionary Computation in
Combinatorial Optimization - EvoCOP 2006. 2006.

51. Angelelli, E., R. Mansini, and G.S. M., Kernel search: a new heuristic
framework for portfolio selection. Computational Optimization and Applications,
2009(DOI: 10.1007/s10589-010-9326-6).

52. Aickelin, U. and K. Dowsland, Exploiting problem structure in a genetic
algorithm approach to a nurse rostering problem. Journal of Scheduling, 2000.
3(3): p. 139-153.

53. Burke, E.K. and J.P. Newall, Solving examination tinetabling problems through
adaptation of heuristic orderings. Annals of Operations Research, 2004. 129: p.
107-134.

54. Ikegami, A. and A. Niwa, A Subproblem-centric Model and Approach to the
Nurse Scheduling Problem. Mathematical Programming, 2003. 97(3): p. 517-
541.

55. Aickelin, U. and K. Dowsland, An indirect genetic algorithm for a nurse
scheduling problem. Journal of Operations Research Society, 2003. 31(5): p.
761-778.

56. Brucker, P., et al., A decomposition, construction and postprocessing approach
for a specific nurse rostering problem, in Multidisciplinary International
Scheduling Conference. 2005: New York, USA. p. 397-406.

57. Raidl, G. and J. Puchinger, Combining (Integer) Linear Programming
Techniques and Metaheuristics for Combinatorial Optimization, in Hybrid
Metaheuristics. 2008. p. 31-60.

References

224

58. Focacci, F., F. Laburthe, and A. Lodi. Local Search and Constraint
Programming in Metaheuristics Interational Conference. 2001.

59. Wallace, M., Hybrid Algorithms in Constraint Programming, in Recent
Advances In Constraints. 2007, LNCS. p. 1-32.

60. Chandru, V. and J. Hooker, Optimization Methods for Logical Inference. 1999:
Wiley.

61. Milano, M., Constraint and Integer Programming: Toward a Unified
Methodology (Operations Research/Computer Science Interfaces, 27). 2003:
Kluwer Academic Publishers.

62. Gabteni, S. and M. Grönkvist, A Hybrid Column Generation and Constraint
Programming Optimizer for the Tail Assignment Problem in Integration of AI
and OR Techniques in Constraint Programming for Combinatorial Optimization
Problems. 2006. p. 89-103.

63. Easton, K., G. Nemhauser, and M. Trick, Solving the Travelling Tournament
Problem: A Combined Integer Programming and Constraint Programming
Approach, in Practice and Theory of Automated Timetabling IV. 2003. p. 100-
109.

64. Gualandi, S. and F. Malucelli, Constraint Programming based Column
Generation: a Survey. 4OR, 2009.

65. Yunes, T.H., A.V. Moura, and C.C. de Souza, Hybrid Column Generation
Approaches for Urban Transit Crew Management Problems. Transportation
Science, 2005. 39(2): p. 273- 288.

66. Grönkvist, M., Using Constraint Propagation to Accelerate Column Generation
in Aircraft Scheduling, in Principles and Practice of Constraint Programming.
2002. p. 37- 48.

67. Grönkvist, M., A Constraint Programming Model for Tail Assignment, in
Integration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems. 2004. p. 142- 156.

68. Pisinger, D. and M. Sigurd, Using Decomposition Techniques and Constraint
Programming for Solving the Two-Dimensional Bin-Packing Problem.
INFORMS J. on Computing, 2007. 19(1): p. 36- 51.

69. Sellmann, M., et al., Crew Assignment via Constraint Programming: Integrating
Column Generation and Heuristic Tree Search. Annals of Operations Research,
2002. 115(1): p. 207- 225.

70. Hansen, J. and L. Tomas, Group Construction for Airline Cabin Crew:
Comparing Constraint Programming with Branch and Price, in Integration of
AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems. 2005. p. 228- 242.

71. Rousseau, L.M., et al., Solving VRPTWs with constraint programming based
column generation. Annals of Operations Research, 2004. 13(1): p. 199–216.

72. Gendron, B., H. Lebbah, and G. Pesant, Improving the Cooperation Between the
Master Problem and the Subproblem in Constraint Programming Based Column
Generation, in Integration of AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems. 2005. p. 217- 227.

73. Rousseau, L.-M., Stabilization Issues for Constraint Programming Based
Column Generation, in Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems. 2004. p. 402- 408.

References

225

74. Gualandi, S., Enhancing Constraint Programming-based Column Generation
for Integer Programs. 2008.

75. Jourdan, L., M. Basseur, and E.G. Talbi, Hybridizing exact methods and
metaheuristics: A taxonomy. European Journal of Operational Research, 2009.
199: p. 620-629.

76. Li, H., A. Lim, and B. Rodrigues, A hybrid AI approach for nurse rostering
problem, in ACM symposium on Applied computing. 2003. p. 730- 735.

77. Rousseau, L.-M., G. Pesant, and M. Gendreau, A General Approach to the
Physician Rostering Problem. Annals of Operations Research, 2002. 115(1): p.
193- 205.

78. Lin, Y., Directed Annealing Search in constraint satisfaction and optimazition.
1997.

79. Pesant, G. and W. Nuijten, A Constraint Programming Framework for Local
Search Methods. Journal of Heuristics, 1999. 5: p. 255- 279.

80. Shaw, P., Using Constraint Programming and Local Search Methods to Solve
Vehicle Routing Problems, in Proceedings of the 4th International Conference
on Principles and Practice of Constraint Programming. 1998, Springer-Verlag.
p. 417-431.

81. Hentenryck, P.V. and L. Michel, Constraint-Based Local Search. 2005: The
MIT Press.

82. Voudouris, C. and E.P.K. Tsang, Guided local search, in Handbook of
metaheuristics, F. Glover, Editor. 2003, Kluwer. p. 185-218.

83. Cotta, C., et al., Hybridizing genetic algorithms with branch and bound
techniques for the resolution of the tsp, in Artificial Neural Nets and Genetic
Algorithms, D.W. Pearson, N.C. Steele, and R.F. Albrecht, Editors. 1995,
Springer-Verlag. p. 277-280.

84. Jahuira, C.A.R. Hybrid genetic algorithm with exact techniques applied to tsp.
in Second International Workshop on Intelligent Systems Design and
Application. 2002: Dynamic Publishers.

85. Ahuja, R.K., et al., A survey of very large-scale neighbourhood search
techniques. Discrete Appl. Math., 2002. 123(1-3): p. 75-102.

86. Bent, R. and P.V. Hentenryck, A Two-Stage Hybrid Local Search for the Vehicle
Routing Problem with Time Windows. Transportation Science, 2004. 38(4).

87. Augerat, P., et al., Separating capacity constraints in the CVRP using tabu
search. European Journal of Operational Research, 1998. 106(2-3): p. 546-557.

88. Maniezzo, V., T. Stützle, and S. Voß, Matheuristics - Hybridizing
Metaheuristics and Mathematical Programming, in Annals of Information
Systems. 2010.

89. Cheang, B., et al., Nurse rostering problems--a bibliographic survey. European
Journal of Operational Research, 2003. 151(3): p. 447 - 460.

90. Ernst, A.T., et al., Staff scheduling and rostering: A review of applications,
methods and models. European Journal of Operational Research, 2004. 153(1): p.
3 - 27.

91. Curtois, T., Novel Heuristic and Metaheuristic approaches to the Automated
Scheduling of Healthcare Personnel. 2007, Unversity of Nottingham.

References

226

92. Warner, D.M. and J. Prawda, A Mathematical Programming Model for
Scheduling Nursing Personnel in a Hospital. Management Science, 1972. 19(4):
p. 411-422.

93. Bailey, J., Integrated days off and shift personnel scheduling. Computing and
Industrial Engineering, 1985. 9(4): p. 395-404.

94. Bard, J.F. and H.W. Purnomo, Preference scheduling for nurses using column
generation. European Journal of Operational Research, 2005. 164(2): p. 510 -
534.

95. Bard, J.F. and H.W. Purnomo, A column generation-based approach to solve the
preference scheduling problem for nurses with downgrading. Socio-Economic
Planning Sciences, 2005. 39(3): p. 193 - 213.

96. Maenhout, B. and M. Vanhoucke, Branching strategies in a branch-and-price
approach for a multiple objective nurse scheduling problem. Journal of
Scheduling, 2010. 13(1): p. 77-93.

97. Darmoni, S.J., et al., Horoplan: computer-assisted nurse scheduling using
constraint-based programming. Journal of Society for Helth Systems, 1995. 5: p.
41-54.

98. Weil, G.K., et al., Constraint Programming for nurse scheduling. IEEE
Engineering in Medicine and Biology Magazine, 1995. 14(4): p. 417-422.

99. Cheng, B.M.W., J.H.M. Lee, and J.A.C.K. Wu, A nurse rostering system using
constraint programming and redundant modelling. IEEE Transactions on
information technology in biomedicine, 1997. 1(1): p. 44- 54.

100. Metivier, J.-P., P. Boizumault, and S. Loudni, Solving Nurse Rostering
Problems Using Soft Global Constraints in Principles and Practice of
Constraint Programming. 2009, Lecture Notes in Computer Science. p. 73-87.

101. Wong, G.Y.C. and A.H.W. Chun, Constraint-based rostering using meta-level
reasoning and probability-based ordering. Engineering Applications of
Artificial Intelligence, 2004. 17: p. 599- 610.

102. Hofe, H.M.A.m., Nurse rostering as constraint satisfaction with fuzzy
constraints and inferred control strategies, in DIMACS workshop on on
Constraint programming and large scale discrete optimization. 2001, American
Mathematical Society: Rutgers Univ., Piscataway, New Jersey, United States. p.
67-101.

103. Markowitz, H.M., Portfolio Selection. J. Finance, 1952. 7: p. 77-91.
104. Hiroshi, K. and Y. Hiroaki, Mean-absolute deviation portfolio optimization

model and its applications to Tokyo stock market. Management Science, 1991.
37(5): p. 519-531.

105. Speranza, M.G., Linear programming models for portfolio optimization. Finance,
1993. 14: p. 107-123.

106. Mansini, R. and M.G. Speranza, An exact approach for portfolio selection with
transaction costs and rounds. IIE Transactions, 2005. 37: p. 919-929.

107. Rockafellar, R.T. and S. Uryasev, Optimization of conditional value-at-risk
Journal of risk, 2000. 2: p. 21-41.

108. Crama, Y. and M. Schyns, Simulated annealing for complex portfolio selection
problems. European Journal of Operational Research, 2003. 150(3): p. 546-571.

109. Chang, T.J., et al., Heuristics for cardinality constrained portfolio optimisation.
Computers & Operations Research, 2000. 27(13): p. 1271-1302.

References

227

110. Schaerf, A., Local Search Techniques for Constrained Portfolio Selection
Problems. Computational Economics, 2002. 20(3): p. 177-190.

111. Di Gaspero, L., et al., Hybrid Local Search for Constrained Financial Portfolio
Selection Problems, in Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems. 2007. p. 44-58.

112. Jobst, N.J., et al., Computational aspects of alternative portfolio selection
models in the presence of discrete asset choice constraints Quantitative Finance
2001. 1(5): p. 489-501.

113. Mitra, G., F. Ellison, and A. Scowcroft, Quadratic programming for portfolio
planning: Insights into algorithmic and computational issues J of Asset Manag,
2007. 8(3): p. 200-214.

114. Bonami, P. and M.A. Lejeune, An Exact Solution Approach for Portfolio
Optimization Problems Under Stochastic and Integer Constraints.
OPERATIONS RESEARCH, 2009. 57(3): p. 650-670.

115. Burke, E.K., et al., A hybrid heuristic ordering and Variable Neighourhood
Search for the nurse rostering problem. European Journal of Operational
Research, 2008. 188(2): p. 330-341.

116. Hooker, J.N., Dictionary of Constraints, in Integrated Methods for Optimization.
2007, Springer. p. 414-447.

117. Regin, J.C. and J.F. Puget., A filtering algorithm for global sequencing
constraint, in Principles and Practice of Constraint Programming. 1997,
Springer. p. 32-46.

118. Bourdais, S. and P. Galinier, HIBISCUS: A Constraint Programming
Application to Staff Scheduling in Health Care, in Principles and Practice of
Constraint Programming. 2003. p. 153-167.

119. Focacci, F., A. Lodi, and M. Milano, Cost-Based Domain Filtering, in
Principles and Practice of Constraint Programming – CP’99. 1999. p. 189-203.

120. Burke, E.K., et al., A Time Pre-defined Variable Depth Search for Nurse
Rostering. Accepted at INFORMS Journal on Computing, 2011.

121. Burke, E.K., et al., A Scatter Search for the Nurse Rostering Problem. Journal of
Operational Research Society, 2010. 61: p. 1667-1679.

122. Muller, T., R. Bartak, and H. Rudova, Iterative forward search algorithm:
combining local search with maintaining arc consistency and a conflict-based
statistics, in Lecture Notes in Computer Science. 2004, Springer: Berlin. p. 802-
817.

123. Burke, E.K., J. Li, and R. Qu, A Hybrid Model of Integer Programming and
Variable Neighourhood Search for Highly-constrained Rostering Problems.
European Journal of Operational Research, 2009. 203(2): p. 484-493.

124. Hansen, P. and N. Mladenovic, Variable Neighbourhood Search: Principles and
Applications. European Journal of Operational Research, 2001. 130: p. 449-467.

125. Fijn van Draat, L., et al., Harmonious personnel scheduling. Medium
Econometrische Toepassingen, 2006. 14: p. 4-7.

126. Kilby, P., P. Prosser, and P. Shaw, A Comparison of Traditional and Constraint-
based Heuristic Methods on Vehicle Routing Problems with Side Constraints.
Constraints, 2000. 5(4): p. 389-414.

127. Dowsland, K.A., Nurse scheduling with tabu search and strategic oscillation.
European Journal of Operational Research, 1998. 106(2-3): p. 393-407.

References

228

128. Nareyek, A., Using global constraints for local search, in DIMACS workshop on
on Constraint programming and large scale discrete optimization. 2001,
American Mathematical Society: Rutgers Univ., Piscataway, New Jersey,
United States. p. 9-29.

129. Perron, L., P. Shaw, and V. Furnon, Propagation Guided Large Neighbourhood
Search, in Principles and Practice of Constraint Programming – CP 2004. 2004.
p. 468-481.

130. Agren, M., P. Flener, and J. Pearson, Revisiting constraint-directed search. Inf.
Comput., 2009. 207(3): p. 438-457.

131. Applegate, D. and W. Cook, A computational study of the job-shop scheduling
problem. ORSA Journal on Computing 1991. 3: p. 149-156.

132. Pisinger, D. and S. Ropke, A general heuristic for vehicle routing problems.
Computers & Operations Research, 2007. 34(8): p. 2403-2435.

133. Qu, R. and F. He. A Hybrid Constraint Programming Approach for Nurse
Rostering Problems. in Applications and Innovations in Intelligent Systems XVI.
2008.

134. Morris, J.G. and M.J. Showalter, Simple approaches to shift, days-off, and tour
scheduling programs. Management Science, 1983. 29: p. 942-950.

135. Billionnet, A., Integer programming to schedule a hierarchical workforce with
variable demands. European Journal of Operational Research, 1999. 114(1): p.
105 - 114.

136. Beaumont, N., Scheduling staff using mixed integer programming. European
Journal of Operational Research, 1997. 98(3): p. 473 - 484.

137. Walsh, T. Depth-bounded discrepancy search. in Proceedings of IJCAI-97 1997.
138. Vanderbeck, F. and L.A. Wolsey, An exact algorithm for IP column generation.

Operations Research Letters, 1996. 19(4): p. 151-159.
139. Sol, M. and M.W.P. Savelsbergh, Column generation techniques for pickup and

delivery problems, in Eindhoven University of Technology. 1994.
140. Focacci, F., A. Lodi, and M. Milano, Optimization-Oriented Global Constraints.

Constraints, 2002. 7(3): p. 351-365.
141. Petit, T., J.-C. Régin, and C. Bessière, Specific Filtering Algorithms for Over-

Constrained Problems, in Principles and Practice of Constraint Programming
— CP 2001. 2001. p. 451-463.

142. Bienstock, D., Computational study of a family of mixed-integer quadratic
programming problems. Math. Program., 1996. 74(2): p. 121-140.

143. Byrne, P. and S. Lee, Different risk measures: Different portfolio compositions?
J. Property Investment & Finance, 2004. 22(6): p. 501-511.

144. J. T.Linderoth and M.V.P. Savelsbergh., computational study of branch and
bound search strategies for mixed integer programming. INFORMS J. Comput.,
1999. 11: p. 173-187.

145. Achterberg, T., Constraint Integer Programming. 2007, University of Berlin.
146. Gao, Z., S. Zhang, and X. Sun, Matrix decomposition and Lagrangian dual

method for discrete portfolio optimization under concave transaction costs.
Journal of Shanghai University (English Edition), 2009. 13(2): p. 119-122.

147. Wallace, C., ZI round, a MIP rounding heuristic. Journal of Heuristics, 2010. 16:
p. 715-722.

References

229

148. Beasley, J.E., OR-Library: distributing test problems by electronic mail. Journal
of the Operational Research Society, 1990. 41(11): p. 1069-1072.

149. Konno, H. and A. Wijayanayake, Portfolio optimization problem under concave
transaction costs and minimal transaction unit constraints. Mathematical
Programming, 2001. 89(2): p. 233-250.

150. Konno, H. and A. Wijayanayake, Portfolio optimization under D.C. transaction
costs and minimal transaction unit constraints. Journal of Global Optimization,
2002. 22(1): p. 137-154.

151. Konno, H. and R. Yamamoto, Global Optimization Versus Integer
Programming in Portfolio Optimization under Nonconvex Transaction Costs.
Journal of Global Optimization, 2005. 32(2): p. 207-219.

152. Balas, E., S. Schmieta, and C. Wallace, Pivot and shift - a mixed integer
programming heuristic. Discrete Optimization, 2004. 1(1): p. 3-12.

153. Balas, E. and C.H. Martin, Pivot-and-Complement: A Heuristic for 0-1
Programming. Management Science, 1980. 26(1): p. 86-96.

154. Johnson, E.L., G.L. Nemhauser, and M.V.P. Savelsbergh., Progress in linear
programming-based algorithms for integer programming: An exposition.
INFORMS J. Comput., 2000. 12(1): p. 2-23.

155. Linderoth, J.T. and M.V.P. Savelsbergh, computational study of branch and
bound search strategies for mixed integer programming. INFORMS J. Comput.,
1999. 11: p. 173-187.

156. Fischetti, M. and A. Lodi, Local branching. Mathematical Programming, 2003.
98(1): p. 23-47.

157. Danna, E., E. Rothberg, and C.L. Pape, Exploring relaxation induced
neighbourhoods to improve MIP solutions. Mathematical Programming, 2005.
102(1): p. 71-90.

158. Pierre, H., M. Nenad, and U. Dragan, Variable neighbourhood search and local
branching. Computer & Operations Research, 2006. 33(10): p. 3034-3045.

159. Arnott, R.D. and W.H. Wagner, The measurement and control of trading costs.
Financial analusts journal, 1990. 4(6): p. 73-80.

160. Yoshimoto, A., The mean variance approach to portfolio optimization subject to
transaxtion costs. journal of the operational research society of Japan, 1996.
39(1): p. 99-117.

161. Mansini, R. and M.G. Speranza, Heuristic algorithms for the portfolio selection
problem with minimum transaction lots. European Journal of Operational
Research, 1999. 114(2): p. 219-233.

162. Kellerer, H., R. Mansini, and M.G. Speranza, Selecting Portfolios with Fixed
Costs and Minimum Transaction Lots. Annals of Operations Research, 2000.
99(1): p. 287-304.

163. Gao, Z.-x., S.-t. Zhang, and X.-l. Sun, Matrix decomposition and Lagrangian
dual method for discrete portfolio optimization under concave transaction costs.
Journal of Shanghai University (English Edition), 2009. 13(2): p. 119-122.

164. Lobo, M., M. Fazel, and S. Boyd, Portfolio Optimization with Linear and Fixed
Transaction Costs. Annals of Operations Research, 2007. 152(1): p. 341-365.

165. Padberg, M. and G. Rinaldi, A branch-and-cut algorithm for the resolution of
large-scale symmetric traveling salesman problems. Journal SIAM Review,
1991. 33(1): p. 60-100.

References

230

166. Savelsbergh, M.W.P., A Branch-and-Price Algorithm for the Generalized
Assignment Problem. Operations Research, 1997. 45: p. 831-841.

