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Abstract 
 
 

Network coding is an emerging technique in communication networks, where the 

intermediate nodes are allowed to combine (code) the data received from different 

incoming links if necessary. The thesis investigates a number of routing problems for 

network coding based multicast (NCM), which belong to combinatorial optimization 

problems (COPs). Evolutionary algorithms (EAs) are used to tackle the problems. The 

contributions of the thesis are described below. 

We propose three EAs for the network coding resource minimization (NCRM) 

problem where the objective is to minimize the number of coding operations performed 

while meeting the data rate requirement based on NCM. The three EAs are population 

based incremental learning (PBIL), compact genetic algorithm (cGA) and path-oriented 

encoding EA (pEA), all specially developed for tackling the NCRM problem. PBIL 

adopts the binary link state (BLS) encoding which is an existing encoding approach. We 

find that PBIL is more suited to BLS encoding, compared with genetic algorithms 

(GAs). This is because the principle of updating the probability vector (PV) in PBIL can 

easily locate promising regions in the search space. An entropy-based restart scheme is 

developed, which can improve the global exploration ability of PBIL. cGA is also based 

on BLS encoding and fit for this encoding. Three improvement schemes are developed 

based on the features of the encoding and the structure of cGA, including all-one vector, 

a PV restart scheme and a problem specific local search operator. In particular, the local 

search operator is the very first domain-knowledge based operator for the problem 

concerned. We notice that BLS encoding and its variant have some weaknesses, namely 

high proportion of infeasible solutions in the search space and high computational costs 

spent on fitness evaluation. We therefore design a path-oriented encoding and develop 

pEA based on it, where a local search operator (based on the path-oriented encoding) is 

incorporated into the evolutionary framework to improve the local exploitation ability. 

Experimental results demonstrate that the three adapted EAs outperform existing EAs in 

the literature, in terms of the best results obtained and computational time. 



 X 

To support real-time multimedia applications, we for the first time extend the 

NCRM problem by introducing the maximum transmission delay into the problem as a 

constraint, which is called the delay constrained NCRM problem. Benchmark datasets 

are created based on the datasets for the NCRM problem. Three EAs originally used for 

the NCRM problem are adapted for the delay constrained NCRM problem, including 

GAs and PBIL. We find that for the same dataset a severer delay constraint leads to a 

harder problem. We also find that the restart scheme in PBIL is not suited to the delay 

constrained NCRM problem, due to the setting of threshold value and the memory-less 

structure. We therefore design a substitute for the restart scheme to adapt PBIL for the 

delay constrained problem, namely the combination of a new PV update scheme and a 

PV mutation. It is noted that the PV update scheme is based on a set of historically best 

solutions. The combination improves the global exploration of PBIL and avoids local 

optima. PBIL with the new PV update scheme and PV mutation performs better than 

PBIL with restart scheme. 

To study the conflicting interests of service providers and network users, we for the 

first time formulate a multi-objective NCM routing problem considering two objectives, 

cost and delay. The cost is the summation of the coding cost and link cost incurred in 

the NCM. The delay is the maximum transmission delay of paths in the NCM. This 

problem is referred to as the cost-delay bi-objective optimization (CDBO) problem. 

Benchmark datasets for the delay constrained NCRM problem are used to generate the 

datasets for the CDBO problem. Elitist nondominated sorting GA (NSGA-II) is adapted 

for the CDBO problem, where two problem specific schemes are proposed, namely an 

initialization scheme and an individual delegate scheme (IDS). The initialization 

scheme can generate a set of promising and diversified initial individuals, which 

initiates a diversified search at the beginning of the evolution. The IDS reduces the 

number of individuals having identical objective values in the population and leaves 

more space to accept other significant individuals. This scheme considers the crowding 

in both decision and objective spaces and helps to diversify the search during the 

evolution. The adapted NSGA-II performs better than a number of multi-objective EAs 

in terms of the inverted generational distance, generational distance and maximum 

spread. 
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Chapter 1  Introduction 

Nowadays, communication networks are evolving rapidly due to the emergence of 

new technologies in information theory, data transmission, networking and switching. A 

communication network is a set of nodes connected by links, providing communication 

services, such as data and information exchanging, between users of the network located 

at various geographical points. A node in the network represents an individual hardware 

device, such as router or switch. A link is a communication channel connecting two or 

more nodes (Halsall, 1992; Elahi, 2001).  

Depending on the switching technologies adopted, networks can be classified into 

two categories, i.e. circuit-switched networks and packet-switched networks (Bagad and 

Dhotre, 2010). Circuit-switched networks set up point-to-point path connection before 

the data transmission. The established path cannot be used by other traffic during the 

transmission. The connection is released only when the transmission is over. An example 

is Public Switched Telephone Network (PSTN), where hiring lines is reliable but quite 

expensive. On the other hand, packet-switched networks (e.g. Internet) transmit data 

using separate and small blocks (i.e. packets). With an address embedded in the header, 

each packet finds its own path to its destination. Compared with circuit-switching, 

packet-switching is cheaper and more flexible. It becomes the trend of the development 

of modern switching technologies (Bagad and Dhotre, 2010). In packet-switched 

networks, reliable data delivery between nodes can be realized by connection-oriented 

protocols, e.g. Transmission Control Protocol (TCP), where all data is sent over the same 

path during a communication session (Goralski, 2009). In this thesis, packet-switched 

networks and connection-oriented schemes are the underlying network model and routing 

schemes for conducting the research.  

Regarding the design of communication networks, one fundamental issue considers 

how network traffic is delivered between network terminals (namely, users). This issue is 

referred to as network routing which is the process of selecting a number of paths in a 

communication network along which the traffic is transmitted (Halsall, 1992; Elahi, 2001; 
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Bagad and Dhotre, 2010). The objective of network routing is to enable communications 

among network terminals while efficiently utilizing network resources. Depending on the 

number of receivers, routing can be classified into three categories: unicast (one-to-one), 

broadcast (one-to-all) and multicast (one-to-many). Unicast delivers data from a source 

to a single receiver, where a path between the source and the receiver is established. 

Broadcast is that a source sends the same data to all other nodes in the network. On the 

other hand, multicast is that a certain source node delivers the same data to a subset of 

nodes in the network. To forward the data to each receiver, a subnetwork spanning the 

source and all receivers is found, where for each receiver there is a path originating from 

the source and terminating at the receiver. This subnetwork is referred to as multicast tree 

(Benslimane, 2007). Unicast and broadcast can be seen as two special cases of multicast. 

1.1  Multicast Technologies 

Multicast model was originally introduced by Steve Deering in 1988 for Internet 

Protocal (IP) networks. Compared with multiple unicasts, multicast can efficiently reduce 

the bandwidth consumption during the data transmission. Figure 1.1 shows a comparison 

between multiple unicasts and multicast in an example scenario where source node s 

wants to deliver information a to three receivers, t1, t2 and t3. Both multiple unicasts and 

multicast can complete the task. However, compared with multiple unicasts, multicast is 

able to reduce server loads and traffic, saving nearly half (4/9 = 44.4%) of bandwidth 

utilization in the above example. One may imagine that multicast becomes more and 

more efficient than multiple unicasts with the growth of the number of receivers and the 

scale of the network.  

With the rapid growth of real-time multimedia applications and services, multicast 

has become the key technology to support these applications and services in IP networks 

(Benslimane, 2007; Harte, 2008). The following summarizes some common multicast 

protocals used in IP networks and lists a number of multicast applications.  
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                (a)                             (b) 

Figure 1. 1  An example of realizing one-to-many communication. (a) Multiple unicasts. 

(b) Multicast. 

 

1.1.1  Multicast Protocols 

A multicast protocol should be capable of collecting and updating the status 

information of a network, constructing and maintaining an appropriate multicast tree for 

a multicast group including a source node and a number of receivers when requested, and 

handling the changes caused by the Internet or nodes joining (or leaving) the multicast 

group (Benslimane, 2007; Harte, 2008). Depending on where they are deployed, 

multicast protocols can be categorized into three types. The first type of protocols allows 

end-user nodes to exchange messages with multicast routers for joining or leaving a 

multicast group, e.g. Internet Group Management Protocol (IGMP) (Deering, 1989). This 

type of protocols is installed at end-user nodes. The second type of protocols enables the 

multicast communications within the same autonomous system (which is one of the 

administrative domains in the Internet). This type of protocols are deployed on multicast 

routers and referred to as multicast interior gateway protocols, including Distance Vector 

Multicast Routing Protocol (DVMRP) (Waitzman et al, 1988), Core Based Tree (CBT) 
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(Ballardie et al, 1993), Multicast Open Shortest Path First (MOSPF) (Moy, 1994), and 

Protocol Independent Multicast (PIM) (Deering et al, 1996). The last type of protocols is 

deployed on border routers to enable the multicast between different domains on the 

Internet, e.g. Border Gateway Multicast Protocol (BGMP) (Thaler et al, 1998). 

1.1.2  Multicast Applications 

Nowadays, the development and commercialization on the Internet has resulted in 

increasing demand for multicast applications (Benslimane, 2007; Harte, 2008). Video 

distribution is one of the application fields, such as video conferencing and Internet 

Protocol Television (IPTV). Besides, remote education and periodic data delivery (e.g. 

stock quotes and sports scores) also requires multicast service over the Internet. Internet 

giants and equipment suppliers have developed their own products (software/hardware) 

to support increasing demand for multimedia content distribution. For example, Cisco 

Systems introduced TelePresence, the next generation of video conferencing, several 

years ago. TelePresence brings people together virtually and changes the way they work. 

In 2010, Microsoft unveiled Lync, a communications system that integrates audio/video 

conferencing, e-mail and instant messaging all into one application. 

1.2  Max-Flow Min-Cut Theorem 

When finding available routes to carry out data transmission in a communication 

network, one of the common concerns is the capacity of the network to accommodate 

information flows, e.g. how fast the information sent from a source can be received by its 

receiver(s). This concern is of particular importance to network designers because they 

expect to maximize the network capacity utilization to provide communication and data 

delivery services to the network users with the limited network resources.  

To address the above concern, the Max-Flow Min-Cut Theorem was independently 

presented and proved by two groups of scientists, Elias, Feinstein and Shannon (1956), 

and Ford and Fulkerson (1956). This theorem defines the maximum flow capacity 

between a source node and its receiver(s) in a network.  
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A communication network can be modelled as a graph G(V,E), where V and E are 

the sets of nodes and links, respectively. If G is an undirected graph, any link eikE has 

no direction, where i, k  V. Information can be sent from i to k and from k to i. If G is a 

directed graph, link eik can only forward information from i to k. Assume there are a 

source node s and an arbitrary non-source node t. A cut between s and t is a partition of V 

into two disjoint subsets S and T, where S∪T = V, S∩T = , sS, and tT. Link eikE is 

said to be in the cut if iS and kT. The value of a cut is the summation of the capacity 

of all links in the cut.  

The Max-Flow Min-Cut Theorem is stated as: given a source s and non-source t in 

network G, the minimum value of a cut between s and t is equal to the maximum volume 

of a flow from s to t (known as max-flow).  

The above theorem provides a method to calculate the upper bound of the amount of 

information flows from s to t by simply finding the minimum cut between s and t. For 

any unicast session, the maximum data rate between the source and receiver is the same 

as the max-flow between them. For any multicast session, we use multicast throughput as 

the multicast data rate. Multicast throughput is defined as the minimum value of the 

max-flows obtained by all receivers. Figure 1.2 shows an example of the maximum data 

rate achieved by unicast and multicast, respectively. 

 

 

(a)                (b)                (c)                (d) 

Figure 1. 2  An example of the maximum data rate. (a) the original network (b) unicast 

from s to t1 (c) unicast from s to t2 (d) multicast from s to t1 and t2 
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 In the original network, there is a source s and two receivers, t1 and t2. For simplicity, 

assume each link has a unit capacity. Obviously, the max-flow from s to t1 and t2 is two 

units and one unit, respectively, which can be achieved using unicast, as shown in Figure 

1.2(b)-(c), where dash lines illustrate the information flows in the network. On the other 

hand, if we use multicast to deliver the same data to t1 and t2, the multicast data rate is 

only one unit according to the definition of multicast throughput introduced above. 

In traditional communication networks, information is delivered in the same way as 

cars share a highway or fluids share a pipe (Fragouli et al, 2006; Fragouli and Soljanin, 

2007). Different data packets transmitted share the same limited network resources, but 

each data packet is separately processed and forwarded. Each intermediate node of a 

network simply replicates the incoming data packets and forwards a copy to the next 

node, adopting a method known as store-and-forward (Li et al, 2003). At any 

intermediate node, only data replication and forwarding are needed. 

We refer to routing schemes which are based on store-and-forward data forwarding 

approach as traditional routing schemes. For example, in traditional multicast, any 

intermediate node simply forwards the incoming packets to the next node(s). 

When investigating the capacity of traditional routing schemes, people found that 

traditional multicast cannot always reach the maximum throughput which is supported by 

the Max-Flow Min-Cut Theorem. Inspired by this deficiency, Ahlswede et al (2000) 

introduced the idea of network coding. When used in multicast, this new idea guarantees 

to achieve the theoretical maximum multicast throughput. 

1.3  Network Coding 

Network coding can be viewed as a generalized routing scheme and can be applied 

to any types of routing, i.e. unicast, multicast and broadcast, to enable a more efficient 

data transmission. In network coding, any intermediate node is allowed to not only 

forward but also combine (code) data packets received from different incoming links if 

necessary (Ahlswede et al, 2000; Li et al, 2003). The forwarding scheme in network 

coding is referred to as code-and-forward (Xing et al, 2010).  
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The following is an example comparing traditional multicast and network coding 

based multicast (NCM) in terms of the multicast throughput, as shown in Figure 1.2. 

Figure 1.2(a) is the example network, where source s multicasts two bits information (a 

and b) to receivers y and z. Assume each link is directed and has a capacity of one bit per 

time unit. The minimum cut Cmin between the source and each receiver (y or z) is two bits 

per time unit. According to the MAX-FLOW MIN-CUT theorem, the maximum flow is 

equal to the minimum cut, and therefore the maximum multicast throughput is also two 

bits per time unit. By using traditional routing, however, the average data rate between s 

and each receiver is 1.5 bits per time unit and hence the multicast throughput is only 1 bit 

per time unit, as shown in Figure 1.2(b). This is because wx is a bottleneck link which 

can only forward one bit (a or b) at a time to x, so y and z cannot simultaneously receive 

two different bits. However, if node w is allowed to combine a and b into one bit ab ( 

denotes an Exclusive-OR operation) and to forward ab to x as depicted in Figure 1.2(c), 

both y and z can receive two bits information, i.e. {a, ab} in y and {b, ab} in z. By 

decoding operations b = a(ab) and a = b(ab), y and z can then recover b and a, 

respectively. In this way, the theoretical maximum throughput is warranted. 

 

Figure 1. 3  Traditional multicast vs. network coding based multicast. (a) The example 

network. (b) Traditional multicast. (c) Network coding based multicast. (Xing and Qu, 

2012) 
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There are two main streams of research in the field of network coding. One stream 

investigates efficient encoding-and-decoding algorithms to increase the data transmission 

rate while reducing the computational cost, and the other emphasizes the applications of 

network coding. 

For the first stream, regarding the encoding functions to combine the received 

information at intermediate nodes, there have been a number of encoding-and-decoding 

algorithms, e.g. linear network coding (Li et al, 2003), algebraic network coding (Koetter 

and Médard, 2003), convolutional network coding (Li and Yeung, 2006) and so on. 

Among them, one of the most fundamental and widely used coding methods is linear 

network coding, where packets are linearly combined. Introduced in 2003, linear network 

coding always suffices to achieve the theoretical maximum throughput for multicast 

sessions (Li et al, 2003). In this thesis, linear network coding is used for network coding 

based data transmission (see Chapter 3).  

1.3.1  Linear Network Coding 

Linear network coding is similar to the example in Figure 1.3(c). Whereas the 

example uses Exclusive-OR operation to compress a and b into one bit, linear network 

coding will adopt linear combination of the incoming data which are interpreted as 

elements over some finite field (Fragouli et al, 2006). In abstract algebra, a finite field is 

a field that contains a finite number of elements and any operation performed in the field 

always results into an element within that field (Blake et al, 1993). Finite field is also 

known as Galois Field and usually denoted by GF(2n) which contains 2n elements, where 

n is a positive integer. Finite field has wide applications in many areas, such as coding 

theory, algebraic geometry and cryptography. The following briefly describes how linear 

network coding works, including the encoding approach performed at coding nodes and 

decoding approach performed at receivers. Details can be found in (Fragouli et al, 2006). 

Assume each data packet in a communication network contains N binary bits. If we 

interpret every n consecutive bits of a packet as an element in the field GF(2n), the 

packet consists of a vector of N/n elements. In linear network coding, the outgoing 

packets of a coding node are linear combinations of the incoming packets. Combining the 

packets requires two basic operations performed over the field GF(2n): addition and 
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multiplication. Addition is the bitwise Exclusive-OR operation. For multiplication, every 

n consecutive bits, b0, b1, …, bn−1 can be interpreted as the polynomial b0 + b1x +. . .+ 

bn−1x
n−1. Hence, multiplication is done by computing the product of two polynomials.  

1.3.1.1  Encoding 

Assume there are K original packets M1, M2,…,MK to be delivered from the source 

to one or more receivers. Rather than simply delivering the original packets over the 

network as store-and-forward scheme, network coding allows packet combination at 

some intermediate nodes. Assume each packet (e.g. packet i) in the network consists of 

two parts, encoding vector Ai = (α1
i,…,αK

i) and information vector Xi, where αk
i (k = 

1,…,K) is selected in GF(2n) and Xi is expressed as (1.1): 

 

 


K

k k
i
ki 1
MX  ,                                                          (1.1) 

 

Assume there are m packets (A1, X1),…, (Am, Xm) that need to be linearly coded at 

an intermediate node. The node first picks a set of coefficients (1,…,m) in GF(2n) and 

then calculates the linear combination as below: 

 

 


m

i iinew 1
XX                                                              (1.2) 

 

The new encoding vector Anew is obtained as: 

 

),...,,(A
11 21 1  


m

i

i
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i
i

m

i

i
inew                  (1.3) 

 

After encoding, the new packet is forwarded to the next node along the route to one 

of the receivers. Note that coded packets can be recoded if necessary.  

1.3.1.2  Decoding 

As mentioned above, in linear network coding, each packet carries an encoding 

vector and an information vector. The packets received by receivers may not be original 

packets sent from the source. Hence, when packets arrive, receivers have to decode them 
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so as to obtain the original packets, i.e. M1, M2, …, MK. Assume a receiver gets n packets: 

(A1, X1),…, (An, Xn). The node needs to solve the following n linear equations: 

 






























K

k k
n
kn

K

k kk

K

k kk

1

1

2
2

1

1
1

MX
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MX








                        (1.4) 

 

To successfully recover the original data, one needs to have: (1) n  K, i.e. the 

number of the received packets is no less than that of the original packets; and (2) all 

equations are linearly independent. The two requirements are easy to fulfill (Fragouli et 

al, 2006). By far, linear network coding has become one of the most popular coding 

methods in the field of network coding (Fragouli and Soljanin, 2007).  

1.3.2  Advantages and Applications 

The second stream of research in network coding focuses on its applications in 

communication networks. As a new communication paradigm, network coding is 

featured with a number of advantages. As mentioned above, network coding can increase 

the multicast throughput (as shown in Figure 1.3) (Ahlswede et al, 2000; Li et al, 2003). 

Besides, network coding can be used to balance network payload, reduce the energy 

consumption in wireless networks, increase the security level against network attackers, 

and improve the robustness against network failures. 

Noguchi et al (2003) evaluated the capacity and load-balancing performance when 

applying network coding to multicast. They compared network coding based multicast 

with traditional IP multicast and showed that network coding had not only higher data 

transmission capacity but also a positive effect to balance the network traffic.  

Wireless networks are becoming increasingly popular and indispensable to us. 

However, they in general suffer from low throughput, limited battery life and bandwidth, 

transmission failures, and so on. Network coding can optimize various kinds of wireless 

resources by making use of the broadcast nature of the wireless channel (Katti et al, 
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2006). In a wireless environment, it can be used to reduce transmitting energy and 

significantly reduce the delay (Fragouli et al, 2006; Katti et al, 2006; Chou and Wu, 2007; 

Wang et al, 2009a; Zeng et al, 2011; Wang et al, 2012). 

As we know, the basic idea of network coding is to allow routers to recombine data 

packets they received (Ahlswede et al, 2000; Li et al, 2003). The combination (usually 

linear combination) of packets offers a natural way to avoid wiretapping attacks as the 

attackers cannot decode the original information sent as long as they cannot wiretap all 

multi-paths that transmit information for decoding (Cai and Yeung, 2002; Fragouli et al, 

2006; Guo et al, 2010; Zhang et al, 2010d; Cai and Yeung, 2011). 

Link failure usually happens in communication networks and may cause serious 

damage to them, especially in optical networks. How to design effective data protection 

scheme so that the transmission is affected as lightly as possible by link failure is of 

crucially importance. Network coding has been used for this purpose. Kamal carried out 

a series of studies on how to make data protection against link failure in optical networks 

by using network coding (Kamal, 2006, 2007a, 2007b, 2008, 2010; Kamal et al, 2011).  

As shown above, network coding brings a lot of benefits to the current 

communication networks and is also foreseen as a core technology for future networks 

(Fragouli and Soljanin, 2007). Network coding has many network applications. The 

following lists some of them:  

 Multimedia streaming and file distribution in peer-to-peer and wireless networks 

(Wang and Li, 2007a; Wang and Li, 2007b; Dimakis et al, 2007; Ma et al, 2007; 

Thomos and Frossard, 2009; Chu and Jiang, 2010; Li and Niu, 2011; Zhang et al, 

2011; Kao et al, 2012) 

 Reducing the consumption of network resources (such as energy and storage) 

while increasing the throughput in wireless and sensor networks (Katti et al, 

2006; Bhadra and Shakkottai, 2006; Sengupta et al, 2007; Hou et al, 2008; 

Wang et al, 2010; Kasireddy et al, 2011; Shwe and Adachi, 2011) 

 Secure data transmission against network attacks, e.g. eavesdropping and 

wiretapping (Cai and Yeung, 2002; Fragouli et al, 2006; Guo et al, 2010; Zhang 

et al, 2010d; Cai and Yeung, 2011) 
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 Data protection against network failures in optical networks (Kamal, 2006, 

2007a, 2007b, 2008, 2010; Kamal et al, 2011) 

1.4  Network Coding Based Multicast 

Nowadays, a significant proportion of the Internet bandwidth has been consumed by 

the explosively growing multimedia applications and this trend is continuing. Among 

these applications, many require multicast to support data delivery, such as IPTV and 

video conferencing. Hence, the demand for a powerful and efficient multicast technology 

is becoming ever urgent.  

As a new communication paradigm, network coding potentially offers many benefits 

to the communication network, such as, maximizing the multicast throughput which in 

general may not be achieved by traditional multicast (see Section 1.3). Therefore, using 

network coding in multicast could be a promising technical solution to support real-time 

and high-speed multicast data transmission (Wang and Li, 2007a, 2007b).  

1.4.1  Two Tasks for Establishing A Multicast Session 

Establishing a multicast session by using network coding could be divided into two 

almost independent tasks (Fragouli and Soljanin, 2006). The first task is to find a routing 

subgraph that meets the data rate requirement for each receiver, while the second task is 

to determine an appropriate encoding-and-decoding configuration over the subgraph so 

that any receiver is able to recover the original data sent from the source node. The two 

tasks are based on the graph theory and the classical coding theory, respectively 

(Fragouli and Soljanin, 2006).  

This thesis emphasizes the first task, i.e. how to route multicast data from the source 

to all receivers at an expected data rate (see Chapters 3, 4, 5 and 6). For traditional 

multicast (with store-and-forward scheme), a multicast tree is constructed, where there is 

a single path connecting the source and each receiver (see Figure 1.1(b) as an example). 

The same data sent from the source are delivered through the multicast tree and received 

by each receiver. However, for network coding based multicast, we need to find a 

subgraph that consists of multiple link-disjoint paths (i.e. paths without common link) 
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between the source and each receiver. In this subgraph, different data flows may pass 

through different areas within the subgraph (see Figure 1.3(c) for instance). Such 

subgraph is referred to as network coding based multicast (NCM) subgraph (Xing and 

Qu, 2011a, 2011b, 2012) (see Chapter 3 for details). 

1.4.2  Interesting Topics in the Literature 

As mentioned in Section 1.3, network coding is an emerging technique. How to well 

integrate it with the existing network architecture to efficiently support multicast 

applications has raised a number of interesting issues. The following reviews some of 

these issues emerged in the literature, emphasizing the first task in Section 1.4.1:  

 Throughput optimization problems. Given a network and a multicast request1, 

how to design efficient algorithms to find a routing subgraph that achieves the 

maximum end-to-end throughput is of theoretical interest. Maximizing the 

throughput in undirected networks has been extensively investigated. Li et al 

(2005) found that for NCM, the difficulty of finding an optimal end-to-end 

throughput is reduced to polynomial time (while for traditional multicast, it is 

NP-complete). In 2006, Li et al developed an efficient algorithm working in a 

distributed fashion to compute the optimal data transmission scheme. Later, Li 

et al (2009) demonstrated that the achievable multicast throughput with network 

coding can at most double that without network coding. 

 Link-cost minimization problems. When finding a routing subgraph for 

multicast with network coding, it is of practical interest to minimize the link 

usage while achieving an expected throughput (Lun et al, 2004). The cost comes 

from flows occupying links. Each link (i,k) within the network is associated with 

non-negative values aik and cik which are the cost per unit flow and how much 

capacity is used by flows, respectively. The total link cost is thus denoted as 

Σaikcik, which is the objective to minimize. The minimum-cost multicast routing 

problems are formulated as a linear optimization problem (Lun et al, 2004). 

                                                 
1 In communications networks, a multicast request is a request generated at a certain source node to build a 
multicast tree spanning this source and all its receivers (Benslimane, 2007). The same data is delivered 
from the source to each receiver through the constructed multicast tree. 
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Both static and dynamic multicast scenarios are considered, where in dynamic 

multicast, the membership of the multicast changes over time, i.e. nodes can join 

or leave the current multicast session whenever they want (Lun et al, 2004, 2005, 

2006; Bhadra et al, 2006; Zhao et al, 2009). 

 Network coding resource minimization problems. Applying network coding 

in multicast can guarantee optimal throughput, however, at the expenses of extra 

computational overhead at coding nodes (See Section 1.3). Hence, it is 

necessary to minimize the computational resource consumed (also known as 

coding cost) while achieving an acceptable data rate from the source to each 

destination. Ratnakar et al (2005) studied the problem of minimizing the number 

of packets that undergo network coding and adopted a linear programming 

formulation. Langberg (2006) and Fragouli and Soljanin (2006) independently 

investigated the minimization of the number of coding nodes involved in a 

multicast session and proposed two greedy algorithms. Later on, a number of 

evolutionary algorithms (EAs) have been developed to minimize the amount of 

coding operations while keeping a high throughput (Kim et al, 2006, 2007a, 

2007b; Xing et al, 2010, 2011a, 2011b, 2012; Ji and Xing, 2011). 

 Coding and link costs minimization problems. In a NCM data transmission, 

there are two types of costs, namely the link cost and the coding cost, where the 

coding cost represents the computational overhead incurred at coding nodes. 

One may be interested in simultaneously minimizing the two costs. If coding 

and link costs can be optimized at the same time, a minimum total cost can be 

obtained. If the two costs conflict with each other, a trade-off can be identified, 

e.g. occupying some extra links would eliminate the requirement of coding 

operations at some coding nodes. If so, the trade-off information can be used by 

network designers to properly deploy intermediate nodes which can perform 

coding operations. Kim et al (2007c) investigated the trade-off and adopted 

nondominated sorting genetic algorithm II (NSGA-II) to address it. In 2009, a 

two-stage method was proposed to simultaneously minimize coding and link 

costs for optical networks (Kim et al, 2009a). 
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 Network coding based multicast with Quality-of-Service (QoS) issues. QoS 

is one of the common terms in communication networks. It means that networks 

should be able to support data transmission services with certain performance 

requirements, such as constraints of delay, delay jitter, bandwidth and packet 

loss ratio, etc (Aurrecoechea et al, 1998). Real-time multimedia applications are 

often with stringent QoS requirements (Aurrecoechea et al, 1998; Chalmers and 

Sloman, 1999; Striegel and Manimaran, 2002). Hence, considering QoS issues 

is quite important, especially when network coding is used to support real-time 

multimedia multicast applications. An increasing amount of efforts has been 

dedicated to this research area (Pang et al, 2005; Walsh and Weber, 2008; Pu et 

al, 2009; Yeow et al, 2009a, 2009b; Zhang et al, 2009; Amir et al, 2010; Xuan 

and Lea, 2011; Anshelevich et al, 2011). 

1.5  Motivations and Aims 

As reviewed in Subsection 1.4.2, when using network coding based multicast 

(NCM), one of the most crucial and realistic issues comes from the considerable amount 

of computational resource consumed during the process of packets combinations at 

coding nodes, i.e. coding operations (see Section 1.3). This is because coding operations 

require intermediate nodes to perform mathematical operations and thus dramatically 

increases the computational complexity at coding nodes (Ahlswede et al, 2000; Li et al, 

2003; Langberg et al, 2006). On the other hand, nodes that perform coding operations 

also need to have additional buffering as encoding cannot proceed until all data packets 

that need to be coded arrive at the coding node. Packets that arrive early at the coding 

node have to be stored, waiting for the others. Take the data transmission in Figure 1.3(c) 

as an example, coding node w is responsible for combining bits a and b into bit ab. 

However, XOR operation cannot start until the arrival of the two bits. Thus, additional 

buffer is needed to store the first bit b (or a) arrived. 

Given a multicast request, the more the coding operations performed, the higher the 

computational and buffering costs incurred. The main concern in the thesis is how to 

route the data from the source to all receivers at the expected data rate while minimizing 
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the usage of computational and buffering resources consumed in the NCM data 

transmission. Such concern raises the network coding resource minimization problem 

(see Chapter 3). 

1.5.1  The Network Coding Resource Minimization Problem 

In the literature, most of the research assumes that coding operations take place at all 

coding-possible nodes. However, it is often possible that coding operations only need to 

occur at a subset of those nodes to achieve an expected throughput (Kim et al, 2006, 

2007a, 2007b). Figure 1.4 shows an example of two NCM schemes with different 

amount of coding operations involved (Xing and Qu, 2012). Source s expects to 

multicast two bits (a and b) to four receivers, t1, t2, t3 and t4 within the network, where 

each link has a capacity of one bit per time unit. 

In scheme-A, coding operations occur at nodes m and n; while in scheme-B coding 

operation is only performed at node w. Both schemes achieve the multicast throughput of 

2 bits per time unit, however, consuming different amount of network resources. Due to 

the mathematical operations involved (e.g.  in Figure 1.4), NCM not only incurs extra 

cost such as computational overhead and transmission delay, but also consumes public 

buffering resource. It is thus desired that the amount of coding operations incurred is 

minimized while retaining the benefits that NCM brings to us.  

Given a network and a multicast request, the objective of the problem is to find a 

feasible NCM subgraph with coding operations minimized and all restrictions satisfied 

(see Chapter 3 for details). This is a minimization problem and has been proved as 

NP-hard (Kim et al, 2006). Different from a multicast tree where the source and each 

receiver are connected by a single path, in a NCM subgraph, there are multiple 

link-disjoint paths between the source and each receiver.  

Minimizing network coding resource can save a huge amount of computational and 

buffering resources for the network. However, this problem is proved as NP-hard (Kim et 

al, 2006). Only a few methods such as greedy approaches and evolutionary algorithms 

(EAs) have been reported for solving the problem (Langberg et al, 2006; Fragouli and 

Soljanin, 2006; Kim et al, 2006, 2007a, 2007b). 
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(a) 

 

(b) 

Figure 1. 4  Two NCM schemes. (a) Scheme-A (b) Scheme-B (Xing and Qu, 2012) 

 

1.5.2  The Delay Constrained Network Coding Resource Minimization 

The network coding resource minimization is a fundamental problem which only 

takes into account the computational and buffering issues. Minimizing network coding 

resources may not be sufficient to well support real-time multimedia multicast 

applications. This is because these applications require the network to provide stringent 

QoS guarantees during the data transmission (see Subsection 1.4.2) (Aurrecoechea et al, 

1998; Chalmers and Sloman, 1999; Striegel and Manimaran, 2002). For example, in 

video conferencing, the end-to-end delay should be below 300 miliseconds (ms) to allow 
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the participants to interact naturally; otherwise, the interactive session cannot be 

guaranteed (Lakshman et al, 1999; Borella, 2000; Pau et al, 2005). So, when applying 

NCM to support real-time multimedia applications, one needs to take into consideration 

not only the computational costs but also the QoS requirements. The end-to-end delay 

(i.e. transmission delay) is regarded as one of the most important QoS parameters for 

NCM (Walsh and Weber, 2008; Pu et al, 2009; Yeow et al, 2009a; Zhang et al, 2009; 

Amir et al, 2010). Hence, it should be bounded to gain an acceptable user experience.  

In the thesis, we extend the network coding resource minimization (NCRM) problem 

by adding the end-to-end delay constraint between the source and its receivers (see 

Chapter 5 for details). This thesis, for the first time, formulates the above problem. 

Compared with the original NCRM problem, the extended problem is more realistic. By 

solving the new problem, one can obtain a NCM subgraph with coding operations 

minimized and end-to-end delay constraint satisfied. 

1.5.3  The Cost-Delay Bi-objective Optimization Problem 

For NCM routing problems, the cost of a multicast session is usually considered as a 

minimization objective (see Subsection 1.4.2). In the literature, two types of costs, i.e. 

coding cost of performing coding operations and link cost of employing transmission 

links, have been considered. There are three research streams studying the two costs: (1) 

minimizing the link cost (Lun et al, 2004, 2005, 2006; Bhadra et al, 2006; Zhao et al, 

2009), (2) minimizing the coding cost (Ratnakar et al, 2005; Langberg et al, 2006; 

Fragouli and Soljanin, 2006; Kim et al, 2006, 2007a, 2007b), and (3) simultaneously 

minimizing both link and coding costs (Kim et al, 2007c; 2009).  

When setting up multicast sessions, service providers expect to minimize the amount 

of network resources consumed by the multicast (Benslimane, 2007). In NCM routing, 

coding and link costs will both incur. The total cost (the sum of the coding and link costs) 

involved is more accurate to estimate the consumed resources, compared with coding 

cost or link cost (Kim et al, 2007c). Hence, it is worth studying the minimization of the 

total cost of a multicast. To the best of our knowledge, no research has been conducted 

concerning the total cost. On the other hand, network users feel uncomfortable if the 

transmission delay of an application (e.g. video conferencing) that they request is too 
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large, i.e. the users expect the transmission delays to be minimized. Reducing cost results 

into a cheaper multicast solution for network service providers, while decreasing delay 

improves the service quality for users. The two objectives may require a trade-off 

between the interests of service providers and network users. If so, the trade-off results 

could be investigated by the decision maker and a compromised NCM routing scheme 

can be obtained.  

Therefore, in this thesis, we model the cost-delay bi-objective optimization (CDBO) 

problem for NCM, with one objective to minimize the total cost and the other to 

minimize the maximum transmission delay of the multicast (see Chapter 6 for details). 

This optimization problem is a multiobjective optimization problem, where two or more 

(often conflicting) objective functions are to be optimized simultaneously and the 

resulting trade-offs between them are collected for decision making (see Section 2.1.2).  

1.5.4  Thesis Aims 

The last decade has witnessed a new wave of evolution in communication networks. 

Network coding represents one of the breakthrough principles that are guiding the 

evolution. It has attracted increasing interests from the fields of information theory and 

communication networks. Due to its advantages such as increasing the throughput, 

network coding is an ideal choice for supporting multicast applications. However, to well 

adapt network coding for the existing network infrastructures and communication 

protocols, a number of issues need to be figured out. Among these issues, it is of vital 

importance to investigate three combinatorial optimization problems: (1) the NCRM 

problem, (2) the NCRM problem with delay constraint, and (3) the CDBO problem, 

where first problem has been studied in the literature while the others were for the first 

time formulated and investigated in the thesis (see Chapters 3, 4, 5 and 6). To support 

and facilitate the application of NCM, efforts need to be well spent in the fields of 

computational intelligence and operational research to provide good solutions to the 

above three problems.  

Metaheuristics are a class of computational search approaches, optimizing a given 

problem by iteratively improving a candidate solution via a given measure of quality. 

Although metaheuristics do not guarantee to find an optimal solution, they are usually 



Chapter 1                                                                    Introduction 

 20

the choice to provide good solutions for various NP-hard problems within a limited time 

(Guo et al, 2005). Evolutionary algorithms (EAs) are a class of metaheuristics that mimic 

the evolutionary procedure in nature, namely the survival of the fittest. Due to their 

robustness and effectiveness, EAs have been applied to a wide range of real world 

applications, including routing problems in communication networks (Puchinger and 

Raidl, 2005; Ribeiro et al, 2007). Therefore, this thesis is focused on using EAs to tackle 

the three optimization problems above. 

To make NCM practically applicable, the aim of this research is to study the original 

NCRM problem (see Section 1.5.1), to model the new problems (see Subsections 1.5.2 

and 1.5.3) and to develop effective EAs to solve the three problems concerned. In order 

to achieve this goal, the identified objectives are listed as follows: 

 Investigate the NCRM problem and proposed efficient EAs to address it (see 

Chapter 4); 

 Formulate the delay-constrained NCRM problem and study this problem by Eas 

(see Chapter 5); 

 Formulate the CDBO problem and design appropriate multi-objective EAs to 

investigate the trade-off solutions for the problem (see Chapter 6); 

 Evaluate the performance of the proposed algorithms by comparing it with that 

of the state-of-the-art algorithms on a number of NCM instances (see Chapters 4, 

5, 6). 

1.6  Thesis Outline 

The reminder of the thesis is organized as follows. In Chapter 2, we review some of 

the most well-known EAs in the field of computational intelligence. Their principles and 

applications are summarized. Chapter 3 provides the problem description of the NCRM 

problem and reviews the related work. In Chapter 4, we adapt three EAs for the NCRM 

problem and study their performance. We extend the formulation of the NCRM problem 

by introducing delay constraint in Chapter 5. Several EAs are adapted for the new 

problem and their performance is evaluated. In Chapter 6, we formulate a multiobjective 

optimization version of the delay constrained NCRM problem and adapt a widely used 
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multiobjective EA for it. Finally, we summarize the thesis and discuss the future work in 

Chapter 7. 

1.7  Contributions of the Thesis 

The contributions of the thesis are listed below. 

 

 Three EAs are presented to solve the NCRM problem (see Chapter 4). They are 

population based incremental learning (PBIL), compact genetic algorithm (cGA) 

and path-oriented encoding EA (pEA). In PBIL, an entropy-based restart scheme 

is for the first time proposed which is able to improve the global exploration of 

PBIL. In cGA, three enhancements are for the first time developed based on the 

features of the encoding and the structure of cGA, including the use of all-one 

solution, a probability vector (PV) restart scheme, and a local search operator 

based on domain knowledge. All-one solution can effectively guide the search 

towards feasible regions in the search space. The PV restart scheme can take 

advantage of the previously promising PV to escape local optima. The local 

search operator is based on incoming link removal and can improve the local 

exploitation ability of cGA. A new chromosome representation is for the first 

time proposed and referred to as path-oriented encoding. An EA based on this 

encoding (pEA) is presented, where initialization, crossover, mutation and a 

problem specific local search operator are specially developed. The mutation is 

in a greedy-based manner which helps to create fitter solutions. The local search 

is based on path reconstruction and shows strong local exploitation ability. 

 User experience is for the first time introduced into the original NCRM problem, 

which leads to the formulation of delay constrained NCRM problem. PBIL is 

adapted for the new problem by two schemes. One is a new PV update scheme 

specially designed based on the features of the new problem. This new update 

scheme makes use of a set of historically best solutions. The other is a PV 

mutation from the literature. Combining the two schemes together can improve 

the global exploration and avoid local optima at the same time. 
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 An investigation into the conflicting interests of service providers and network 

users is presented in the context of NCM. A multi-objective optimization 

problem (MOP) is formulated based on the delay constrained NCRM problem 

and called the cost-delay bi-objective optimization (CDBO) problem. Two 

schemes are for the first time developed to adapt elitist nondominated sorting 

genetic algorithm (NSGA-II) for the problem, including an initialization scheme 

and an individual delegate scheme (IDS). The initialization can generate a set of 

promising and diversified individuals, which helps to initiate a diversified 

search at the beginning of the evolution. The IDS considers the diversity in both 

decision and objective spaces and helps to diversify the search during the 

evolution. 
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Chapter 2  Evolutionary Algorithms: An Overview 

 

Evolutionary computation (EC) simulates the process of natural evolution to solve 

optimization problems. Because of its ability of tackling complex and real-world 

optimization problems, EC has gained significant amount of research attention over the 

last five decades and become one of the most attractive areas recently.  

In the field of EC, one of the most important branches is known as evolutionary 

algorithms (EAs). In this chapter, we first introduce EAs and the related optimization 

problems and then review some of the well-known EAs in the literature. It is noted that 

the scope of the thesis is limited to population-based EAs. So, population-based EAs are 

of the main concern in this chapter. 

2.1  Introduction 

EAs are a family of stochastic optimization techniques that are inspired by biological 

evolution, namely selection, recombination and mutation. They maintain a population of 

solutions and optimize a given problem by iteratively improving the population via some 

quality measurements (Mitchell and Taylor, 1999). EAs are capable of searching a large 

solution space without any assumption about the problem being concerned. Although 

they do not guarantee to find an optimal solution, EAs are usually an ideal choice to 

provide good solutions for NP-hard problems within a short computational time.  

For the past three decades, EC has been extensively studied and successfully applied 

to many areas, including telecommunications (Puchinger and Raidl, 2005; Ribeiro et al, 

2007; Zhang et al, 2007; Xu, 2011), image processing (Mitchell and Taylor, 1999), 

industrial manufacturing (Oduguwa et al, 2005), financial market prediction (Michell and 

Taylor), scheduling and timetabling (Burke and Newall, 1999; Mitchell and Taylor, 

1999), and bioinformatics (Pal et al, 2006). 

As a class of practical and robust search algorithms, EAs can be used to address a 

variety of optimization problems. Among them, two types of problems are of practical 

importance in real-world applications, i.e. combinatorial optimization problems (COPs) 
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(Blum and Roli, 2003; Puchinger and Raidl, 2005) and multiobjective optimization 

problems (MOPs) (Mitchell and Taylor, 1999; Zitzler et al, 2004; Deb, 2011). Actually, 

among the three optimization problems concerned in the thesis, the network coding 

resource minimization (NCRM) problem and delay constrained NCRM problem are 

COPs while the cost-delay bi-objective optimization (CDBO) problem is MOP (see 

Section 1.5 and Chapters 3, 5 and 6 for details). 

In the following subsections, we briefly review COPs and MOPs. 

2.1.1  Combinatorial Optimization Problems 

An optimization problem is the problem of finding the best configuration of a set of 

variables (i.e. best solution) to optimize some goal(s) (Blum and Roli, 2003). 

Optimization problems can be classified into two categories: those where solutions are 

encoded with real-valued variables and those where solutions are encoded with discrete 

variables. COPs belong to the second category. Many real world problems are COPs, 

such as scheduling and timetabling problems (Qu et al, 2009) and multicast routing 

problems (Xu, 2011).  

Blum and Roli (2003) give the definition of COP P = (S, f) as follows: 

 

 a set of variables X = (x1, x2,…, xn), where n is the number of variables; 

 variable domains D1, D2,… Dn; 

 constraints among variables; 

 an objective function f, where f : D1 … Dn  R+; 

 

All feasible configurations of the variables are shown in S as: 

 

S = {s = {(x1, v1),…, (xn, vn)}| vi  Di and s satisfies all the constraints}, 

 

where, S and s are called search (or solution) space and candidate solution, respectively. 

Suppose the COP is a minimization problem. To tackle this COP, one needs to find a 
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solution s  S with the minimum objective function value so that f(s) ≤ f(s),  s  S. 

Solution s is called optimal solution of (S, f). 

2.1.2  Multiobjective Optimization Problems 

Real world problems usually involve multiple measures of performance, i.e. so 

called objectives, which should be optimized simultaneously (Fonseca and Fleming, 

1995). In certain cases, objectives may be optimized separately from each other and the 

obtained solution has the optimized value in each objective. However, this is very 

unlikely to happen in real world optimization scenarios. Instead, the objectives are often 

conflicting, i.e. improving one objective may harm the others, resulting into a set of 

trade-off solutions (Fonseca and Fleming, 1995; Zitzler et al, 2004; Deb, 2011). The 

problem of finding such a trade-off is a MOP. MOPs can be found in fields such as 

economics and finance (Mitchell and Taylor, 1999), engineering optimization (Marler 

and Arora, 2004), and Bioinformatics (Pal et al, 2006). 

A general MOP can be formulated as follows (Marler and Arora, 2004; Zitzler et al, 

2004; Deb, 2011; Zhou et al, 2011): 

 

Minimize / Maximize : F(X) = (f1(X),…, fM(X))T 

Subject to : gj(X)  0,  j = 1, …, J; (2.1)

hk(X) = 0,  k = 1, …, K; 

 

where, solution X  Rn consists of n decision variables, i.e. X = (x1, x2,…, xn)
T; M is the 

number of objectives, J is the number of inequality constraints, and K is the number of 

equality constraints. Solutions that satisfy all constraints and variable bounds constitute a 

feasible decision variable space Sdec  Rn. Besides, the M objective functions in MOP 

constitute an objective space Sobj, where Sobj  RM. Any solution X  Sdec corresponds to 

a point Z  RM, denoted by F(X) = Z = (z1,…, zM)T. 

As mentioned above, objectives in MOPs often conflict with each other. Generally, 

there is no such a single solution that can optimize all objectives simultaneously. Rather, 

the trade-off solutions (known as nondominated solutions) are of vital importance to a 
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decision maker. The following introduces the definition of domination between two 

solutions (X1 and X2) and that of Pareto optimality.  

 

Definition 2.1 Solution X1 is said to dominate solution X2 (or X2 is dominated by X1), if 

both of the following conditions hold: 

 

 X1 is no worse than X2 in all objectives. 

 X1 is strictly better than X2 in at least one objective. 

 

Definition 2.2 A feasible solution X of problem (2.1) is called a Pareto optimal solution, 

if there is no X  Sdec such that F(X) dominates F(X). All the Pareto optimal solutions 

constitute the Pareto set (PS) and the image of the PS in the objective space is called the 

Pareto optimal front (PF), where PF = {F(X) | X  PS}. 

 

2.2  EAs for COPs 

This section reviews the principle and applications of a number of widely used EAs 

for addressing COPs, namely genetic algorithms (GAs), memetic algorithms (MAs), and 

estimation of distribution algorithms (EDAs). Meanwhile, these EAs are also employed 

to solve the three optimization problems concerned in the thesis. 

2.2.1  Genetic Algorithms 

GAs is a set of well investigated EAs in the literature. They operate on a population 

of potential solutions encoded to a special optimization problem, according to the theory 

of survival of the fittest (Holland, 1975; Mitchell, 1996; Mitchell and Taylor, 1999). 

Given a population of individuals (also known as chromosomes or solutions), the 

environmental pressure causes natural selection and this leads to a rise in the fitness of 

the population. Given a fitness function, each individual is measured and attached with a 

fitness based on which selection operation is implemented. In selection, the key idea is 

that better individuals are more likely to be selected to form the next generation. After 
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selection, crossover and mutation operations reproduce a partially or completely new 

population. Crossover, the regarded major evolutionary operator in GA, operates on two 

or more individuals to create at least one offspring which inherits the characteristics of its 

parents. Mutation is used to slightly change each selected individual, primarily aiming at 

avoiding pre-maturity. The evolution, i.e. selection, crossover and mutation, repeats in 

each generation and terminates when some stopping condition is met, e.g. GA stops after 

a predefined number of generations or the population converges to the same / similar 

individuals. 

GAs have been applied to solve many real world COPs, such as routing and network 

design problems, travelling salesman problems, and supply chain management problems. 

More applications of GAs can be found in Mitchell and Taylor (1999), Reeves (2003), 

and Ribeiro et al (2007). Besides, GAs is also used to address the NCRM and CDBO 

problems (see Chapter 4 and 6). 

 

2.2.1.1  Drawbacks 

Making no assumptions to the problem being optimized, GAs are well adaptive and 

robust. However, GAs usually suffer from slow convergence and getting stuck at local 

optima (Mitchell, 1996). This is because the performance of GAs depends on the 

mechanism of balancing two conflicting objectives: global exploration and local 

exploitation (Mitchell, 1996; Ei-Mihoub et al, 2006). The former is the ability of 

exploring the entire search space and the latter the ability of exploiting the 

neighbourhood regions of the best solutions found so far. Global exploration requires a 

diversified population, undoubtedly restricting the local exploitation ability. On the other 

hand, intensifying the search around a small area in search space has to sacrifice the level 

of diversity. In practice, GAs cannot always well balance the exploration and exploitation, 

thus leading to slow convergence or being stuck at local optima. There are a number of 

factors that may cause the above problem, such as population size, selection pressure, 

crossover and mutation rates, etc (Mitchell, 1996). For example, if the population size is 

too small, the diversity of the population may be lost rapidly, leading to the prematurity 

and GAs getting stuck at local optima; if the population size is too large, the convergence 

becomes quite slow and a great amount of computational time may be consumed. 
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2.2.1.2  Improvements 

We hereafter refer to GAs with basic components as standard GAs. To overcome the 

problem arisen such as slow convergence and prematurity and enhance the optimization 

performance, a number of techniques have been introduced into standard GAs. We 

review some of the well-known techniques, including elitism, adaptive parameters 

control, multi-population, and hybridization. When designing GA for solving a COP, one 

may use some/all of these techniques to improve the performance with respect to the 

problem feature.  

 

 Elitism. In GAs, the best individuals in the population are important to guide 

the search during the evolution. However, these individuals could be lost if they 

are not chosen for producing the offspring or if they are destroyed in 

recombination and mutation operations (Mitchell, 1996). De Jong (1975) first 

introduced the term ‘elitism’. The essence of elitism is that GA retains the best 

individual at each generation. The following discusses several methods to carry 

out elitism. One is to replace the worst individual of the current population with 

the best one of the parent population. Another is that the best individual of the 

current population is replaced with the best one of the parent population if the 

former is worse than the latter. Besides, elitism can be integrated into selection 

schemes. In standard GAs, all offspring individuals obtained from crossover and 

mutation form the next generation regardless of whether they are really ‘good’. 

In elitist selection schemes, the offspring has to compete with the parents to be 

included in the new generation, showing the principle of the survival of the 

fittest (Thierens, 1998). GAs with elitism have been adopted for solving a 

number of COPs, including robust and nonparametric multivariate analysis 

(Chakraborty and Chaudhuri, 2003), printed circuit board inspection (Mashohor 

et al, 2005), assignment problem with imprecise goal (Majumdar and Bhunia, 

2007), resource allocation in OFDM systems (Tang et al, 2008), dynamic 

optimization problem (Yang, 2008; Cheng and Yang, 2010a), routing scheme for 

wireless sensor networks (Singh and Sharma, 2012). It has been found that the 
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performance of GAs can be dramatically improved by elitism. However, elitism 

schemes should be carefully designed to avoid premature convergence. 

 Adaptive Parameters Control. In GAs, controlling parameters have a great 

impact on the optimization performance. For example, the crossover and 

mutation probabilities (pc and pm), to a certain extent, determine the exploration 

and exploitation characteristics of GAs (Srinivas and Patnaik, 1994; Mitchell, 

1996). Standard GAs use fixed parameters during the evolution. However, it is 

difficult to find an optimal parameter setting for an unknown problem 

(Grefenstette, 1986; Schaffer et al, 1989; Eiben et al, 1999). This motivates the 

idea of adaptively adjusting the controlling parameters of GA at each generation 

according to the population information, which maintains population diversity 

and sustains the convergence capacity at the same time. Srinivas and Patnaik 

(1994) investigated the dynamic adjustment of crossover and mutation 

probabilities. In their scheme, solutions with higher fitness values are assigned 

smaller pc and pm, which helps to preserve the good genes in the population; and 

those with lower fitness values are assigned larger pc and pm, which avoids GAs 

getting stuck at local optima. Marsili Libelli and Alba (2000) proposed an 

adaptive mutation probability scheme: (1) for high fitness solutions, the least 

significant bits are more likely to mutate, and (2) for low fitness solutions, they 

have an increased pm along with the evolution. An adaptive GA was proposed 

for solving the financial knapsack problem (Szeto and Lo, 2004). Instead of 

tuning crossover and mutation probabilities, this GA adaptively controls the 

proportion of preserved (survived) individuals at each generation, where 

preserved individuals are individuals with fitness values larger than a dynamic 

threshold. Vellew (2008) investigated a dynamic population sizing scheme for 

GA. The basic idea is to increase the population size when there are high fitness 

individuals and abundant resources and to decrease the size otherwise. More 

adaptive schemes and applications of GAs can be found in Lobo and Lima 

(2005), Huang et al (2005), Law and Szeto (2007), Liu and Liu (2009) and 

Zhang et al (2010c). 
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 Multi-population (Island models). For GAs, a diversified population is 

necessary to avoid premature convergence and getting stuck at local optima. 

However, it is difficult for GAs to maintain the diversity by using a single 

population (Smith et al, 1993). This leads to the premature convergence, which 

may significantly deteriorate the performance of GAs. To alleviate the problems 

that single population GAs encounter, multi-population GAs have been studied 

(also known as island GAs) (Whitley et al, 1998). Multi-population GAs 

maintain a number of subpopulations which evolve independently and exchange 

their individuals periodically. The process of exchanging individuals among 

subpopulations is referred to as migration. There are mainly two parameters 

responsible for controlling the migration, i.e. migration interval and migration 

size. The former parameter is the number of generations between a migration 

and the latter the number (or proportion) of individuals for migration (Whitley et 

al, 1998). Compared to single population structure, multi-population is able to 

maintain the diversification and explore different areas of the search space at the 

same time. Meanwhile, subpopulations cooperate together to efficiently guide 

the search by sharing information via migration. Hence, multi-population GAs 

have often been reported to gain better optimization results than single 

population GAs. The following lists some of the applications of 

multi-population GAs: graph colouring (Kokosiński et al, 2005), feature 

selection (Zhu et al, 2006), the 0/1 knapsack problem (Hong et al, 2007), 

shortest path routing problems (Cheng and Yang, 2010b), and the job shop 

scheduling problem (Huang et al, 2010). 

 Hybridization. As reviewed above, standard GAs are not good at handling the 

exploration and the exploitation at the same time, thus often leading to a 

weakened optimization performance. This can be alleviated by combining GAs 

and some local search techniques (maybe with domain-specific knowledge 

incorporated). These hybridized approaches are called hybrid GAs (Whitley, 

1995; Preux and Talbi, 1999; De Jong, 2005) and also know as a branch of 

memetic algorithms (see Subsection 2.2.2) (Moscato et al, 2004). On the one 

hand, a significant strength that GAs own is the excellent global exploration 
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ability due to the population-based structure. Nevertheless, it is difficult for GAs 

to efficiently intensify the search within a small region of the search space 

where global optimum may reside (Preux and Talbi, 1999; De Jong, 2005). On 

the other hand, local search methods (such as, simulated annealing and tabu 

search) are effective to exploit the neighboring areas of a given solution (Reeves, 

1995; Preux and Talbi, 1999). Integrating GAs with local search methods can 

make full use of the advantages of the both, i.e. GAs are responsible for 

maintaining the diversity and guiding the search to the most likely regions 

where optima are located; while local search methods carry out powerful local 

exploitation within these regions. Hence, both exploration and exploitation can 

be warranted so that an improved optimization performance is achieved. Thanks 

to their adaptability and robustness, hybrid GAs have been applied to many 

COPs, including timetabling (Burke et al, 1995), job shop scheduling (Preux 

and Talbi, 1999; Cai et al, 2011), feature selection (Oh et al, 2004), generalized 

assignment problem (Feltl and Raidl, 2004), travelling salesman problem 

(Whitley et al, 2010), and image processing (Abdullah et al, 2012). A detailed 

review of hybrid GAs can be found in Ei-Miboub et al (2006). 

2.2.2  Memetic Algorithms 

As introduced in late 1980s, memetic algorithms (MAs) denote a family of EAs that 

hybridize a broad class of metaheuristics, i.e. EAs with local search techniques 

embedded (Moscato, 1989; Moscato et al, 2004; Moscato and Cotta, 2007; Krasnogor, 

2009). The essence of MAs is that EAs perform exploration and efficiently guide local 

search techniques to exploit promising areas of the search space, making use of available 

domain knowledge about the given problem. The idea of MAs partially inspires the work 

reported in Chapter 4. 

MAs manipulate a population of individuals and iteratively improve the quality of 

the population by using variation operators such as combination and local search. Hao 

(2011) introduced a general template of MA, as shown in Figure 2.1. The following 

explains some of the important steps in the template. 
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 Population initialization. In standard EAs, the initial population is usually 

generated by randomly sampling the search space. Although it is easy to 

implement, the samples may not be of good quality, which could lead to poor 

optimization results. Hence, to produce high-quality and diversified population, 

MAs typically use more advanced initialization techniques, such as constructive 

heuristics or local improving method (Surry and Radcliffe, 1996; Moscato and 

Cotta, 2007). 

 

Input: |P| (size of the population P) 

Output: s (the best solution found) 

1.  P = PopInitialization(|P|);  // generate an initial population 

2.  PopEvaluation(P);  // fitness evaluation for each individual 

3.  s = BestInd(P); f = f(s);  // record the best individual and its fitness value 

4.  while termination condition is not met do 

5.    (p1…pk) = ParentSelection(P);  // k  2, at least two individuals are selected 

6.    s = Recombination(p1…pk);  // one or more offspring is generated 

7.    snew = OffspringImprovement(s);  // improve s by local search 

8.    P = PopUpdate(snew, P);  // update the population 

9.    (s, f) = BestIndUpdate(s, f,P);  // update the best individual 

Figure 2. 1  A general template of memetic algorithm (Hao, 2011) 

 
 Parent selection. This operator selects individuals from the population that 

survive for the reproduction of the next generation. In essence, high fitness 

individuals are more likely to be chosen, which is in consistence with the 

survival of the fittest. In GAs, roulette-wheel and tournament selections are two 

well-known selection schemes (Mitchell, 1996). Moreover, diversity should be 

considered in selection. This is important for balancing exploration and 

exploitation (Moscato et al, 2004; Hao, 2011). 

 Recombination. Recombination is the process of blending two or more existing 

individuals to produce promising offspring individuals. For example, crossover 

in GA enables the cooperation among different individuals to discover new areas 
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in the search space. In MAs, the recombination is more general and aims to 

capture the semantics of the problem concerned to make sure good properties 

are passed from parents to offspring (Hao, 2011). In addition, MAs also consider 

diversifying offspring during the process of recombination. For example, Merz 

and Freisleben (2001) used  the distance preserving crossover to generate an 

offspring with the same distance to both parents. Moreover, problem-specific 

recombination operators are welcome to effectively drive the search exploring 

promising regions of the search space (Krasnogor, 2009). 

 Offspring improvement. This operator improves the quality of an offspring by 

employing a local search procedure. To be specific, such procedure starts with a 

given offspring and iteratively replaces the incumbent solution with another one 

taken from its neighbourhood, where the replacement criteria are based on the 

rule of the local search adopted (e.g. when hill-climbing is used, the incumbent 

solution is replaced by one of its neighbours only if the fitness value of the 

current solution is worse than that of the neighbour). This process continues 

until the stopping condition is met (Hao, 2011). Compared to recombination 

which mainly performs global exploration, local search is responsible for local 

exploitation. When designing local search procedures, domain knowledge about 

the underlying problem should be taken into account to make the search more 

efficient (Krasnogor, 2009). 

 Population update. The population management scheme decides whether an 

offspring should be allowed to enter the population and if so which individual to 

replace. This scheme helps to maintain a population with a constant size 

(Moscato et al, 2004; Moscato and Cotta, 2007). One of the updating criteria 

considers the quality issue, e.g. the offspring replace the individual with the 

worst fitness in the population if the former has a lower fitness value than the 

latter; another criterion is concerned with the diversity issue, i.e. the offspring 

replace a similar individual according to some distance measurements. One is 

encouraged to consider these criteria at the same time to gain a better 

performance (Hao, 2011). Population update schemes are important to keep the 

diversification and avoid premature convergence. 
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 Termination conditions. There are a number of common stopping conditions, 

such as a predefined number of generations or evaluations, a predefined number 

of consecutive generations without improvement of the best-so-far solution, the 

emergence of a solution with acceptable quality, or a lower-bounded threshold 

for the population diversity (Hao, 2011). 

 

Making full use of the advantages of EAs and local search metaheuristics (with 

domain knowledge exploited), MAs have been recognized as a powerful tool in EC and 

applied in many fields as diverse as operational research and management, electronics 

and engineering, machine learning and robotics, medicine and bioinformatics, economics, 

and oceanography. Detailed survey on MAs can be found in Moscato et al (2004), 

Moscato and Cotta (2007), Moscato and Cotta (2010), and Berretta et al (2012). Besides, 

two EAs incorporating local search techniques are also developed to solve the NCRM 

problem (see Chapter 4). 

 

2.2.3  Estimation of Distribution Algorithms 

Estimation of distribution algorithms (EDAs), also known as probabilistic model 

building genetic algorithms (PMBGAs), are often considered as an outgrowth of GAs 

(Baluja, 1994; Harik et al, 1999; Pelikan et al, 2002). In GAs, a population of candidate 

solutions is maintained and operated by crossover and mutation to drive the evolution 

process. However, EDAs do not manipulate such a population. Instead, they maintain a 

probability distribution which is extracted from a set of selected promising individuals 

from the previous generation. The probability distribution, sometimes called probability 

vector, in turn, is sampled to create a set of new and fitter individuals (Larranaga and 

Lozano, 2002). EDAs have a lot of advantages compared to traditional GAs. The most 

attractive ones are: (1) the absence of multiple controlling parameters (e.g. crossover and 

mutation probabilities), and (2) the expressiveness and transparency of the probabilistic 

model that guides the search process (Armananzas et al, 2008). In the thesis, we develop 

a number of EDAs to solve the optimization problem concerned (see Chapter 4 and 5). 

The basic procedure of EDAs is shown in Fig. 2.2 (Hauschild and Pelikan, 2011). 
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 As outlined in Figure 2.2, EDAs start with an initial population of solutions which 

are randomly sampled from the search space. The population is then evaluated and each 

individual is assigned a fitness value. After that, a subset of the most promising solutions 

is selected and their statistical information is extracted to construct a probabilistic model 

PV which estimates the probability distribution of the selected solutions. By sampling the 

probabilistic model, a set of new solutions are generated and then used to update the old 

population. The above process continues until some termination condition is met (e.g. a 

predefined number of generations).  

 

1.  Set generation counter t = 0; 

2.  Generate initial population S(t); 

3.  while termination condition is not met do 

4.    Select a set of promising solutions s(t) from S(t); 

5.    Build the probabilistic model PV(t) from the s(t); 

6.    Sample PV(t) to generate new candidate solutions O(t); 

7.    Incoporate O(t) into S(t); 

8.    Set t = t + 1; 

9.  endwhile 

Figure 2. 2  The basic procedure of EDAs (Hauschild and Pelikan, 2011) 

 

As being simple and effective, EDAs have been thoroughly investigated and 

successfully applied to address many COPs, such as nurse rostering (Aickelin et al, 2007; 

Aickelin and Li, 2007), job shop scheduling problem (Li and Jiang, 2009; Zhang and Li, 

2011), hardware design (Gallagher et al, 2004), dynamic optimization problems (Yang 

and Yao, 2005; 2008), and so on. More discussions and applications can be found in 

Hauschild and Pelikan (2011) and Santana (2011). In addition, the thesis also adopts 

EDAs to tackle NCRM and delay-constrained NCRM problems (see Chapter 4 and 5). 

The following reviews some of the well-known EDAs, including population based 

incremental learning (PBIL), compact genetic algorithm (cGA), univariate marginal 

distribution algorithm (UMDA), and quantum-inspired evolutionary algorithm (QEA).  
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2.2.3.1  Population Based Incremental Learning (PBIL) 

Population based incremental learning (PBIL), a combination of evolutionary 

algorithm and competitive learning, was first introduced by Baluja (1994). Without using 

crossover and mutation, PBIL retains the stochastic search nature of GA by simply 

maintaining a single real-valued probability vector which generates promising solutions 

with high probabilities when sampled.  

The procedure of the standard PBIL with elitism is shown in Figure 2.3 (Baluja, 

1994). The probability vector at generation t is denoted by PV(t) = {p1
t, p2

t,…, pL
t}, where 

L is the binary-encoding length. The value on each locus of PV(t), i.e. pi
t, i = 1, 2, …, L, is 

initialized as 0.5. At each generation, PV(t) is sampled to form a sampling set S(t) of N 

solutions. Each solution in S(t) is then evaluated and assigned a fitness value using a 

problem-specific fitness function. After fitness evaluation, the best so far solution B(t) = 

{b1
t, b2

t,…, bL
t} is selected and used to update PV(t) as follows: 

 

pi
t = (1.0 − )  pi

t+   bi
t,   i = 1, 2, …, L             (2.2) 

 

where  is the learning rate specifying the distance PV(t) is shifted at each generation.  

 

1.   Initialization 

2.     Set t = 0; 

3.     For i = 1 to L do set pi
t = 0.5; 

4.     Generate a sampling set S(t) of N solutions from PV(t); 

5.   Repeat 

6.     Set t = t + 1; 

7.     Evaluate the samples in S(t-1); 

8.     Find the best solution B(t) from B(t-1)S(t-1); 

9.     Update PV(t) by Equation (2.2); 

10.    Mutate PV(t); 

11.    Generate a set S(t) of N samples by PV(t); 

12.  until termination condition is met 

Figure 2. 3  The basic procedure of PBIL (Baluja, 1994) 
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After learning PV(t) towards the best solution, a bit-wise mutation operation may be 

adopted to maintain diversity and avoid local optima. The mutation operation used by 

Baluja (1994) is to introduce a small amount of probability perturbation on each locus in 

PV(t) if mutation criteria is met. After mutation, a new sampling set is generated by the 

new PV(t). Steps 6-11 are repeated unless the termination condition is met. With the 

evolution progressing, the value on each locus is shifted to 0.0 or 1.0 and PV(t) gradually 

converges to an explicit solution. 

The last decade has witnessed a significant growth in the number of applications of 

PBILs. The following lists some: dynamic optimization problems (Yang and Yao, 2005, 

2008), electromagnetics optimization (Yang et al, 2007), iterated prisoners dilemma 

(Gosling et al, 2005), job shop scheduling problem (Kern, 2006), vehicle routing 

problem (Kern, 2006), travelling salesman problem (Kern, 2006; Ventresca and Tizhoosh, 

2008), power system controller design (Sheetekela and Folly, 2010), profit-maximizing 

strategies in the payment card market (Alexandrova-Kabadjova et al, 2011), network 

routing in telecommunications (Khezri et al, 2011; Xing and Qu, 2011a, 2011b).  

 
2.2.3.2  Compact Genetic Algorithm (cGA) 

As one of estimation of distribution algorithms (EDAs), the compact genetic 

algorithm (cGA) was first introduced by Harik et al (1999). Whereas standard GA 

maintains a population of solutions, cGA simply employs a probability vector (PV) while 

still retaining the behaviour (Harik et al, 1999) of the standard GA with a uniform 

crossover. Contrary to the standard GA, cGA was found much faster, and requires far 

less memory so that significant amounts of computational time and memory are saved. 

Hence, cGA has drawn an increasing research attention and been successfully applied to 

a number of COPs including evolvable hardware implementation (Aporntewan and 

Chongstitvatana, 2001; Gallagher et al, 2004), multi-FPGA partitioning (Hidalgo et al, 

2001), image recognition (Silva et al, 2008), TSK-type fuzzy model (Lin et al, 2010), 

telecommunications (Xing and Qu, 2012) and so on. 

For cGA, at each generation, only two solutions are sampled from the probability 

vector PV and a single tournament is performed between them, i.e. a winner and a loser 
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are identified (Harik et al, 1999). The PV is then adjusted and shifted towards the winner. 

With cGA evolving, the PV converges to an explicit solution. Let the aforementioned PV 

at generation t denoted by PV(t) = {p1
t,…,pL

t}, where L is the encoding length. The value 

at each locus of PV(t), i.e. pi
t, i = 1,…,L, is initialized as 0.5 so that initially all solutions 

in the search space appear with the same probability. Let winner(i) and loser(i), i = 

1,…,L, be the i-th bit of the winner and the loser, respectively, and 1/N be the increment 

of the probability of the winning alleles after each competition, where N is an integer. 

Note that although cGA produces two solutions at each generation, it can mimic the 

convergence behaviour of a standard GA with a population size N (Harik et al, 1999). 

The basic procedure of the cGA is presented in Figure 2.4. 

 

 

1.   Initialization 

2.     Set t = 0; 

3.     for i = 1 to L do set pi
t = 0.5; 

4.   Repeat 

5.     Set t = t + 1; 

      // Generate two individuals from the PV 

6.     Xa = generate (PV(t)); Xb = generate (PV(t)); 

      // Let Xa and Xb compete 

7.     winner, loser = compete (Xa, Xb); 

      // The PV learns towards the winner 

8.     for i = 1 to L do 

9.       if winner(i) <> loser(i) then 

10.        if winner(i) == 1 then set pi
t = pi

t + 1/N; 

11.        else set pi
t = pi

t – 1/N; 

11.  until the PV has converged 

12.  Output the converged PV as the final solution 

Figure 2. 4  The basic procedure of cGA (Harik et al, 1999) 

 
2.2.3.3  Univariate Marginal Distribution Algorithm (UMDA) 

Mühlenbein and Paaß (1996) invented the univariate marginal distribution algorithm 

(UMDA). Like PBIL, UMDA also maintains a probability vector PV. At each generation, 
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UMDA selects a set of promising solutions from a population of samples and computes 

the frequencies of values on each position in these solutions. These frequencies are then 

used to generate new solutions which replace the old ones. The above process is repeated 

until the termination condition is met. The difference between PBIL and UMDA mainly 

lies in the way to update PV. Let PV(t) and B(t) be the PV and the best sample at 

generation t, respectively. In PBIL, PV(t) is updated by learning PV(t − 1) towards B(t) 

while in UMDA, PV(t) is exactly determined by the statistics extracted from the selected 

promising solutions at generation t (Mühlenbein and Paaß, 1996; Pelikan et al, 2002). 

UMDAs have been applied to a number of COPs, such as dynamic optimization 

problems (Ghosh and Mühlenbein, 2004; Yang, 2005; Wu et al, 2010), communications 

systems (Bashir et al, 2010), and multi-processor scheduling (Hashemi and Meybodi, 

2011). 

 

2.2.3.4  Quantum-Inspired Evolutionary Algorithm (QEA) 

By combining quantum computing and evolutionary algorithm, Han and Kim (2002) 

put forward the first quantum-inspired evolutionary algorithm (QEA). QEA maintains a 

population of Quantum-bit encoded individuals, each representing a linear superposition 

of all states in search space probabilistically, and adopts quantum gates, e.g. quantum 

rotation gate (Han and Kim, 2002) and quantum NOT gate (Xing et al, 2009a, 2009b, 

2010), to change the probabilistic distribution of each individual in such a way that 

promising solutions have increasingly more chance to appear. As one of estimation of 

distribution algorithms (EDAs), QEA maintains and incrementally modifies multiple 

probabilistic models (Platel et al, 2008). QEA is characterized by maintaining a 

diversified population due to the Quantum-bit representation, being able to explore the 

search space with a smaller number of individuals and exploiting the search space for a 

global solution within a short computational time (Han and Kim, 2004). Hence, since its 

birth, QEA has drawn extensive research attention and been illustrated to be quite 

effective for solving complex optimization problems such as numerical and knapsack 

problems (Han and Kim, 2002; 2004; Wang et al, 2005), multi-objective flow shop 

scheduling problem (Li and Wang, 2007), unit commitment problem (Lau et al, 2009), 

parameter estimation of chaotic systems (Wang and Li, 2010), QoS multicast routing 
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problem in optical networks (Xing et al, 2009a; 2009b), network coding resource 

optimization problem (Xing et al, 2010; Ji and Xing, 2011) and so on. 

 
2.2.3.5  EDAs for More Complicated Problems 

The four EDAs above perform well for problems with no or light interactions among 

variables. However, they may not achieve descent performance when used to tackle 

problems where strong interdependencies are found among variables (Pelikan et al, 

2002). Hence, a number of advanced EDAs have been developed for addressing more 

complicated COPs, taking into consideration the interactions among variables. The 

following lists some of them: the mutual information maximizing input clustering 

(MIMIC) algorithm (De Bonet et al, 1997), the bivariate marginal distribution algorithm 

(BMDA) (Pelikan and Mühlenbein, 1999), the extended compact genetic algorithm 

(ECGA) (Harik, 1999), the factorized distribution algorithm (FDA) (Mühlenbein et al, 

1999), and the Bayesian optimization algorithm (BOA) (Pelikan et al, 2000). Detailed 

survey can be found in Pelikan et al (2002) and Hauschild and Pelikan (2011). 

2.2.4  Other Algorithms 

Evolutionary strategy (ES) and differential evolution (DE) are two branches of EC 

algorithms which typically aim at continuous optimization problems (Bäck et al, 1991; 

Storn and Price, 1997). However, they have also been adapted for COPs, e.g. survivable 

network design (Nissen and Gold, 2008), circle packing problem (Shi et al, 2010), 

travelling salesman problem (Prado et al, 2010) and graph coloring (Fister and Brest, 

2011). In addition to EAs, there are two swarm intelligence methods that are commonly 

used in solving COPs, i.e. particle swarm optimization (PSO) algorithms and ant colony 

optimization (ACO) algorithms (Kennedy and Eberhart, 1995; Dorigo et al, 1996). 

Detailed descriptions and applications about PSOs and ACOs can be found in Poli (2008), 

Dorigo and Blum (2005), and Benyahia (2012). Guided local search is a metaheuristic 

(Voudouris and Tsang, 2003; Voudouris et al, 2010) that has been successfully applied to 

constrained optimization problems, e.g. the travelling salesman problem (Voudouris and 

Tsang, 1999), quadratic assignment problem (Mills et al, 2003), and workforce and 

empowerment scheduling problems (Tsang and Voudouris, 1997; Alsheddy, 2011).  
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2.3  EAs for MOPs 

As reviewed in Subsection 2.1.2, the nature of the multiobjective optimization 

problems (MOPs) involves optimizing a number of objectives (that often conflict with 

each other) simultaneously. One may not find a single solution that is optimized in every 

objective, e.g. the improvement in one objective may lead to the deterioration in other 

objectives. To address a given MOP is to find a set of pareto-optimal solutions, known as 

Pareto set (PS), where the image of the PS in the objective space is called Pareto-optimal 

front (PF) (see definitions in Section 2.1.2). There are two goals when approximating the 

PF, namely, minimizing the distance between the set of obtained nondominated solutions 

and the PS, and maximizing the diversity of these obtained solutions in the set such that 

they can be evenly distributed along the PF (Zitzler et al, 2004; Deb, 2011). 

EAs have been recognized as one of the ideal choices for solving MOPs (Fonseca 

and Fleming, 1995; Zitzler et al, 2004; Deb, 2011). Due to their population-based 

structure, EAs can search for multiple nondominated solutions in parallel and obtain a 

trade-off among objectives in a single run. EAs for tackling MOPs are referred to as 

multiobjective evolutionary algorithms (MOEAs) (Zhou et al, 2011). Chapter 6 develops 

a MOEA to study the CDBO problem. 

This section first reviews some traditional MOEAs and then reviews several types of 

state-of-the-art MOEAs, including decomposition-based MOEAs, Indicator-based 

MOEAs, Preference-based MOEAs, Hybrid MOEAs and coevolution-based MOEAs. 

2.3.1  Traditional MOEAs 

The very first MOEA was introduced by Schaffer (1985), namely vector evaluation 

genetic algorithm (VEGA). After that, increasingly more efforts were spent in addressing 

MOPs and a number of traditional MOEAs were proposed a decade ago, for example, 

elitist nondominated sorting GA (NSGA-II) (Deb et al, 2002), improved strength Pareto 

EA (SPEA2) (Zitzler et al, 2001), Pareto archived evolution strategy (PAES) (Knowles 

and Corne, 2000a), Pareto envelope-based selection algorithm (PESA) (Corne et al, 
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2000), niched Pareto GA 2 (NPGA2) (Erickson et al, 2001) and micro-GA (Coello 

Coello and Toscano Pulido, 2001). Among them, some are still active and widely used 

nowadays, such as NSGA-II and SPEA2. The following briefly reviews NSGA-II and 

SPEA2. 

 Elitist nondominated sorting GA (NSGA-II). NSGA-II is an improved 

version of NSGA which was proposed by Srinivas and Deb in 1995. Compared 

with its predecessor, NSGA-II is featured with three significant advantages: (1) 

a fast nondominated sorting approach that reduces the computational complexity 

from O(MN3) to O(MN2), where M is the number of objectives and N is the 

population size; (2) an elitism approach that speeds up the search and prevents 

the loss of the promising solutions already obtained; and (3) a parameter-less 

diversity-preservation scheme that eliminates the difficulty of setting an 

appropriate value for the sharing parameter, which is responsible for keeping the 

population diversified for NSGA. Since its introduction in 2002, NSGA-II and 

its variants have been widely and successfully applied to various areas, such as 

function optimization (Deb et al, 2002; Deb, 2008), engineering optimization 

(Coelho and Alotto, 2008; Kannan et al, 2009; Wang et al, 2009b), management 

(Kishor et al, 2007; Serrano et al, 2007), economic load dispatch (Xu et al, 

2011), vehicle routing problem (Castro-Gutierrez et al, 2011; Jemai et al, 2012), 

and medical treatment (Heris and Khaloozadeh, 2011). Besides, NSGA-II is 

adapted for the CDBO problem in Chapter 6. 

 Improved strength Pareto EA (SPEA2). This algorithm was proposed by 

Zitzler et al (2001). Compared with its predecessor, SPEA2 have three 

significant improvements, namely a fine-grained fitness assignment strategy, a 

density estimation technique and an enhanced archive truncation method. In the 

new fitness assignment scheme, for each individual, the number of individuals 

that it dominates and the number of individuals that dominates it are taken into 

consideration at the same time. This helps to incorporate more Pareto 

dominance information to effectively guide the search towards Pareto optimal 

front (Zitzler et al, 2001, 2004). The density estimation technique is an 

adaptation of the k-th nearest neighbour method, where the density around a 
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given point is a decreasing function of the distance to the k-th nearest point 

(Silverman, 1986). In addition, the enhanced archive truncation method 

performs well on avoiding boundary solutions being eliminated from the archive. 

Like NSGA-II, SPEA2 has been recognized as one of the versatile MOEAs and 

used in many MOPs, including multiobjective knapsack problem (Zitzler et al, 

2001), multi-mission waveform design (Amuso and Enslin, 2007), broadcast 

optimization in MANET (Conzález et al, 2007), power systems (Khaleghi et al, 

2009; Inglis et al, 2010), economic load dispatch (Xu et al, 2011), software 

architecture design (Li et al, 2011). This algorithm is also adapted for the CDBO 

problem (see Chapter 6). 

2.3.2  Decomposition-based MOEAs 

In 2007, a MOEA based on decomposition (MOEA/D) was proposed for the first 

time (Zhang and Li, 2007). Different from traditional MOEAs which are mainly based on 

Pareto dominance, this algorithm is based on weighted aggregation approaches, where a 

MOP is decomposed into a number of scalar optimization subproblems. In the course of 

evolution, all subproblems are optimized in parallel and each of them is addressed by 

making use of the information obtained from its neighboring subproblems. The definition 

of the neighbourhood relations among these subproblems is based on the distances 

between their aggregation weight vectors. In MOEA/D, each solution in the population is 

associated with a subproblem, where the solution is usually the best ever found for the 

corresponding subproblem. At each generation, MOEA/D generates a new solution for 

each subproblem via the recombination of a number of solutions from its neighboring 

subproblems. The current solution of the subproblem is replaced with the new one if the 

latter is better. Moreover, the new solution is compared with those of the neighboring 

subproblems and replacement is made if the new one is better. Compared with MOEAs 

without decomposition, such as NSGA-II and SPEA2, MOEA\D is featured with a 

significant advantage, namely scalar objective local search can be easily applied in each 

subproblem (Zhang and Li, 2007; Zhou et al, 2011). 

Since Zhang and Li’s seminal work, MOEAs with decomposition have received 

increasing research interests and already become state-of-the-art MOEAs. The following 
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reviews some variants and applications of MOEA/D. Li and Landa-Silva (2008, 2011) 

investigated the hybridization of MOEA/D and simulated annealing for addressing 

multiobjective combinatorial optimization problems. In their work, weight vectors 

(namely search directions) are adaptively adjusted to diversify the Pareto set (PS) during 

the evolution; novel competition schemes and external population updating schemes are 

introduced to ensure more effective search. Li and Zhang (2009) proposed a modified 

MOEA/D for continuous multiobjective optimization, where differential evolution and 

polynomial mutation are incorporated for balancing global exploration and local 

exploitation. Another MOEA/D with a dynamic computational resource allocation 

scheme was investigated (Zhang et al, 2009). This variant was reported to improve the 

algorithm performance with reduced overall cost. A MOEA/D with probabilistic 

representation based on pheromone trains was developed for the multiobjective travelling 

salesman problem, where high-quality solutions are easily generated and the evolutionary 

search can well approximate the Pareto front (PF) (Li et al, 2010). Zhang et al (2010b) 

hybridized MOEA/D with efficient global optimization algorithm, called MOEA/D-EGO, 

which was quite effective in solving expensive multiobjective optimization. Nebro and 

Durillo (2010) proposed a parallel version of MOEA/D which was run on modern 

multi-core processors in order to significantly reduce computational time. Ishibuchi et al 

(2010) presented an idea of simultaneously using different types of scalarizing functions 

to handle the problem where appropriate scalarizing functions are difficult to choose for 

different MOP. A hybridization of MOEA/D and particle swarm optimization was 

developed to solve continuous and unconstrained MOPs (Zapotecas Martínez and Coello 

Coello, 2011). Zhao et al (2012) proposed another MOEA/D that is based on the use of 

ensemble of different neighbourhood sizes with online self-adaptation. MOEA/Ds have 

been successfully applied in a number of real world applications, such as flowshop 

scheduling problem (Chang et al, 2008), portfolio management (Zhang et al, 2010a), 

multiobjective travelling salesman problem (Cheng et al, 2011; Shim et al, 2012), 

routing and deployment problems in sensor networks (Konstantinidis et al, 2010; 

Konstantinidis and Yang, 2012), microwave components synthesis (Bo et al, 2012) and 

antenna design (Carvalho et al, 2012). More information on MOEA/D can be found at 
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http://dces.essex.ac.uk/staff/zhang/webofmoead.htm which is maintained by Prof. Qingfu 

Zhang from University of Essex. 

2.3.3  Indicator-based MOEAs 

Indicator-based MOEAs is another group of state-of-the-art MOEAs. As we know, 

performance indicators (such as generational distance and hypervolume) are premarily 

used to measure the quality of an approximation of the PF in order to evaluate the 

performance of some MOEAs. However, in indicator-based MOEAs, those indicators are 

calculated at each generation and incorporated in evolutionary process such as selection 

in order to guide the search (Zitzler and Künzli, 2004; Zhou et al, 2011). 

Zitzler and Künzli (2004) initiated the research on how to incorporate the preference 

information of the decision maker into the multiobjective search process. The authors 

proposed a general indicator-based MOEA, which is referred to as IBEA. This algorithm 

can be easily adapted to arbitrary preference information and does not require diversity 

preservation mechanism such as fitness sharing. IBEA was reported to gain better overall 

performance, compared with NSGA-II and SPEA2. Basseur and Zitzler (2006) focused 

on addressing MOPs with uncertainties and proposed a general indicator model that is 

suited to handle uncertainty. In their model, each solution is associated with a probability 

over the objective space. Meanwhile, a є-indicator based model was also presented to 

improve the performance in environmental selection. In 2007, a general approach was 

proposed to incorporate objective reduction techniques into hypervolume based MOEAs 

(Brockhoff and Zitzler, 2007). Various objective reduction schemes were developed and 

tested. The obtained results showed that temporarily reducing the number of objectives 

could significantly improve the performance of hypervolume based MOEAs. Bader and 

Zitzler (2008) studied the high computational complexity caused by hypervolume 

calculation in many-objective optimization problem and proposed a fast hypervolume 

based MOEA (called HypE), where a technique based Monte Carlo simulations was 

developed to approximate the exact hypervolume values in order to reduce the runtime. 

Boonma and Suzuki (2011) presented a prospect indicator based MOEA, called PIBEA, 

where the new indicator measures the potential of each solution and helps to produce 

better offsprings. Basically, PIBEA has two advantages when solving many-objective 
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optimization problem, namely maintaining sufficient selection pressure and high level of 

diversity. PIBEA was reported to outperform well established MOEAs such as NSGA-II 

and SPEA2, regarding the convergence, diversity in the population, coverage of the PF, 

etc. A MOEA with boosted indicator (called BIBEA) was proposed, where a boosting 

approach aggregates existing quality indicators into a single indicator (Phan et al, 2011). 

The boosting approach is carried out with a training problem where the PS is known. A 

new performance indicator, namely Δp, was introduced, which is based on the averaged 

Hausdorff distance and composed of two well-known quality indicators, generational 

distance and inverted generational distance (Schutze et al, 2012). The Δp indicator was 

then incorporated into the selection mechanism in a differential evolution based MOEA 

(Rodríguez Villalobos and Coello Coello, 2012). The main advantage of the Δp indicator 

based MOEA is its significantly reduced computational cost. 

2.3.4  Preference-based MOEAs 

Depending on when the decision maker (DM) expresses his/her preferences, the 

multiobjective optimization methods can be classified into three categories: priori 

methods, posteriori methods and interactive methods (Miettinen, 1999). For the first 

category, preference information is given before the search and such information is used 

to guide the search towards the most interesting regions along the PF. In a posteriori 

method, the DM selects the most preferred solutions after the search when an 

approximated PF is ready for use. For interactive methods, the DM is involved in the 

whole process of search and interactively expresses the preference to guide the search.  

There has been plenty amount of research concerning the use of preferences in 

solving MOPs. Fonseca and Fleming (1993) introduced a rank-based fitness assignment 

method to incorporate the preference information of the DM in an interactive manner, 

where the rank of individuals in the population is based on the Pareto dominance and the 

preferences of the DM. Greenwood et al (1996) designed a value function to rank the 

population and combined the preference information with Pareto rankings. Sakawa and 

Kato (2002) studied the preference-based multiobjective integer programming problems. 

They incorporated the fuzzy goals of the DM into the objective functions, where the 

reference membership values can be adjusted according to the preferences of DM. 
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Branke and Deb (2004) incorporated imprecise user preferences into NSGA-II via a 

guided dominance scheme and a biased crowding distance scheme. Deb et al (2006) 

investigated the use of reference point interactive approach in finding a set of preferred 

nondominated solutions for the DM. Deb and Chaudhuri (2005, 2007) suggested an 

interactive decision support system (I-MODE) that allows the DM to have an overview 

of the complete PF and can iteratively interact with the DM to guide the search towards 

the interesting regions along the PF. Thiele et al (2009) proposed a preference based 

MOEA, where the DM is asked at each generation to express his/her reference point 

consisting of desirable aspiration levels for objective functions. The preferred point is 

utilized to generate the offspring population by combining the fitness function and an 

achievement scalarizing function. Wagner and Trautmann (2010) introduced a concept 

for approximating preferred regions of the PF, where the preference information from the 

DM is incorporated into the desirability functions (DFs) of the objectives. The authors 

integrated the DFs into the S-metric selection based MOEA, which successfully restricts 

the search in the preferred regions of the PF. Friedrick et al (2011, 2013) incorporated 

the preferences of the DM by weighted information on the objective space. This method 

was successfully applied to well-known MOEAs such as NSGA-II and SPEA2. Pedro 

and Takahashi (2013) proposed an interactive territory defining EA (iTDEA) to address 

the MOPs with the user preference considered. In iTDEA, the preference model is 

constructed based on Neural Network technique, where the preference is incorporated 

into the training process. Other approaches that make use of the user preferences can be 

found in Zhou et al (2011) and Friedrich et al (2013). 

2.3.5  Hybridization-based MOEAs 

As reviewed in Subsections 2.2.1 and 2.2.2, incorporating local search techniques 

into EAs can enhance the optimization performance. Similarly, in MOEAs, one research 

stream considers the combination of different search techniques. A basic idea is to 

hybridize global search and local search, making use of their advantages (e.g. enhanced 

global exploration and local expoitation abilities). Ishibuchi and Murata (1996, 1998) 

introduced a hybrid MOEA, where a local search process is performed on each individual 

generated by genetic operators. In this algorithm, an aggregation function is used and its 
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weight values are randomly generated whenever parent solutions are to be selected for 

recombination. Ahn et al (2009, 2010) proposed a hybrid MOEA (HMEA) with an 

adaptive local search (ALS) incorporated. The ALS is based on weighted fitness function 

and knowledge based local search, being capable of efficiently exploiting the 

neighbourhoods of the most promising individuals. Santana-Quintero et al (2010) 

hybridized a MOEA based on differential evolution and a local search procedure based 

on rough set theory for addressing difficult constrained MOPs. MOEAs integrating 

global and local search techniques are sometimes referred to as multiobjective memetic 

algorithms (Knowles and Corne, 2000b; Jaszkiewicz, 2002; Ishibuchi et al, 2009; Qian et 

al, 2009; Lara et al, 2010; Tan et al, 2012). MOEA/Ds introduced in Section 2.3.2 can be 

viewed as multiobjective memetic algorithms since local search procedures can be 

adopted in MOEA/Ds to improve the quality of individuals at each generation. Another 

idea for hybridization is to combine the search operators coming from different MOEAs. 

For example, Li and Wang (2007) introduced a hybrid quantum-inspired genetic 

algorithm (QEA) (see Section 2.2.3 for the principle of QEA) to address multiobjective 

flow shop scheduling problem. In the proposed algorithm, quantum operators are applied 

to binary encoding individuals while genetic operators are applied to permutation 

encoding individuals. Chen et al (2010) proposed a hybrid immune MOEA, where a 

mutation operator is designed based on the combination of Gaussian and polynomial 

mutations. Tang and Wang (2013) developed a hybrid MOEA (HMOEA) for real-valued 

MOPs. The concepts of personal best and global best in particle swarm optimization 

(PSO) are used to update the population. Multiple crossover operators are utilized in the 

reproduction and a self-adaptive selection mechanism is used to select one of them, 

helping HMOEA gain a robust performance when adopted to solve different types of 

MOPs. Hybrid MOEAs have been applied in many real-world applications, such as the 

uncapacitated exam proximity problem (Côté and Wong, 2004), aircraft control system 

design (Adra et al, 2005), the design of compliant micro-actuators (Tai et al, 2008), 

space trajectory optimization (Vasile and Zuiani, 2010), machining parameters design 

(Deb and Datta, 2011), capacitated arc routing problem (Mei et al, 2011), etc.  
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2.3.6  Coevolution-based MOEAs 

Coevolution can be interpreted as evolving multiple subpopulations which evolve 

independently and share information with each other. Kim et al (2009) investigated 

multiobjective population-based incremental learning (PBIL) for solving multiobjective 

routing problem in robot soccer systems. They maintained multiple probability vectors, 

each representing a subpopulation. Each probability vector is updated independently and 

the nondominated solutions found during the evolution are shared by the probability 

vectors. On the other hand, coevolution can be more challenging with regard to the idea 

of divide and conquer, where the targeted problem is split into a number of subproblems 

and each subpopulation addresses one of them (Zhou et al, 2011). Such subpopulations 

compete and cooperate with each other. Lohn et al (2002) presented a coevolutionary GA 

(CGA) based on competitive coevolution. In the fitness evaluation, the coevolutionary 

dynamics are adopted to adaptively regulate the difficulty level. Coello Coello and Sierra 

(2003) proposed a coevolutionary MOEA where the search space is divided in to a 

number of subregions according to the estimation of the importance of each decision 

variable. The size of each subpopulation changes with respect to their contribution to the 

approximated Pareto optimal front. A cooperative coevolutionary algorithm (CCEA) for 

MOPs was developed, where multiple solutions are evolved in the form of cooperative 

subpopulations (Tan et al, 2006). Meanwhile, CCEA was decentralized according to its 

inherent parallelism of cooperative coevolution, which was reported to efficiently reduce 

the computational time. Goh and Tan (2009) investigated a coevolutionary paradigm for 

MOPs in dynamic environment. The main idea is to design an adaptive decomposition 

process of the given MOP, where subpopulations compete to survive and the winners 

collaborate to reproduce offsprings. Zhan et al (2013) proposed another coevolutionary 

MOEA based on the idea of multiple populations for multiple objectives (MPMO). Each 

subpopulation is associated with only one objective and all subpopulations cooperate to 

evolve the population. More descriptions of coevolutionary MOEAs can be found in 

Cochran et al (2003), Chang et al (2007), Zhou et al (2011) and Coello (2013). 
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2.4  Summary 

In this chapter, we review a number of well-known and commonly used EAs. First, 

we review the principles of three major branches of EAs, genetic algorithms, memetic 

algorithms and estimation of distribution algorithms, and their applications for COPs. 

Standard EAs may not handle well the exploration and the exploitation simultaneously. 

Incorporating local search techniques (maybe with domain knowledge considered) into 

EAs have been suggested to improve the performance of EAs. In nature, PBIL and cGA 

maintain a probability vector (PV) and gradually adjust it by the information extracted 

from promising solutions. The continuously changing PV helps to smoothly guide the 

search towards promising regions in the search space. Then, we review two traditional 

MOEAs, NSGA-II and SPEA2. They have many applications on MOPs and are still used 

recently. Finally, several state-of-the-art MOEAs are reviewed, including MOEAs with 

decomposition, indicator-based MOEAs, preference-based MOEAs, hybrid MOEAs and 

coevolutionary MOEAs. EAs have been widely applied to many real world optimization 

problems, e.g. routing, scheduling and timetabling, and bioinformatics. 

As mentioned in Section 1.5, in this thesis, we consider three optimization problems, 

the network coding resource minimization (NCRM) problem, the NCRM problem with 

delay constraint, and the cost-delay bi-objective optimization (CDBO) problem. The first 

two problems are NP-hard COPs while the last one is a MOP. With near-optimal 

solutions and acceptable computational cost, EAs are ideal choices for solving the three 

problems above. The detailed description of these problems is given in the next chapter.
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Chapter 3  The Network Coding Resource 
Minimization Problem: An Introduction 

 
As an advanced communication paradigm, network coding can offer many attractive 

benefits to the modern communication network, e.g. maximized multicast throughput and 

balanced network payload. Hence, incorporating network coding into multicast may 

become an ideal technical solution for supporting real time and high speed multicast data 

transmission. However, a number of issues that hinders the immediate application of 

network coding based multicast (NCM) need to be addressed first. The network coding 

resource minimization (NCRM) problem is such an issue, as introduced in Section 1.5.1. 

In this chapter, we first introduce the network model and basic concepts. We then 

describe the problem modelling, the related work and the encoding approaches that have 

been commonly used to solve the problem. Finally, the experimental network topologies 

and instances are introduced.  

3.1  Network Model and Related Concepts 

A communication network can be modelled as a directed acyclic graph G = (V, E), 

where V and E are the node set and link set, respectively. Assume each link e(u,v)  E 

has a unit capacity, where u,v  V. Only integer flows are allowed in G so a link is either 

idle or occupied by a flow of unit rate (Kim et al, 2007a, 2007b). Also, each link may be 

associated with some properties such as link cost and propagation delay.  

A NCM routing problem can be expressed as a source s  V expects to send the 

same data to a group of receivers T = {t1,…,td}  V − s at data rate R in the network G, 

where R is an integer and d is the number of receivers. R is no greater than the theoretical 

maximum throughput. Rate R (a capacity of R units) is achievable if any receiver tkT 

can receive the information sent from the source at rate R (Kim et al, 2007a, 2007b). As 

each link has a unit capacity, any single path connecting s and tk (k = 1, …, d) has a unit 

capacity. If we manage to set up R link-disjoint paths from s to each receiver tk, denoted 

by P1(s, tk),…,PR(s, tk), data rate R can be achieved by linear network coding (see 
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Subsection 1.3.1 for details). This is because linear network coding is able to assign 

appropriate coding coefficients to the network so that for each receiver tk the information 

received from the R link-disjoint paths is independent. Therefore, each receiver can 

decode and obtain R-unit original data sent from the source at each time unit. 

It is noted that the data rate, R and the number of receivers, d are two key parameters 

in NCM. The following reviews the sizes of R and d used in those experiments based on 

real life networks, as listed in Table 3.1. We notice that R is from 2 to 4. Intuitively, these 

numbers are small. This is because R is a relative value showing how many times larger 

than a given data rate (Kim et al, 2007a). For example, if the given data rate is 2Mb/s and 

R = 2, NCM can achieve a data rate of 4Mb/s. To the best of our knowledge, the highest 

data rate achieved by NCM is 5GB/s, where NCM is implemented in an optical testbed 

and R = 2, d = 2(Qu et al, 2010). A larger R indicates a higher data rate that can be 

achieved by NCM. It is also seen that d is between 3 and 10, which reflects the size of a 

multicast group. A larger d means that more receivers request for the same information 

from the source in the same period. 

 

Table 3. 1  The Sizes of R and d Investigated Based on Real Life Networks 

Real life  
Networks R d References 

LATA-X 2 9 Kim et al (2006) 
Ebone 2,3,4 4 Kim et al (2006), Ahn (2011), Luong et al (2012) 

Exodus 2,3,4 10 Kim (2008) 
ARPANET 4 3 Ramanathan et al (2010) 

NSFNET 4 3 Ramanathan et al (2010) 
NJLATA 4 3 Ramanathan et al (2010) 

 

3.1.1  Network Coding Based Multicast Subgraph 

Given a NCM request2, the task is to find a connected subgraph in G to support a 

multicast session by using network coding. This subgraph is composed of a set of paths 

originating from s and terminating at one of the receivers tkT. To be specific, there are 

R link-disjoint paths Pi(s, tk), i = 1,…,R, from s to receiver tkT, in this subgraph. As 

                                                 
2 NCM request is generated at a certain source node to set up the NCM data transmission between this 
node and all its receivers.  
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reviewed in Subsection 1.4.1, such subgraph is known as network coding based multicast 

subgraph (NCM subgraph, denoted by Gs→T). Note that in a NCM subgraph paths to the 

same receiver never join together since they are link-disjoint. Only those to different 

receivers may partially overlap and form coding nodes. In the NCM subgraph, a node is 

called coding node if it performs mathematical operations to recombine the packets 

received from different incoming links. An outgoing link of a coding node is called a 

coding link if each packet sent via this link is a combination of at least two incoming 

packets of the coding node. For example, Figure 3.1 shows the NCM subgraph and all 

paths of the subgraph in Figure 1.3(c) (Section 1.3), where d = 2 and R = 2 (Xing and Qu, 

2012). The NCM subgraph consists of four paths, i.e. P1(s, y), P2(s, y), P1(s, z) and P2(s, 

z), where paths to the same receiver are link-disjoint, e.g. P1(s, y) and P2(s, y). 

 

 

Figure 3. 1  A NCM subgraph and its link-disjoint paths. 

 

3.1.2  Merging Nodes 

According to the definition of network coding, coding operation never occurs at a 

node with single incoming link. This is because the packets that the node receives are 

from the same incoming link and they have nothing to combine. In network G, we refer 

to a non-receiver node with multiple incoming links as a merging node (Kim et al, 2007a, 
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2007b). Only merging nodes and their outgoing links are possible to become coding 

nodes and coding links, respectively. Langberg et al (2006) found that the number of 

coding links can well estimate the total amount of coding operations. Hence, this thesis 

uses the number of coding links as an estimate of the coding operations involved.  

 

 

Figure 3. 2  Node v with two incoming and two outgoing links, described by decision 

vectors DV1 = (a11, a21) and DV2 = (a12, a22). (a) merging node v. (b) decision vectors. 

 

To determine whether an outgoing link of a merging node serves as a coding link, 

one needs to check whether the information via this link is dependent on at least two 

incoming links of the merging node. Consider a merging node v with In(i) incoming links 

and Out(i) outgoing links, where In(i) ≥ 2 and Out(i) ≥ 1. A decision vector DVk = {aik | i 

= 1,…, In(i), k = 1,…, Out(i)} can be used to represent information from how many 

incoming links of v contributing to the output over the k-th outgoing link of v (Kim et al, 

2007a, 2007b). If the information from the i-th incoming link contributes to the coded 

output over the k-th outgoing link, aik = 1, otherwise aik = 0. The k-th outgoing link 

becomes coding link only if information from at least two incoming links contributes to 

the output over the k-th outgoing link. As mentioned in Subsection 1.3.1, this thesis only 

considers linear network coding which is sufficient for multicast (Li et al, 2003). Figure 

3.2 shows an example of a merging node and two possible decision vectors, respectively 

(Xing et al, 2010). In Figure 3.2(a), x1 and x2 are incoming information while y1 and y2 

are outgoing information. If v only forwards x1 and x2, y1 and y2 may be either x1 or x2, 
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respectively; otherwise, y1 and y2 may be different linear combinations of x1 and x2. In 

Figure 3.2(b), two decision vectors DV1 and DV2 reflect how x1 and x2 pass through v. 

Information x1 is forwarded over the left outgoing link, so y1 is exactly x1. On the other 

hand, v expects to forward x1 and x2 over the right outgoing link. To avoid conflicts, a 

linear combination of x1 and x2 (i.e. y2) is sent out via the right outgoing link. Hence, the 

right outgoing link is identified as a coding link. 

3.2  Problem Description 

As discussed in Subsection 1.5.1, when applying network coding in multicast, the 

theoretically maximized throughput can always be achieved, however, at the expense of 

additional computation tasks at coding nodes. Performing packet recombination not only 

incurs a considerable amount of computational overhead but also consumes extra buffer. 

The fewer the coding operations performed, the less the computational overhead and 

delay incurred. It is therefore important to minimize the number of coding operations 

while retaining the benefits of network coding. This problem is a combinatorial 

optimization problem and is NP-Hard (Kim et al, 2006).  

The NCRM problem can be defined as to find a NCM subgraph Gs→T with the 

number of coding links minimized and the data rate R achieved. The following lists the 

notations used to formulate the NCRM problem: 

nM: the number of merging nodes in G. 

Out(i): the number of outgoing links that the i-th merging node owns. 

R: the defined data rate (an integer) at which s expects to transmit 

information to each receiver tk. 

λ(s, tk): the data rate between s and tk in Gs→T. 

Gs→T: network coding based multicast (NCM) subgraph. 

(Gs→T): the number of coding links in Gs→T. 

σik: a binary variable associated with the k-th outgoing link of the i-th 

merging node, i = 1,…, nM, k = 1,…, nOLi. σik = 1 if the j-th outgoing 

link of the i-th node serves as a coding link; σik = 0 otherwise. 

Pi(s, tk): the i-th link-disjoint path found between s and tk in Gs→T. It is 
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represented by a chain of nodes through which the path passes. 

Wi(s, tk): the link set of Pi(s, tk), i.e. Wi(s, tk) = {e(u,v) | e(u,v)  Pi(s, tk)}. 

 

Minimize: 

                         M
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                 (3.1) 

Subject to: 

λ(s, tk) = R,  tk  T                        (3.2) 

 
Wi(s, tk) ∩ Wj(s, tk) = Ø, i,j  {1,...,R}, i≠j, tk  T            (3.3) 

 

Objective (3.1) defines the problem as to minimize the number of coding links; 

Constraint (3.2) defines the achievable rate between s and each receiver as R; Constraint 

(3.3) indicates that for an arbitrary receiver tk the R constructed paths Pi(s, tk), i = 1,…,R, 

must have no common link. 

3.3  Related Work 

Network coding has received significant amount of attention since its introduction in 

2000, especially for the sake of developing efficient encoding-and-decoding network 

codes for NCM (Li et al, 2003; Koetter and Médard, 2003; Jaggi et al, 2005; Li and 

Yeung, 2006; Fong and Yeung, 2010). However, only a few efforts have been dedicated 

to the network coding resource minimization (NCRM) problem which, if addressed 

properly, may greatly facilitate the wide applications of NCM. 

Bhattad et al (2005) investigated the problem of minimizing the number of packets 

that undergo network coding. They built linear programming formulation and proposed a 

distributed algorithm to solve it. Besides, the authors also considered a more realistic 

scenario, i.e. some nodes in the network could only perform store-and-forward schemes 

rather than coding operations. And another decentralized algorithm was presented. Due 

to the nature of the problem, the formulations have a complexity that grows dramatically 

with the number of receivers. Hence this approach is only limited to applications with 

relatively small multicast group. 
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Fragouli and Soljanin (2006) studied information flow decomposition for practical 

NCM. A given network was decomposed into a number of regions such that the same 

information was transferred within the same region. This method could help to derive the 

smallest code alphabet size for any NCM with two source nodes. Fragouli and Soljanin 

presented a greedy algorithm to specify which nodes within the network need to perform 

coding operations regardless of the overall network topology. This greedy algorithm 

aims to construct a subtree with the minimal coding operations by sequentially traversing 

the links in each decomposed graph and deleting those redundant links. In the same year, 

Langberg et al (2006) investigated the design of multicast coding networks with a limited 

number of nodes that can perform coding operations. The authors proved that in a 

directed acyclic coding network, the number of encoding nodes required was bounded by 

h3k2, where h is the number of total packets transmitted and k is the number of sinks. An 

algorithm was developed to minimize the number of required coding nodes by first 

transforming the given network to a graph where each node has a degree of at most three, 

and then removing links which make no contribution to the achievable data rate in the 

transformed graph. However, the performance of the two algorithms was dependent on 

the order of the traversed links. An inappropriate link traversal order might dramatically 

weaken the optimization results. 

From then on, a few EAs were proposed. Kim et al carried out a series of research 

using GAs to optimize the required network coding resource (Kim et al, 2006, 2007a, 

2007b). They proposed a GA working in an algebraic framework (Kim et al, 2006). 

Given a network G, they first constructed the corresponding labelled line graph G’, using 

the information flow decomposition method in (Fragouli and Soljanin, 2006) and then 

associated each link eG’ with a link coefficient. All the coefficients resulted into a 

specific solution and the consumed network coding resource was calculated. This 

algebraic framework was the very first seminal work for mapping the NCRM problem to 

a GA framework. And the proposed GA performed outstandingly better than the two 

greedy algorithms mentioned above (Fragouli and Soljanin, 2006; Langberg et al, 2006) 

in terms of the best solutions achieved. However, this GA was only applicable to acyclic 

networks.  
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After that, Kim et al extended their previous GA (Kim et al, 2006) to a distributed 

version to significantly reduce the computational time. Instead of operating on the 

labelled line graph, the authors introduced a graph decomposition method which can be 

used in both acyclic and cyclic networks (Kim et al, 2007a). This decomposition method 

decomposed each merging node in G into a number of auxiliary nodes to show explicitly 

how a flow passes through this merging node. This method then became a popular means 

to map the NCRM problem to a GA framework (see Subsection 3.2.3 for details). The 

graph decomposition method is also adopted by the proposed algorithms in this thesis.  

Kim et al (2007b) compared and analyzed GAs with two different genotype 

encoding approaches, i.e. the binary link state (BLS) and the block transmission state 

(BTS), and their associated genetic operators. Compared with the BLS encoding, the 

BTS encoding has smaller search space, however, at the cost of losing information which 

would be useful to guide the search towards the optimal solution(s). Currently, BLS 

encoding is the most popular for NCRM problem. Please see Subsection 3.2.4 for 

detailed description of BLS and BTS encoding approaches. 

In addition, Ahn (2011) and Luong et al (2012) studied the NCRM problem using 

evolutionary approaches, where entropy-based evaluation relaxation techniques were 

introduced to EAs in order to reduce the computational cost incurred during the evolution. 

By making use of the inherent randomness feature of the individuals, the proposed EAs 

can rapidly recognize promising solutions with much fewer individuals needed to be 

evaluated. 

Xing et al (2010) proposed a quantum-inspired evolutionary algorithm (QEA) for 

solving the NCRM problem. As reviewed in Subsection 2.2.3, QEA maintains a 

population of quantum-bit encoding individuals, each representing a probabilistic 

distribution model over the search space. When an individual is sampled, each solution in 

the search space has a certain probability to appear. Quantum rotation gate and quantum 

NOT gate are used to update the probabilistic distribution of each individual in such a 

way that promising solutions have increasingly more chance to appear. There are two 

important parameters to update an individual, the rotation angle step (RAS) for the 

quantum rotation gate and the quantum mutation probability (QMP) for the quantum 

NOT gate. The RAS value is randomly generated and QMP is adjusted according to the 
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current fitness of an individual. Ji and Xing (2011) developed another QEA to minimize 

the amount of coding operations. Different from the QEA above, the new QEA 

adaptively tunes the RAS and QMP values according to both the current and previous 

fitness values of an individual. These two QEAs were reported to be superior over 

GA-based algorithms in a number of aspects such as fast convergence. However, as 

observed in the thesis, the evolution of the two QEAs is sometimes time-consuming and 

sensitive to different instances (see Chapter 4). 

3.4  The Graph Decomposition Method 

As mentioned in Subsection 3.1.2, merging nodes within network G are of particular 

importance as they are allowed to perform coding if necessary. To explicitly show all 

possible ways of how information flows passing through a particular merging node, the 

graph decomposition method is used to decompose each merging node in G into a 

number of auxiliary nodes (Kim et al, 2007a, 2007b). As a result, a decomposed graph 

GD is created. The following describes the decomposition procedure. 

For the i-th merging node, let In(i) be the number of incoming links and Out(i) be 

the number of outgoing links, respectively. The original merging node is decomposed 

into two sets of nodes: (1) In(i) nodes, u1,…, uIn(i), referred to as incoming auxiliary 

nodes, and (2) Out(i) nodes, w1,…, wOut(i), referred to as outgoing auxiliary nodes. The 

j-th incoming link of the i-th original merging node is redirected to node uj; and the k-th 

outgoing link of the i-th merging node is redirected to node wk. Besides, a directed link 

e(uj, wk) is inserted between uj and wk, j = 1,…, In(i), k = 1,…, Out(i). We hereafter call 

the inserted links as auxiliary links.  

The graph decomposition method has been adopted by GAs (Kim et al, 2007a, 

2007b) and QEAs (Xing et al, 2010; Ji and Xing, 2011) and is also employed in this 

thesis. Fig.3.3 shows how merging nodes in a graph are decomposed. Fig.3.3(a) is the 

original graph with source s and receivers t1 and t2, and v1 and v2 are two merging nodes. 

After graph decomposition, the decomposed graph is shown in Fig.3.3(b), where four 

auxiliary (newly inserted) links are inserted into each merging node, helping to show 

every possible route that the information may pass through v1 and v2. 
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(a)                      (b) 

Figure 3. 3  An example of graph decomposition. (a) Original graph. (b) Decomposed 

graph. 

3.5  Chromosome Representation and Evaluation 

As reviewed in Section 3.3, binary link state (BLS) and block transmission state 

(BTS) are existing encoding approaches in the literature for the problem concerned. They 

are based on the graph decomposition method (Kim et al, 2007a, 2007b).  

For an arbitrary merging node with In(i) incoming links and Out(i) outgoing links, 

there are In(i) auxiliary links heading to each outgoing auxiliary node after graph 

decomposition, e.g. links u1w1 and u2w1 connect w1 and links u1w2 and u2w2 

connect w2, as shown in Fig.3.3(b). There are two possible states for each auxiliary link, 

i.e. active or inactive. An active auxiliary link allows flow(s) to pass it while an inactive 

one does not. The state of each auxiliary link is associated with a one-bit binary variable. 

In this way, the states of the In(i) auxiliary links heading to each outgoing auxiliary node 

can be determined by a In(i)-bit binary vector. Value ‘1’ at a bit means the corresponding 

auxiliary link is active in GD, and value ‘0’ otherwise. For the above merging node, Out(i) 

binary vectors (each with In(i) bits) are enough to determine the states of all auxiliary 

links within the node. Note that there is no interdependency among the states of auxiliary 

links. The following reviews BLS and BTS encoding approaches and the chromosome 
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evaluation process. 

3.5.1  BLS Encoding 

Assume there are nOAN outgoing auxiliary nodes in a decomposed graph GD, where 

nOAN is an integer. Specifically, nOAN is the summation of Out(i), i = 1,…,nM, the number 

of the outgoing links of the i-th merging node in original G, where nM is the number of 

merging nodes in G (see Subsection 3.1.3 for details). In BLS encoding, an individual 

(solution) X consists of a number of binary vectors bvi, i = 1,…,nOAN, each determining 

the states of the auxiliary links heading to a certain outgoing auxiliary node in GD. 

BLS-based bvi (e.g. of In(i) bits) has 2In(i) possible states from 0…00 to 1…11. Each 

chromosome corresponds to an explicit secondary graph GS which may or may not 

support a valid network coding based multicast routing solution. BLS encoding is similar 

to the use of decision vectors (see Subsection 3.1.2).  

Take Figure 3.3 as an example, a BLS-based chromosome and its corresponding 

secondary graph are shown in Figure 3.4. There are 8 auxiliary links in the decomposed 

graph. We associate each auxiliary link with a binary value (1 or 0) to determine if the 

link is active or inactive. Hence an 8-bit binary string is able to represent the states of all 

auxiliary links in the decomposed graph. Note that there are 4 auxiliary outgoing nodes, 

namely w1, w2, w3 and w4. Hence all auxiliary links are divided into 4 groups, where 

those heading to the same auxiliary node are in the same group. So, in this example, a 

chromosome is composed of four binary vectors, i.e. bv1, bv2, bv3, and bv4, each 

determining the states of two auxiliary links heading to an auxiliary node, e.g. bv1 

controls the states of e1 and e2. Chromosome 11010110 corresponds to a unique 

secondary graph GS. In this thesis, BLS encoding is adopted by the majority of the 

proposed EAs (see Chapter 4, 5 and 6 for details). 

3.5.2  BTS Encoding 

In the BTS encoding, the chromosome representation is the same as that in the BLS 

encoding. However, for each vector bvi in BTS based chromosome, once there are at 

least two 1’s in bvi, the remaining 0’s in bvi are replaced with 1’s (Kim et al, 2007a, 
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2007b). In this way, BTS-based bvi (e.g. of In(i) bits) has In(i) + 2 possible states, i.e. 

0…00, 1…00, 0…10, 0…01, and 1…11. Since each merging node has at least two 

incoming links, i.e. In(i)  2, we always have In(i) +2 ≤ 2In(i). Hence, for the same 

instance of the minimization problem, the size of the search space of BTS is usually 

smaller than that of BLS. However, using BTS may lose some guidance information that 

leads the search to the global optima (Kim et al, 2007b). 

 

 

Figure 3. 4  Chromosome representation.  
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3.5.3  Fitness Evaluation 

1. Obtain the corresponding secondary graph GS of X; 
   // Check if a NCM subgraph Gs→T can be resulted from GS 
2. Set flag = 1; // value 1 indicates X is feasible; value 0 otherwise. 
3. for k = 1 to d do  
4.    Compute the max-flow from source s to receiver tk; 
5.    if the max-flow is no smaller than R then 
6.       Select R paths from the resulting link-disjoint paths; 

7.    else 
8.       Set flag = 0 and break the loop; // indicating X is infeasible. 
9. if flag == 1 then 
10.    Gs→T is constructed by all the selected paths; 
11.    Set f(X) = Φ(Gs→T); 

12. else 
13.    Set f(X) = 50; // 50 is a sufficiently large number 
14. Output the fitness value of X, i.e. f(X). 

Figure 3. 5 The procedure of fitness evaluation (Xing and Qu, 2011a) 

 

BLS and BTS adopt the same evaluation procedure in EAs in the literature. For each 

individual X, first of all, its feasibility is checked. As mentioned above, X corresponds to 

a unique secondary graph GS. The max-flow between the source s and an arbitrary 

receiver tk  T in GS is computed, where a number of classical max-flow algorithms can 

be used such as Ford-Fulkerson algorithm (Ford and Fulkerson, 1956) and Goldberg 

algorithm (Goldberg, 1985). As mentioned in Subsection 3.1.1, each link in G has a unit 

capacity. The max-flow between s and tk is thus equivalent to the number of link-disjoint 

paths between s and tk found by the max-flow algorithm. If all d max-flows are at least R, 

where d is the number of receivers, rate R is achievable and individual X is feasible. 

Otherwise, X is infeasible. If X is infeasible, its fitness f(X) is assigned a sufficiently 

large value (50 in the thesis); otherwise, for each receiver tkT, R paths are selected out 

of the link-disjoint paths from s to tk obtained by max-flow algorithm (if the max-flow is 

R then all the link-disjoint paths are selected). Therefore, R·d paths in total, i.e. Pi(s, tk), i 

= 1,…,R, k = 1,…,d are obtained. The NCM subgraph Gs→T is composed of these R·d 
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paths and f(X) is set to the number of coding links in Gs→T, i.e. (Gs→T). The procedure 

of fitness evaluation is shown in Figure 3.5. 

3.6  Benchmark Instances 

As reviewed in Subsection 3.3, the NCRM problem is still emerging topic. Hence, 

only a few benchmark instances have been built. Among these instances, n-copy is a 

series of commonly used test networks (Kim et al, 2006, 2007a). 

3.6.1  n-copy networks 

Fig.3.5 illustrates an example of n-copy networks, where Fig.3.5(b) is a 3-copy 

network constructed by cascading 3 copies of the original network in Fig.3.5(a). As for 

n-copy network, the source is the node on the top and the receivers are at the bottom, e.g. 

s is the source and ti, i = 1…4, is the i-th receiver in the 3-copy network. The n-copy 

network has n + 1 receivers to which data rate from the source is 2. In general, 3-copy, 

7-copy, 15-copy and 31-copy networks are of the most popularity. More information can 

be found at http://www.cs.nott.ac.uk/~rxq/benchmarks.htm.  

 

 

Figure 3. 6  An example of n-copy network. (a) original network. (b) 3-copy. 

 



Chapter 3                               Three Network Coding based Multicast Routing Problems 

 65

When n increases, n-copy networks grow exponentially in size, hence being able to 

represent different network and multicast scales. However, n-copy networks have similar 

topological structures, which may not reflect the performance of the proposed algorithms 

in other network topologies. This motivates us to develop random benchmark networks 

which may help to well estimate the overall performance of those algorithms in arbitrary 

networks. 

3.6.2  Randomly Generated Networks 

We construct ten randomly generated networks and corresponding NCM instances 

for performance evaluation. As described in Section 3.1, the underlying network model 

for the NCRM problem is directed acyclic graph. Let nN and nL be the number of nodes 

and links, respectively. By using the procedure provided in MATLAB software, we 

generate random network topologies as shown in Figure 3.6.  

 

1.  Randomly generate nN nodes; 
2.  Repeat do 
3.    Randomly select two different nodes (vi, vk) from the nN nodes; 
4.    Insert a directed link from vi to vk; 
5.    If the current graph is not directed acyclic graph then 
6.      Delete the link from vi to vk; 
7.  Until the number of links is equal to nL 
8.  If the graph is connected then 
9.    Output the network topology; 

Figure 3. 7  Procedure of generating random directed acyclic networks 

 

Note that we may manually insert a small amount of directed links to the resulting 

topology to form more merging nodes if necessary. Then, we randomly determine a 

single source node and a number of receivers to constitute a multicast instance.  
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3.6.3  Description of Instances 

Table 3.2 describes the 14 benchmark instances used (i.e. four fixed and ten random 

networks) in this thesis for the NCRM problem. Note that for BLS encoding, the number 

of auxiliary links is equal to the encoding length of chromosomes (see Section 3.5.1). For 

n-copy networks, the network size is from 25 to 249 while the receiver number is from 4 

to 32 (see rows 3-copy to 31-copy). These networks were reported useful for verifying 

the performance of search algorithms on different network and multicast scales (Kim et 

al, 2007a, 2007b). As the encoding length reflects the size of the underlying search space 

and a larger search space would be more difficult for search algorithms to handle. With 

the number of copies n increasing, the search difficulity of algorithms is growing (Kim et 

al, 2007a). However, n-copy networks are similar with each other in terms of the 

network structure as they are composed of a number of copies of the same original 

network (as seen in Figure 3.6). The similarity of n-copy networks may not reflect the 

performance of EAs on networks with different structures. This is why we generate a 

number of random networks as a complement to the existing benchmark problems. The 

size of the random networks is set from 20 to 60, appropriate to represent different 

network scales in real communications networks (Xu, 2011). For each network size, we 

generate two instances with different network structures. This would also help to test the 

robustness of testing algorithms. In addition, the encoding length (see column auxiliary 

links) is between 32 and 368, indicating the instances covering a relatively wide range of 

problem sizes, namely from 232 to 2368. This could also help to test the performance of 

search algorithms on instances with different problem difficulties. 

Detailed information of all instances is available at the website address below: 

http://www.cs.nott.ac.uk/~rxq/benchmarks.htm. 
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Table 3. 2  Benchmark Instances for the NCRM problem 

Networks 

Original network G Decomposed graph GD 

nodes links receivers data rate nodes links 
auxiliary 

links 
3-copy 25 36 4 2 49 68 32 
7-copy 57 84 8 2 117 164 80 
15-copy 121 180 16 2 253 356 176 
31-copy 249 372 32 2 617 740 368 

Randomly 
Generated 
Instances 

20 37 5 3 54 81 43 
20 39 5 3 65 89 50 
30 60 6 3 94 146 86 
30 69 6 3 113 181 112 
40 78 9 3 124 184 106 
40 85 9 4 91 149 64 
50 101 8 3 178 246 145 
50 118 10 4 194 307 189 
60 150 11 5 239 385 235 
60 156 10 4 262 453 297 

 

3.7  Summary 

This chapter introduces the detailed problem formulation of the NCRM problem, the 

delay constrained NCRM problem and the CDBO problem, respectively. Besides, the 

benchmark instances used for the three optimization problems are described.  

The NCRM problem is of practical importance when deploying NCM (see 

Subsection 3.2.1). However, this problem has not received enough attention. Less than 

ten methods (mainly EAs) have been proposed in the literature. In terms of the coding 

resource involved, there remains a big gap between the obtained solutions and the optima. 

This is why the thesis investigates and offers high-performance EAs to provide high 

quality solutions, as introduced in Chapter 4. 

On the other hand, the delay constrained NCRM problem and CDBO problem take 

into consideration not only the interests of service providers but also those of end users. 

They are more realistic, however, they have never been considered in the literature. This 

motivates the development of appropriate EAs used to solve the two problems, as shown 

in Chapter 5 and 6, respectively. 
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Chapter 4  EAs for the Network Coding Resource 
Minimization Problem 

 
The network coding resource minimization (NCRM) problem is difficult to solve 

due to its NP-Hardness (Kim et al, 2006). As reviewed in Section 3.3, a number of 

search methods were developed to address the problem, including linear programming 

(Bhattad et al, 2005), greedy approaches (Fragouli and Soljanin, 2006; Langberg et al, 

2006), and EAs (Kim et al, 2006, 2007a, 2007b; Xing et al, 2010; Ji and Xing, 2011). 

Linear programming is only suitable for small multicast groups as the computational 

complexity would increase significantly with the number of receivers. The performance 

of the greedy approaches is largely dependant on the link traversal orders. As the orders 

are randomly generated, their performance is not reliable. EAs do not suffer the problems 

that the above two techniques encounter. And EAs have been reported to outperform 

them with respect to the overall performance, e.g. GA developed by Kim et al (2006). 

However, the existing EAs cannot adapt well for the NCRM problem. As we observed, 

there was a big gap between the results obtained by these EAs and the global optima 

(Xing and Qu, 2011a, 2012). Also, some of them were time consuming and sometimes 

sensitive to instances (e.g. in some instances the resulting solutions were far worse than 

the best ones) (Xing and Qu, 2011a, 2012). The NCRM problem is a routing problem in 

the communications networks. Once a NCM request is generated, it is important to find a 

NCM subgraph for data transmission as soon as possible (Zhang et al, 2009). The 

drawbacks of the existing EAs motivate us to develop more effective and faster 

algorithms to optimize the NCRM problem, which will assist the practical deployment of 

NCM for supporting multicast applications.  

In this chapter, we propose three EAs for solving the NCRM problem, emphasizing 

techniques such as estimation of distribution algorithms (see Section 2.2.3), memetic 

algorithms (see Section 2.2.2) and specifialized chromosome representation. The 

following briefly describes our work and contributions in this section: 
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 A population based incremental learning (PBIL) is adapted for the NCRM 

problem (see Section 4.1). An entropy-based restart scheme is proposed for the 

first time to improve the global exploration ability of PBIL. 

 A compact genetic algorithm (cGA) is adapted for the above problem (see 

Section 4.2). Three new schemes are developed for enhancing the overall 

performance of cGA, including the use of all-one vector, a specialized 

probability vector restart scheme and a problem specific local search operator.  

 A path-oriented encoding is adapted to represent the solutions to the NCRM 

problem and an EA based on the new encoding (called pEA) is developed (see 

Section 4.3). Algorithmic components such as initialization, crossover, mutation 

and a local search procedure are designed in compliance with the features of the 

new encoding. 

The following introduces the new EAs and evaluates their performance via a large 

set of systematic experiments and analysis. 

4.1  Population Based Incremental Learning 

PBIL is a combination of GA and machine learning. It has many applications (see 

Section 2.2.3). Different from GAs maintaining a population of explicit solutions, PBIL 

evolves by operating a real-valued probability vector, thus yields a much lower memory 

requirement. With no complex genetic operator such as crossover, PBIL incurs much less 

computational cost. Besides, PBIL was reported to perform well on problems with no or 

light interdependencies among variables (Pelikan et al, 2002). This also matches the 

NCRM problem where there is no variable-dependency in BLS-based and BTS-based 

encodings (see Section 3.5).  

This section presents an effective PBIL to minimize the amount of coding operations 

required. In this algorithm, a restart scheme is for the first time proposed to prevent the 

search from prematurity. The outcomes of this work have been reported in Xing and Qu 

(2011a). 
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4.1.1  Algorithm Design  

PBIL maintains a real-valued probability vector which, when sampled, generates 

promising solutions with higher probability (Baluja, 1994). Let PV(t) = {p1
t, p2

t,…, pL
t} 

be the probability vector at generation t that generates binary solutions, where pi
t
 is the 

probability of generating ‘1’ at the i-th position and L is the solution length. At each 

generation, PV(t) is sampled N times to obtain N samples (i.e. solutions). Among them, 

high-quality samples are selected and their statistic information is used to adjust PV(t) 

for further evolution. Initially, the value of pi
t is set to 0.5, i = 1, …, L, and the first N 

samples are randomly created from the solution space. As search progresses, PV(t) is 

gradually shifted towards an explicit solution, i.e. pi
t, i = 1, …, L, is approaching to either 

0.0 or 1.0. The description of basic PBIL can be found in Subsection 2.2.3.  

 

4.1.1.1  Probability Vector Update Scheme 

There are two probability vector update schemes in the literature. One is to use a 

single solution to update PV(t) (Baluja, 1994; Yang and Yao, 2005, 2008). PV(t) is learnt 

from the best solution in the samples at each generation. This scheme is easy to 

implement and could converge rapidly to an explicit solution. However, it may easily 

mislead the search to local optima unless the best solution is getting closer and closer to 

the global optimum. This is because the contribution to update the probability vector is 

dependant on the best solution and the diversity is lost rapidly. 

The other scheme is to use a set of promising solutions selected from the samples to 

update PV(t), which is referred to as Hebbian-inspired rule (Gonzalez et al, 2000). This 

scheme limits the contribution of any single solution to PV(t), which helps to prevent 

PV(t) converging rapidly to local optima and thus to maintain an appropriate level of 

diversity. This scheme can be seen as an extension of the first scheme. The proposed 

PBIL adopts Hebbian-inspired rule to update the probability vector, as described below.  

At generation t, the best ever found solution B(t-1) is inserted into the N obtained 

samples. The N + 1 solutions are then sorted by their fitness and the  (  N + 1) best 

solutions, Y1:N+1, …, Y:N+1, are selected. The statistic information of the  solutions, i.e. 

PVselect, is extracted and used to modify PV(t). Note that PV(t) produces feasible 
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solutions as well as infeasible ones (Kim et al, 2007a, 2007b). Let ζ(t) be the number of 

feasible solutions among the N + 1 solutions at generation t, (t) be the number of 

selected solutions at generation t, and α be the learning rate. The update scheme at 

generation t is as follows: 

 

PV(t) = (1.0 − α)  PV(t) + α  PVselect               (4.1) 
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where τ indicates the maximum proportion of solutions to be selected. In our PBIL, τ = 

20%.  

 

4.1.1.2  Restart Scheme 

During the search, PV(t) gradually converges to an explicit solution. As we know, 

PV(t) is a string of probabilities in nature. With the convergence of PV(t), its degree of 

uncertainty decreases. For PV(t), the degree of uncertainty to some extent reflects which 

stage the evolution is in (Pang et al, 2006). For example, in early stage of the evolution, 

the degree of uncertainty is high (e.g. the sampled solutions are diversified) and at the 

end of the evolution the degree is low (e.g. the sampled solutions have high similarity). If 

PV(t) is shifted to a local optimum and the degree of the uncertainty of PV(t) is lower 

enough, the search will be stuck to this local optimum. This encourages the idea to restart 

the search when the degree of uncertainty of PV(t) is lower than a threshold value.  

In information theory, entropy is used to measure the degree of uncertainty (Ihara, 

1993). Pang et al (2006) proposed a PBIL to solve flow shop and job shop scheduling 

problems, where learning rate and mutation probability are adaptively adjusted according 

to the entropy value of PV(t) at each generation. Inspired by Pang et al (2006), we use 

entropy to represent the degree of uncertainty. In our work, it is important to determine 

an appropriate threshold value of the entropy since this value tells PBIL when to restart. 
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The entropy value is expressed in equation (4.4), where pi
(x=k) denotes the probability of 

generating ‘x’ at the i-th position, pi
(x=0) = 1 − pi

t and pi
(x=1) = pi

t (Ihara, 1993). 
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We can see the entropy value is determined by the string length L and the probability 

pi
(x=k) at each position. This means the entropy value may greatly vary with the problem 

size. If we use the entropy value as an indicator of the uncertainty, we need to assign an 

appropriate threshold value for each problem instance, which will be difficult and 

meaningless. In order to reduce the impact of the problem size on the entropy value, we 

introduce the average entropy per bit of PV(t), EP, to normalize the uncertainty, as shown 

below. The average entropy makes it possible to determine a single threshold value for 

all instances. 
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Whilst PV(t) converges to an explicit solution during the evolution, EP decreases and 

approaches to 0.00. Through empirical experiments we observed that PV(t) could hardly 

find a better solution when pi
t was either higher than 0.97 or lower than 0.03. The critical 

value of Ep was thus calculated as 0.134, i.e. when each pi
t was either 0.97 or 0.03. Let Θ 

denote the threshold value of EP. In experiments, we set Θ = 0.14. If EP < Θ, PBIL 

reinitializes PV(t) as (0.5,…,0.5). 

 

4.1.1.3  The Procedure of the Proposed PBIL 

The procedure of the proposed PBIL is shown in Figure 4.1. In the PBIL framework, 

we represent the problem being concerned by using the graph decomposition method (see 

Section 3.4). Binary link state (BLS) encoding is used as the chromosome representation 

scheme. Detailed description of BLS encoding and evaluation can be found in Section 

3.5.1. In the fitness evaluation (see step 7), each infeasible solution is assigned a 

sufficiently large value (50 in our PBIL). If a solution is feasible, i.e. it corresponds to a 

valid NCM subgraph, its fitness value is assigned the number of coding links in the NCM 
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subgraph. To ensure that the algorithm begins with at least one feasible solution in the 

population, the initial best solution is set as an all-one vector where all merging nodes are 

active (Kim et al, 2007a, 2007b). The termination criteria are subject to two conditions: 

(1) a NCM subgraph without coding is obtained, or (2) the algorithm reaches a 

pre-defined number of generations. 

 

1. Set generation t = 0 
2. For i = 1 to L do set pi

t = 0.5; 
3. Set B(t) as an all-one vector and evaluate B(t); 
4. Generate N samples from PV(t); 

5. repeat 
6.     Set t = t + 1; 
7.     Evaluate the N samples; 

8.   Select (t) solutions from the N samples and B(t-1), the best solution so far; 

9.     Calculate PVselect by using Equation (4.2); 
10.     Update PV(t) by using Equation (4.1); 
11.     If EP < Θ then // Θ is the threshold value for restart scheme 
12.         for i = 1 to L do reset Pi = 0.5; 
13.         Reset B(t) as an all-one vector and evaluate B(t); 
14.         Generate N samples from PV(t); 

15.     Else  
16.         Generate N samples from PV(t);        

17. until termination condition is met 

Figure 4. 1  Procedure of the Proposed PBIL (Xing and Qu, 2011a) 

 

4.1.2  Performance Evaluation 

To verify the effectiveness of the proposed PBIL, we compare two PBILs with three 

existing EAs regarding a number of evaluation criteria. 

 GA-1: GA with binary link state (BLS) encoding and operators (Kim et al, 

2007b). The description of BLS encoding can be found in Section 3.5.1. 

 GA-2: GA with block transmission state (BTS) encoding and operators (Kim et 

al, 2007b). BTS encoding is described in Subsection 3.5.2. 
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 QEA: a quantum inspired evolutionary algorithm for solving the NCRM 

problem (Xing et al, 2010). Details can be found in Subsection 3.3.  

 PBIL-1: the proposed PBIL without restart scheme. 

 PBIL-2: the proposed PBIL with restart scheme. 

Simulations have been carried out upon two fixed and six random networks (see 

Subsection 3.6 for details), where optimal solutions yield NCM subgraphs which do not 

require coding operations (also called coding-free NCM subgraphs). For all algorithms, 

the population size and pre-defined termination generation are set to 40 and 500, 

respectively. Their parameter settings are shown in Table 4.1. By running each algorithm 

20 times, we collected the successful ratio of finding a coding-free NCM subgraph (SR), 

the mean and standard deviation (SD) of the best fitness values obtained, and the average 

computational time (ACT), as shown in Table 4.2. As the NCRM problem is a 

minimization problem, a lower fitness value indicates a fitter solution. All simulations 

were run on a Windows XP computer with Intel(R) Core(TM)2 Duo CPU E8400 3.0GHz, 

2G RAM. 

 

Table 4. 1  Parameter Settings of the Five Algorithms 

GA-1 GA-2 QEA PBIL-1 PBIL-2 
pc = 0.8; 
pm = 0.006; 
tsize = 4; 

pc = 0.8; 
pm = 0.012; 
tsize = 12; 

RAD = 0.1π; α = 0.1; 
τ = 0.2; 
 

α = 0.1; 
τ = 0.2; 
Θ = 0.14 

Note: pc: crossover probability; pm: mutation probability; tsize: tournament size; RAD: a constant number to 
calculate the rotation angle step. 
 

It can be seen from Table 4.2 that in terms of the SR, mean and ACT, the two PBILs 

are the best algorithms, as discussed below. Looking at SR in each instance, The PBILs 

have higher values, e.g. in 15-copy instance, PBILs obtain 75% and 100% while the rest 

of the algorithms obtain 10%, 5% and 0%, respectively (see column SR in 15-copy). Also, 

if we compare the SR of PBILs in different instances, we can find that PBILs (especially 

PBIL-2) has consistent performance (see rows PBIL-1, PBIL-2, columns SR). The above 

analysis indicates the proposed PBILs are better in global exploration as they are more 

likely to find global optima in different instances than the others. If we compare the SR 

of QEA in different instances, we can find that QEA’s performance is not stable (see 
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rows QEA, columns SR in each instance). This helps to reflect the sensitivity of QEA to 

instances. 

 

Table 4. 2  Numerical Results (Best Results are in Bold) (Xing and Qu, 2011a) 

Algorithm 

7-copy  
57nodes, 84links, 8sinks, R = 2 

15-copy 
121nodes, 180links, 16sinks, R = 2 

SR 
(%) 

Mean SD ACT 
(SEC.) 

SR 
(%) 

Mean SD ACT 
(SEC.) 

GA-1 90 0.1 0.3 24.1 10 2.6 1.4 209.4 
GA-2 95 0.05 0.2 35.7 5 2.2 1.5 213.2 
QEA 50 1.2 2.4 45.5 0 7.3 6.6 272.2 

PBIL-1 100 0.0 0.0 4.7 75 0.3 0.5 245.6 
PBIL-2 100 0.0 0.0 3.5 100 0.0 0.0 70.8 

Algorithm 

Random Instance 1 
40nodes, 78links, 9sinks, R = 3 

Random Instance 2 
40nodes, 85links, 9sinks, R = 4 

SR 
(%) 

Mean SD ACT 
(SEC.) 

SR 
(%) 

Mean SD ACT 
(SEC.) 

GA-1 30 0.8 0.6 46.1 100 0.0 0.0 6.6 
GA-2 30 0.9 0.7 48.6 100 0.0 0.0 5.3 
QEA 55 0.5 0.6 32.0 100 0.0 0.0 1.1 

PBIL-1 100 0.0 0.0 8.5 100 0.0 0.0 0.2 
PBIL-2 100 0.0 0.0 5.6 100 0.0 0.0 0.4 

Algorithm 

Random Instance 3 
50nodes, 101links, 8sinks, R = 3 

Random Instance 4 
50nodes, 118links, 10sinks, R = 4 

SR 
(%) 

Mean SD ACT 
(SEC.) 

SR 
(%) 

Mean SD ACT 
(SEC.) 

GA-1 15 0.9 0.5 75.3 5 1.9 0.9 113.0 
GA-2 25 0.8 0.5 72.6 10 1.7 1.0 108.9 
QEA 50 0.5 0.5 55.1 50 0.6 0.6 161.2 

PBIL-1 95 0.05 0.2 25.5 95 0.05 0.2 49.3 
PBIL-2 100 0.0 0.0 25.6 100 0.0 0.0 28.3 

Algorithm 

Random Instance 5 
60nodes, 150links, 11sinks, R = 5 

Random Instance 6 
60nodes, 156links, 10sinks, R = 4 

SR 
(%) 

Mean SD ACT 
(SEC.) 

SR 
(%) 

Mean SD ACT 
(SEC.) 

GA-1 0 2.1 1.0 184.7 10 1.4 0.7 224.5 
GA-2 10 1.4 0.8 176.9 10 1.2 0.6 188.2 
QEA 10 1.6 1.1 204.2 70 0.3 0.4 113.8 

PBIL-1 95 0.05 0.2 97.5 100 0.0 0.0 56.3 
PBIL-2 100 0.0 0.0 62.2 100 0.0 0.0 38.5 

 

Mean and SD together can reflect the overall performance of an algorithm. A smaller 

Mean indicates a better average performance while a smaller SD shows its performance 

is more consistent. Regarding the results of Mean and SD, one can also see that the 

PBILs in most cases have smaller Mean and smaller SD (see rows PBIL-1, PBIL-2, 

columns Mean, SD in each instance). Hence, these results illustrate PBILs have better 

overall performance than the others. On the other hand, the Mean and SD of QEA in 
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different instances also show the QEA’s sensitivity to instances. In addition, it is also 

obvious that PBILs consume less average computational time in all instances than the 

others (see rows PBIL-1, PBIL-2, columns ACT in each instance). And in most of the 

instances, the time saving is substantial, e.g. in 7-copy instance, the ACT is reduced by at 

least 20 seconds (see rows PBIL-1, PBIL-2, column ACT in 7-copy instance). 

The data analysis above indicates that PBIL performs better than existing GAs and 

QEA. The following explains why PBIL is more suited. All algorithms for comparison 

use binary encodings, i.e. either BLS or BTS (see Sections 3.5.1 and 3.5.2). In these 

encodings, a solution controls the states of all auxiliary links of all merging nodes. The 

detailed description of merging nodes can be found in Section 3.4. As being responsible 

for switching and diverting traffic, merging nodes are usually placed at key positions in 

the network (Kim et al, 2007a). So, if many merging nodes are disabled, it is highly 

possible that a feasible NCM subgraph cannot be found due to the violation of data rate 

requirement. In other words, a solution with many 0’s (meaning many auxiliary links are 

deactivated) is very likely to be infeasible. Therefore, one can imagine that the search 

space contain many infeasible solutions (see Section 4.3). In contrast, a solution with 

many 1’s is more likely to be feasible. The higher the proportion of 1’s, the higher 

probability the solution is feasible. Instead of being evenly distributed over the search 

space, feasible solutions are more crowded around the all-one solution (Xing and Qu, 

2013). This is why GAs include an all-one solution in the initial population to make sure 

they start with at least one feasible solution (Kim et al, 2007b). With many infeasible 

solutions in the search space, it may be difficult for EAs to locate feasible solutions (see 

Section 4.3). This motivates us to develop a novel EA that adopts another chromosome 

representation for solving the NCRM problem (see Section 4.3 for details). 

Typically, in GAs, crossover is in charge of global exploration and explores different 

areas in the search space while mutation is responsible for local exploitation and 

avoiding prematurity by introducing small disturbances to solutions to exploit their 

neighbors (Mitchell, 1996). With too many infeasible solutions in the search space, if 

crossover fails to effectively locate feasible regions, mutation would not help much. In 

GA-1 and GA-2, uniform crossover is adopted. Unfortunately, uniform crossover is not 

good at producing feasible solutions (Kim et al, 2007a, 2007b). Hence, for BLS and BTS 
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encodings, traditional GAs (i.e. GA-1 and GA-2 in our experiments) cannot perform well 

and obtain promising results.  

QEA maintains quantum-bit encoded individuals which are updated by quantum 

gates (see Section 2.2.3 for details). The performance of QEA is largely dependant on a 

constant value, called RAD, which is the key parameter in quantum gates (Xing et al, 

2010). In our experiments, RAD may not be suited for some instances, which indicates 

the QEA could not well handle the trade-off between intensification and diversification 

in some instances. Therefore the performance of QEA turns out to vary greatly from 

instance to instance.  

On the other hand, the BLS encoding is fitter for PBIL as explained below. As a 

combination of GA and machine learning, PBIL implicitly express the population using a 

probability vector (PV) (Baluja, 1994). The PV is gradually adjusted according to the 

statistical information extracted from promising solutions. This process shows the 

continuity of the changes in probability distribution, which helps to make full use of the 

promising solutions already obtained during the search. Once promising solutions appear 

in the samples, the PV learns from them (see PV update scheme in Section 4.1.1). It is 

very likely that the new samples inherit the good genes from them. Besides, the 

continuity is also reflected on the search smoothly moving from regions to regions. This 

is more suited to locate feasible regions, with the guidance of promising solutions. 

Therefore, it makes sense that PBIL performs better than GAs and QEA in the above 

experiments. The suitability of PBIL implies that EDAs with gradually changing PVs 

may be also suited for the BLS encoding. The next section introduces another BLS-based 

EDA for solving the NCRM problem (see Section 4.2). 

Then, we compare the performance of PBIL-1 and PBIL-2. Regarding the SR, Mean 

and SD, PBIL-2 performs better than PBIL-1 in most cases (see rows PBIL-1, PBIL-2, 

columns SR, Mean, SD in each instance). The results show that the restart scheme can 

improve the global exploration ability of the proposed PBIL. The following explains why. 

As aforementioned, if without the restart scheme, the uncertainty of the PV gradually 

decreases as the evolution continues. The diversity of the generated samples becomes 

lower and lower and hence the search is confined in a smaller and smaller area in the 

search space. The PV would finally converge to an explicit solution. If this solution is not 
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close to the global optimum and the uncertainty (i.e. entropy in the thesis) of PV is lower 

enough, the search could not escape from the solution, which would cause prematurity. 

Therefore, if we restart the search once the uncertainty of PV is lower enough, we could 

avoid prematurity. Besides, if comparing the ACTs of PBIL-1 and PBIL-2, we see that 

the restart scheme helps to reduce the computational time (see rows PBIL-1, PBIL-2, 

columns ACT in each instance). According to the termination conditions, PBIL stops 

when either it finds a NCM subgraph without coding performed (i.e. a global optimum) 

or it reaches a predefined number of generations. With the restart scheme, PBIL-2 has 

better global exploration ability. Hence it consumes less ACT. The above explains why 

the restart scheme can enhance the overall performance of the proposed algorithm. On 

the other hand, the performance of the restart scheme largely depends on the threshold 

value of the average entropy. It is important to assign an appropriate threshold value as 

this determines when to restart the search. If the value is too large, the search is forced to 

restart before it converges and carries out effective local exploitation; if the value is too 

small, it is a waste of time exhaustively exploiting a very small region in the search space. 

In the thesis, the threshold value is calculated based on the observation of empirical 

experiments (explained in Restart Scheme, Section 4.1.1). The threshold value of the 

average entropy may need to be adjusted to adapt for other instances.  

Although PBIL-2 is the fastest among the algorithms, one can also see that the ACT 

of PBIL-2 varies significantly, e.g. it is 3.5 seconds in 7-copy network and 70.8 seconds 

in 15-copy network, respectively. This makes sense as the ACT usually goes with the 

problem size and the problem solving difficulty. However, the dramatic change in ACT 

may restrict the application of the proposed algorithm in real communication networks in 

the sense that networks need to respond quickly to set up the NCM data transmission 

once there is a NCM request (Jaggi et al, 2005).  

4.1.3  Summary of the Algorithm 

A PBIL has been adopted for solving the NCRM problem. This work has shown that 

in nature the binary link state (BLS) encoding is more suitable for PBIL than the existing 

algorithms. The continuity of the changes in probability distribution helps PBIL to make 

use of promising solutions found and locate feasible and promising regions in the search 
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space. This, as discussed above, indicates that EDAs having similar PV update schemes 

may also match the BLS encoding. In our PBIL, an entropy based restart scheme is for 

the first time proposed. This scheme helps to avoid prematurity and improve the global 

exploration ability during the evolution. In the restart scheme, the threshold value of 

average entropy is an important parameter that affects the effectiveness of the scheme. It 

should be set properly to gain decent performance. Simulation results demonstrate that 

the proposed PBIL outperforms a number of existing EAs (including GAs and QEA) 

with respect to multiple performance evaluation criteria, namely success ratio, mean and 

standard deviation of the best fitness values and the average computational time. On the 

other hand, the computational costs to run PBIL may be quite expensive in some 

instances, which may limit the applicability of PBIL in real communications networks. 

This research work has been published at IEEE Communications Letters (Xing and 

Qu, 2011a). 

4.2  Compact Genetic Algorithm 

Whenever a NCM request is generated, the network is expected to provide a feasible 

NCM routing scheme as quickly as possible (Jaggi et al, 2005). Hence, when designing 

NCM routing algorithms, apart from exploration and exploitation abilities, computational 

time is also an important issue to be considered. As discussed in Section 4.1, PBIL gains 

decent performance in terms of global exploration. However, it consumes considerable 

amount of computational time in some cases. Then an interesting question arises: is it 

possible to develop an algorithm that gains similar or even better performance than PBIL 

while requires less computational costs? This section answers the question. 

As discussed in Section 4.1.2, the BLS encoding is suitable for PBIL because its PV 

update scheme can make use of the promising solutions to effectively locate and explore 

feasible regions. EDA with similar PV update scheme may also match the BLS encoding 

and if so this EDA may also obtain good optimization results. Therefore, regarding the 

choices of appropriate algorithms, the priority is given to EDAs. As discussed in Section 

3.5, there is no interaction among variables in the solution. Apart from PBIL, there are 

two EDAs that are suitable for addressing problems with no variable-interdependencies, 
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namely cGA (see Section 2.2.3.2) and UMDA (2.2.3.3). They both maintain a single 

real-valued PV to implicitly represent the population. On the one hand, cGA generates 

two samples at each generation. They compete and the winner is used to update the PV. 

cGA and PBIL have similar PV update schemes where the PV of the previous generation 

is gradually shifted towards the promising solutions of the current generation. This shows 

the continuity in the changes of the probability distribution. Besides, cGA was reported 

to converge to a good solution within short computational time (Gallagher et al, 2004). 

On the other hand, UMDA generates a set of samples at each generation. Promising 

samples are selected and their statistical information is extracted as the PV. In other 

words, the PV is fully determined by the promising solutions of the current generation. If 

these promising solutions are not sufficiently good, the search would be guided to 

nonpromising regions. As aforementioned, the search space of BLS encoding contains 

large quantity of infeasible solutions. Once UMDA if misled to infeasible regions, it may 

be difficult for UMDA to escape. Due to the above analysis, we choose cGA as a 

candidate for addressing the NCRM problem. Detailed description of standard cGA can 

be found in Subsection 2.2.3.2. 

This section proposes an elitism-based cGA for the NCRM problem. Three novel 

schemes have been developed, as listed below. 

 The use of an all-one vector. This vector helps the PV to locate feasible regions 

in the search space. This scheme not only warrantees that the cGA starts with a 

feasible solution at the beginning of the evolution but also adjusts the PV in 

such a way that feasible solutions appear with increasingly higher probabilities 

(see Section 4.2.1.1).  

 A novel PV restart scheme. Different from the entropy based restart scheme 

introduced in PBIL (see Subsection 4.1.1.2), the new PV restart scheme resets 

the PV whenever the incumbent best solution cannot be improved within a given 

number of consecutive generations. This scheme stops ineffective evolution and 

helps to escape from local optima and increase the chance to hit an optimal 

solution (see Section 4.2.1.2). 

 A novel local search operator. It is devised to exploit the neighbourhood of 

each feasible solution so as to enhance the local exploitation of our cGA. As far 
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as we know, this operator is the first attempt to incorporate domain knowledge 

to strengthen the local exploitation ability of the proposed cGA (see Section 

4.2.1.3). 

Simulation experiments have been conducted over a number of fixed and randomly 

generated NCM scenarios. Results demonstrate that all the adopted schemes are effective 

and the proposed cGA outperforms existing EAs in obtaining optimal solutions within a 

reduced computational time. 

4.2.1  Algorithm Design 

In our cGA, BLS encoding is used to represent chromosomes (see Subsection 3.2.4). 

The following first introduces the use of all-one vector, the restart scheme and the local 

search operator, respectively, and then gives the overall structure of the proposed cGA. 

 

4.2.1.1  The Use of an All-one Vector 

The NCRM problem is highly constrained (see Subsection 3.2.1) and infeasible 

solutions form a large proportion of the solution space (experimental results can be found 

in Subsection 4.3.2). Hence, the PV may not efficiently evolve with a limited number of 

feasible individuals, i.e. the optimization of cGA could be seriously weakened due to the 

lack of feasible individuals. Kim et al (2007a, 2007b) noticed this problem and inserted 

an all-one vector, i.e. ‘11…1’, into the initial population to warrantee that their GAs start 

with at least one feasible individual (the all-one vector ensures that all auxiliary links in 

GD are active and guarantees a feasible NCM subgraph to be found). This method shows 

to improve the optimization performance.  

Inspired by the idea of Kim et al (2007a, 2007b), we simply set an all-one vector as 

the elite individual in the initialization to ensure that our cGA begins with at least one 

feasible individual. It is easy to know that individuals containing more 1s are more likely 

to be feasible (see Subsection 3.1.2 and 3.2.3). The PV which gradually shifts towards 

the all-one vector thus gets increasingly higher chance to produce feasible individuals. 

This method shows to significantly accelerate the convergence speed of the cGA in the 

early stage of evolution (see Subsection 4.2.2.1 for details). 
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4.2.1.2  The Probability Vector Restart Scheme 

In the literature of EDAs, restart schemes have been introduced into PBILs to avoid 

premature evolution and enhance the global search capability. The essence of these 

schemes is to restart (re-initialize) the search under certain circumstances. For example, 

in applying PBILs to dynamic optimization problems, the PV can be reset as soon as the 

environment changes (Yang and Yao, 2005, 2008). As described in Section 4.1.1.2, we 

also propose an entropy based restart scheme. However, the performance of the entropy 

based scheme is dependent on the threshould value of the average entropy which is 

calculated based on the observation of empirical experiments (see Section 4.1.2). Ahn 

and Ramakrishna (2003) present a restart scheme for cGA. In their scheme, the elite 

solution is regenerated using the initial PV once the current elite solution dominates in a 

predefined number of generations. Nevertheless, this restart scheme does not fit for the 

BLS encoding because feasible solutions are not evenly distributed over the search space 

and the initial PV would not effectively produce feasible solutions (see Section 4.1.2).  

Considering the features of BLS encoding and cGA, we design a novel PV restart 

scheme for our cGA. In the scheme, the current PV is replaced with a previously 

recorded PV when the current elite solution dominates in a predefined number of 

generations, namely gc generations, where gc is an integer. An appropriate PV to be 

recorded is a PV that should generate feasible individuals with a high probability so that 

the cGA retains an effective evolution. In addition, the PV should have an appropriate 

probability distribution to maintain a good diversity, where the current elite individual 

has less chance to appear again. 

Let Xe denote the current elite individual. The PV restart scheme is shown below. 

1. Record the PV that generates the very first feasible individual during the 

evolution. For example, if the PV produces this first feasible individual at 

generation ti, we record PV(ti) for the proposed restart scheme. Here, assume 

that the PV can produce at least one feasible individual during the evolution of 

cGA. As far as we know, to record PV has not been considered in the literature. 

2. After PV(ti) is recorded, the restart scheme is launched. We set counter = 0 at 

generation ti. Note that initially the value of counter is −1, which implies the 

restart scheme has not started. 
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3. If Xe is not changed in a new generation, set counter = counter + 1. If counter = 

gc, which means Xe stays for gc consecutive generations, set PV(t) = PV(ti) and 

counter = 0. Besides, whenever Xe is changed, set counter = 0. The restart 

condition is the same as the one in the work of Ahn and Ramakrishna (2003). 

This scheme shows to effectively improve the global exploration capability of our 

cGA (see Section 4.2.2.2 for details). 

 

4.2.1.3  The Local Search Operator 

As we know, an effective search algorithm can well handle the trade-off between 

exploration and exploitation during the search. However, EAs with pure evolutionary 

structure are often not good at the local exploitation (see Section 2.2.1). This is why local 

search techniques are encouraged to be included in EAs to strengthen their exploitation 

ability (Whitley, 1995; De Jong, 2005; Moscato et al, 2004). On the other hand, at each 

generation, cGA produces much fewer solutions (at most two) than population-based 

EAs, as reviewed in Section 2.2.3.2. It is hence meaningful to study how to make full use 

of each promising solution to improve the overall performance of the cGA. The reasons 

above motivate us to consider a local search operator to be integrated with the cGA. 

Unfortunately, all existing EAs for the above problem are based on pure evolutionary 

framework (see Section 3.3). In other words, no local search enhancement has been 

studied in the literature.  

As mentioned in Section 3.5, each feasible individual corresponds to a unique 

secondary graph GS based on which a NCM subgraph Gs→T can be found. However, 

within the same GS, the NCM subgraph found may not be unique, i.e. we could possibly 

find more than one feasible NCM subgraph from the given GS. We call these feasible 

NCM subgraphs the neighbours of Gs→T in GS. The better the NCM subgraph found (i.e. 

one with fewer coding operations performed), the higher the quality of the corresponding 

solution to the problem. This makes it possible to design a local search operator 

(L-operator) to explore the neighbours of Gs→T and hopefully find a new NCM subgraph 

with fewer coding operations involved. This operator makes use of the problem-specific 

domain knowledge and is used to enhance the local exploitation ability of the proposed 

cGA.  
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Assume Gs→T has nCN coding nodes, where the i-th coding node vi has In(vi) 

incoming links. We denote by eik the k-th incoming link of node vi in Gs→T. Obviously, 

there is also an identical eik in GS since Gs→T  GS. Let Gs→T(inc) and Gs→T(new) be the 

incumbent NCM subgraph and a new NCM subgraph, respectively. The procedure of the 

L-operator is shown as follows: 

1. Set Gs→T(inc) = Gs→T; i = 1; k = 1; 

2. Remove link eik from GS. Use the max-flow algorithm (Goldberg, 1985) to 

calculate the max-flow between s and each sink in GS. If the d max-flows found 

are at least R, go to step 3. Otherwise, reinsert link eik to GS and go to step 4. 

3. For each sink tk, select R paths from the obtained link-disjoint paths from s to tk 

(if there are R paths we then select all of them), and map all the selected paths to 

GS to obtain a new NCM subgraph Gs→T(new). If the number of coding links in 

Gs→T(new) is less than that in Gs→T(inc), set Gs→T(inc) = Gs→T(new); otherwise, 

reinsert the link eik. 

4. If k = In(vi), proceed to the next coding node, i.e. set i = i + 1 and go to step 5; 

otherwise, proceed to the next incoming link of the same coding node, i.e. set k 

= k + 1, and go to step 2. 

5. If i = nCN + 1, stop the procedure and output Gs→T(inc); otherwise, proceed to the 

first incoming link of the i-th coding node, i.e. set k = 1, and go to step 2. 

Figure 4.2 shows an example of the local search procedure. The original graph with 

the source s and receivers t1 and t2, as shown in Figure 4.2(a), has two merging nodes, i.e. 

v1 and v2. In Figure 4.2(b), v1 and v2 are decomposed into two groups of auxiliary nodes 

connected by auxiliary links, i.e. e1, …, e8 (the graph decomposition method is described 

in Subsection 3.2.3). We assume the i-th bit of each individual is associated with link ei, i 

= 1,…,8 (see Subsection 3.2.4). Given an individual ‘11101011’, its corresponding 

secondary graph GS is shown in Figure 4.2 (c). Based on GS, we find a NCM subgraph 

Gs→T with only one coding node w1, as shown in Figure 4.2 (d), where links e11 and e12 

are two incoming links of w1. In Figure 4.2(e), the L-operator removes e11 from GS, 

resulting a new GS. Based on the new GS, we obtain a better NCM subgraph in Figure 

4.2(f), where the subgraph is coding-free (i.e. with no coding operation performed). It can 

be seen that removing e12 from Figure 4.2(e) produces an infeasible NCM subgraph thus 
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e12 remains. Since all incoming links of coding nodes are checked, the L-operator stops 

and outputs the NCM subgraph shown in Figure 4.2(f). In this example, the fitness of 

individual ‘11101011’ is set to zero. 

 

 

 (a) Original network G      (b) Decomposed graph GD    (c) Secondary graph GS of  
                                                     individual ‘11101011’ 

 

 (d) NCM subgraph Gs→T     (e) New GS without link e1         (f) A new Gs→T 

Figure 4. 2  An example of the local search procedure. 
 

In our cGA, L-operator is used in fitness evaluation to improve the NCM subgraph 

of each feasible individual X (see Section 4.2.1.4). As the first operator exploiting the 

problem-specific domain knowledge for the NCRM problem, L-operator is effective to 

improve the quality of solutions obtained by cGA (see Subsection 4.2.2.3). 
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4.2.1.4  The Overall Procedure of the Proposed cGA 

 

1) Initialization 
2) Set t = 0; counter = −1;  
3) for i = 1 to L do set pi

t = 0.5 // initialize PV 
4) Set Xe = 11…1; // Initialize the elite individual with an all-one vector 
5) f(Xe) = evaluate (Xe); // Evaluate the elite individual 

6) repeat 
7) Set t = t + 1; 
8) X = generate (PV(t)); // Generate a single individual from the PV 
9) f(X) = evaluate (X); // Evaluate the individual 
10) // Record the PV for the restart scheme 

if X is the very first feasible individual then 
Set counter = 0; PVrecord = PV(t);  

11) // The PV restart scheme 
if f(Xe) ≤ f(X) && counter ≥ 0 then 

Set counter = counter + 1; 
if counter == gc then 

Set PV(t) = PVrecord; counter = 0; 
12) // Record better individuals 

if f(Xe) > f(X) then 
Set Xe = X; f(Xe) = f(X); 
if counter > 0 then 

Set counter = 0; 
13) // The PV learns towards the elite individual 

for i = 1 to L do 
if Xe(i) ≠ X(i) then 

if Xe(i) == 1 then pi
t := pi

t + 1/N; 
else pi

t := pi
t – 1/N; 

14) until the termination condition is met 

Figure 4. 3  Procedure of the proposed cGA (Xing and Qu, 2012) 

 

The pseudo-code of the proposed cGA is shown in Figure 4.3 with the following 

three extensions: (1) In the initialization the elite individual is set to an all-one vector 

(see Section 4.2.1.1); (2) the PV is reset when the elite individual is not changed for a 

number of consecutive generations (see Section 4.2.1.2); (3) a local search operator is 
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integrated to exploit the neighbours of each feasible NCM subgraph found during the 

evolution (see Section 4.2.1.3). 

BLS encoding (see Subsection 3.5.1) is used to represent chromosomes in cGA. The 

elite individual Xe is set to an all-one vector to ensure our cGA begins with a feasible 

individual (see Step 4). In steps 5 and 9, a single individual X is sampled from the PV, 

and its feasibility is checked (see Section 3.5.3). If X corresponds to a GS where a 

feasible NCM subgraph Gs→T can be found, we use the L-operator to search the 

neighbours of Gs→T and obtain hopefully a new and better NCM subgraph (see Section 

4.2.1.3). The number of coding links in the new NCM subgraph is set to the fitness of X, 

i.e. f(X). Otherwise, a sufficiently large fitness value (50 in the thesis) is set to f(X) for an 

infeasible solution; If X is the very first feasible individual during the evolution, we 

record the PV from which X is created, and launch the PV restart scheme by setting 

counter = 0 (see Step 10). In step 11, the restart scheme is triggered when no better 

individual appears within gc generations. In step 12, we replace the elite individual Xe 

with X if the latter is better. After that, the PV is shifted towards Xe, as seen in step 13. 

The procedure terminates subject to two conditions: (1) a coding-free NCM subgraph is 

obtained, or (2) the algorithm reaches a pre-defined number of generations. 

4.2.2  Performance Evaluation 

We first investigate the effectiveness of the three extensions in cGA, i.e. the use of 

an all-one vector, the PV restart scheme and the local search operator on two instances, 

i.e. 3-copy and 20-node. The description of the 3-copy and 20-node networks can be 

found in Subsection 3.6. We then evaluate the overall performance of the proposed cGA 

on 11 intances (see Section 4.2.2.4). The increment of each winning allele is set to 0.05 

in cGA, which mimics the converging behaviour of a standard GA with population size 

20 (= 1/0.05) (Harik et al, 1999). All experimental results are collected by running each 

algorithm 50 times. 

 

4.2.2.1  The Effectiveness of the All-one Vector 

As mentioned above, the all-one vector not only enables cGA to begin with a 

feasible individual but also adjusts the PV to produce more and more feasible individuals. 
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To evaluate the performance of the all-one vector, we compare the following three 

variants of cGA on the 3-copy and 20-node networks: 

 cGA: the standard cGA (see Subsection 2.2.3). 

 cGA-(E): cGA with elitism. At each generation, a single solution is generated 

and competes with the best ever found solution (Ahn and Ramakrishna, 2003). 

 cGA-(E,A1): cGA-(E) with the use of the all-one vector. 

We compare the above algorithms by using the following evaluation criteria: 

 The evolution of the average fitness. The termination condition here is a 

pre-defined number of generations, i.e. algorithms stop after 300 generations. 

 The successful ratio (SR) of finding a coding-free NCM subgraph (i.e. one 

without coding operation performed) in 50 runs.  

 The mean and standard deviation (SD) of the best fitness values obtained in 50 

runs. 

 The average termination generation (ATG) over 50 runs. The termination 

condition here is a coding-free NCM subgraph has been found or the algorithms 

have reached 300 generations. 

Figure 4.4 shows the comparisons of the three algorithms in terms of the average 

fitness during the evolution. Compared with cGA-(E) and cGA-(E,A1), cGA is the worst 

one for both networks. In the 3-copy network, cGA has no evolution. In 20-node network, 

the convergence of cGA can be hardly observed before the 200th generation. cGA-(E) 

performs better than cGA on both networks, which once again demonstrates the 

effectiveness of the elitist scheme over the traditional tournament scheme (Ahn and 

Ramakrishna, 2003). With the use of the all-one vector, cGA-(E,A1) performs the best 

with respect to the convergence. For example, cGA-(E,A1) converges to a stable state 

after the 150-th generation for the 3-copy network and the 200-th generation for the 

20-node network, respectively. This is because, with more feasible solutions quickly 

generated from the PV, cGA-(E,A1) is able to converge much faster to better solutions. 
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(a) 3-copy network 

 

 (b) 20-node network 

Figure 4. 4  Average fitness vs. generations in variants of cGA. 

 

Experimental results of different evaluation criteria for each algorithm are presented 

in Table 4.3. Similarly, we see that cGA-(E,A1) is the best, with highest SR, and smallest 

mean and ATG (see column cGA-(E,A1) in each instance). The obtained results clearly 

show that the all-one vector can improve the optimization performance of cGA. This is 

due to search space features of BLS encoding, namely feasible solutions are not evenly 

distributed over the search space. Instead, those closer to the all-one vector are more 

likely to be feasible. Hence, all-one vector helps cGA to locate feasible solutions at the 

beginning of the evolution and guide the search towards feasible and promising regions 
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(see Section 4.1.2). Therefore, the all-one vector contributes to an enhanced performance 

of cGA. 

 

Table 4. 3  Experimental Results (Best results are in bold) 

Scenarios Criteria cGA cGA-(E) cGA-(E,A1) 
3-copy SR (%) 6 24 86 

Mean(SD) 40.24(19.72) 28.20(24.84) 0.14(0.35) 
ATG 292.16 264.66 78.78 

20-node SR (%) 6 38 78 
Mean(SD) 20.82(24.08) 8.58(18.27) 0.22(0.41) 

ATG 283.94 243.20 111.86 
Note: SR: successful ratio; ATG: average termination generation; 

Mean: average best fitness values; SD: standard deviation. 
 

4.2.2.2  The Effectiveness of the PV Restart Scheme 

To illustrate the effectiveness of the PV restart scheme, we compare the following 

two variants of algorithms on the 3-copy and 20-node networks: 

 cGA-(E,A1) 

 cGA-(E,A1,R): cGA-(E,A1) with the PV restart scheme. 

As introduced in Section 4.2.1.2, the PV will be replaced once the elite solution does 

not change for a predefined number of consecutive generations, denoted by gc. We study 

the impact of gc on the performance of the cGA (see Subsection 4.2.1.2). Note that gc is 

not the predefined termination generation. The SR of cGA-(E,A1,R) has been reported 

with gc set to 5, 10, 15, …, 295, and 300, respectively (increment of 5 generations). For 

the sake of fair comparison, we also collect the SR of cGA-(E,A1), by running it 50 

times. The SR is 84% for 3-copy network, and 66% for 20-node network, respectively. 

Figure 4.5 shows the SRs obtained by cGA-(E,A1,R) with different gc. With gc 

growing, the SR of cGA-(E,A1,R) first increases, and then falls down. As described in 

Section 4.2.1.2, a previously recorded PV is used to replace the current PV when the 

restart condition is met. After replacement, the PV is shifted towards the elite solution 

and promising solutions appear with increasingly higher probabilities. If gc is too small, 

the PV is restarted too frequently and the search may not effectively locate promising 

regions before the next restart; if gc is too big, the number of the restart times is limited 

and the search may already get stuck at local optimum awaiting the next restart. Note that 

the termination generation is 300 in our experiments. If gc > 150, there are at most 2 



Chapter 4                                                       EAs for the NCRM Problem 

 91

times to restart the PV. Hence, for both cases (too small gc or too big gc), the global 

exploration ability of cGA is relatively weak. For both networks, the SR of cGA-(E,A1,R) 

is better than that of cGA-(E,A1) in most cases, e.g. from gc = 5 to 250 on the 3-copy 

network and from gc = 10 to 200 on the 20-node network. We can see that gc, when 

properly set, contributes to a better SR for cGA-(E,A1,R). Besides, instead of an exact 

value, gc can be selected from a wide range of values, e.g. roughly from 20 to 120 in 

3-copy network and from 25 to 110 in 20-node network (see Figure 4.5). Hence, the 

selection of the value gc is easier than the threshold value in the entropy-based restart 

scheme. In the following experiments, we set gc = 50 in the PV restart scheme since with 

this value cGA-(E,A1,R) significantly outperforms cGA-(E,A1). 

 

(a) 3-copy network 

 

(b) 20-node network 

Figure 4. 5  SR vs. gc in variants of cGA. 
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4.2.2.3  The Effectiveness of the Local Search Operator 

As analyzed before, the all-one vector and the PV restart scheme both show to be 

effective for solving the two testing problems, i.e. the 3-copy and 20-node networks. 

Here, we evaluate the effectiveness of the L-operator and verify whether the three 

improvements can be cascaded, by running the following three variants of cGA on the 

3-copy and 20-node networks: 

 cGA-(E,A1) 

 cGA-(E,A1,R) 

 cGA-(E,A1,R,L): cGA-(E,A1,R) with the L-operator. 

 

Table 4. 4  Experimental Results of the Three Algorithms (Best Results are in Bold) 

Scenarios Criteria cGA-(E,A1) cGA-(E,A1,R) cGA-(E,A1,R,L) 
3-copy SR(%) 92 100 100 

Mean(SD) 0.08(0.27) 0.00(0.00) 0.00(0.00) 
ATG 64.90 53.2 0 

20-node SR(%) 70 92 100 
Mean(SD) 0.30(0.46) 0.08(0.27) 0.00(0.00) 

ATG 134.16 112.56 23.20 
 

Table 4.4 shows the experimental results of the three algorithms above. We can see 

that cGA-(E,A1,R,L) performs the best, obtaining the highest SR and the smallest mean 

and ATG (see column cGA-(E,A1,R,L) in each instance). The second best algorithm is 

cGA-(E,A1,R). To assist easy comparisons, we also provide the results of SR and ATG 

in Figure 4.6. Clearly, L-operator improves the performance of cGA-(E,A1,R). Note that 

the ATG of cGA-(E,A1,R,L) is zero on the 3-copy network, meaning a coding-free NCM 

subgraph can be found at the initialization of the algorithm with the L-operator. This is 

not only because 3-copy instance is simpler but also due to that its network structure is 

more suitable for implementing L-operator. According to Section 4.2.1.3, a feasible 

solution corresponds to a secondary graph GS and there may be more than one feasible 

NCM subgraph in GS. L-operator is designed to exploit GS and find a NCM subgraph 

with few coding operations. L-operator performs well on networks where each merging 

node has sufficient number of outgoing links. This is because L-operator is based on the 

removal of auxiliary links in merging nodes. Sufficient number of outgoing links helps to 
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construct alternative paths which can avoid coding operations. Regarding the structure of 

n-copy networks, each merging node has two outgoing links (see Section 3.6.1). Once an 

auxiliary link is removed, an alternative path can be built. Hence, coding operations can 

be avoided. On the other hand, as mentioned in Section 4.2.1.1, the elite solution is set to 

an all-one vector, which means all auxiliary links are activated in the network and 

enough alternative paths are available. Therefore, L-operator can find an optimal solution 

when evaluating the all-one vector. 

 

 

(a) SR results 

 

(b) ATG results 

Figure 4. 6  Results comparison of the three variants of cGA 
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4.2.2.4  The Overall Performance Analysis 

In order to thoroughly analyze the overall performance of the proposed cGA, we 

compare the following algorithms in terms of the aforementioned evaluation criteria and 

the average computational time (ACT): 

 QEA: a quantum-inspired evolutionary algorithm for NCRM problem (Xing et 

al, 2010).  

 sGA-1: a standard genetic algorithm with BLS encoding and operators (Kim et 

al, 2007b). A greedy sweep operator is employed after the evolution to improve 

the quality of the best individual found. 

 sGA-2: a standard genetic algorithm with BTS encoding and operators (Kim et 

al, 2007b). The same greedy sweep operator is adopted. 

 cGA-1: cGA-(E,A1). 

 cGA-2: cGA-(E,A1,R). 

 cGA-3: cGA-(E,A1,R,L). 

Note that the above cGAs are also based on BLS encoding (see Subsection 3.5.1). 

The population size for QEA, sGA-1 and sGA-2 is set to 20. The parameter settings of 

the six algorithms are listed in Table 4.5. Experiments have been conducted on three 

fixed and eight randomly-generated directed networks. To ensure a fair comparison, 

QEA, sGA-1 and sGA-2 have been re-implemented on the same machine and evaluated 

on the same NCM scenarios. Table 4.6 shows the experimental networks and parameter 

setup (see Subsection 3.5.1 for details). All experiments have been run on a Windows XP 

computer with Intel(R) Core(TM)2 Duo CPU E8400 3.0GHz, 2G RAM. The results 

achieved by each algorithm are averaged over 50 runs. 

 

Table 4. 5  Parameter Settings of the Six Algorithms 

QEA sGA-1 sGA-2 cGA-1 cGA-2 cGA-3 
RAD = 0.1π; pc = 0.8; 

pm = 0.01; 
tsize = 4; 

pc = 0.8; 
pm = 0.012; 
tsize = 12; 

N = 20; N = 20; 
gc = 50; 

N = 20; 
gc = 50; 

Note: pc: crossover probability; pm: mutation probability; tsize: tournament size; RAD: a constant number to 
calculate the rotation angle step (Xing et al, 2010); N: the parameter that determines the learning rate; gc: 
the predefined number of consecutive generations. 
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Table 4.7 compares the six algorithms with respect to the SR. Obviously, cGA-3 is 

the best algorithm, achieving the highest SRs (see column cGA-3 in each instance). This 

demonstrates that the three extensions can strengthen the global exploration and local 

exploitation of cGA-3. sGA-2 performs the second best (see column cGA-2 for details). 

Apart from the Rnd-5, Rnd-6 and Rnd-8 networks, the SRs obtained by sGA-2 are at 

least no worse and usually higher than those obtained by the other four algorithms. 

Without the local search operator, cGA-2 shows to be weak on local exploitation, 

however, is still able to obtain decent results compared with sGA-1. 

 

Table 4. 6  Experimental Networks and Parameter Setup 

Networks 
Multicast Scenario Description Parameters 
nodes links sinks rate LI DTG 

7-copy 57 84 8 2 80 500 
15-copy 121 180 16 2 176 500 
31-copy 249 372 32 2 368 1000 

Rnd-1 30 60 6 3 86 500 
Rnd-2 30 69 6 3 112 500 
Rnd-3 40 78 9 3 106 500 
Rnd-4 40 85 9 4 64 500 
Rnd-5 50 101 8 3 145 500 
Rnd-6 50 118 10 4 189 500 
Rnd-7 60 150 11 5 235 1000 
Rnd-8 60 156 10 4 297 1000 

Note: LI: the length of an individual; DTG: the defined termination generation. 

 

Table 4. 7  Comparisons of Successful Ratio (%) (Best Results are in Bold) 

Scenarios QEA sGA-1 sGA-2 cGA-1 cGA-2 cGA-3 
7-copy 45 80 96 42 100 100 

15-copy 0 0 50 0 4 100 
31-copy 0 0 0 0 0 100 

Rnd-1 100 98 100 94 100 100 
Rnd-2 100 100 100 100 100 100 
Rnd-3 66 50 70 24 68 100 
Rnd-4 100 100 100 100 100 100 
Rnd-5 46 56 40 14 26 98 
Rnd-6 42 16 32 18 30 96 
Rnd-7 25 6 60 2 14 100 
Rnd-8 84 14 60 14 80 100 

 

Experimental results of the mean and SD of the best fitness values are shown in 

Table 4.8. Obviously, cGA-3 outperforms all the other algorithms (see column cGA-3). 

The results also show that the three extensions significantly improve the optimization 

performance of cGA. 
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Table 4.9 illustrates the comparisons of the ATG obtained by each algorithm. cGA-3 

performs outstandingly better than the others, terminating in the initial generation in five 

networks and in a significantly reduced number of generations in the other networks 

except for the Rnd-2 network (see column cGA-3). As mentioned, cGA-3 also terminates 

in the initial generation on the 3-copy network. Note that termination in the initial 

generation occurs only when a coding-free NCM subgraph is found in the initialization 

of cGA-3. This phenomenon shows that combining the L-operator with the all-one vector 

is particularly effective to solve n-copy networks, Rnd-1 and Rnd-4 networks. The 

following explains why. On the one hand, the all-one solution activates all auxiliary links 

of merging nodes and hence the corresponding secondary graph has the highest 

probability to produce an optimal NCM subgraph, compared with other solutions. As 

discussed in Section 4.2.2.3, L-operator gains better performance in networks where 

merging nodes have alternative paths to forward the incoming data. On the other hand, 

n-copy, Rnd-1 and Rnd-4 networks have enough outgoing links to divert the traffic (see 

Section 3.6). Therefore, cGA-3 can find optimal NCM subgraph in the initialization in 

the above instances. 

 

Table 4. 8  Comparisons of Mean and Standard Deviation of the Best Fitness Values 

(Best Results are in Bold) 

Scenarios QEA sGA-1 sGA-2 cGA-1 cGA-2 cGA-3 
7-copy 0.95(1.09) 0.70(1.83) 0.04(0.19) 0.82(0.87) 0.00(0.00) 0.00(0.00)

15-copy 10.2(7.09) 4.55(3.85) 0.60(0.68) 5.46(1.85) 2.42(1.23) 0.00(0.00)
31-copy 18.8(5.35) 22.5(6.36) 3.85(1.13) 17.64(2.68) 7.60(2.39) 0.00(0.00)

Rnd-1 0.00(0.00) 0.02(0.14) 0.00(0.00) 0.06(0.23) 0.00(0.00) 0.00(0.00)
Rnd-2 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)
Rnd-3 0.32(0.47) 0.50(0.51) 0.30(0.47) 1.10(0.76) 0.32(0.47) 0.00(0.00)
Rnd-4 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)
Rnd-5 0.55(0.51) 0.50(0.51) 0.64(0.48) 1.04(0.56) 0.74(0.44) 0.02(0.14)
Rnd-6 0.60(0.59) 1.15(0.74) 0.94(0.84) 1.34(0.93) 0.94(0.73) 0.04(0.19)
Rnd-7 1.50(1.23) 1.00(0.32) 0.35(0.48) 2.22(0.95) 1.48(0.93) 0.00(0.00)
Rnd-8 0.16(0.37) 0.90(0.44) 0.35(0.48) 1.24(0.74) 0.20(0.40) 0.00(0.00)

 

The computational time is of vital importance for evaluating an algorithm. Table 

4.10 illustrates that cGA-3 spends less time than QEA, sGA-1 and sGA-2 on all networks 

and sometimes the time reduction can be substantial. For example, in the case of 31-copy 

network, the average computational time of cGA-3 is around 30 sec, which is 
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significantly shorter than 3993 sec by QEA and 2406 sec by sGA-1. This demonstrates 

that, integrated with intelligent schemes, our proposed cGA consumes less computational 

time while obtaining better solutions compared with the existing algorithms. The reason 

for cGA-3 consuming less computational time is that the number of fitness evaluations is 

far reduced as it only produces one individual at each generation. Although more time 

may be spent in the local search procedure, the high quality solutions found by the 

L-operator and the less number of fitness evaluations can well compromise and lead to 

less computational expenses. 

 

Table 4. 9  Comparisons of Average Termination Generation (Best Results are in Bold) 

Scenarios QEA sGA-1 sGA-2 cGA-1 cGA-2 cGA-3 
7-copy 301.2 289.6 228.3 328.9 233.6 0.0 

15-copy 500.0 500.0 458.2 500.0 497.5 0.0 
31-copy 1000.0 1000.0 1000.0 1000.0 1000.0 0.0 

Rnd-1 9.7 66.7 85.3 60.5 33.7 0.0 
Rnd-2 6.5 51.5 44.7 34.0 46.2 19.5 
Rnd-3 225.0 398.1 338.6 405.4 309.8 72.2 
Rnd-4 7.4 32.0 36.8 29.0 32.0 0.0 
Rnd-5 349.4 355.6 393.3 443.3 420.6 152.34 
Rnd-6 338.6 457.7 436.4 435.4 425.6 136.3 
Rnd-7 832.2 989.9 755.0 982.5 924.1 183.2 
Rnd-8 300.5 891.5 753.1 875.9 507.4 114.1 

 

Table 4. 10  Comparisons of Average Computational Time (sec.)  

Scenarios QEA sGA-1 sGA-2 cGA-1 cGA-2 cGA-3 
7-copy 25.15 14.14 16.82 3.06 1.38 0.11 

15-copy 195.57 112.68 158.24 23.03 16.28 2.04 
31-copy 3903.5 436.85 2406.2 399.05 269.71 28.32 

Rnd-1 0.51 3.40 6.22 0.35 0.10 0.06 
Rnd-2 0.62 2.26 3.25 0.15 0.15 0.16 
Rnd-3 27.97 31.55 31.74 5.17 2.56 3.60 
Rnd-4 0.68 2.58 3.37 0.09 0.11 0.04 
Rnd-5 56.73 41.72 57.69 7.39 4.64 9.33 
Rnd-6 75.20 63.83 78.14 10.77 8.14 16.90 
Rnd-7 292.28 272.79 225.32 43.05 36.61 46.00 
Rnd-8 120.90 224.23 229.32 37.83 14.35 22.83 

 

In summary, with regard to the successful ratio, the average best fitness and standard 

deviation, the average termination generation and the average computational time, cGA 

with the three improvement schemes outperforms all other opponents. 
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4.2.3  Summary of the Algorithm 

This section presents a novel compact genetic algorithm (cGA) for addressing the 

NCRM problem. As discussed in Section 4.1, the proposed PBIL consumes plenty of 

computational time in some network instances. This may restrict its application in real 

communications networks, which is the motivation of the work in this section. There are 

three improvements in the developed cGA. The first one is to set the initial elite 

individual as an all-one solution, which not only makes sure that cGA starts with a 

feasible solution but also gradually tunes the PV such that feasible solutions appear with 

increasingly higher probabilities. This scheme is important to locate feasible regions for 

cGA at the beginning of the evolution. The second improvement is to reset the PV once 

the current elite solution dominates in a predefined number of consecutive generations 

(denoted by gc). It avoids cGA getting stuck at local optima, hence being able to improve 

the global exploration capability of cGA. The parameter gc needs to be set properly so 

that cGA can locate different promising regions during the search. Besides, a wide range 

of values are suitable for gc. Hence the selection of an appropriate value for gc is easier 

than the selection of threshold value in the entropy-based restart scheme. As the cGA 

produces only one solution at each generation, it is necessary to make use of each 

feasible solution generated. The third improvement is a local search operator (L-operator) 

exploring the secondary graph of each feasible solution so as to improve the quality of 

the NCM subgraph. L-operator gains decent performance on networks in which there are 

sufficient number of alternative paths diverting the incoming traffic of merging nodes. 

The second and third improvements are proposed for the first time. In particular, the third 

improvement is the very first attempt to incorperate problem-specific domain knowledge 

into the evolution to facilitate the local exploitation ability of EAs for solving the NCRM 

problem. The three improvements, when employed together, can significantly improve 

the performance of the standard cGA. Compared with the existing EAs and PBIL (see 

Section 4.1), the proposed cGA gains better overall optimization performance with lower 

computational expenses. This is important since a lower computational time may offer a 

possibility of applying our cGA to real-time and dynamic communications networks.  

This work has been published at Applied Intelligence (Xing and Qu, 2012). 
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4.3  Path-Oriented Encoding Evolutionary Algorithm 

As reviewed in Section 3.3, all existing EAs for the NCRM problem adopt BLS or 

BTS encoding to represent chromosomes. Also, the proposed PBIL and cGA are based 

on BLS encoding (see Section 4.1 and 4.2). However, using BLS or BTS encoding has 

two disadvantages. First, the search space contains too many infeasible solutions. The 

following explains why. Merging nodes are usually placed at key positions of a network, 

responsible for switching and diverting flows (see Subsection 3.1.2). If all merging nodes 

are deactivated, it is highly likely to lead to an infeasible NCM subgraph due to the 

violation of the data rate restriction. As stated in Subsection 3.4, how flows passing 

through merging nodes is determined by the states of the incoming auxiliary links of 

secondary graph GS. If many incoming auxiliary links are inactive in GS (i.e. many 0’s in 

chromosome), an infeasible solution is very likely to appear. This is why the search space 

contains too many infeasible solutions (Section 4.3.2.1 demonstrate this finding). 

Infeasible solutions may disconnect feasible areas in the search space and dramatically 

increase the difficulty of finding an optimal solution by EAs. Second, the evaluation of 

BLS and BTS is complex and indirect, requiring a number of processing steps, i.e. 

chromosome X  GS  d max-flows (d sets of link-disjoint paths)  f(X) (see 

Subsection 3.5.3). Meanwhile, the computational overhead of the evaluation is relatively 

high since d max-flows have to be computed for each chromosome. The two drawbacks 

above motivate us to explore an alternative encoding to represent the solutions to the 

NCRM problem. 

In telecommunications, EAs are widely used as an optimizer to select appropriate 

routes within limited time. When designing EAs, path-oriented encoding is a direct and 

natural choice since routing itself is the process of selecting paths in a network along 

which the traffic is delivered. In the literature, path-oriented encoding has been adopted 

by EAs for solving shortest path routing and multicast routing problems. A number of 

GAs (Ahn and Ramakrishna, 2002; Cheng and Yang, 2010; Yang et al, 2010a) have been 

employed to find the cost-optimal path connecting the given source and receiver. Each 

chromosome is represented by a path containing a string of IDs of nodes through which 

the path passes. Also, EAs have been used to construct least-cost spanning trees, where 
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each chromosome is represented by a set of paths from the source to receivers (Palmer 

and Kershenbaum, 1994; Siregar et al, 2005; Oh et al, 2006; Cheng and Yang, 2008, 

2010b). Similar to constructing a spanning tree, NCM finds a routing subgraph which 

owns multiple paths. Hence, path-oriented encoding could be a potential choice as the 

chromosome representation to the NCRM problem. However, to our knowledge no 

research in the literature concerns path-oriented encoding for the problem concerned. 

On the other hand, a NCM subgraph is different from a spanning tree. In a spanning 

tree, there is a single path connecting the source and each receiver; while in a NCM 

subgraph there are multiple link-disjoint paths (i.e. paths without common link) between 

the source and each receiver. In addition, the same data flow is transmitted through the 

spanning tree; while different data flows pass through different areas of the NCM 

subgraph. So, when designing path-oriented encoding for our problem, one should 

carefully design the associated genetic operators according to the characteristics of NCM 

subgraphs. 

In this section, we propose an EA using path-oriented encoding (denoted by pEA) to 

address the NCRM problem. Our contribution is summarized as below. 

 A path-oriented encoding scheme. In this scheme, a chromosome is comprised 

of d basic units (BUs), where d is the number of receivers. Each BU consists of 

a set of link-disjoint paths connecting the source and a certain receiver (see 

Section 4.3.1.1). This encoding is, for the first time, used to adapt for the NCRM 

problem. 

 The associated genetic operators. We develop three genetic operators, namely 

initialization, crossover and mutation based on the path-oriented encoding. In 

the initialization, an allelic BU pool is generated for each receiver. Then, each 

chromosome of the population is created by randomly selecting one BU for each 

receiver. To explore the search space we use a single-point crossover which 

operates upon BUs. Mutation is performed on selected BUs, where the mutation 

probability is associated with the number of receivers. The design of the above 

operators takes into account the features of the NCRM problem. 

 A problem-specific local search operator. Different from the one developed 

for cGA (see Section 4.2.1.3), this operator is designed for the path-oriented 



Chapter 4                                                       EAs for the NCRM Problem 

 101

encoding and aims to revise BUs to avoid performing coding operations. It helps 

to improve solution quality and avoid prematurity. The new operator is proposed 

for the first time. 

4.3.1  Algorithm Design 

We first describe the new encoding approach and its evaluation procedure. After that, 

we introduce other necessary components, namely initialization, crossover, mutation and 

local search operator. Finally, the overall procedure of pEA is given. 

 

4.3.1.1  The Path-Oriented Encoding and Evaluation 

We adopt the path-oriented encoding in pEA. Each chromosome consists of a set of 

paths originating from the source and terminating at one of the receivers. Each path is 

encoded as a string of positive integers representing the IDs of nodes through which the 

path passes. The set of paths is classified into d subsets, i.e. d basic unit (BU), where 

paths in BU connect to the same receiver and they do not share any common link (i.e. 

they are link-disjoint). Besides, there are R paths in each BU, where R is the expected 

data rate. Each chromosome is feasible since each BU of the chromosome satisfies the 

data rate requirement. Each BU can be easily obtained by max-flow algorithms. For 

example, we find a NCM subgraph from Figure 4.2(b) which consists of four paths, as 

shown below. 

P1(s,t1) = s→a→t1; P2(s,t1) = s→b→u2→w1→c→u3→w3→t1; 

P1(s,t2) = s→a→u1→w1→c→u3→w4→t2; P2(s,t2) = s→b→t2; 

The corresponding chromosome is illustrated in Figure 4.7. 

 
Figure 4. 7  An example chromosome. 

 
Based on the path-oriented encoding, the evaluation of a chromosome is simple. For 

chromosome X, the union of all paths in X forms the corresponding NCM subgraph. The 
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fitness of X, f(X), is the number of coding links used in the NCM subgraph. So, the 

computation complexity here is significantly lower than that of BLS and BTS encodings 

since the latter has to compute multiple max-flows. 

Compared with BLS and BTS, path-oriented encoding has two advantages. First, all 

solutions in the search space are feasible, which leads to a globally connected search 

space. Hence, the new encoding fundamentally resolves the infeasibility problem caused 

by BLS and BTS encodings. Second, the evaluation procedure of the new encoding is 

less time-consuming than that of BLS and BTS. 

 

4.3.1.2  Initialization 

It is widely recognized that, for EAs, a good initial population is more likely to lead 

to a better optimization result. For the proposed algorithm, we initialize the population in 

the following way. First, we create an allelic BU pool (pool-i) for each receiver ti, where 

i = 1,…,d. Second, we randomly choose one BU from pool-i, i = 1,…,d, and combine the 

selected BUs as a chromosome. The second step is repeated to create a population of a 

predefined size.  

Let N be the population size of the algorithm. Let GD be the decomposed graph after 

graph decomposition (see Subsection 3.2.3). Note that in pEA we operate on the 

decomposed graph instead of the secondary graph. Let R denote the expected data rate 

and hence each BU contains R link-disjoint paths. Let Flow(s,ti) and Vol(s,ti) be the 

max-flow (made of link-disjoint paths) and its volume from s to receiver ti, respectively. 

The max-flow algorithm (Goldberg, 1985) is used to calculate Flow(s,ti) and Vol(s,ti). 

Figure 4.8 shows the initialization procedure in our EA.  

For a specific graph Gtemp, only one BU can be obtained by the max-flow algorithm. 

To obtain an allelic BU pool for receiver ti, we have to change the structure of Gtemp by 

deleting different links from GD at each time. As aforementioned, how the information 

flows pass through a particular merging node is dependent on the states of the auxiliary 

links in the node, and how the information flows pass through a network depends on the 

states of all auxiliary links in the network. So, only auxiliary links are considered for 

deletion in pEA. To generate a new BU for receiver ti, we randomly pick up a BU from 

pool-i and randomly select an auxiliary link owned by the BU, as shown in steps 9 and 
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10. The selected link is then removed from Gtemp to make sure the new Gtemp is a different 

graph, in step 11. 

 

     // Generation of BU pools   
1.   for i = 1 to d do 

2.      Set Gtemp = GD and pool-i =  

3.      for j = 1 to pop do 
3.         Find Flow(s,ti) from Gtemp by the max-flow algorithm (Goldberg, 1985) 

4.         if Vol(s,ti)  R then 

5.            Randomly select R paths from Flow(s,ti) as a new BU 
6.            if the new BU is not in pool-i then 
7.               Put this BU into pool-i 
8.         Set Gtemp = GD 
9.         Randomly select a BU (with at least one auxiliary link) from pool-i 
10.        Randomly choose an auxiliary link owned by the selected BU 
11.        Delete this auxiliary link from Gtemp 
     // Generation of the population 
12.  for j = 1 to N do 
13.     for i = 1 to N do 
14.        Randomly select a BU from pool-i 
15.        Include the BU in the j-th chromosome 
16.  Output the initial population 

Figure 4. 8  The procedure of initialization 

 

4.3.1.3  Crossover 

In pEA, we use single-point crossover to each pair of selected chromosomes with a 

crossover probability pc. As aforementioned, there are d BUs in a chromosome. The 

crossover point is randomly chosen from the (d – 1) positions between two consecutive 

BUs. Two offspring are created by swapping the BUs of the two parents behind the 

crossover point. The proposed crossover does not destroy the structure of any BU. So, 

after crossover, the offspring are still feasible to warrantee a connected search space. An 

example crossover operation is illustrated in Figure 4.9, where each parent consists of 

four BUs and the crossover point is between the second and third BUs.  
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Figure 4. 9  An example of the crossover operator. 

 

4.3.1.4  Mutation 

Mutation is another important genetic operator to help the local exploitation and 

avoid the prematurity of EAs. As aforementioned, each BU is a set of R link-disjoint 

paths from the source to a particular receiver. Mutation upon a BU leads to another set of 

R link-disjoint paths. The idea behind the mutation is that some auxiliary links owned by 

the chosen BU are deleted from the decomposed graph GD. Then, a new BU is generated 

by implementing the max-flow algorithm on the new GD. We propose a mutation 

operator, where each BU of a chromosome is to be mutated at a mutation probability pm. 

We only concern the removal of auxiliary links since they determine the amount of 

coding resources required.  

In the mutation, for a chosen BU, we randomly select an auxiliary link owned by the 

BU and delete the link from the decomposed graph GD. This is to make sure a different 

BU can be reconstructed. Besides, we also delete those unoccupied auxiliary links which 

connect to one of the outgoing auxiliary nodes being occupied by the remaining (d – 1) 

BUs, to ensure that no additional coding links are introduced after implementing M. 

After that, we compute the max-flow, i.e. Flow(s,ti), by using the max-flow algorithm on 

GD (Goldberg, 1985). If the volume of Flow(s,ti), namely Vol(s,ti), is no smaller than the 

expected data rate R, a new BU can be obtained by randomly selecting R paths in 

Flow(s,ti). The new BU then replaces the old BU. If Vol(s,ti) is smaller than R, the data 

rate requirement cannot be met and the old BU remains.  

The procedure of the proposed mutation is shown in Figure 4.10, where rnd() is a 

function that generates a uniformly distributed random value in the range [0,1]. One 

advantage of the mutaiton is that the fitness value of a chromosome tends to be smaller 

after mutation.  
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1.  for j = 1 to N do 
2.     for i = 1 to d do 
3.        if rnd() < pm then  
             // the i-th BU of the j-th chromosome is chosen 
4.           Set Gtemp = GD; 
5.           if the i-th BU owns at least one auxiliary link then 
6.              Randomly select an auxiliary link owned by the i-th BU; 
7.              Delete the link from Gtemp; 
8.              Delete those unoccupied auxiliary links connecting to one of the 

outgoing auxiliary nodes being occupied by the remaining BUs; 
9.              Find Flow(s,ti) from Gtemp using the max-flow algorithm; 

10.             if Vol(s,ti)  R then 

11.                Randomly select R paths from Flow(s,ti) and replace the old BU 
                   with them; 
12. Output the mutated population. 

Figure 4. 10  The procedure of the proposed mutation. 

 

Regarding the mutation probability pm, a fixed value may not be a wise choice since 

the number of BUs in a chromosome changes according to d, i.e. the number of receivers 

in different multicast scenarios. A fixed pm, e.g. 0.1, could lead to a dramatically different 

number of mutation operations during the evolution, thus is not generally applicable to 

different NCM sessions. In pEA, we set pm = 1/d, thus the amount of mutation operations 

involved does not change too much in different NCM sessions, and more likely to lead to 

a stable optimization performance of EA. 

 

4.3.1.5  The Local Search Operator 

As introduced in Section 4.2.1.3, a local search operator (L-operator) is developed to 

improve the NCM subgraph of each feasible solution. This operator makes use of domain 

knowledge to reduce the number of coding operations involved in the NCM subgraph in 

order to improve the quality of solutions of each generation. When incorporated in cGA, 

L-operator helps to greatly strengthen the local exploitation ability and hence the overall 

optimization performance of cGA (see Section 4.2.2.3). This indicates the importance of 

combining pure evolutionary framework and local search procedures. As it is developed 
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for BLS/BTS encoding, L-operator is not suitable for path-oriented encoding which is 

composed of BUs. This motivates us to design an appropriate local search operator for 

the proposed EA, taking the features of the new encoding into account.  

This section proposes a local search (LS) operator which is performed on a randomly 

selected chromosome at each generation.  

The aim of this operator is to revise some BUs of the selected chromosome to 

gradually reduce the number of coding links involved in a multicast. Note that each 

outgoing link of a merging node is redirected to an outgoing auxiliary node after the 

graph decomposition, as discussed in Subsection 3.2.3. So in a NCM subgraph, each 

coding link corresponds to a certain coding node (i.e. an outgoing auxiliary node that 

performs coding). In GD, to reduce the number of coding nodes is equal to decrease the 

number of coding links. Assume there is a chromosome X of which the NCM subgraph 

contains K coding nodes, where K is an integer. The LS operator aims to remove the 

occurrence of coding operation at each coding node. The K coding nodes will be 

processed one by one, in an ascending order according to their node IDs.  

Assume the k-th coding node (denoted by vk, k = 1, 2, …, K) is to be processed by 

the LS operator and there are In(vk) auxiliary links connecting to vk in the NCM subgraph, 

meaning information via these links is involved in the coding at vk. To remove the coding 

from vk, one simple idea is to delete arbitrarily In(vk) – 1 auxiliary links from the NCM 

subgraph. However, directly removing these links leads to an infeasible X since those 

BUs which occupy these In(vk) – 1 links will be damaged. To overcome this problem, our 

LS operator reconstructs the affected BUs so that they bypass the use of the In(vk) – 1 

auxiliary links mentioned above, explained as follows.  

First of all, we randomly select In(vk) – 1 auxiliary links connecting to vk and check 

which BUs are occupying these links. The affected BUs will be reconstructed, while the 

others remain in the NCM subgraph. Next, we delete the selected In(vk) – 1 auxiliary 

links from the decomposed graph GD. Besides, we also delete those currently unoccupied 

auxiliary links from GD which connect to one of the outgoing auxiliary nodes being 

occupied by the unaffected BUs. The reason to remove those unoccupied auxiliary links 

is that we expect to eliminate the chance of removing one coding node at the expense of 

introducing other coding node(s). Finally, we reconstruct the affected BUs by using the 
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max-flow algorithm over GD. If all affected BUs are successfully constructed, we obtain 

a new chromosome Xnew. If Xnew owns less coding links than X, we replace the 

incumbent X with Xnew (i.e. the LS moves to an improved solution Xnew) and repeat the 

LS operator to improve the new incumbent Xnew. Otherwise, we retain X and proceed to 

the next coding node of X. The LS operator stops when either no improvement is made 

to the incumbent chromosome after checking all its coding nodes, or a new chromosome 

with no coding involved (i.e. optimal) is found. 

The LS operator is useful to improve the quality of the selected chromosome. Also, 

it changes the structure of the chromosome. Sometimes the changes can be significant, 

meaning the new chromosome may be far away from the original one in the search space. 

Hence, the new chromosome may help to increase the population diversity (see Section 

4.3.2.6). 

 

4.3.1.6  The Overall Procedure of the Proposed EA 

 

1.  Initialization 
2.     Set t = 0; 
3.     Initialize population {X1(t), …, XN(t)} by the proposed initialization operator; 
4.     Evaluate each chromosome Xi(t), i = 1,…, N; 
5.     Randomly select one chromosome and perform LS operator on it; 
6.  Repeat 
7.     Set t = t + 1; 
8.     Select a new population {X1(t), …, XN(t)} by the tournament selection; 
9.     Replace a random chromosome with the best chromosome of the previous 
       generation, e.g. Xbest(t − 1); 
10.    Execute crossover to each pair of selected chromosomes with probability pc;  
11.    Execute mutation to each BU of each chromosome with probability pm;  
12.    Evaluate each chromosome Xi(t), i = 1,…, N; 
13.    Randomly select one chromosome and perform the LS operator on it;  
14. until the termination condition is met 

Figure 4. 11  The procedure of pEA (a standard EA framework). 

 

Based on the path-oriented encoding, we develop an EA for solving the NCRM 

problem. To efficiently drive the evolution, we design the associated genetic operators as 
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explained above concerning characteristics of the problem concerned. The procedure of 

pEA is shown in Figure 4.11. Note that pEA is a standard EA with specialized encoding. 

The evaluation of chromosome Xi(t) (in step 4) is simple. We mark those nodes and 

links in GD which are being occupied by at least one of the BUs in Xi(t). The union of the 

marked nodes and links in GD forms the NCM subgraph Gs→T of Xi(t). The number of 

coding links in Gs→T, (Gs→T), is assigned to Xi(t) as its fitness.  

In step 8, tournament selection (Mitchell, 1996) is adopted in pEA. The tournament 

size is set to 2. In step 9, the elitism scheme is used to preserve the best chromosome of 

previous generations, which helps to guide the search towards global optima. In step 11, 

either ordinary mutation or greedy mutation can be used. The termination conditions are, 

either the EA has found a chromosome of which the NCM subgraph is coding-free, or 

EA has evolved a predefined number of generations. 

 

4.3.2  Performance Evaluation 

We first investigate the deficiency of BLS and BTS encodings in terms of the 

distribution of infeasible solutions over search space. After that we study the 

effectiveness of the crossover and mutation operators of pEA, and compare EAs with 

path-oriented, BLS and BTS encodings. The LS operator is studied next. Finally, we 

compare pEA with the state-of-the-art EAs and hEA (see Subsection 4.3.1) in terms of 

optimization performance and computational time. 

We consider 14 different test instances, four on fixed networks and 10 on randomly 

generated networks. The four fixed networks are 3-copy, 7-copy, 15-copy and 31-copy 

networks and the 10 random networks (Rnd-i, i = 1,…,10) are directed networks with 20 

to 60 nodes. Table 4.11 shows the 14 instances and their parameters (see Subsection 

3.5.1 for details). The predefined number of generations for all algorithms tested is set to 

200. All experiments were run on a Windows XP computer with Intel(R) Core(TM)2 

Duo CPU E8400 3.0GHz, 2G RAM. The results were collected by running each 

algorithm 50 times. 
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Table 4. 11  Experimental Networks and Instance Parameters 

Network nodes links sinks rate L
3-copy 25 36 4 2 32
7-copy 57 84 8 2 80

15-copy 121 180 16 2 176
31-copy 249 372 32 2 368

Rnd-1 20 37 5 3 43
Rnd-2 20 39 5 3 50
Rnd-3 30 60 6 3 86
Rnd-4 30 69 6 3 112
Rnd-5 40 78 9 3 106
Rnd-6 40 85 9 4 64
Rnd-7 50 101 8 3 145
Rnd-8 50 118 10 4 189
Rnd-9 60 150 11 5 235

Rnd-10 60 156 10 4 297
Note: L: the encoding length of individuals 

 

4.3.2.1  Deficiency of BLS and BTS encodings 

Using different encoding approaches may greatly affect the performance of EAs 

(Mitchell, 1996). The resulting search spaces might be significantly different with respect 

to not only the size but also the structure and connectivity of the underlying landscape. 

As discussed in Section 4.3, in theory, the search space of BLS or BTS encoding may 

contain many infeasible solutions which may disconnect feasible regions in the search 

space. The connectivity between feasible solutions may be so weak that EAs finding 

optimal solution(s) becomes extremely difficult.  

We roughly estimate the proportion of infeasible solutions by randomly sampling the 

search space. In our experiment, the sampling size is in proportion to the encoding length 

L of each instance, namely 100·L (Xu and Qu, 2012). The larger the problem size, the 

larger the sampling size. For example, the sampling size is 3,200 in 3-copy instance and 

29,700 in Rnd-10 instance, respectively. Table 4.12 shows the results of the proportion of 

infeasible solutions (PIS) of the three encodings. Regarding the BLS and BTS encodings, 

the PIS values are more than 99% in all instances (see columns BLS, BTS). In particular, 

in 7-copy, 15-copy, 31-copy and Rnd-5,7,8,9,10, the PISs are always 100%, meaning 

that all random samples are infeasible solutions (see rows 7,15,31-copy, Rnd-5,7,8,9,10, 

columns BLS, BTS). Large amount of infeasible solutions may disconnect feasible 

regions in the search space and dramatically increase the problem difficulty for search 

algorithms. Hence, BLS and BTS encodings may not be appropriate choices for the 
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optimization problem concerned. On the other hand, path-oriented encoding results into 

0% PIS, meaning that all samples are feasible (see column Path-Oriented). This is not a 

surprise because in theory the search space of the path-oriented encoding only contains 

feasible solutions (see Section 4.3.1.1). 

 

Table 4. 12  Comparison of PIS (%) of the BLS, BTS and Path-oriented encodings 

(Best Results are in Bold) 

Networks BLS BTS 
Path- 

Oriented
Networks BLS BTS 

Path- 
Oriented 

3-copy 99.84 99.75 0.00 Rnd-4 99.77 99.33 0.00 
7-copy 100.00 100.00 0.00 Rnd-5 100.00 100.00 0.00 

15-copy 100.00 100.00 0.00 Rnd-6 99.98 99.90 0.00 
31-copy 100.00 100.00 0.00 Rnd-7 100.00 100.00 0.00 

Rnd-1 99.53 99.13 0.00 Rnd-8 100.00 100.00 0.00 
Rnd-2 99.98 99.98 0.00 Rnd-9 100.00 100.00 0.00 
Rnd-3 99.88 99.89 0.00 Rnd-10 100.00 100.00 0.00 

 

4.3.2.2  Performance Measures 

To show the performance of pEA in various aspects, such as the optimal solution 

obtained, the convergence characteristic, and the consumed running time, the following 

performance metrics are used. 

 Mean and standard deviation (SD) of the best solutions found over 50 runs. One 

best solution is obtained in one run. The mean and SD are important metrics to 

show the overall performance of a search algorithm. 

 Student’s t-test (Walpole et al, 2007; Yang and Yao, 2008) to compare two 

algorithms (e.g. Alg-1 and Alg-2) in terms of the fitness values of the 50 best 

solutions obtained. Two-tailed t-test with 98 degrees of freedom at a 0.05 level 

of significance is used. The t-test result can show statistically if the performance 

of Alg-1 is better than, worse than, or equivalent to that of Alg-2. 

 Successful ratio of finding an optimal solution in 50 runs. This metric reflects 

the global exploration ability of an EA to find optimality. 

 Evolution of the best fitness over generations in 50 runs. The plot of the 

evolution illustrates the convergence process of an algorithm. 

 Average computational time consumed by an algorithm over 50 runs.  
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4.3.2.3  The Effectiveness of Crossover in pEA 

As mentioned in Section 4.3.1.3, a single-point crossover is developed for pEA. We 

investigate the feasibility of this operator and the impact of different settings of the 

crossover probability pc on the performance of pEA. Mutation and LS operator is 

excluded in pEA in this experiment. We set the population size N = 20 and compare the 

performance of pEA with four different pc, i.e. 0.0, 0.3, 0.6, and 0.9, where pc = 0.0 

means the algorithm stops after initialization since crossover is not involved. By 

comparing the results of different pc and those of pc = 0.0, one could see the effectiveness 

of crossover itself. 

 

Table 4. 13  Comparisons of pEA with Different Crossover Probabilities (Best Results 

are in Bold) 

Networks 
pc = 0.0 pc = 0.3 pc = 0.6 pc = 0.9 

Mean SD Mean SD Mean SD Mean SD 
3-copy 2.84 0.37 1.70 0.61 1.32 0.51 1.08 0.27 
7-copy 9.58 1.45 7.64 1.43 6.78 1.35 6.16 1.23 

15-copy 22.88 0.47 20.68 1.92 19.74 2.00 17.54 1.98 
31-copy 46.94 0.42 45.32 1.89 44.72 1.79 43.20 2.26 

Rnd-1 2.44 0.64 1.70 0.64 1.18 0.66 0.96 0.66 
Rnd-2 0.62 0.56 0.12 0.32 0.04 0.19 0.02 0.14 
Rnd-3 2.64 0.56 1.86 0.70 1.40 0.72 1.22 0.64 
Rnd-4 0.72 0.45 0.38 0.49 0.22 0.41 0.10 0.30 
Rnd-5 7.58 0.81 5.60 1.08 5.06 1.13 4.46 1.32 
Rnd-6 0.40 0.49 0.00 0.00 0.00 0.00 0.00 0.00 
Rnd-7 3.86 1.01 3.06 0.79 2.96 1.02 2.34 0.77 
Rnd-8 6.84 0.42 5.76 1.04 5.28 1.10 4.64 1.10 
Rnd-9 6.00 0.00 5.42 0.67 5.14 0.63 4.98 0.58 

Rnd-10 7.94 1.39 6.40 1.22 5.54 1.51 5.18 1.17 
 

The results of the mean and SD of the obtained best fitness values are shown in 

Table 4.13. It can be seen that pEA with crossover performs better than pEA without 

crossover in each instance, indicating crossover can properly drive the evolution process 

(compare Mean of pc = 0.0 and Mean of pc = 0.3, 0.6, 0.9 in the same row). Besides, we 

find that with larger pc the mean becomes increasingly better (compare Mean of pc = 0.3, 

0.6, 0.9 in the same row). The variant of pEA with pc = 0.9 performs the best, showing 

that rapid exchange of genetic information over different chromosomes helps to explore 

different areas in the search space. However, one can also find that there remain big gaps 
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between the best solutions obtained by pEA with only crossover and the optimal 

solutions (with fitness values of 0.00) in each instance. This is mainly because employing 

crossover only is not enough to guide pEA to escape from local optima. We therefore 

need mutation to enhance local exploitation and avoid prematurity. 

 

4.3.2.4  The Effectiveness of Mutation in pEA 

As introduced in Section 4.3.1.4., we design a mutation operator with probability pm 

= 1/d, where d is the number of receivers. To mutate a BU, the mutation operator deletes 

a random auxiliary link of the BU and a number of unoccupied auxiliary links from GD. 

The removal of the random link is to make sure that the mutated BU is different from the 

old one. The removal of those unoccupied links is to ensure no extra coding link will be 

introduced after mutation. In the following experiment, we study the performance of pEA 

with the proposed crossover and mutation. The mutation probability pm is set to 2/d, 1/d, 

and 0.5/d. Let In the experiment, LS operator is excluded. We set N = 20 and pc = 0.9. 

 

Table 4. 14  Comparison of pEA with Different Mutation Probabilities (Best Results are 

in Bold) 

Networks 
pm = 2/d pm = 1/d pm = 0.5/d

Mean SD Mean SD Mean SD 
3-copy 0.04 0.19 0.14 0.35 0.26 0.44 
7-copy 1.26 0.59 1.64 0.80 1.94 0.79 

15-copy 5.72 1.22 6.04 0.92 6.68 0.84 
31-copy 17.60 1.50 18.20 1.19 18.30 1.55 

Rnd-1 0.00 0.00 0.04 0.19 0.06 0.23 
Rnd-2 0.00 0.00 0.00 0.00 0.00 0.00 
Rnd-3 0.00 0.00 0.04 0.19 0.02 0.14 
Rnd-4 0.00 0.00 0.00 0.00 0.00 0.00 
Rnd-5 0.00 0.00 0.02 0.14 0.12 0.32 
Rnd-6 0.00 0.00 0.00 0.00 0.00 0.00 
Rnd-7 0.12 0.32 0.34 0.47 0.56 0.50 
Rnd-8 0.02 0.14 0.04 0.19 0.30 0.46 
Rnd-9 0.80 0.40 0.86 0.35 0.94 0.23 

Rnd-10 0.00 0.00 0.00 0.00 0.06 0.23 
 

Table 4.14 shows the results of mean and SD of the obtained best fitness values by 

pEA with different pm. We find that the mean is getting better and better with pm 

changing from 0.5/d to 2/d (compare columns Mean in the same row). This is because 

the mutation operator ensures that the rebuilt BU does not increase the number of coding 
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operations to the corresponding chromosome. On the contrary, it is quite possible that 

coding at one or several nodes of a chromosome is eliminated after mutation. Hence, 

imposing reasonably more mutation operations to the evolving population is more likely 

to obtain a better optimization performance of pEA. 

To further support our findings, we compare pEA with different pm by using t-test. 

Results are given in Table 4.15. pEA with a larger pm performs better than pEA with a 

smaller pm. However, their performance does not differ too much. For example, between 

2/d and 1/d, the former only wins 2 instances (see column 2/d↔1/d). 

 
Table 4. 15  t-Test Results for pEA with Different Mutation Probabilities 

Networks 2/d↔1/d 2/d↔0.5/d 1/d↔0.5/d 
3-copy   
7-copy   

15-copy   
31-copy   

Rnd-1   
Rnd-2   
Rnd-3   
Rnd-4   
Rnd-5   
Rnd-6   
Rnd-7   
Rnd-8   
Rnd-9   

Rnd-10   
Note: the result of pm1 ↔ pm2 is shown as “+”, “”, or “~” when pEA with pm1 is significantly better than, 
significantly worse than, or statistically equivalent to pEA with pm2, respectively. 
 
4.3.2.5  Comparisons of Different Encoding Approaches 

This subsection compares three EAs, namely pEA, GA with BLS encoding (BLSGA) 

and GA with BTS encoding (BTSGA). For BLS and BTS encoding approaches please 

see (Kim et al, 2007b) and Section 3.5 for details. Note that an all-one vector is inserted 

into the initial population of BLSGA and BTSGA to make sure they begin with at least 

one feasible solution; otherwise, the two GAs may never converge since no feasible 

solution may be obtained during the search (Kim et al, 2007b). This has showed to be an 

effective method in previous work (Kim et al, 2007a, 2007b; Xing and Qu, 2011a, 2011b, 

2012). 
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The comparison is based on a standard GA framework, where genetic operators in 

each EA include selection, crossover and mutation. The population size is set to 20 for 

each algorithm. The parameter settings of the three GAs are listed in Table 4.16. 

 

Table 4. 16  Parameter Settings of BLSGA, BTSGA and pEA 

BLSGA BTSGA pEA 
pc = 0.8; 
pm = 0.006; 
tsize = 2; 

pc = 0.8; 
pm = 0.012; 
tsize = 2; 

pc = 0.9; 
pm = 1/d; 
tsize = 2; 

Note: pc: crossover probability; pm: mutation probability; tsize: tournament size. 
 

Table 4. 17  Comparisons of GA with Different Encodings (Best results are in bold) 

Networks 

Mean and Standard Deviation 
BLSGA BTSGA pEA 

Mean SD Mean SD Mean SD 
3-copy 0.46 1.01 0.74 1.20 0.14 0.35 
7-copy 3.82 4.26 3.86 3.93 1.64 0.80 

15-copy 7.92 5.64 11.92 6.00 6.04 0.92 
31-copy 37.60 9.19 43.22 4.47 18.20 1.19 

Rnd-1 0.96 1.29 1.00 1.48 0.04 0.19 
Rnd-2 0.44 0.83 0.38 0.75 0.00 0.00 
Rnd-3 0.40 0.98 0.66 1.20 0.04 0.19 
Rnd-4 0.28 0.45 0.08 0.27 0.00 0.00 
Rnd-5 2.98 4.01 4.22 4.70 0.02 0.14 
Rnd-6 0.42 0.81 0.36 0.77 0.00 0.00 
Rnd-7 2.14 1.95 2.72 2.16 0.34 0.47 
Rnd-8 3.04 1.94 3.88 1.96 0.04 0.19 
Rnd-9 3.68 1.40 4.24 1.59 0.86 0.35 

Rnd-10 3.52 3.40 3.76 3.50 0.00 0.00 

Networks 

Successful Ratio (%) Average Computational 
Time (sec.) 

BLSGA BTSGA pEA BLSGA BTSGA pEA 
3-copy 80 68 86 1.13 1.47 0.61 
7-copy 8 2 8 11.47 11.85 10.72 

15-copy 0 0 0 54.57 51.19 38.52 
31-copy 0 0 0 98.51 72.55 180.47 

Rnd-1 46 54 96 3.17 2.86 0.39 
Rnd-2 78 78 100 0.91 1.12 0.09 
Rnd-3 84 74 96 4.02 4.21 0.77 
Rnd-4 72 92 100 2.95 1.98 0.18 
Rnd-5 8 10 98 15.75 13.45 2.85 
Rnd-6 78 82 100 3.05 2.67 0.20 
Rnd-7 10 6 66 21.11 19.15 11.31 
Rnd-8 2 0 96 32.60 29.23 10.00 
Rnd-9 0 2 14 51.49 45.81 38.86 

Rnd-10 4 0 100 62.04 57.25 9.01 
 

The comparisons of EAs with different encodings are shown in Table 4.17, where 
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the mean and standard deviation of the obtained best fitness values, successful ratio and 

average computational time are given. In terms of the mean and SR, pEA outperforms 

BLSGA and BTSGA in all instances (compare columns Mean, SR in the same row). On 

the one hand, the search space of the path-oriented encoding is comprised of feasible 

solutions only. The developed genetic operators are devised in compliance with the 

nature of the new encoding and they also incorporate domain knowledge to facilitate the 

search. On the other hand, the search space of BLS/BTS contains too many infeasible 

solutions which are potential barriers against smooth search. Moreover, feasible solutions 

are not evenly distributed but more close to the all-one solution. However, the above 

characteristic has not been considered in the design of crossover and mutation in BLSGA 

and BTSGA (Kim et al, 2007b). Hence, pEA gains better optimization results than 

BLSGA and BTSGA. From Table 4.17, we also see that pEA consumes less average 

computational time than BLSGA and BTSGA in almost all instances except the 31-copy 

network. In addition, the t-test results comparing pEA, BLSGA and BTSGA are shown 

in Table 4.18. 

 

Table 4. 18  t-Test Comparison of Different GAs 

Networks pEABLSGA pEABTSGA Networks pEABLSGA pEABTSGA
3-copy   Rnd-4   
7-copy   Rnd-5   

15-copy   Rnd-6   
31-copy   Rnd-7   

Rnd-1   Rnd-8   
Rnd-2   Rnd-9   
Rnd-3   Rnd-10   

Note: the result of Algorithm1↔Algorithm2 is shown as “+”, “”, or “~” when Algorithm1 is significantly 
better than, significantly worse than, or statistically equivalent to Algorithm2, respectively. 

 

To show the convergence of the three EAs, we plot the evolution of the best fitness 

in each generation, averaged over 50 runs for two fixed and four random instances, as 

shown in Figure 4.12. First, we see that pEA always obtains better initial solutions than 

BLSGA and BTSGA. For example, in Figure 4.12(a), at the beginning of the evolution, 

the average best fitness for pEA is around 7 while those of BLSGA and BTSGA are both 

11. Moreover, we find that pEA converges fast especially in the early generations. For 

example, in Figure 4.12(a)-(b), pEA converges after around 10 and 25 generations. This 
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is an outstanding advantage especially in real-time and dynamic applications, where a 

decent solution should be found within limited time. 

 

 
                 (a) 7-copy                    (b) 15-copy 

 
                     (c) Rnd-4                      (d) Rnd-6 

 
              (e) Rnd-8                     (f) Rnd-10 

Figure 4. 12  Best fitness vs. generation for the following instances. (a) 7-copy (b) 

15-copy (c) Rnd-4 (d) Rnd-6 (e) Rnd-8 (f) Rnd-10 

 
According to the results and analysis above, we find that pEA is more efficient than 

BLSGA and BTSGA with respect to global optimization, convergence, and running time. 
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4.3.2.6  The Effectiveness of the LS Operator 

As discussed in Subsection 4.3.1.5, a LS operator is applied to a randomly chosen 

chromosome at each generation to improve solution regarding the fitness. To verify this 

operator, we generate five random chromosomes for each instance using the initialization 

method in Section 4.3.1.2. We apply the LS operator on each chromosome and compare 

the fitness values i.e. ФBEF and ФAFT, of the chromosome before and after implementing 

the LS operator. Let X and X denote the chromosome before and after the LS, and EA(X) 

and EA(X) be the set of auxiliary links owned by X and X, respectively. We define the 

structural difference coefficient (SDC) between X and X according to the Marczewski- 

Steinhaus concept of distance (Marczewski and Steinhaus, 1958), as follows: 
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The value of SDC is between 0.0 and 1.0, which tells us to what degree X and X are 

different, showing the effect of LS operator on the structure change of the solutions. A 

larger SDC indicates a severer structural change caused by the LS operator. 

 
Table 4. 19  Results of ФBEF, ФAFT and SDC before/after Implementing LS Operator 

Networks

Solution 1 Solution 2 Solution 3 Solution 4 Solution 5 
ΦBEF ΦAFT SDC 

(%) 
ΦBEF ΦAFT SDC 

(%) 
ΦBEF ΦAFT SDC 

(%) 
ΦBEF ΦAFT SDC 

(%) 
ΦBEF ΦAFT SDC 

(%) 
3-copy 3 0 54.5 4 0 20.0 3 0 30.0 5 0 36.3 6 0 50.0
7-copy 12 0 51.7 18 0 53.1 13 0 54.8 16 0 56.2 14 0 53.3

15-copy 30 0 54.5 35 0 56.3 27 0 54.5 29 0 55.2 40 0 52.8
31-copy 47 0 53.4 69 0 53.8 60 0 53.9 71 0 54.9 70 0 57.3

Rnd-1 4 2 36.0 5 3 17.3 2 0 30.0 7 3 26.9 6 1 38.4
Rnd-2 2 0 8.33 3 2 18.5 5 3 7.41 4 2 11.5 3 1 33.3
Rnd-3 3 0 38.8 3 0 19.3 5 1 34.1 7 0 45.2 6 0 50.0
Rnd-4 4 1 25.7 5 2 25.6 4 0 22.8 1 0 13.7 2 1 42.1
Rnd-5 12 7 20.0 9 3 17.8 11 3 21.8 8 4 23.6 10 2 39.6
Rnd-6 2 0 21.7 1 0 14.2 1 0 44.0 3 0 24.0 2 0 25.0
Rnd-7 8 4 20.0 6 2 28.3 4 1 10.2 9 3 13.5 6 5 8.33
Rnd-8 8 5 10.5 12 7 15.8 11 3 29.8 15 8 20.4 14 5 22.0
Rnd-9 13 7 15.7 18 5 21.7 8 4 12.3 14 4 19.7 12 7 15.9

Rnd-10 12 3 30.8 15 5 24.5 8 5 8.89 9 5 10.9 7 3 31.1
 

The experimental results of ФBEF, ФAFT and SDC are shown in Table 4.19. First, it is 

seen that ФAFT is significantly better than ФBEF, demonstrating that the LS operator can 

improve the quality of chromosomes (see ФBEF, ФAFT of the same solution). This is 
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because the LS operator is designed to reduce the number of coding operations in the 

NCM subgraph. It makes use of the domain knowledge to reconstruct BUs that cause 

coding operations (see Section 4.3.1.5). On the other hand, regarding the values of SDC 

in all instances, 32 chromosomes (45% of the 70 chromosomes) are at least 30% 

different on the structure, meaning the LS operator may also help to introduce additional 

diversity to the population (see columns SDC). This is because the BU reconstruction 

process causes the structural change of a chromosome. The more BUs reconstructed, the 

severer the structural change. 

 

4.3.2.7  Overall performance Evaluation 

In this section, we evaluate the overall performance of pEA by comparing it with six 

algorithms. The following explains the algorithms for comparison. 

 GA1: BLS based GA with greedy sweep operator (Kim et al, 2007b).  

 GA2: BTS based GA with greedy sweep operator (Kim et al, 2007b).  

 QEA1: A quantum-inspired evolutionary algorithm (QEA) (Xing et al, 2010).  

 QEA2: Another QEA proposed by Ji and Xing (2011). 

 PBIL: PBIL proposed in the thesis (see Section 4.1) (Xing and Qu, 2011a). 

 cGA: cGA proposed in the thesis (see Secton 4.2) (Xing and Qu, 2012). 

 pEA: the path-oriented encoding based EA (see Subsection 4.3). 

The population size is set to 20 for each algorithm. The parameter settings of the 

seven algorithms are shown in Table 4.20. 

 

Table 4. 20  Parameter Settings of the Seven Algorithms 

GA1 GA2 QEA1 QEA2 PBIL cGA pEA 
pc = 0.8; 
pm = 0.006; 
tsize = 2; 

pc = 0.8; 
pm = 0.012; 
tsize = 2; 

RAD = 0.1π; σ0 = 0.04π; 
Δσ = 0.004π; 
Γ = 20; 

α = 0.1; 
τ = 0.2; 
Θ = 0.14; 

N = 20; 
gc = 50; 

pc = 0.9; 
pm = 1/d; 
tsize = 2; 

Note: pc: crossover probability; pm: mutation probability; tsize: tournament size; RAD: a constant number to 
calculate the rotation angle step (RAS); σ0: initial RAS; Δσ: incremental RAS; Γ: the parameter in penalty 
function; α: learning rate; τ: the percentage of the selected solutions; Θ: entropy threshold value; N: the 
parameter that determines the learning rate; gc: the predefined number of consecutive generations. 

 

The results of the mean and standard deviation of the best fitness values obtained 

and results of the successful ratio are shown in Table 4.21 and 4.22, respectively. 
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Regarding the mean value (compare columns Mean in the same row), we can see that 

pEA always perform the best in each instance, while cGA is the second best. The third 

best algorithm is PBIL. PBIL outperforms QEA1 and QEA2 in 6 instances (see rows 

7,15-copy, Rnd-5,7,9,10) and is beaten by QEAs in 2 instances (see rows 31-copy, 

Rnd-8). QEA1 and QEA2 perform better than GA1 and GA2 taking into account all 

instances (see columns Mean of GA1, GA2, QEA1, QEA2). In addition, Table 4.22 also 

demonstrates that pEA has the highest SR (see column pEA). The following explains 

why pEA has better global optimization performance than the others. First, pEA is based 

on path-oriented encoding which is fundamentally appropriate to be used in EAs for the 

NCRM problem (see Sections 4.3.1.1 and 4.3.2.5). Besides, the associated genetic 

operators and the problem specific local search procedure are designed in compliance 

with the features of the new encoding. Therefore, pEA gains decent performance in terms 

of global exploration and local exploitation at the same time. 

 

Table 4. 21  Results of Mean and Standard Deviation (Best Results are in Bold) 

Networks 

GA1 GA2 QEA1 QEA2 PBIL cGA pEA 
Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

3-copy 0.36 0.74 0.08 0.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
7-copy 1.96 1.92 0.68 0.84 0.18 0.62 0.48 0.70 0.00 0.00 0.00 0.00 0.00 0.00

15-copy 7.48 5.12 3.66 2.13 3.10 4.18 5.80 1.62 2.14 4.31 0.00 0.00 0.00 0.00
31-copy 28.75 7.97 18.66 22.58 19.10 5.76 20.00 0.00 28.90 10.30 0.00 0.00 0.00 0.00

Rnd-1 0.52 0.88 0.44 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Rnd-2 0.26 0.66 0.02 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Rnd-3 0.44 0.83 0.02 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Rnd-4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Rnd-5 2.78 2.71 1.16 0.61 0.46 0.50 0.48 0.54 0.04 0.28 0.04 0.19 0.00 0.00
Rnd-6 0.22 0.41 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Rnd-7 1.58 0.92 1.36 0.66 0.66 0.47 0.58 0.53 0.38 0.60 0.22 0.41 0.00 0.00
Rnd-8 2.52 1.44 2.28 0.94 0.98 0.82 0.48 0.61 0.60 1.56 0.24 0.43 0.00 0.00
Rnd-9 2.82 1.22 2.34 1.34 1.64 0.98 1.94 1.16 0.06 0.23 0.04 0.19 0.00 0.00

Rnd-10 3.26 2.68 1.38 0.69 0.66 0.68 0.42 0.64 0.00 0.00 0.08 0.27 0.00 0.00

 

Now, we compare the average computational time, which is given in Table 4.23. 

Before analyzing the data, we roughly divide the 14 instances into two groups, easy 

instances and hard instances. In easy instances, more than half of the algorithms obtain a 

successful ratio of 100%. The rest are hard instances. Easy instances includes 3-copy and 

Rnd-1,2,3,4,6 (see rows 3-copy, Rnd-1,2,3,4,6 in Table 4.22) while hard instances 

contains 7,15,31-copy and Rnd-5,7,8,9,10 (see rows 7,15,31-copy, Rnd-5,7,8,9,10 in 
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Table 4.22). For each easy instance, most algorithms can obtain an optimal solution 

within a very short time (e.g. less than 1 second) (see rows 3-copy, Rnd-1,2,3,4,6 in 

Table 4.23). However, for each hard instance, the average computational time of each 

algorithm may differ significantly (see rows 7,15,31-copy, Rnd-5,7,8,9,10 in Table 4.23). 

 

Table 4. 22  Results of Successful Ratio (%) (Best Results are in Bold) 

Networks GA1 GA2 QEA1 QEA2 PBIL cGA pEA 
3-copy 80 92 100 100 100 100 100 
7-copy 14 52 88 62 100 100 100 

15-copy 0 4 26 0 58 100 100 
31-copy 0 0 0 0 0 100 100 

Rnd-1 62 56 100 100 100 100 100 
Rnd-2 86 98 100 100 100 100 100 
Rnd-3 76 98 100 100 100 100 100 
Rnd-4 100 100 100 100 100 100 100 
Rnd-5 4 10 54 54 98 96 100 
Rnd-6 78 100 100 100 100 100 100 
Rnd-7 8 8 34 44 68 78 100 
Rnd-8 2 0 30 58 82 76 100 
Rnd-9 4 8 14 10 94 96 100 

Rnd-10 4 6 46 64 100 92 100 
 

Table 4. 23  Results of Average Computational Time (sec.) (Best Results are in Bold) 

Networks GA1 GA2 QEA1 QEA2 PBIL cGA pEA 
3-copy 0.99 1.61 0.24 0.21 0.10 0.02 0.09 
7-copy 12.42 11.98 8.54 10.41 2.20 0.15 0.33 

15-copy 55.85 49.27 89.88 91.61 66.14 2.09 1.57 
31-copy 232.92 200.73 728.13 750.70 543.64 29.55 20.79 

Rnd-1 2.95 3.30 0.73 0.50 0.29 0.23 0.16 
Rnd-2 1.14 1.33 0.37 0.40 0.13 0.02 0.11 
Rnd-3 5.13 5.07 0.68 0.75 0.23 0.06 0.27 
Rnd-4 3.19 3.13 0.57 0.81 0.26 0.16 0.23 
Rnd-5 16.57 14.52 13.82 14.38 6.09 3.14 0.63 
Rnd-6 3.54 3.34 0.72 0.84 0.17 0.03 0.23 
Rnd-7 24.13 20.78 24.35 22.52 24.29 6.83 2.10 
Rnd-8 38.37 30.89 38.04 31.47 27.43 20.11 0.95 
Rnd-9 62.46 50.73 73.73 73.94 47.29 16.40 1.93 

Rnd-10 71.25 55.46 64.12 52.39 31.81 17.42 1.15 
 

A robust algorithm should spend a short computational time to find the optima for 

not only easy instances but also hard instances. For the easy instances in Table 4.23, pEA, 

cGA, PBIL, QEA1 and QEA2 all consume similar average computational time (i.e. less 

than 1 second) while GA1 and GA2 are the two worst ones. For hard instances, pEA is 

the best algorithm. This is because: (1) the evaluation process of path-oriented encoding 
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is simpler than that of BLS/BTS encoding (see Section 4.3.1.1), and (2) pEA is powerful 

in finding global optima and it stops once an optimum is found (see Section 4.3.1.6). 

Regarding the overall performance in Table 4.21, 4.22 and 4.23, pEA performs the 

best. To further support this finding, we show the t-test results comparing pEA with the 

others in Table 4.24. We can see that for each instance pEA performs at least statistically 

equivalent to but usually significantly better than the other algorithms. 

 

Table 4. 24  t-Test Results for Different EAs 

Networks pEAGA1 pEAGA2 pEAQEA1 pEAQEA2 pEA PBIL pEA cGA 
3-copy       
7-copy       

15-copy       
31-copy       

Rnd-1       
Rnd-2       
Rnd-3       
Rnd-4       
Rnd-5       
Rnd-6       
Rnd-7       
Rnd-8       
Rnd-9       

Rnd-10       

Note: the result of Algorithm1↔Algorithm2 is shown as “+”, “”, or “~” when Algorithm1 is significantly 
better than, significantly worse than, or statistically equivalent to Algorithm2, respectively. 

4.3.3  Summary of the Algorithm 

We develop a new evolutionary algorithm (pEA) for the NCRM problem. pEA is 

based on path-oriented encoding. The use of path-oriented encoding is motivated by that 

the existing BLS/BTS encoding has two drawbacks, namely large number of infeasible 

solutions in the search space and high computational overhead in the fitness evaluation. 

The drawbacks may harm the performance of EAs. Our contribution in this section 

includes the design of path-oriented encoding for the NCRM problem and pEA based on 

it. The new encoding and its fitness evaluation do not suffer the drawbacks of BLS/BTS 

encoding. Besides, the features of the new encoding are considered in the process of 

designing algorithm components. 

In pEA, each chromosome consists of a number of basic units (BUs), each of which 

contains a set of link-disjoint paths from the source to the same receiver. In accordance to 
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the new encoding approach, we develop the associated initialization, crossover and 

mutation operators. Experiments demonstrate that pEA performs better than BLS/BTS 

based EAs with respect to the pure evolutionary search ability (see Section 4.3.2.5). pEA 

obtains better global exploration, faster convergence, and lower computational time. 

Meanwhile, a problem-specific local search operator is developed to improve the quality 

of a selected chromosome at each generation. Different from the one introduced in 

Section 4.2.2.3, the local search in pEA is specially designed for path-oriented encoding. 

Though, the aims of the two local search operators are similar, namely they attempt to 

reduce the coding operations in the NCM subgraph in order to improve the quality of the 

chosen solution. pEA with LS operator is reported to outperform existing EAs and the 

proposed PBIL and cGA in terms of the best solutions obtained and the computational 

time consumed. 

This work is accepted by Journal of Operational Research Society. 

4.4  Summary 

This chapter presents three EAs developed for solving the NCRM problem, i.e. PBIL 

in Section 4.1, cGA in Section 4.2 and path-oriented encoding EA (pEA) in Section 4.3.  

The proposed PBIL is more suited for the BLS encoding, compared with the existing 

EAs. This is because of the nature of PBIL. The continuously changing probability 

vector (PV) exploits the promising solutions found in order to locate promising regions 

in the search space. Moreover, the entropy-based restart scheme, as a contribution, helps 

to escape the local optima and improve the global exploration of PBIL. There are two 

problems with the proposed PBIL. One is that although it outperforms the existing EAs 

in terms of the global exploration, PBIL’s computational overhead is relatively high in 

some instances, which may limit its application. The other is in the restart scheme the 

threshold value is based on the observation of empirical experiments, which may not be 

always reliable to unknown networks.  

Later on, we adapt cGA for the NCRM problem which outperforms PBIL and other 

existing EAs in terms of the best results and the computational time. This algorithm is 

also suitable for the BLS encoding because of the continuity reflected in the process of 
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updating PV. We have three contributions when developing the cGA, namely the use of 

all-one vector, a PV restart scheme and a problem specific local search operator. The PV 

restart scheme is designed according to the features of the encoding and cGA. The key 

parameter in the restart scheme is the predefined number of consecutive generations (gc) 

that the current elite solution dominates. The selection of gc is easier than that of the 

parameter in PBIL’s restart scheme. The local search operator is the very first problem 

specific local search operator designed for the problem concerned.  

However, BLS/BTS encoding has a drawback with respect to the infeasibility issue 

of the search space. Besides, the corresponding fitness evaluation requires relatively high 

computational costs. Therefore, we look for an alternative to the BLS/BTS encoding and 

then contribute a path-oriented encoding EA (called pEA). The new encoding is designed 

according to the features of the NCRM problem. Besides, the associated components are 

developed to build up the evolutionary framework. Experimental results demonstrate that 

pEA is effective to solve the NCRM problem and its performance is relatively better than 

the proposed cGA and PBIL with respect to the overall optimization performance.  

Addressing the NCRM problem can be seen as an early step towards the practical 

deployment of NCM in communication networks with existing infrastructures. However, 

this problem does not take into account service quality for end users, which may not be 

appropriate to support real-time multimedia multicast applications. In the next chapter, 

we investiage a variant of the NCRM problem which not only considers the minimization 

of network coding resources but also the user experience, i.e. quality-of-service (QoS) 

issues. 
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Chapter 5  PBIL for the Delay Constrained Network 
Coding Resource Minimization 

 

5.1  Motivation 

As discussed in Subsection 1.5.2, to support real-time multimedia applications 

usually requires stringent quality-of-service (QoS) guarantees (Aurrecoechea et al, 1998; 

Chalmers and Sloman, 1999; Striegel and Manimaran, 2002). Hence, QoS requirements 

should be taken into account when NCM is applied to real-time applications (Walsh and 

Weber, 2008). Among those QoS parameters, transmission delay (i.e. end-to-end delay) 

is of vital importance, especially for delay sensitive applications, e.g. video conferencing 

and distributed game (Striegel and Manimaran, 2002). In the study of traditional QoS 

multicast routing problems (based on the store-and-forward scheme), the transmission 

delay is usually considered as a constraint so as to deliver the multimedia service with 

acceptable quality to users (Xu, 2011). Therefore, whilst studying the problem of 

minimizing the amount of the required coding operations, we should consider the 

transmission delay bound. Unfortunately, this has never been studied in the literature. 

Researchers focused on either the NCRM problem without concerning the delay 

constraint (Bhattad et al, 2005; Fragouli and Soljanin, 2006; Langberg et al, 2006; Kim 

et al, 2006, 2007a, 2007b; Ahn, 2011; Luong et al, 2012), or dealing with delay related 

issues without concerning the minimization of the amount of coding operations (Walsh 

and Weber, 2008; Pu et al, 2009; Yeow et al, 2009a; Zhang et al, 2009; Amir et al, 2010). 

This motivates us to extend the NCRM problem by considering the delay bound, which 

has resulted in new problem, namely the delay-constrained NCRM problem (Xing and 

Qu, 2011b).  

In this chapter, we formulate the delay-constrained NCRM problem and study it by 

using a population based incremental learning algorithm (PBIL) (Xing and Qu, 2011b). 
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5.2  Problem Description 

This thesis models the delay constrained NCRM problem as how to construct a 

NCM subgraph Gs→T with the minimal number of coding links while achieving the 

expected data rate and satisfying the end-to-end delay constraint Ω. This problem is a 

variant of the NCRM problem. The following lists the notations to define the problem: 

nM: the number of merging nodes in G. 

Out(i): the number of outgoing links that the i-th merging node owns. 

R: the defined data rate (an integer) at which s expects to transmit 

information to each receiver tk. 

Ω: the transmission delay bound for Gs→T. 

λ(s, tk): the data rate between s and tk in Gs→T. 

e(u, v): directed link from node u to node v. 

Gs→T: network coding based multicast (NCM) subgraph. 

D(ω): the delay of term ω. If ω is a link, D(ω) represents its propagation 

delay; if ω is a node, D(ω) denotes its data processing delay; If ω is a 

path P(u,v), D(ω) is the end-to-end transmission time from node u to 

node v; if ω is a Gs→T, D(ω) denotes the maximal path delay in Gs→T. 

(Gs→T): the number of coding links in Gs→T. 

σik: a binary variable associated with the k-th outgoing link of the i-th 

merging node, i = 1,…, nM, k = 1,…, nOLi. σik = 1 if the j-th outgoing 

link of the i-th node serves as a coding link; σik = 0 otherwise. 

Pi(s, tk): the i-th link-disjoint path found between s and tk in Gs→T. It is 

represented by a chain of nodes through which the path passes. 

Wi(s, tk): the link set of Pi(s, tk), i.e. Wi(s, tk) = {e(u,v) | e(u,v)  Pi(s, tk)}. 

),( vuP kts
i
 : the subpath from node u to node v along path Pi(s, tk), where u,v  

Pi(s, tk).  

 

For the relevant network model and definitions, please refer to Chapter 3 for details. 

The following shows the delay constrained NCRM problem, which is a combinatorial 

optimization problem: 
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Minimize: 

                         M

1
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1
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n

i

iOut

j ijTsG                       (5.1) 

Subject to: 

λ(s, tk) = R,  tk  T                        (5.2) 

 
Wi(s, tk) ∩ Wj(s, tk) = Ø, i,j  {1,...,R}, i≠j, tk  T            (5.3) 

 
D(Gs→T) ≤ Ω                           (5.4) 

where we have, 

   D(Gs→T) = max{D(Pi(s, tk)) | i = 1,…,R, tkT }          (5.5) 

 
Objective (5.1) defines the optimization problem as to find a NCM subgraph with 

the minimal number of coding links; Constraint (5.2) defines that the data rate from s to 

every receiver is exactly R; Constraint (5.3) restricts that for each tk arbitrary two paths 

have no common link; Constraint (5.4) defines that the maximal delay 3  of the 

constructed NCM subgraph cannot be greater than the pre-defined delay bound Ω; The 

delay of the NCM subgraph is defined in (5.5) as the maximal delay among all paths. In 

this thesis, we only consider the transmission delay from s to tk along each path Pi(s, tk). 

The decoding delay to obtain the original information in each receiver is omitted. This is 

because compared with the transmission delays along paths, decoding delays at receivers 

are trivial and hence negligible (Zhang et al, 2009). Note that the problem formulated 

here is based on the same network model in Section 3.1. 

In general, there are four types of nodes along each path Pi(s, tk): the source, the 

receiver, forwarding node(s) and coding node(s), where a forwarding node can only 

forward the incoming information to the next node. Compared with coding operation, 

forwarding operation incurs negligible data processing delay. Hence, we assume D(vj) = 

0 for any forwarding node vj, where D(vj) is the data processing delay incurred at node vj. 

                                                 
3 Note that the term ‘delay’ considered in the thesis is in transmission time. Given a path from a source to 
a receiver, the transmission delay of the path can be estimated in advance since the propagation time of 
each link along the path can be estimated according to length of the link and the propogation medium, such 
as optical fibre or wireless environment. 
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For a receiver or a forwarding node vj, the transmission delay of subpath 

),,...,(),( 1 jjj
ts

i vvsvsP k


  from s to vj can be defined as follows: 

 
)),(()),(()),(( 11 jjj

ts
ij

ts
i vveDvsPDvsPD kk


               (5.6) 

 
where vj-1 is the upstream node next to vj along subpath ),( j

ts
i vsP k . 

If a number of data packets are required to be coded together at a coding node, 

coding operation cannot start until the arrival of the last data packet. For a coding node vj, 

we assume that among the R·d paths in Gs→T there are Y paths that pass through vj. 

Obviously, along each of the Y paths there is a subpath from s to vj. We denote the 

transmission delays of the Y subpaths by D1(s, vj), D2(s, vj), …, DY(s, vj), respectively. 

The transmission delay of the subpath from s to coding node nj is defined as follows: 

 

cjrj
ts

i YrvsDvsPD k  },...,1|),(max{)),((              (5.7) 

 
where c is the time consumed by the coding operation. We assume any coding operation 

consumes the same processing time c. 

5.3  Selection of EAs 

 The delay-constrained NCRM problem is an extension of the NCRM problem (see 

Chapter 3). So, those algorithms used for solving the NCRM problem could be potential 

candidates for addressing the new problem. 

As introduced and discussed in Chapter 4, this thesis has developed three EAs for 

solving the NCRM problem, including PBIL, cGA and pEA (see Section 4.1, 4.2 and 4.3 

for details). They gain better overall performance than other existing algorithms, such as 

GAs and QEAs (Kim et al, 2007a, 2007b; Xing et al, 2010; Ji and Xing, 2011). So, the 

three EAs above may be the most appropriate algorithms for addressing a variant of the 

NCRM problem on which they perform very well. Therefore, we first discuss their 

suitabilities and applicabilities to the new problem. Compared with the NCRM problem, 

the new one bounds the maximal path delay in the NCM subgraph in order to provide 
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better user experience. The two problems have the same objective function, namely 

finding a feasible NCM subgraph with the least number of coding operations performed. 

There is only an extra constraint (i.e. delay) in the new problem. From this point of view, 

the existing chromosome representations used in EAs for the NCRM problem can also be 

used here. So, the binary encodings (namely BLS and BTS) and path-oriented encoding 

used in Chapter 4 are also applicable to the new problem. However, the fitness evaluation 

process and those problem specific operators (which are based on the exploitation of 

domain knowledge) for the NCRM problem cannot be applied to the new problem 

directly because the definition of the feasibility of a NCM subgraph has changed due to 

the additional constraint. In the new problem, there are more infeasible solutions in the 

search space. Hence, when adapting the existing EAs for the new problem, modifications 

have to be made to the fitness evaluation and the problem specific operators already 

developed. On the one hand, PBIL in Section 4.1 is based on a pure evolutionary 

framework. It is simple and fast to adapt it for the new problem since only a few changes 

need to be made to the fitness evaluation and the whole algorithmic structure (which is 

discussed later). Besides, this algorithm has been reported to have decent performance on 

the NCRM problem. So, PBIL could be used as an initial attempt to study the features 

and properties of the new problem. On the other hand, cGA and pEA both incorporate 

problem specific local search operators which require significant changes in order to 

adapt for the new problem. This is because the two operators are designed based on the 

definition of the feasibility of solution. For each move in them, only feasible NCM 

subgraphs are accepted. As the new problem will have a different feasibility definition 

(because of the delay constraint), the local search operators have to be carefully modified 

if used in the new problem. Hence cGA and pEA are not suitable to initiate the study on 

the new problem. According to the above discussion, PBIL in Section 4.1 is chosen to be 

adapted for the delay constrained NCRM problem. But a single EA may not be enough to 

investigate the features and properties of the new problem. GAs (based on BLS/BTS 

encodings) have been applied to the NCRM problem and also used for evaluating PBIL, 

cGA and pEA (see Chapter 4). Besides, the fitness evaluation of GAs is the same as the 

one used in PBIL in Section 4.1, which means there is no difficulty adapting GAs 

(BLSGA and BTSGA) for the new problem after the adaption of PBIL. So, in this 
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chapter, BLSGA and BTSGA are also selected to be adapted for the delay constrained 

NCRM problem. It is more likely to get insights into the new problem via multiple EAs. 

The following introduces the new fitness evaluation procedure, as shown in Figure 

5.1. As mentioned in Section 3.5.1, each BLS-based individual corresponds to a unique 

secondary graph GS. The fitness evaluation measures each GS. Given individual X, we 

first check if a feasible NCM subgraph Gs→T can be found from the corresponding GS. 

For each receiver tk  T, we use a max-flow algorithm (Goldberg, 1985) to compute the 

max-flow between the source s and tk in the corresponding GS. If all d max-flows are at 

least R (here, d is the number of receivers and R is the expected data rate), for each 

receiver tk we select R least-delay paths from all link-disjoint paths obtained from s to tk. 

All the selected paths form the NCM subgraph Gs→T. If the maximal path delay in Gs→T 

satisfies the delay constraint, i.e. D(Gs→T)  Ω, we set Φ(Gs→T) to f(X), where Φ(Gs→T) is 

the number of coding links in Gs→T. If Gs→T cannot be found or it violates the delay 

constraint, X is regarded as infeasible solution and we set a very large fitness value to f(X) 

(50 in the thesis). 

 

1. Obtain the corresponding secondary graph GS of X; 
   // Check if a NCM subgraph Gs→T can be resulted from GS 
2. Set flag = 1; // value 1 indicates X is feasible; value 0 otherwise. 
3. for k = 1 to d do  
4.    Compute the max-flow from source s to receiver tk; 
5.    if the max-flow is no smaller than R then 
6.       Select R least-delay paths from the resulting link-disjoint paths; 

7.    else 
8.       Set flag = 0 and break the loop; // indicating X is infeasible. 
9. if flag == 1 then 
10.    Gs→T is constructed by all the selected paths; 

11.    if D(Gs→T)  Ω then // Gs→T meets the delay requirement 

12.       Set f(X) = Φ(Gs→T); 

13. else 
14.    Set f(X) = 50; // 50 is a sufficiently large number 
15. Output the fitness value of X, i.e. f(X). 

Figure 5. 1  The fitness evaluation for the delay constrained NCRM problem (Xing and 

Qu, 2011b). 
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In the fitness evaluation for the NCRM problem (see Section 3.5), a solution is 

referred to as a feasible solution as long as a NCM subgraph with data rate constraint met 

is found. However, the definition of feasibility is crispier in the new problem. A feasible 

solution must result into a NCM subgraph meeting the data rate requirement and delay 

constraint. According to this, the search space of the new problem will contain more 

infeasible solutions. The difference between the two fitness evaluations is Step 6 and 11 

(as shown Figure 5.1) which are only minor changes. With the new fitness evaluation, 

the PBIL in Section 4.1 is adapted for the new problem. Hence the adaptation is simple 

and fast. The experimental results on the new problem are collected in Section 5.5. 

5.4  An Improved PBIL (iPBIL) 

PBIL in Section 4.1 is featured with an entropy-based restart scheme. The scheme, 

as demonstrated in Section 4.1.2, can greatly enhance the global exploration ability of the 

PBIL when solving the NCRM problem. However, the restart scheme potentially has 

some deficiencies when used in the new problem due to the following reasons. First, the 

key parameter of the restart scheme, namely the threshold value of the average entropy, 

is calculated based on empirical experiments and observations. So, the value may not be 

suitable for the new problem (see Section 4.1.2 for more discussion). Second, once the 

restart condition is met, the search of the algorithm restarts from scratch, which means no 

memory of the promising solutions previously found is incorporated to facilitate the next 

round search. This is not a big problem in the NCRM problem as the all-one vector in the 

initial population is always feasible and it can help to guide the search towards feasible 

regions. However, the all-one vector may be infeasible if the delay constraint is set 

severely. In this case, the restarted search may lose the guidance and hence the 

contribution of the restart scheme may be weakened. The above analysis motivates us to 

find a substitute for the restart scheme which helps PBIL gain strengthened global 

exploration ability. 
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The following introduces an alternative approach to the restart scheme in PBIL. The 

new approach is a combination of two schemes, namely a new probability vector (PV) 

update scheme and a PV mutation scheme. 

5.4.1  A New Probability Vector Update Scheme 

As we know, for the NCRM problem, the search space of BLS encoding contains 

high proportion of infeasible solutions (see Section 4.3 for details). For the delay 

constrained NCRM problem, this proportion should be higher due to the extra constraint. 

Therefore, when PBIL is adapted for the extended problem, it would be more difficult for 

the PV to generate promising solutions and locate promising regions in the search space. 

To gain adequate exploration and exploitation abilities, the PV needs necessary guidance 

to effectively lead the search (Baluja, 1994). The guidance information comes from the 

promising solution(s) used in the PV update scheme. There are mainly two PV update 

schemes for PBIL in the literature. One is that the PV is learnt towards a single best 

solution (Baluja, 1994; Yang and Yao, 2005, 2008). It is featured with fast convergence. 

But the search is easily misled to local optima since the PV is updated by a single 

solution. The other is based on the Hebbian inspired rule that incorporates a best ever 

found solution and a set of promising solutions of the current generation (Gonzalez et al, 

2000). This scheme helps to maintain the diversity level and alleviates the prematurity 

tendency (see Secton 4.1.1 for detailed discussion). However, under the second scheme, 

the PV is mainly dependent on the statistical information of the promising solutions of 

each generation, namely the local search information. This could be a problem in the 

delay constrained NCRM problem as it would be difficult to generate promising 

solutions at some generations. Hence, the second scheme may also mislead the search to 

unpromising areas. Taking into account the global exploration ability and the problem 

features, we propose a new PV update scheme to be used in PBIL, as described below. 

The new PV update scheme concerns a set of best so far individuals (solutions) SBSF 

= {B1,…, BH}, where H ≥ 1 is a constant number (H = 10 in the experiment). Let PV(t) 

be the PV at generation t. Initially, PV(t) is sampled H times to create H individuals to 

form SBSF. At each generation, when a number of fitter individuals appear, we update 

SBSF by replacing those worst individuals in SBSF with the fitter ones. Then, the statistical 
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information of SBSF, namely PVBSF, is extracted and used to update P(t), as shown in 

Equations (5.8) and (5.9), where  is the learning rate. 

 

 


H

1H

1
k kBSF BPV                         (5.8) 

 
PV(t) = (1.0 − )  PV(t) +   PVBSF               (5.9) 

 

Equation (5.8) shows how to extract the statistical information from SBSF. We 

assume each individual is of length L. For position j (j = 1,…,L), the corresponding 

values of all individuals in SBSF are summed up and the result is then divided by H. For 

PVBSF, the value in each position is between 0.0 and 1.0 since all individuals in SBSF are 

binary strings. Given a position in PVBSF, a value larger than 0.5 means bit 1 has higher 

chance to appear then bit 0 and vice versa. Equation (5.9) illustrates how to update PV(t) 

using PVBSF. In each position, the value of PV(t) is shifted towards the value of PVBSF at 

speed , where  is smaller than 1.0. 

The procedure of the new probability vector update scheme at generation t is shown 

in Figure 5.2. Note that this update scheme generalizes the update scheme in the standard 

PBIL. When H = 1, it is equivalent to a standard PBIL where only a single best so far 

individual is maintained in SBSF. 

 

1. Find H best individuals from generation t and sort them in sequence 

{C1, C2,…, CH}, where f(C1) f(C2) … f(CH) 

2. for i = 1 to H do 
3.    Find the worst individual in SBSF, e.g. Bwst, where f(Bwst) = 

max{f(B1), f(B2), …, f(BH)} 

4.    if f(Ci)  f(Bwst) then 

5.       Set Bwst := Ci; f(Bwst) = :f(Ci);  // SBSF is updated 
6. Update PV(t) by Equations (5.1) and (5.2) 

Figure 5. 2  The new probability update scheme (Xing and Qu, 2011b) 

 

As the problem concerned is highly constrained, PV(t) in the initialization of PBIL 

may not be able to create feasible individuals, and thus deteriorates the effectiveness and 

efficiency of PBIL. In the study of the NCRM problem, all-one vector has been used to 
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guide the search towards feasible regions in the search space (see Section 4.1). Inspired 

by this, we employ all-one vector(s) in the probability vector update scheme to improve 

the performance of PBIL. The all-one vector compensates for the absence of feasible 

individuals in SBSF in the initialization of our algorithm. For example, if there are u (0 < u 

 H) infeasible individuals in SBSF, these individuals are replaced by u all-one vectors. 

Note that, different from the NCRM problem, the extended problem considers the delay 

constraint. Therefore, all-one vector may be infeasible as the delay constraint may not be 

met. 

The new PV update scheme maintains a set of historically best individuals to adjust 

the PV. The PV is updated based on the global exploration information obtained during 

the search. So the search is less likely to get stuck at a single local optimum and the 

global exploration ability could be enhanced. However, the scheme may have a slow 

convergence as those best ever found individuals may reside in different areas in the 

search space. On the other hand, it is still possible that the search is stuck at some local 

optima if the best ever found individuals are too close to each other. Hence, some 

diversity preservation mechanism should be introduced to avoid prematurity. This is why 

a probability vector mutation operator is adopted, as explained below. 

5.4.2  Probability Vector Mutation 

Proposed by Baluja in 1994, PV mutation introduces a small amount of probability 

perturbation on each locus of PV(t) at each generation. Its aim is to maintain an 

appropriate level of diversity and avoid local optima. This operator is not included in 

PBIL in Section 4.1 since the entropy-based restart scheme already has the ability to 

prevent PBIL getting stuck at local optima. In the improved PBIL (called iPBIL), the new 

PV update scheme and PV mutation are used to replace the restart scheme in Section 4.1.  

The procedure of PV mutation is described below. The PV is implemented after 

learning PV(t) = {p1
t, p2

t,…, pL
t} towards PVBSF. We denote by pm and ε the mutation 

probability and the mutation amount in each locus of PV(t), respectively. For locus i, i = 

1, 2,…, L, we randomly generate a uniformly distributed number rndi between 0.0 and 

1.0. If rndi < pm, pi
t is mutated by the following formula: 
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pi
t = (1.0 − ε)  pi

t + rnd{0.0,1.0}  ε                  (5.10) 

 
where rnd{0.0,1.0} is a two-value random number that generates 0.0 or 1.0 both with a 

probability of 0.5.  

5.4.3  The Structure of iPBIL 

The procedure of iPBIL is shown in Figure 5.3. This algorithm is characterized by a 

new PV update scheme and a mutation operator. There are three differences between 

PBIL in Section 4.1 and iPBIL. The first difference is the PV update scheme. In PBIL in 

Section 4.1, the PV is updated using the best ever found solution (i.e. global search 

information) and a proportion of promising solutions of the each generation (i.e. local 

search information). In iPBIL, the PV is updated via a set of historically best solutions, 

which is focused on improving the global exploration ability of iPBIL. The second 

difference is that the entropy-based restart scheme (used in PBIL in Section 4.1) is not 

adopted in iPBIL due to the feature of the new problem. The third difference is that PV 

mutation is incorporated into iPBIL to collaborate with the new PV scheme to balance 

exploration and exploitation.  

 

1. Initialization 
2.    Set t = 0; 
3.    for i = 1 to L do  
4.       Set pi

t = 0.5; 
5.    Generate a sampling set S(t) of N individuals from PV(t); 
6.    Generate a set SBSF of H individuals by sampling PV(t); 
7.    Replace infeasible individuals in SBSF by all-one vectors; 

8. repeat 
9.    Set t = t + 1; 
10.    Evaluate the samples in S(t-1); 
11.    Update PV(t) by using the PV update scheme (Figure 5.2); 
12.    Mutate PV(t) by Equation (5.10); 
13.    Generate a set S(t) of N samples by PV(t); 

14. until termination condition is met 

Figure 5. 3  Procedure of iPBIL (Xing and Qu, 2011b) 
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5.5  Experimental Results and Discussion 

This section first introduces the experimental datasets and then studies the problem 

features using evolutionary approaches. Finally, the performance of iPBIL is evaluated. 

5.5.1  The Experimental Datasets 

As aforementioned, the delay constrained NCRM problem has not been considered 

in the literature. No benchmark dataset is exclusively available. Fortunately, this problem 

is a variant of the NCRM problem (see Section 5.2 and 5.3). The difference between 

them is whether the delay constraint is included as a constraint. So, we can modify the 

benchmark instances for the NCRM problem to adapt for the delay constrained NCRM 

problem. As discussed in Section 5.2, each link e  G is associated with a propagation 

delay and each coding operation is associated with a processing delay in order to 

calculate the transmission delay of each path from source s to receiver tk  T in the 

constructed NCM subgraph Gs→T. In the thesis, the propagation delay of link e is 

uniformly distributed in the range [2ms, 10ms] (Xu, 2011). The computing time for doing 

a coding operation should be less than any link delay (Benslimane, 2007; Harte, 2008). 

For simplicity, we assume any coding operation consumes processing time of 1ms. The 

experimental networks and instance parameters are given in Table 5.1. Detailed instance 

description can be found at http://www.cs.nott.ac.uk/~rxq/benchmarks.htm.  

5.5.2  Problem Investigation 

The delay constrained NCRM problem is a new optimization problem, where the 

value of delay constraint is an important issue. Xu (2011) studies the traditional delay 

constrained multicast routing problem (where store-and-forward data forwarding scheme 

is used) and set two different delay constraints to each instance. A reference solution is 

chosen and its corresponding delay (Delayref) is used to determine the two constraint 

values which are 0.9·Delayref and 1.1·Delayref, respectively. In our experiments, the 

all-one solution is used as a reference as it heavily affects the performance of EAs. If the 

all-one solution is regarded as feasible solution, the evolutionary search is guaranteed to 
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start with at least one feasible solution; otherwise, the search may end up with infeasible 

solutions. To investigate the delay constrained NCRM problem, we set two delay bounds 

for each instance, namely 0.9·Delayref and 1.1·Delayref. Intuitively, a smaller value 

indicates a severer delay bound. So, we hereafter call 0.9·Delayref as the severe constraint 

and 1.1·Delayref as the loose constraint. In order to investigate problem features, we adapt 

three EAs for this problem, namely PBIL in Section 4.1 (we hereafter simply call it 

PBIL), BLSGA and BTSGA (see Section 4.3.2). The predefined number of generation is 

set to 200. The parameter settings of the three algorithms are shown in Table 5.2. All 

experiments were run on a Windows XP computer with Intel(R) Core(TM)2 Duo CPU 

E8400 3.0GHz, 2G RAM. The results were collected by running each algorithm 50 times. 

A number of performance metrics are used, as listed below. 

 

Table 5. 1  Experimental Networks and Instance Parameters 

Network nodes links sinks rate L
3-copy 25 36 4 2 32
7-copy 57 84 8 2 80

15-copy 121 180 16 2 176
31-copy 249 372 32 2 368

Rnd-1 20 37 5 3 43
Rnd-2 20 39 5 3 50
Rnd-3 30 60 6 3 86
Rnd-4 30 69 6 3 112
Rnd-5 40 78 9 3 106
Rnd-6 40 85 9 4 64
Rnd-7 50 101 8 3 145
Rnd-8 50 118 10 4 189
Rnd-9 60 150 11 5 235

Rnd-10 60 156 10 4 297
Note: L: the encoding length of individuals 

 

Table 5. 2  Parameter Settings of BLSGA, BTSGA and PBIL 

BLSGA BTSGA PBIL 
pc = 0.8; 
pm = 0.006; 
tsize = 2; 

pc = 0.8; 
pm = 0.012; 
tsize = 2; 

α = 0.1; 
τ = 0.2; 
Θ = 0.14; 

Note: pc: crossover probability; pm: mutation probability; tsize: tournament size; α: learning rate; τ: the 

percentage of the selected solutions; Θ: entropy threshold value. 
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 Mean and standard deviation (SD) of the best solutions found over 50 runs. One 

best solution is obtained in one run. The mean and SD are important metrics to 

show the overall performance of a search algorithm. 

 Successful ratio (SR) of finding an optimal solution in 50 runs. This metric 

reflects the global exploration ability of an EA to find optimality. 

 Evolution of the average fitness and the best fitness over generations in 50 runs. 

The plots illustrate the convergence features of an algorithm. 

 Average computational time (ACT) consumed by an algorithm over 50 runs.  

 

Table 5. 3  Experimental Results of BLSGA, BTSGA and PBIL (The Best Results are 

in Bold) 

Instances 

BLSGA BTSGA PBIL 
Loose Severe Loose Severe Loose Severe 

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
3-copy 0.54 1.16 45.04 15.03 0.66 1.25 41.04 19.31 0.00 0.00 0.00 0.00
7-copy 0.84 2.29 46.16 13.16 1.12 2.59 48.04 9.70 0.00 0.00 0.02 0.14

15-copy 4.04 7.45 48.12 9.30 8.52 9.35 49.06 6.64 0.52 0.70 0.58 0.73
31-copy 17.44 9.75 47.92 8.35 31.06 8.52 50.00 0.00 8.90 2.20 9.88 2.42

Rnd-1 0.28 0.96 24.62 33.16 0.60 1.21 0.00 0.00 0.04 0.19 0.04 0.19
Rnd-2 0.28 0.70 45.04 15.03 0.52 0.88 48.00 9.89 0.00 0.00 0.00 0.00
Rnd-3 0.58 1.17 28.06 25.00 0.54 1.16 39.00 20.92 0.00 0.00 0.00 0.00
Rnd-4 0.16 0.37 28.24 24.80 0.14 0.35 40.10 20.00 0.00 0.00 0.00 0.00
Rnd-5 1.86 3.26 39.16 20.63 1.66 3.16 41.26 18.86 0.10 0.30 0.10 0.30
Rnd-6 0.38 0.49 37.00 22.15 0.26 0.44 41.00 19.40 0.00 0.00 0.00 0.00
Rnd-7 1.68 2.14 37.22 21.78 1.60 2.15 40.32 19.57 0.36 0.48 0.38 0.49
Rnd-8 1.22 2.07 49.00 7.07 2.36 2.57 50.00 0.00 0.30 0.54 0.50 0.54
Rnd-9 1.16 1.51 41.60 18.17 1.84 1.74 49.00 7.07 0.28 0.88 3.22 11.95

Rnd-10 1.96 3.93 38.58 20.59 1.88 3.44 42.28 17.89 0.04 0.28 0.10 0.36
 

Table 5.3 shows the mean and SD values of BLSGA, BTSGA and PBIL, where 

columns ‘Loose’ and ‘Severe’ correspond to loose and severe constraints, respectively. If 

we compare the mean values in Loose and Severe cases, we can find that the value of 

delay bound does affect the performance of each algorithm, namely the severe case is 

more difficult to address (see columns Loose, Severe of the same algorithm).  
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(a) BLSGA 

 

(b) BTSGA 

 

(c) PBIL 

Figure 5. 4  Mean values obtained in Loose and Severe cases. A smaller mean value 

indicates a better performance. Note that along X axis, C1 to C4 represent 3,7,15,31-copy, 

and R1 to R10 denote Rnd-1 to Rnd-10, respectively. The instance order along X axis is 

the same as in Table 5.1. 
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(a) BLSGA 

 
(b) BTSGA 

 
(c) PBIL 

Figure 5. 5  Successful ratios (SRs) obtained in Loose and Severe cases. A higher SR 

indicates a better performance. Note that along X axis, C1 to C4 represent 3,7,15,31-copy, 

and R1 to R10 denote Rnd-1 to Rnd-10, respectively. The instance order along X axis is 

the same as in Table 5.1. 
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Figure 5.4 and 5.5 provide a visible comparison on the mean values and successful 

ratios obtained in Loose and Severe cases. The mean values and SRs in Loose case are 

usually better than that in Severe case, which indicates that the problem with severer 

delay bound is harder. Moreover, we observe that the performance of PBIL is much more 

stable than BLSGA and BTSGA (see Figure 5.4(c) and 5.5(c)). As in severer cases, there 

are less feasible solutions in the search space. But, BLSGA and BTSGA are not good at 

locating and producing feasible solutions. So, once the delay bound is set severely, the 

performance of BLSGA and BTSGA is seriously weakened. On the other hand, PBIL 

can effectively locate feasible solutions and make use of them to generate promising 

solutions. So, PBIL is less affected than the GAs.  

 

 

(a) Loose case 

 

(b) Severe case 

Figure 5. 6  Comparison of the mean values of BLSGA, BTSGA and PBIL.  
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(a) Loose case 

 

(b) Severe case 

Figure 5. 7  Comparison of the successful ratios of BLSGA, BTSGA and PBIL.  

 

Figure 5.6 and 5.7 show the mean values and successful ratios of BLSGA, BTSGA 

and PBIL. In Loose case, the three algorithms have similar performance, although PBIL 

performs slightly better in all instances. In Severe case, PBIL outperforms the others. 

This is mainly because PBIL locates promising regions more easily, as discussed above. 

Moreover, the adopted restart scheme also helps to improve the global exploration ability 

of PBIL. So, when adapted, PBIL also reflects a relatively decent performance. Moreover, 

one may also notice that some instances are harder than the others, namely 15,31-copy 

and Rnd-7,8,9 on which the three algorithms obtain relatively larger mean values and 

lower successful ratios. This is observed by the mean values and successful ratios of each 

algorithm in Loose/Severe case (see the mean curve and successful ratio curve of the 

same algorithm). PBIL also gains relatively worse results in the above five instances. As 
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discussed in Section 5.4, PBIL with the entropy-based restart scheme may expose some 

weaknesses when used to address the delay constrained NCRM problem, mainly due to 

two reasons. The first one is the threshold value in the restart scheme is set empirically 

and deliberately for the NCRM problem, which may not suitable for all instances of the 

new problem. The other reason is that the restart scheme would force the search to start 

from scratch each time, without the guidance of the promising solutions previously found. 

This would be a problem as in severe case the all-one solution (which helps the search to 

locate feasible regions) becomes infeasible and so the search may start with infeasible 

solutions only. Therefore, another approach is developed to replace the restart scheme, as 

introduced in Section 5.4. The following subsection evaluates the PBIL based the new 

approach (namely iPBIL). 

5.5.3  Performance Evaluation of iPBIL 

iPBIL is an adaptation of PBIL in Section 5.3 for the delay constrained NCRM 

problem (see Section 5.4). In iPBIL, the restart scheme is replaced with a combination of 

two schemes, namely a new PV update scheme and a PV mutation. We evaluate the 

performance of iPBIL by comparing it and PBIL (in Section 5.3) on all instances in 

Table 5.1 where there are two delay bounds (Loose and Severe) in each instance. The 

maximal number of generations and population size are set to 200 and 20, respectively. 

The parameter settings are given in Table 5.4. All experiments were run on a Windows 

XP computer with Intel(R) Core(TM)2 Duo CPU E8400 3.0GHz, 2G RAM. The results 

were collected by running each algorithm 50 times. 

 

Table 5. 4  Parameter Settings of BLSGA, BTSGA and PBIL 

PBIL PBIL 
α = 0.1; 
τ = 0.2; 
Θ = 0.14; 

α = 0.1; 
H = 10; 
pm = 0.02; 
ε = 0.05 

Note: α: learning rate; τ: the percentage of the selected solutions; Θ: entropy threshold value; H: the 
number of the best ever found solutions maintained; pm: mutation probability; ε: the mutation amount in 
each position in the PV. 
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Table 5. 5  The Mean and SD values of PBIL and iPBIL (Best Results are in Bold) 

Instances 

Loose Severe 
PBIL iPBIL PBIL iPBIL 

Mean SD Mean SD Mean SD Mean SD 
3-copy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
7-copy 0.00 0.00 0.00 0.00 0.02 0.14 0.00 0.00 

15-copy 0.52 0.70 0.04 0.19 0.58 0.73 0.06 0.23 
31-copy 8.90 2.20 0.62 0.87 9.88 2.42 0.86 0.92 

Rnd-1 0.04 0.19 0.00 0.00 0.04 0.19 0.00 0.00 
Rnd-2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Rnd-3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Rnd-4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Rnd-5 0.10 0.30 0.00 0.00 0.10 0.30 0.00 0.00 
Rnd-6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Rnd-7 0.36 0.48 0.08 0.27 0.38 0.49 0.12 0.32 
Rnd-8 0.30 0.54 0.06 0.23 0.50 0.54 0.30 0.46 
Rnd-9 0.28 0.88 0.06 0.23 3.22 11.95 0.12 0.32 

Rnd-10 0.04 0.28 0.00 0.00 0.10 0.36 0.04 0.19 
 

Table 5. 6  The Successful Ratios (SRs) of PBIL and iPBIL (Best Results are in Bold) 

Instances 
Loose Severe 

PBIL iPBIL PBIL iPBIL 
3-copy 100 100 100 100 
7-copy 100 100 98 100 

15-copy 58 98 54 94 
31-copy 0 58 0 44 

Rnd-1 96 100 96 100 
Rnd-2 100 100 100 100 
Rnd-3 100 100 100 100 
Rnd-4 100 100 100 100 
Rnd-5 90 100 90 100 
Rnd-6 100 100 100 100 
Rnd-7 64 92 62 88 
Rnd-8 74 94 52 70 
Rnd-9 88 94 80 88 

Rnd-10 98 100 92 96 
 

The comparison of mean and SD values are shown in Table 5.5. It is easily seen that 

iPBIL gains better overall performance than PBIL. In Loose case, iPBIL outperforms 

PBIL in eight instances (compare mean values in rows 15,31-copy, Rnd-7,8,9,10, column 

Loose) while in Severe case, the former beats the latter in nine instances (compare mean 

values in rows 7,15,31-copy, Rnd-5,7,8,9,10, column Severe). Similarly, the results of 

successful ratio (SR) can also reflect the superiority of iPBIL over PBIL, as given in 

Table 5.6. The following explains the underlying reason of the above results. As 

discussed in Section 5.4, the adapted PBIL in Section 5.3 may not be fit for the problem 

concerned in this chapter due to the adopted restart scheme. This scheme is designed to 
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improve the global exploration ability of PBIL for the NCRM problem, where the restart 

threshold value is set based on initial tests and observations. So, the setting of threshold 

value may not match the situation in delay constrained NCRM problem. Besides, that 

restart scheme is start-from-scratch based and completely ignores the previously found 

promising solutions which may provide useful guidance to facilitate effective search. In 

this way, the evolution is divided into several separate search stages where neither 

coherence nor continuity is reflected. Because of the delay constraint, it would be more 

difficult for the search to locate feasible solutions. Hence the promising solutions found 

during the evolution should be well exploited. On the other hand, iPBIL is featured with 

a new PV update scheme and a PV mutation operation. The new update scheme makes 

full use of the historically best solutions (i.e. promising solutions during the evolution), 

which is designed to fit for the new optimization problem. The PV mutation introduces 

small disturbance to the PV. The combination of the two schemes not only explores the 

most possible promising areas based on the global search information but also avoid the 

search getting stuck into local optima. Therefore iPBIL performs better than PBIL. 

Figure 5.8 illustrates an example that compares the evolutionary features of PBIL 

and iPBIL. We choose 31-copy instance because it is the most difficult problem and 

clearly shows the differences between PBIL and iPBIL. In the figure, the evolution of the 

average fitness (AF) and the best ever found fitness (BF) in 50 runs is reported. First, we 

analyze the evolution of the average fitness (see subfigures (a) and (b)). In Loose case, 

PBIL and iPBIL have the similar performance before 15th generation, namely a horizon 

line. In both algorithms, PV is initialized as {0.5,…,0.5} which means it generates 0 and 

1 with equal probability at each position. As previously discussed, solutions closer to the 

all-one solution are more likely to be feasible. So, the majority of the solutions in the 

early generations are infeasible because the PV has to be gradually adjusted before 

producing feasible solutions. After that the PVs in both algorithms are able to produce 

feasible solutions and hence the AFs both decrease until around 40th generation. In this 

period, PBIL converges faster than iPBIL. This is because of the underlying difference 

between the two PV update schemes adopted. For PBIL, the best ever found solution and 

a proportion of the promising solutions of the current generation are used to update the 

PV, which is mainly based on the local search information. For iPBIL, the best ever 
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found solutions are used to adjust the PV, which is based on the global search 

information. So, the search of PBIL is easier to intensify the search in a smaller and 

smaller area, which causes the rapid convergence. From the 40th generation, the AF of 

PBIL increases to 50 and fluctuates. This is because once the restart criteria is met the 

PV is re-set to {0.5,…,0.5}, where infeasible solutions are more likely to be sampled first. 

As the restart points are not fixed during the evolution and in 50 runs, the AF of PBIL 

fluctuates around the value of 50. Note that the fitness value of any infeasible solution is 

set to 50 in this chapter. On the other hand, the AF of iPBIL gradually goes down along 

generations, which means the focus of the search is gradually changing from global 

exploration to local explotation. The evolutionary features of the AFs of PBIL and iPBIL 

in Severe case are similar to those in Loose case. However, there are some differences 

between the Loose and Severe cases. This time, we compare the AFs of the same 

algorithm in two different cases. For PBIL and iPBIL, the first AF decline in Severe case 

happens around 20th generation. This is later than in Loose case as it is more difficult to 

generate feasible solutions with severer delay bound. For PBIL, the AF in Severe case 

has smaller fluctuations than that in Loose case. The above is also because the severer 

delay bound introduces extra difficulty in locating feasible regions. On the other hand, 

for iPBIL, the AF is similar to that in Loose case after the 20th generation. This is mainly 

because the exploitation of the best ever found solutions which provide useful guidance 

to the search.  

Then, we analyze the evolution of the best ever found fitness (see Figure 5.8 (c) and 

(d)). We start from the Loose case, where the all-one solution is feasible. In the early 

generations, the BF of PBIL and iPBIL is a constant value around 39. As aforementioned, 

the PV cannot produce feasible solutions in early generations because it needs time (i.e. 

evolution) to learn the PV from the all-one solution. So, before the PV is able to produce 

feasible solutions, the BF is the fitness value of the all-one solution which is the only 

feasible solution at the beginning of the evolution. Once the search is guided into feasible 

regions, fitter solutions are generated and hence the BF of PBIL and that of iPBIL both 

decline. The BF of PBIL has a faster convergence until around 80th generation and then 

it suffers a slower convergence, compared with that of iPBIL. The following explains 

why. On the one hand, The PV in PBIL is updated mainly based on the local search 
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information so the search easily converges to a small region in the search space. And the 

local exploitation helps to find a locally promising solution relatively quickly. Then the 

restart scheme helps the search escape from the region being searched. This process is 

repeated until the end of the evolution. However, the restart scheme cannot effectively 

improve the BF due to its deficiencies such as the ignorance of previously found 

promising solutions. On the other hand, the collaboration between the new PV update 

scheme and PV mutation scheme contributes to a better global exploration and improves 

the BF consistently. Therefore, iPBIL finally achieves better BF than PBIL. In Severe 

case, the evolutionary features of the BFs are similar to those in Loose case, which also 

indicates the superiority of iPBIL over PBIL.  

 

  
(a) Average fitness vs. generation in Loose case           (b) Average fitness vs. generation in Severe case 

 
(c) Best fitness vs. generation in Loose case               (d) Best fitness vs. generation in Severe case 

Figure 5. 8  Evolution of PBIL and iPBIL in 31-copy instance. 
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Table 5. 7  The Average Computational Time (ACT) of PBIL and iPBIL (sec.) (The 

Best Results are in Bold) 

Instances 
Loose Severe 

PBIL iPBIL PBIL iPBIL 
3-copy 0.10 0.09 0.16 0.16 
7-copy 2.82 3.58 4.01 7.60 

15-copy 40.06 53.00 39.62 66.74 
31-copy 233.83 863.86 212.82 689.77 

Rnd-1 0.94 0.39 1.34 0.57 
Rnd-2 0.12 0.16 0.15 0.13 
Rnd-3 0.19 0.24 0.23 0.21 
Rnd-4 0.25 0.52 0.49 0.30 
Rnd-5 8.37 7.13 7.49 8.24 
Rnd-6 0.16 0.19 0.17 0.19 
Rnd-7 21.08 15.10 20.73 16.32 
Rnd-8 30.18 28.98 38.19 50.12 
Rnd-9 61.57 60.83 61.11 68.64 

Rnd-10 40.66 42.91 41.36 53.09 

 

The results of the average computational time (ACT) are collected in Table 5.7. It is 

seen that iPBIL does not show advantage in ACT. Rather, it consumes much more ACT 

in some instances, such as 15-copy and 31-copy. There are mainly two issues that relate 

to the ACT, namely the fitness evaluation and the termination condition. In the fitness 

evaluation, a solution is evaluated based on three steps, i.e. check if the data rate 

requirement is met, and if so check if the delay constraint is met, and if so compute the 

number of coding operations performed. In the first step, the receivers are checked one 

by one and the evaluation stops if some receiver is found that does not meet the data rate 

requirement. There is no need to check the rest of the receivers if some receiver already 

violates the data rate requirement. So, the time spent on fitness evaluation may vary 

dramatically. In the termination condition, each algorithm stops either a coding-free 

NCM subgraph is found or a predefined number of generations are reached. A higher 

successful ratio may indicate the fewer fitness evaluations are used. In Loose and Severe 

cases, PBIL spends much less ACT in 15-copy, 31-copy than iPBIL. For PBIL, the 

fitness evaluation in the short period after each restart consumes less time. This is 

because most of the solutions generated by the PV do not meet the data rate requirement. 

On the other hand, iPBIL produce more feasible solutions and the fitness evaluation is 

hence more expensive. 
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5.6  Summary 

This chapter formulates the delay constrained NCRM problem which is a variant of 

the NCRM problem. Delay constraint is for the first time introduced into the NCRM 

problem because the transmission delay is one of the most important QoS parameters in 

supporting real time multimedia multicast applications. The benchmark instances for the 

NCRM problem are adapted for the new problem. We study the new problem by 

adapting three EAs for it, namely GAs based on binary encodings and PBIL in Section 

4.1. The adaptation process is easy as only minor modifications are made to the fitness 

evaluation. Two delay bounds are considered in the experiments (namely the Loose and 

Severe cases). We find that for the same instance, a severer delay constraint indicates a 

more difficult problem. Besides, PBIL gains better performance than GAs in terms of the 

best solutions obtained and successful ratio. Meanwhile, we notice that the restart scheme 

used in PBIL has two deficiencies when used in the delay constrained problem. One is 

that the threshold value is deliberately designed for the NCRM problem. The other is the 

memory-less structure that cannot make use of the promising solutions previously found 

to effectively guide the search. Hence we develop a substitute for the restart scheme, 

namely the combination of a new PV update scheme and a PV mutation. In the new PV 

update scheme, the PV is adjusted based on a group of historically best solutions, which 

improves the global exploration ability of PBIL. The PV mutation is adopted to avoid 

local optima. The experimental results demonstrate that PBIL with the new PV update 

scheme and PV mutation outperforms PBIL with restart scheme in terms of the global 

exploration ability. 

The work has been partially published at EvoStar 2011 (Xing and Qu, 2011b). 
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Chapter 6  NSGA-II for the Cost-Delay Bi-objective 
Optimization Problem 

 

6.1  Motivation 

As discussed in Chapter 5, the delay constrained NCRM problem considers not only 

the computational cost but also the user experience. The problem, to some extent, reflects 

the expectation of service providers and network users (Xing and Qu, 2011b). Intuitively, 

service providers and network users have conflicting interests, i.e. the former for cheap 

data delivery and communications while the latter for better service quality (Pu et al, 

2009). When investigating the interests of service providers and network users, the 

decision maker (or network administrator) may need to compromise between the two 

sides (Wang et al, 2006; Xu, 2011). 

As reviewed in Sections 1.4.2 and 1.5.3, in the course of NCM data transmission, 

two types of costs will incur, coding cost and link cost (Kim et al, 2007c). Coding cost 

denotes the amount of coding operations performed while link cost represents the cost of 

those links leased by the NCM. From the point of view of service providers of a network, 

the total cost (i.e. sum of coding and link costs) can estimate the network resources 

consumed for NCM more precisely than coding cost or link cost individually (Kim et al, 

2007c). A smaller total cost indicates that less network resources are consumed. 

Therefore, it is quite important to minimize the total cost of a NCM. However, this issue 

has not been taken into account in the literature. On the other hand, the transmission 

delay is another important issue in NCM that needs to be carefully concerned (see 

Sections 1.5.2 and Chapter 5). From the point of view of end users of NCM, especially 

those requiring real-time multimedia applications, the transmission delay should be kept 

as low as possible (i.e. minimized) (Zhang et al, 2009). Simultaneously minimizing total 

cost and minimizing transmission delay are two natural objectives representing the 

interests of the both, respectively. Between the two objectives, one is to obtain cheaper 

multicast solutions which may degrade the service quality; while the other is to improve 
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service quality that might increase the cost. Intuitively, the two objectives may reflect a 

trade-off between the interest of service providers and that of network users. If so, the 

trade-off results can be used to achieve a well compromised NCM solution. This 

motivates us to formulate a cost-delay bi-objective optimization (CDBO) problem in this 

thesis (Xing and Qu, 2013). By studying the above problem, one may obtain a trade-off 

between the interests of service providers and network users. The resulting trade-off can 

help the decision maker to balance the two sides. In addition to the problem modeling, 

we also initiate the investigation into the problem using adapted MOEAs. 

In this chapter, we first introduce the detailed modelling of the CDBO problem and 

then study it from the view of evolutionary computation. 

6.2  Problem Description 

Based on the network model introduced in Section 3.1, we for the first time define 

the bi-objective combinatorial optimization problem as to build a NCM subgraph Gs→T 

while simultaneously minimizing two objectives (the total cost Ctotal and the maximum 

transmission delay Dmax) and achieving the demanded data rate. This problem is a variant 

of the NCRM problem. They are based on the same network model in Section 3.1. The 

following lists the notations used: 

R: the defined data rate (an integer) at which s expects to transmit 

information to each receiver tk. 

λ(s, tk): the data rate between s and tk in Gs→T. 

e(u, v): directed link from node u to node v. 

Gs→T: network coding based multicast (NCM) subgraph. 

nCN: the number of coding nodes in Gs→T. 

vc
i: the i-th coding node in Gs→T. 

ccode(vc
i): cost incurred at vc

i, i = 1,…, nCN. The more data streams involved in 

the coding operation in n, the larger ccode(vc
i). 

clink(e(u,v)): cost of link e(u,v) if e(u,v)  Gs→T. 

Pi(s, tk): the i-th link-disjoint path found between s and tk in Gs→T. It is 

represented by a chain of nodes through which the path passes. 
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Wi(s, tk): the link set of Pi(s, tk), i.e. Wi(s, tk) = {e(u,v) | e(u,v)  Pi(s, tk)}. 

D(Pi(s, tk)): the end-to-end transmission time of path Pi(s, tk). 

 

Based on the notations above, we define the CDBO optimization problem below. It 

is noted that  

 

Minimize: 

             
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Dmax = max{D(Pi(s, tk)) | i = 1,…,R, tkT}           (6.2) 

Subject to: 

λ(s, tk) = R,  tk  T                      (6.3) 

 
Wi(s, tk) ∩ Wj(s, tk) = Ø, i,j  {1,...,R}, i≠j, tk  T          (6.4) 

 
Objective (6.1) is to minimize the total cost of the NCM subgraph, which consists of 

the coding cost and link cost; Objective (6.2) is to minimize the transmission delay of the 

NCM subgraph. Please see Section 5.2 for the calculation of Dmax. Constraint (6.3) 

defines that in Gs→T the data rate from s to each receiver is R; Constraint (6.4) restricts 

that the R paths from s to an arbitrary receiver are link-disjoint.  

The CDBO problem belongs to MOPs. Given two solutions X1 and X2 to the CDBO 

problem, we say X1 dominates X2 (or X2 is dominated by X1) if either of the following 

two conditions holds (according to the Dominance definition in Section 2.1.2): 

 X1 is no worse than X2 in Ctotal and in Dmax; 

 X1 is strictly better than X2 in at least one objective, namely Ctotal or Dmax. 

6.3  MOEAs for Multi-Objective Multicast Routing Problems 

The nature of the CDBO problem is a multi-objective multicast routing problem 

(MOMRP) in communications networks since its ultimate goal is to provide high-quality 

multicast (i.e. one-to-many) services from the source to a number of receivers using 
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network coding. This section reviews the MOEAs adapted for multi-objective multicast 

routing problems (MOMRPs) and selects a MOEA for studying the CDBO problem. 

NSGA-II has been applied to a number of MOMRPs. Kim et al (2007c) studied the 

trade-off between coding and link costs in NCM data transmission. Like the CDBO 

problem, this problem can also be viewed as a variant of the NCRM problem (Kim et al, 

2007a) (also see Section 1.4.2). The similarity between the two problems is that both of 

them are NCM routing problems and based on the same network model, where NCM 

subgraphs are to be constructed for data delivery. The difference between them is that the 

total cost and maximum transmission delay are two objectives in the CDBO problem 

while the coding cost and link cost are two objectives in the work of Kim et al (2007c). 

NSGA-II was successfully adapted for the coding and link costs trade-off problem. 

Montoya et al (2008) formulated a multi-objective routing model for multicast overlay 

networks and investigated the model by NSGA-II, where the total end-to-end delay and 

the link usage are two objectives to be minimized at the same time. Han et al (2008) 

incorporated the security metric into the Quality-of-Service (QoS) multicast routing and 

modelled the problem in a multiobjective manner, where the transmission delay, 

bandwidth utilization and security parameters are objectives to be optimized 

simultaneously. NSGA-II was adopted to tackle the problem. Jain and Sharma (2012) 

emphasized the QoS MOMRP where cost and available bandwidth were objectives while 

delay and delay jitter were constraints. A NSGA-II base on tree structured encoding was 

developed to solve the problem.  

SPEA and its improved version SPEA2 have also been used to solve MOMRPs. 

Crichigno and Barán (2004) applied SPEA to study the MOMRP for traffic engineering, 

where four objectives were to be minimized simultaneously, including the link utilization, 

total cost, maximum and mean of the transmission delay. Bueno and Oliveira (2010) also 

studied the same MOMRP above via SPEA2, where two problem specific heuristics were 

incorporated to improve the performance of SPEA2.  

The following introduces MOEAs base on other techniques including ant colony 

optimization (ACO), particle swarm optimization (PSO), artificial immune system (AIS), 

and simulated annealing (SA). ACO was adopted for addressing the MOMRPs, where 

the cost, average and maximum delay were three objectives to be minimized (Pinto et al, 
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2005; Pinto and Barán, 2006). Báez and Pinto (2009) studied a MOMRP with 

wavelength assignment in optical networks. Four parameters are chosen as objectives 

according to the nature of the problem concerned, including the hop count, number of 

splitting power light, number of splitter node and balancing for a number of multicast 

demands. PSO was used to address the problem. Another PSO based MOEA was 

proposed for QoS MOMRP in wireless mesh networks (Zhuo et al, 2010). Wang et al 

(2006) proposed a MOEA based on immune optimization for solving a QoS MOMRP 

with three objectives, the transmission delay, cost of multicast tree and bandwidth 

utilization. Specifically, the principle of AIS was adopted in the design the MOEA. Xu 

and Qu (2010) presented a MOEA hybridizing SA and problem specific neighbourhood 

structures for tackling the MOMRP, where cost, delay and link utilization are conflicting 

objectives. Recently, a hybrid MOEA combining SA and genetic local search has been 

developed and used to solve MOMRP with many objectives (Xu et al, 2013).  

On the other hand, it is noted that some state-of-the-art MOEAs, such as MOEA/D 

in Section 2.3.2, have not been used in the field of MOMRPs. However, these MOEAs 

may also be used for addressing MOMRPs due to their excellent performance in solving 

multi-objective combinatorial optimization problems (Li and Landa-Silva, 2011; 

Konstantinidis and Yang, 2012). 

According to the review above, there are a number of MOEAs that may be suitable 

for studying the CDBO problem, such as NSGA-II, SPEA2, ACO, PSO, AIS, MOEA/D. 

In this chapter, NSGA-II is selected to be adapted for the CDBO problem as explained 

below. There have been several attempts using NSGA-II for MOMRPs, especially for a 

variant of the NCRM problem (Kim et al, 2007c). The success of NSGA-II in solving 

this variant and the similarity between it and the CDBO problem encourage the 

adaptation of NSGA-II for the CDBO problem. Admittedly, NSGA-II is not viewed as 

state-of-the-art MOEA nowadays and its performance may be beaten by more advanced 

MOEAs such as MOEA/Ds introduced in Section 2.3.2. However, it is still applicable to 

investigate the features of the new problem from the point of view of MOEA. So, we 

adapt NSGA-II for the CDBO problem and expect this piece of initial work could 

advocate more research efforts spent in developing fitter MOEAs for the CDBO 

problem. 
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6.4  An Overview of the Original NSGA-II 

Let X be an individual (solution) and fi(X), i = 1,…,M, be the value of the i-th 

objective of X, where M is the number of objectives. Let N denote the population size. 

Let P(t) and Q(t) be the parent population (where elite solutions are kept) and the 

offspring population at generation t, respectively. The pseudo code of NSGA-II is shown 

in Figure 6.1. More details can be found in Deb et al (2002). 

 

1.  Initialization 
2.     Set t = 0 and Q(t) = Ø; 
3.     Randomly create P(t); 
4.  repeat 
5.     Set t = t + 1; 
6.     Set S(t) = P(t) U Q(t); 
7.     Sort individuals in S(t) by using two attributes:  

 (1) the nondomination rank and (2) the crowding distance; 
8.     Set P(t) = Ø and put the first N individuals into P(t); 
9.     Select N individuals from P(t) to fill the mating pool by using 

tournament selection with crowded-comparison operator; 
10.    Implement crossover and mutation to the individuals in the mating 

pool and store the offspring population in Q(t); 
11. until the termination condition is met 
12. Output the nondominated solutions in P(t) and Q(t); 

Figure 6. 1  The pseudo-code of NSGA-II (Deb et al, 2002) 

 

In the evolution loop, the parent population P(t) and the offspring population Q(t) 

are combined together so that the elite solutions (individuals) already obtained cannot be 

lost. In step 7, all individuals in the combined population S(t) are evaluated (e.g. 

objective values fi(X), i = 1,…, M, for individual X are calculated) and sorted into 

different nondomination levels according to the individual dominance scheme (Deb et al, 

2002). Individuals that are not dominated by any other individual are assigned rank 1. 

Those dominated by only the individuals of rank 1 are assigned rank 2, and this recursive 

process iterates until all individuals in S(t) have a rank number. The nondominated 



Chapter 6                                                    NSGA-II for the CDBO Problem 

 155

sorting approach in NSGA-II has a computational complexity of O(MN2), where M and 

N are the number of objectives and population size, respectively.  

When comparing two individuals in parent selection, the crowded comparison 

operator is adopted to guide the search towards the PF (Deb et al, 2002). Given two 

individuals, the one with lower rank value is selected. If the two have the same rank, the 

crowding distance is used to estimate the density of individuals surrounding them. And 

the one with larger crowding distance is selected. Step 10 applies crossover (with a 

crossover probability pc) and mutation (with a mutation probability pm) to the individuals 

in the mating pool to create the offspring population Q(t). The final output is the set of all 

nondominated individuals in P(t) and Q(t). 

6.5  Adaptation of NSGA-II 

This section introduces how NSGA-II is adapted for the CDBO problem, including 

the chromosome representation, objective evaluation, and two problem specific schemes 

(namely initialization and niching in objective space).  

6.5.1  Chromosome Representation and Objective Evaluation 

6.5.1.1  Chromosome Representation 

Like the delay constrained NCRM problem in Chapter 5 and the coding and link 

usage trade-off problem (Kim et al, 2007c), the CDBO problem is another variant of the 

original NCRM problem. These problems are based on the same underlying network 

model introduced in Section 3.1. So, the encoding approaches used in the original 

NCRM problem and its variants can also be used to represent solutions for the CDBO 

problem. These encoding approaches include BLS encoding in Section 3.5.1, BTS 

encoding in Section 3.5.2, and the path-oriented encoding in Section 4.3.1. Among them, 

BLS encoding has been applied in the original NCRM problem (Kim et al, 2007a, 2007b; 

Xing and Qu, 2011a, 2012), the delay constrained NCRM problem (Xing and Qu, 2011b) 

and the coding and link usage trade-off problem (Kim et al, 2007c). Hence, BLS 

encoding can be considered in the CDBO problem.  
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6.5.1.2  Objective Evaluation 

To evaluate a given individual X in all objectives, we first check if X is feasible. The 

feasibility checking procedure here is the same as that for the original NCRM problem in 

Section 3.5.3. The following summarizes the procedure. Each individual corresponds to a 

unique secondary graph GS. We apply a classical max-flow algorithm (Goldberg, 1985) 

to compute the max-flow between the source s and an arbitrary receiver tkT in GS. As 

mentioned in Section 3.1, each link in G has a unit capacity. The max-flow between s 

and tk is equal to the number of link-disjoint paths between s and tk found by the 

max-flow algorithm. If all d max-flows are at least R, where d is the number of receivers, 

rate R is achievable and the individual X is feasible. Otherwise, X is infeasible. 

In the CDBO problem, there are two objectives for minimization, i.e. the total cost 

Ctotal and the maximum transmission delay Dmax. For each infeasible individual X, we set 

a sufficiently large value to Ctotal(X) and Dmax(X), respectively (in this thesis, the value is 

10,000). If X is feasible, we first find a corresponding NCM subgraph Gs→T and then 

calculate Ctotal(X) and Dmax(X). For each receiver tkT, we select R paths from the 

obtained link-disjoint paths from s to tk (if the max-flow is R then we select all the 

link-disjoint paths) and thus obtain R·d paths, i.e. Pi(s, tk), i = 1,…,R, k = 1,…,d. We map 

all the selected paths to GS and obtain a feasible Gs→T based on which the two objectives 

Ctotal(X) and Dmax(X) can be easily calculated. 

6.5.2  The Initialization Scheme 

As discussed in Section 4.1 and 4.2, BLS encoding corresponds to a search space 

with large number of infeasible solutions when solving the NCRM problem. Solutions 

closer to the all-one solution are more likely to be feasible since more auxiliary links are 

active and able to forward the incoming data. To ensure that the search begins with at 

least one feasible solution, an all-one solution is inserted into the initial population (see 

Section 4.1 and 4.2 for details).  

The feasibility checking criteria for the CDBO problem is the same as the one for the 

NCRM problem, as described in Section 6.5.1. Hence, when BLS encoding is adopted 

for the CDBO problem, infeasible solutions account for a high proportion of the search 

space. Feasible solutions are not evenly distributed over the search space. Instead, they 
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usually have short (Hamming) distances to the all-one solution. Experimental results can 

be found in Section 6.6.3. So, it is necessary to include an all-one individual in the 

initialization in order to guide the search towards feasible regions in the search space. 

However, inserting an all-one individual may not be sufficient to create a good initial 

population for the MOP concerned here. With limited number of feasible individuals (e.g. 

the all-one individual may be the only feasible individual), the population may still not 

evolve efficiently towards the PF. Hence, we propose a new initialization scheme that not 

only generates a considerable amount of feasible individuals but also make sure these 

individuals are diversified. Let X = {x1, x2,…, xL} be an arbitrary individual, where xi, i = 

1, 2, …, L, is the i-th bit of X. Let N be the population size. Let setIni be the set of 

generated initial solutions. Figure 6.2 shows the procedure of the new initialization 

scheme. 

 

1.  Set setIni = Ø and add an all-one individual to setIni 
2.  while |setIni| < N do 
3.     Randomly select an individual X from setIni; 
4.     Randomly generate an integer i in the interval [1, L]; 
5.     Mutate X by flipping the i-th bit of X to generate Xnew; 
6.     Evaluate the new individual Xnew; 
7.     if Xnew is feasible then 
8.        Add Xnew to setIni; 
9.     else 
10.       Discard Xnew; 
11. Output setIni as the initial population P(0) 

Figure 6. 2  The procedure of the proposed initialization scheme (Xing and Qu, 2013) 

 

The new initial scheme enables the proposed NSGA-II to start with a set of feasible 

individuals, which helps it to obtain nondominated solutions that are as close to the true 

PF as possible (see Section 6.6.3 for details). 

6.5.3  The Individual Delegate Scheme 

As introduced in Subsection 3.2.4, each individual X corresponds to a unique 

secondary graph GS. If a valid NCM subgraph is obtained, X is seen as a feasible 
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individual; otherwise, X is infeasible. For a feasible X, to determine its NCM subgraph, 

the max-flow from the source to each receiver is computed from the corresponding GS. 

Clearly, the max-flow to each receiver may remain the same if GS is slightly changed, e.g. 

the links and nodes occupied by the max-flow are not removed from GS. If none of the 

max-flows is affected, the corresponding NCM subgraph remains unchanged. According 

to this feature, one may imagine that different secondary graphs may result into the same 

NCM subgraph, which has also been reflected by Kim et al (2007c). In other words, it is 

possible that similar individuals may have identical objective values (Ctotal and Dmax). 

In the study of the CDBO problem, we notice that NSGA-II is not good at producing 

feasible individuals. This is because (1) infeasible solutions constitute the majority in the 

search space, and (2) the major evolutionary force, namely crossover, is not good at 

locating feasible regions in the search space and hence the offsprings may be infeasible 

(also see discussion in Section 4.1.2). According to the analysis above, a few feasible 

individuals are generated at each generation. Hence, duplicates and similar variants of the 

nondominated individuals will spread in the population because of the elitism strategy 

and the selection pressure. Note that nondomianted individuals and their similar variants 

may have identical objective values, as explained in the first paragraph of this section. 

There is a diversity-preservation mechanism (DPM) in the original NSGA-II (Deb et al, 

2002). This mechanism selects fitter individuals according to two attributes, the 

nondomination rank and the crowding distance. Individuals with a lower rank level and a 

higher crowding distance are more likely to enter the mating pool (see Section 6.4). This 

was reported to diversify the search towards the whole PF (Deb et al, 2002). However, 

this DPM may not well handle the spread of duplicates and similar variants of the 

nondominated individuals for the CDBO problem, due to the insufficient supply of 

feasible individuals during the evolution. Duplicates and similar variants of the 

nondominated individuals gradually constitute the majority of the population, which 

deteriorates the population diversity in objective space. This is due to that identical or 

similar parents are likely to produce identical or similar offspring after recombination. 

And similar individuals may correspond to a single point in objective space. This may 

deteriorate the performance of NSGA-II in finding a diversified PF. The search may not 

be well guided towards the entire PF, e.g. some parts of the PF may not be covered. 



Chapter 6                                                    NSGA-II for the CDBO Problem 

 159

Hence, when addressing the CDBO problem, we need to diversify the population not 

only in objective space (like the original the DPM in NSGA-II) but also in decision space 

(for producing significant and promising individuals). 

We consider the crowding issue in both decision and objective spaces and develop 

an individual delegate scheme (IDS) to reduce the number of individuals with identical 

objective values in the population. Only significant individuals are preserved in order to 

maintain the diversity. This scheme can be seen as a complement of the original DPM in 

NSGA-II.  

This scheme is inserted between step 6 and step 7 in Figure 6.1. Assume population 

S(t) has 2N individuals (half from P(t) and half from Q(t)). There are two types of 

individuals in S(t): (1) those with unique Ctotal and/or Dmax, and (2) those sharing identical 

Ctotal and Dmax with others (duplicates and similar individuals). In objective space, the 

former type individuals are situated in less crowed areas while the latter type individuals 

are densely situated. For the latter type of individuals (e.g. k1 individuals in S(t)), we 

divide them into k2 groups of individuals, where in each group individuals have identical 

Ctotal and Dmax. For each group, the individual delegate scheme reserves one individual of 

the group and deletes all others from the group, thus leaving 2N − k1 + k2 individuals 

remaining in S(t). It is noted that the population size is not fixed in IDS. For any 

individual X in S(t), there is no other individual which has the same objective values with 

X. Hence, the search is diversified towards the whole PF. The following shows the rule 

of choosing a delegate from each group.  

For an arbitrary group (out of the k2 groups), its individuals correspond to a single 

point in objective space. However, the size of the group may not be reduced by the DPM 

in NSGA-II, due to the insufficient supply of feasible individuals at each generation. And 

this does not help a diversified search. So, IDS is adopted to select a delegate for each of 

the k2 groups and remove all others from the k2 groups. Hamming distance is widely used 

to measure the difference between two individuals in terms of their genes. We use 

average Hamming distance (AHD) to find the delegate of each group. For an arbitrary 

group, the AHD of individual Xi is defined in formula (6.5), where Xj is an arbitrary 

individual in S(t), j = 1,…,2N and j ≠ i. 
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A larger AHD indicates Xi is situated in a less crowded region in decision space. In 

the IDS, for each group, we select the individual with the largest AHD as the delegate of 

that group to maintain the diversity in decision space. The IDS ensures that, in the parent 

population P(t), any two individuals are different in both decision space and objective 

space. In this way, duplicates and similar variants of nondominated individuals will not 

dominate the population and more space can be left for other significant individuals. This 

helps to diversify the search towards unexplored parts of the PF and hence should lead to 

a better coverage of the PF. 

The IDS is a problem specific scheme developed to adapt MOEAs based on BLS 

encoding and Pareto dominance for the CDBO problem. Hence, it could be incorporated 

into other Pareto-dominance based MOEAs for the above MOP. For example, the IDS 

can be incorporated into the maintenance and update of the external population in SPEA2 

to diversify the search. The effectiveness of the IDS is evaluated in Section 6.6.4. 

6.5.4  The Procedure of the Adapted NSGA-II 

The adapted NSGA-II is characterized by two adjustments when applied to solve the 

CDBO problem. We hereafter call it as NSGA-II for network coding based multicast, 

denoted by NSGAII-4N. Figure 6.3 shows the detailed procedure of NSGAII-4N.  

Instead of randomly generating the initial population, the proposed initialization 

scheme is used to produce N promising individuals. The main loop is similar to the 

procedure of the original NSGA-II (shown in Figure 6.1) except for the use of the 

individual delegate scheme (IDS) (step 8 in Figure 6.3). After applying the IDS, the size 

of S(t) may become smaller than N due to the deletion of individuals. So we replace step 

8 in Figure 6.1 with steps 10-11 to determine P(t). It is noted that the IDS is based on the 

crowding distance in both decision and objective spaces. Step 9 is the original DPM in 

NSGA-II which is based on nondomination rank and crowding distance in objective 

space (see Section 6.4 for details). The IDS can be seen as a complement of the DPM in 

original NSGA-II. The termination condition is the search runs, either (1) a predefined 
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number of generations, or (2) a predefined amount of computational time. 

 

1. Initialization 
2.    Set t = 0; 
3.    Set the offspring population Q(t) = Ø;   
4.    Create the parent population P(t) by using the new initialization scheme; 

(see Section 6.5.2) 

5. repeat 
6.    Set t = t + 1; 
7.    Set S(t) = P(t) U Q(t); 
8.    Delete the individuals in S(t), chosen by the individual delegate scheme; 

(see Section 6.5.3) 
9.    Sort the remaining individuals in S(t) by using:  

(1) nondomination rank and (2) crowding distance;  
10.    if |S(t)| ≤ N then Set P(t) = S(t); 
11.    else Set P(t) = Ø and put the first N individuals of S(t) into P(t); 
12.    Select N individuals from P(t) by using the tournament selection 

with crowded-comparison operator; 
13.    Recombine the N individuals and produce offspring population Q(t); 

14. until the termination condition is met 
15. Output the nondominated solutions in P(t) and Q(t); 

Figure 6. 3  The procedure of NSGAII-4N. (Xing and Qu, 2013) 

 

6.6  Performance Evaluation 

First, we introduce the experimental datasets and performance metrics for evaluating 

NSGAII-4N. Then, we study the effectiveness of the two schemes that adapt NSGA-II 

for the CDBO problem, namely the initialization scheme and the individual delegate 

scheme, respectively. Finally, we verify the performance of NSGAII-4N. 

6.6.1  Experimental Datasets 

As stated in Section 6.2, the CDBO problem is a new MOP formulated in the thesis. 

There is no benchmark dataset available to study this MOP. The CDBO problem is a 

variant of the delay constrained NCRM problem. The two problems are based on the 
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same network model and application (i.e. NCM). The only difference between them is in 

that the CDBO problem considers two objectives (total cost and delay) simultaneously 

while the delay constrained NCRM problem only considers a single objective (coding 

cost) with delay constraint. Hence, the benchmark datasets for the delay constrained 

NCRM problem can be adapted for the CDBO problem. 

In the datasets for the delay constrained NCRM problem, each link is associated with 

a propagation delay and each coding operation is associated with a processing delay in 

order to calculate the transmission delay of each path from source s to receiver tk  T in 

the constructed NCM subgraph Gs→T. The coding cost is measured by the number of 

coding links in the NCM subgraph (see Section 5.2 and 5.5.1 for details).  

When designing the datasets for the CDBO problem, the following ingredients are 

added. Each link e  G is associated with a link cost clink(e) and a propagation delay. The 

link cost and propagation delay are uniformly distributed in the range [5, 15] and [2ms, 

10ms], respectively, where the distribution of propagation delay is the same as in delay 

constrained NCRM problem. In addition, the coding cost ccode(vc) for coding node vc is in 

proportion to the number of data streams which are involved in the coding operation in vc. 

This makes sense because the more data streams involved, the more public buffering and 

computational resources consumed, and hence the larger cost. We assume the cost per 

data stream for coding is fixed at 4. For example, if there are two data streams involved 

in one coding operation, the coding cost is 8. The total cost is the summation of coding 

cost and link cost incurred by the NCM subgraph; the maximum transmission delay is 

the maximum path delay in the NCM subgraph. 

The experimental networks and instance parameters are given in Table 6.1. Detailed 

instance description can be found at http://www.cs.nott.ac.uk/~rxq/benchmarks.htm. We 

consider ten instances, two on fixed networks and eight on randomly generated networks. 

The two fixed networks are the 7-copy and 15-copy networks. The eight random 

networks (Rnd-i, i = 1,…,8) are directed networks with 20 to 50 nodes. All experiments 

were run on a Windows XP computer with Intel(R) Core(TM)2 Duo CPU E8400 3.0GHz, 

2G RAM. The results are achieved by running each algorithm 20 times (unless stated 

otherwise). 
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Table 6. 1  Experimental Networks and Instance Parameters 

Network nodes links sinks rate L
7-copy 57 84 8 2 80

15-copy 121 180 16 2 176
Rnd-1 20 37 5 3 43
Rnd-2 20 39 5 3 50
Rnd-3 30 60 6 3 86
Rnd-4 30 69 6 3 112
Rnd-5 40 78 9 3 106
Rnd-6 40 85 9 4 64
Rnd-7 50 101 8 3 145
Rnd-8 50 118 10 4 189
Note: L: the encoding length of individuals 

 

6.6.2  Performance Measures 

To evaluate the performance of a MOEA from various aspects, we use the following 

three performance metrics which have been widely recognized in the studies of 

multiobjective optimization problems (Tan et al, 2006; Zhang and Li, 2007; Li and 

Zhang, 2009): 

 Inverted generational distance (IGD): Let PFref be a reference set of 

nondominated solutions of the true PF and PFknown be the set of nondominated 

solutions obtained by an algorithm. Solutions in PFref are expected to be 

uniformly distributed in the objective space along the true PF. IGD is defined as 

(6.6). 
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where d(v, PFknown) is the Euclidean distance (in the objective domain) between 

solution v in PFref and its nearest solution in PFknown. This metric measures both 

the diversity and the convergence of an obtained nondominated solution set. A 

lower IGD indicates a better overall performance of an algorithm. 

 Generational distance (GD): GD measures the average distance from the 

obtained nondominated solution set PFknown to the reference set PFref, defined as 

(6.7). 
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where d(v, PFref) is the Euclidean distance (in the objective domain) between 

solution v in PFknown and its nearest solution in PFref. A smaller GD indicates the 

obtained PF is closer to the true PF. 

 Maximum spread (MS): this metric reflects how well the true PF is covered by 

the nondominated solutions in PFknown through the hyperboxes formed by the 

extreme function values observed in PFref and PFknown, as shown in (6.8). 
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where M is the number of objectives; fi

max and fi
min are the maximum and 

minimum values of the i-th objective in PFknown, respectively; and Fi
max and 

Fi
min are the maximum and minimum values of the i-th objective in PFref, 

respectively. A larger MS shows the obtained PF has a better spread. 

Note that we may not know the true PF for the CDBO problem. In this case, to 

determine a reference set PFref, we combine the best-so-far solutions obtained by all 

algorithms in all runs and select the nondominated solutions as the reference set. This has 

been widely adopted in evaluating multiobjective algorithms in the literature. 

6.6.3  The Effectiveness of The Initialization Scheme 

The proposed initialization scheme is based on the use of an all-one individual. First, 

we investigate the distribution of feasible solutions in relation to the all-one solution. We 

then evaluate the new initialization scheme against existing initialization schemes. 

 

6.6.3.1  The Distribution of Feasible Solutions over the Search Space 

In this experiment, we generate a set of neighbourhood solutions with different 

hamming distance to the all-one solution and study the distribution of those feasible 

neighbours to the all-one solution. Assume a solution is represented as L binary bits, 
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where L is an integer. The all-one solution thus has a maximum distance of L to the 

all-zero solution. 

For each hamming distance of i (i = 1,…, L − 1) to the all-one solution, we obtain 50 

neighbours which represent solutions moving away from the all-one solution. We record 

the number of feasible solutions in the 50 neighbours and plot the number against i on 

four selected instances, as shown in Figure 6.4. 

 

 

(a) 7-copy                           (b) Rnd-1 

 

(c) Rnd-3                           (d) Rnd-5 

Figure 6. 4  Number of feasible solutions vs. distance to all-one solution. 

 

The results are interesting. Feasible solutions are not evenly distributed over the 

search space. Those around the all-one solution are more likely to be feasible. That is, the 

region where the all-one solution resides contains more feasible solutions. Hence 

inserting an all-one solution, to some extent, helps to guide the search towards promising 
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region. This is also the reason that we generate a set of variants with small distance to the 

all-one solution as the initial population. 

 

6.6.3.2  The Effectiveness of the Initialization Scheme 

To evaluate the proposed initialization scheme, we compare the performance of three 

initialization schemes, as listed below. 

 Ini-1: randomly generating the initial population. This helps to show what will 

happen if all-one solution is not included in the initial population. 

 Ini-2: randomly generating the initial population with an all-one vector inserted. 

This shows the effectiveness of the all-one solution when compared with 

Ini-1. It is noted that Ini-2 is the only existing initialization scheme for the 

NCRM problem and the delay constrained NCRM problem. 

 Ini-3: the proposed initialization scheme (see Subsection 6.2.2).  

As aforementioned, the CDBO problem is highly constrained. An initial population 

with more feasible solutions is more likely to lead to better optimization results. The 

following experiment focuses on the impact of different initialization schemes on the 

performance of NSGA-II. We hereafter set initial population size as 40, offspring 

population size N = 40, the crossover probability pc = 0.9, and the mutation probability 

pm = 1/L, where L is the encoding length. NSGA-II terminates after 200 generations.  

 

Table 6. 2  The Number of Runs That Output Feasible Solutions. (The Best Results are 

in Bold) 

Network Ini-1 Ini-2 Ini-3
7-copy 0 20 20

15-copy 0 20 20
Rnd-1 20 20 20
Rnd-2 6 20 20
Rnd-3 14 20 20
Rnd-4 18 20 20
Rnd-5 0 20 20
Rnd-6 5 20 20
Rnd-7 1 20 20
Rnd-8 0 20 20

 

First, for each scheme, we count the number of runs which output feasible solutions 

after the evolution, as shown in Table 6.2. We see that both Ini-2 and Ini-3 perform much 



Chapter 6                                                    NSGA-II for the CDBO Problem 

 167

better than Ini-1 (compare column Ini-1, Ini-2, Ini-3 of the same row). This observation 

illustrates that Ini-1 is not an appropriate initialization scheme for the CDBO problem. 

This is because NSGA-II with Ini-1 cannot guarantee that a feasible solution is found at 

the end of the evolution. We therefore consider Ini-2 and Ini-3 as possible initialization 

schemes and compare them in terms of their effect on the performance of NSGA-II.  

 

Table 6. 3  The Impact of Ini-2 and Ini-3 on the Performance of NSGA-II. X and Y in 

X(Y) Denotes the Average and Standard Deviation, Respectively, from 20 Runs. (Best 

Results are in Bold) 

 IGD GD MS 
Networks Ini-2 Ini-3 Ini-2 Ini-3 Ini-2 Ini-3

7-copy 5.42(1.778) 4.04(1.559) 5.09(3.654) 3.03(2.339) 0.77(0.149) 0.80(0.130)
15-copy 14.16(4.161) 13.15(3.998) 8.25(3.975) 7.34(3.696) 0.42(0.163) 0.46(0.161)

Rnd-1 4.27(2.541) 2.69(2.502) 4.34(3.059) 3.86(3.005) 0.62(0.290) 0.77(0.219)
Rnd-2 1.37(2.520) 0.37(0.676) 1.16(3.419) 0.60(1.250) 0.74(0.498) 0.89(0.107)
Rnd-3 8.52(4.458) 6.95(2.205) 15.51(9.436) 14.34(6.820) 0.71(0.219) 0.73(0.115)
Rnd-4 25.69(5.490) 21.50(5.138) 19.17(9.543) 17.24(11.56) 0.21(0.169) 0.25(0.151)
Rnd-5 38.81(13.44) 33.91(10.08) 25.44(10.93) 18.50(9.001) 0.28(0.144) 0.30(0.230)
Rnd-6 8.32(4.848) 5.55(4.650) 0.00(0.000) 0.00(0.000) 0.10(0.307) 0.40(0.502)
Rnd-7 16.91(14.34) 16.20(10.77) 18.18(19.90) 16.96(17.13) 0.41(0.380) 0.39(0.346)
Rnd-8 29.73(15.24) 27.87(14.61) 21.37(17.72) 20.20(16.14) 0.39(0.220) 0.49(0.185)

 

We collect the mean and standard deviation of IGD, GD and MS obtained by 

NSGA-II with Ini-2 and with Ini-3, respectively, as seen in Table 6.3. As mentioned in 

Subsection 6.6.2, IGD can reflect both convergence and diversity of a MOEA, showing 

its overall performance; GD shows how far the obtained PF (PFknown) is away from the 

true PF (PFref) and MS represents how well PFref is covered by PFknown. A smaller IGD 

indicates a better overall performance; a smaller GD means the PFknown is closer to the 

true PF; a larger MS implies a better coverage of the PFknown.  

Regarding the IGD, when adopted in NSGA-II, Ini-3 leads to a better overall 

performance for all instances compared with Ini-2, namely Ini-3 always lead to a smaller 

mean and standard deviation of IGD (see columns Ini-2, Ini-3 of IGD). Similarly, for GD, 

Ini-3 outperforms on 9 instances (except Rnd-6), meaning that PFknown obtained by 

NSGA-II with Ini-3 is usually closer to PFref than that of Ini-2 (see columns Ini-2, Ini-3 

of GD). For MS, Ini-3 outperforms Ini-2 on 9 instances, implying PFknown obtained by 

NSGA-II with Ini-3 has a better spread in most of the instances (see columns of MS).  
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According to the experiments above, we find that Ini-3 is better than Ini-2, when 

used in NSGA-II. On the one hand, Ini-2 ensures that at least one feasible individual is in 

the population. Due to the elitism strategy used in NSGA-II, feasible individuals will 

remain unless more promising individuals appear. Hence, Ini-2 guides the search to 

explore at least one feasible region in the search space. However, all-one individual may 

not be enough to diversify the search towards the whole PF. Some of the unexplored 

parts may be missed during the search and the true PF may not be well covered. On the 

other hand, Ini-3, the proposed initialization scheme, can provide a diversified initial 

population than Ini-2. This scheme is based on that feasible individuals are not evenly 

distributed over the search space; those closer to the all-one individual are more likely to 

be feasible (which has been justified in Section 6.6.3.1). With multiple and significant 

individuals provided by Ini-3, a diversified initial population is more likely to lead to 

better results. 

6.6.4  The Effectiveness of The Individual Delegate Scheme (IDS) 

In Section 6.5.3, we develop a diversity preservation mechanism (DPM) in both 

decision and objective spaces, namely the individual delegate scheme (IDS). The IDS is 

designed based on the feature of the CDBO problem, where only a few feasible 

individuals are generated at each generation and similar individuals may have identical 

objective values. To examine the effectiveness of IDS, we compare the performance of 

the following four variants of NSGA-II: 

 Ini-2: NSGA-II using Ini-2 as its initialization scheme; 

 Ini-3: NSGA-II using Ini-3 as its initialization scheme; 

 Ini-2 + IDS: NSGA-II using Ini-2 and IDS; 

 Ini-3 + IDS: NSGA-II using Ini-3 and IDS; 

Since the performance of the first two algorithms is given in Table 6.3, we provide 

the statistics of IGD, GD and MS of the latter two variants in Table 6.4. To assist reading, 

we provide an intuitive view of the performance of the four variants of NSGA-II, by 

ploting the mean value of IGD, GD and MS from Table 6.3 and 6.4, as shown in Figure 

6.5.  
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Table 6. 4  The Impact of Ini-2+IDS and Ini-3+IDS on the Performance of NSGA-II. 

(Best Results are in Bold) 

Networks IGD GD MS 
 Ini-2 + IDS Ini-3 + IDS Ini-2 + IDS Ini-3 + IDS Ini-2 + IDS Ini-3 + IDS
7-copy 2.86(1.192) 2.50(0.765) 3.10(2.195) 2.80(2.024) 0.84(0.105) 0.86(0.078)
15-copy 12.17(3.538) 10.14(3.060) 10.18(7.627) 6.62(3.621) 0.53(0.149) 0.57(0.132)
Rnd-1 1.00(1.561) 0.24(0.746) 1.89(2.895) 0.42(1.293) 0.93(0.119) 0.98(0.044)
Rnd-2 0.20(0.251) 0.00(0.000) 0.28(0.355) 0.00(0.000) 0.91(0.105) 1.00(0.000)
Rnd-3 5.75(2.204) 5.13(2.083) 14.74(7.860) 10.98(7.316) 0.78(0.181) 0.82(0.107)
Rnd-4 19.55(5.199) 18.57(4.737) 15.92(7.676) 14.25(5.615) 0.22(0.247) 0.27(0.218)
Rnd-5 31.98(13.44) 26.35(12.39) 17.64(9.913) 15.29(8.239) 0.27(0.180) 0.32(0.178)
Rnd-6 3.70(4.650) 2.09(3.746) 0.00(0.000) 0.00(0.000) 0.60(0.502) 0.80(0.410)
Rnd-7 13.49(9.120) 11.10(5.583) 16.34(16.09) 14.71(14.32) 0.47(0.362) 0.53(0.312)
Rnd-8 22.85(17.22) 15.35(9.359) 15.36(12.44) 11.15(8.876) 0.50(0.139) 0.50(0.103)

 

If comparing column Ini-2 of IGD in Table 6.3 and column Ini-2 + IDS of IGD in 

Table 6.4, we find that Ini-2 + IDS performs better than Ini-2 in all instances regarding 

IGD. This can also be observed from Figure 6.5(a), where a smaller IGD indicates a 

better overall performance. If comparing column Ini-2 of GD in Table 6.3 and column 

Ini-2 + IDS of IGD in Table 6.4, it is seen that the latter outperforms the former in eight 

instances (except 15-copy and Rnd-6). This is supported by Figure 6.5(b), where a 

smaller GD implies a closer distance from the approximation to the true PF. If comparing 

comparing column Ini-2 of MS in Table 6.3 and column Ini-2 + IDS of MS in Table 6.4, 

we observe that the IDS helps to achieve a better coverage of the true PF in nine 

instances (except Rnd-5). It is also observed by comparing Ini-2 and Ini-2+IDS in Figure 

6.5(c), where a larger MS means a better coverage. On the other hand, if comparing 

column Ini-3 of IGD, GD and MS in Table 6.3 and column Ini-3 + IDS of IGD, GD and 

MS in Table 6.4, respectively, we find that Ini-3 + IDS is better than Ini-3 in most of the 

instances in terms of the IGD, GD and MS. This can also be observed by comparing 

Ini-3 and Ini-3+IDS in each subfigure of Figure 6.5.  
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(a) The mean value of IGD. 

 

(b) The mean value of GD. 

 

(c) The mean value of MS. 

Figure 6. 5  Comparisons of the average performance of different algorithms. 
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The above observations demonstrate that the IDS can improve the performance of 

NSGA-II when addressing the CDBO problem. The following explains why. As 

discussed in Section 6.5.3, the DPM in NSGA-II (which considers nondominance rank 

and crowding in objective space only) cannot handle the spread of duplicates and similar 

variants of the nondominated individuals, because of the lack of feasible and promising 

individuals generated by evolutionary operations during the evolution. So, duplicates and 

similar variants of the nondominated individuals gradually dominate the population and 

may cause the search getting stuck at heavily crowded regions in objective space, which 

may prevent NSGA-II from exploring other promising regions along the PF. On the other 

hand, the IDS aims to reduce the number of individuals crowded at a single point in 

objective space and leave more space to allow other significant individuals to collaborate 

and diversify the search towards unexplored parts of the PF. This scheme is a 

complement of the original DPM in NSGA-II. Therefore, with the IDS incorporated, 

NSGA-II exhibits its ability to diversify the search towards different regions of the PF 

and hence gains better optimization results. 

If comparing Ini-2 + IDS and Ini-3 + IDS, we find that the latter outperforms the 

former in terms of IGD, GD and MS in all instances. This can be observed by comparing 

columns Ini-2 + IDS, Ini-3 + IDS of IGD, GD and MS in Table 6.4, respectively. The 

comparison demonstrates that incorporating the new initialization scheme and the IDS 

helps to adapt NSGA-II for the CDBO problem. The new initialization scheme provides 

a diversified population and the IDS maintains a diversified search during the evolution. 

Hence, with the two schemes, NSGA-II is more likely to approximate the PF and hence 

more powerful to solve the CDBO problem. 

6.6.5  The Performance Evaluation Overview 

In order to evaluate the performance of NSGAII-4N in solving the CDBO problem, 

we compare it with four MOEAs in the literature. The four existing MOEAs are listed 

below. 

 NSGA-II: the original NSGA-II introduced in Section 6.1 (Deb et al, 2002). 
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 NSGA-II-2: a modified NSGA-II with problem specific selection (Kim et al, 

2007c). NSGA-II-2 is proposed to address the issue of the tradeoff between 

coding cost and link cost in NCM.  

 SPEA2: the improved strength Pareto evolutionary algorithm, one of the widely 

applied and recognized MOEAs (Zitzler et al, 2001). 

 MOPBIL: multiobjective PBIL (Kim et al, 2009b). We include this algorithm 

for comparison because: (1) PBIL shows excellent performance when 

minimizing the NCRM and delay constrained NCRM problems (Xing and Qu, 

2011a, 2011b); and (2) MOPBIL outperforms NSGA-II when applied to solve 

multiobjective robot system optimization problems (Kim et al, 2009b).  

Experiments have been carried out on ten instances (see Table 6.1). The parameter 

settings of the five MOEAs are shown in Table 6.5. To make fair comparisons, each 

algorithm terminates at the same amount of computational time, i.e. c-time. For each 

instance, we fix its c-time in proportion to the number of nodes in the decomposed graph, 

namely the problem size of the instance. For example, we set c-time = 117 sec. for the 

7-copy instance and c-time = 253 sec. for the 15-copy instance (see Table 6.1 for details). 

All simulations were run on a Windows XP computer with Intel(R) Core(TM)2 Duo 

CPU E8400 3.0GHz, 2G RAM. It is noted that all MOEAs share the same objective 

functions. NSGA-II-2 and NSGAII-4N are two variants of NSGA-II, sharing the basic 

evolutionary structure with NSGA-II and incorporating problem specific schemes (the 

evolutionary structure can be found in Section 6.4). NSGA-II, NSGA-II-2, NSGAII-4N 

and SPEA2 share the same evolutionary operators, including crossover and mutation. 

 

Table 6. 5  Parameter Settings of the Five MOEAs 

NSGA-II NSGA-II-2 SPEA2 MOPBIL NSGAII-4N 
N = 40; 
pc = 0.9; 
pm = 1/L; 
tsize= 2; 

N = 40; 
pc = 0.9; 
pm = 1/L; 
tsize= 2; 

N = 40; 
Narc = 40; 
pc = 0.9; 
pm = 1/L; 
tsize= 2; 

N = 40; 
Narc = 10; 
nPV = 5; 
pm = 0.02; 
α = 0.15; 
ε = 0.05; 

N = 40; 
pc = 0.9; 
pm = 1/L; 
tsize= 2; 

Note: N: population size; Narc: archive size; pc: crossover probability; pm: mutation probability; L: 
individual length; tsize: tournament size; nPV: number of probability vectors; α: learning rate; ε: amount of 
shift in the mutation. 
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The statistics of IGD, GD and MS of the five algorithms are shown in Table 6.6. 

First of all, NSGA-II and SPEA2 cannot achieve decent IGD, GD and MS values in most 

of the instances (see rows NSGA-II, SPEA2 of the same instance). On the one hand, the 

CDBO problem may be relatively hard so NSGA-II and SPEA2 cannot perform well. On 

the other hand, NSGA-II and SPEA2 are baseline MOEAs and they may not effectively 

approximate the PF. When comparing rows NSGA-II and SPEA2, we see that NSGA-II 

always obtains smaller IGD and GD. It indicates NSGA-II is more suited for addressing 

the CDBO problem.  

If comparing row NSGAII-4N with the other rows, we find that in most of the 

instances, NSGAII-4N obtains the smallest mean IGD, the smallest mean GD, and the 

largest mean MS, demonstrating the best performance among the five algorithms. This is 

because NSGAII-4N incorporates two problem specific schemes for better adaptation, 

namely the new initialization scheme and the individual delegate scheme (IDS). The new 

initialization provides a population of promising individuals which helps to initiate a 

diversified search at the beginning of the evolution. The IDS reduces the number of 

individuals crowded at a single point in objective space and accepts other significant 

individuals to the population. This scheme helps to diversify the search towards different 

areas of the PF during the evolution. Hence, with the two schemes incorporated, 

NSGAII-4N obtains the best performance. 

As aforementioned, IGD reflects the overall performance of an algorithm, measuring 

its convergence and diversity features simultaneously. To further support our observation 

that NSGAII-4N outperforms the others, we compare the IGD values of the five 

algorithms by using Student’s t-test. The statistical results obtained by a two-tailed t-test 

with 38 degrees of freedom at a 0.05 level of significance are given in Table 6.7. The 

result of Alg-1↔Alg-2 is shown as “+”, “”, or “~” when Alg-1 is significantly better 

than, significantly worse than, or statistically equivalent to Alg-2, respectively. Table 6.7 

shows that NSGAII-4N outperforms the other algorithms in most of the instances except 

the Rnd-4 and Rnd-8 networks. For the Rnd-4 network, the performance of NSGAII-4N 

is equivalent to those of NSGA-II-2 and MOPBIL, while for the Rnd-8 network 

NSGAII-4N and NSGA-II-2 are statistically the same. We therefore conclude the 

proposed NSGA-II has the best optimization performance over all instances concerned. 
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Table 6. 6  Performance Comparisons of the Five Algorithms in Terms of IGD, GD and 

MS (The Best Mean Values Are in Bold). 

 7-copy (c-time = 117 sec) 15-copy (c-time = 253 sec) 
Algorithms IGD GD MS IGD GD MS
NSGA-II 5.875(3.014) 4.156(3.692) 0.727(0.182) 14.985(3.327) 9.984(3.463) 0.376(0.139)
NSGA-II-2 5.510(2.245) 4.539(2.302) 0.751(0.151) 15.315(3.269) 9.239(3.213) 0.379(0.193)
SPEA2 8.572(13.15) 6.262(4.008) 0.667(0.333) 15.129(4.744) 9.112(3.496) 0.451(0.240)
MOPBIL 5.693(1.989) 4.407(3.352) 0.717(0.141) 16.850(3.621) 11.329(4.586) 0.342(0.159)
NSGAII-4N 1.564(0.866) 1.923(1.499) 0.948(0.080) 11.357(4.595) 7.793(5.642) 0.523(0.177)
 Rnd-1 (c-time = 54 sec) Rnd-2 (c-time = 65 sec) 
Algorithms IGD GD MS IGD GD MS
NSGA-II 4.761(2.861) 6.232(3.358) 0.669(0.225) 1.167(1.164) 0.318 (0.360) 0.555(0.426)
NSGA-II-2 4.169(3.042) 4.776(2.985) 0.700(0.274) 0.609(0.490) 0.671(0.158) 0.751(0.176)
SPEA2 10.577(3.95) 6.949(4.563) 0.351(0.396) 2.541(2.649) 2.000(3.482) 0.678(0.828)
MOPBIL 6.533(3.148) 4.072(3.374) 0.434(0.316) 1.840(1.345) 0.816(1.743) 0.448(0.420)
NSGAII-4N 0.680(1.491) 0.763(1.885) 0.938(0.144) 0.025(0.111) 0.035(0.158) 0.989(0.046)
 Rnd-3 (c-time = 94 sec) Rnd-4 (c-time = 113 sec) 
Algorithms IGD GD MS IGD GD MS
NSGA-II 8.292(4.647) 16.151(8.204) 0.770(0.143) 20.972(5.822) 14.120(5.933) 0.196(0.144)
NSGA-II-2 9.283(6.608) 16.475(8.841) 0.799(0.289) 18.807(5.341) 15.662(9.026) 0.229(0.178)
SPEA2 16.191(9.803) 23.159(11.25) 1.048(0.576) 30.188(9.033) 19.761(9.515) 0.292(0.277)
MOPBIL 12.017(7.849) 16.000(13.03) 0.820(0.395) 19.705(8.447) 10.809(7.705) 0.218(0.228)
NSGAII-4N 4.419(1.912) 10.270(7.036) 0.873(0.135) 12.966(8.466) 9.700(6.010) 0.493(0.325)
 Rnd-5 (c-time = 124 sec) Rnd-6 (c-time = 91 sec) 
Algorithms IGD GD MS IGD GD MS
NSGA-II 33.651(12.89) 21.245(10.73) 0.308(0.179) 8.328(2.848) 0.000(0.000) 0.100(0.307)
NSGA-II-2 34.660(13.30) 22.360(15.15) 0.223(0.160) 8.790(2.069) 0.000(0.000) 0.050(0.223)
SPEA2 47.996(17.01) 24.578(10.94) 0.255(0.192) 9.595(1.528) 0.450(2.012) 0.045(0.203)
MOPBIL 37.806(11.02) 20.669(11.10) 0.238(0.163) 8.778(2.066) 0.450(2.012) 0.086(0.270)
NSGAII-4N 24.247(9.210) 13.564(7.793) 0.419(0.216) 4.164(4.723) 0.000(0.000) 0.550(0.510)
 Rnd-7 (c-time = 178 sec) Rnd-8 (c-time = 194 sec) 
Algorithms IGD GD MS IGD GD MS
NSGA-II 15.123(10.72) 19.718(25.22) 0.360(0.284) 28.044(16.48) 19.250(11.47) 0.460(0.159)
NSGA-II-2 16.471(11.26) 16.483(13.72) 0.401(0.370) 23.029(17.74) 14.940(10.73) 0.496(0.139)
SPEA2 25.307(17.40) 24.619(22.61) 0.732(0.695) 52.952(29.05) 30.391(22.17) 0.380(0.295)
MOPBIL 18.608(15.62) 14.829(14.24) 0.563(0.376) 44.184(23.11) 28.274(20.99) 0.437(0.236)
NSGAII-4N 9.272(5.572) 12.015(10.99) 0.584(0.279) 19.230(9.354) 9.648(3.631) 0.566(0.262)

 

Table 6. 7  The t-Test Results of Different Algorithms on 10 Instances. 

Algorithm-1 ↔ Algorithm-2 7-copy 15-copy Rnd-1 Rnd-2 Rnd-3 
NSGAII-4N ↔ NSGA-II + + + + + 
NSGAII-4N ↔ NSGA-II-2 + + + + + 
NSGAII-4N ↔ SPEA2 + + + + + 
NSGAII-4N ↔ MOPBIL + + + + + 
Algorithm-1 ↔ Algorithm-2 Rnd-4 Rnd-5 Rnd-6 Rnd-7 Rnd-8 
NSGAII-4N ↔ NSGA-II + + + + + 
NSGAII-4N ↔ NSGA-II-2 ~ + + + ~ 
NSGAII-4N ↔ SPEA2 + + + + + 
NSGAII-4N ↔ MOPBIL ~ + + + + 
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6.7  Summary 

Service providers and network users have conflicting interests, one for cheap cost 

and the other for high quality. The trade-off between the two sides needs to be studied so 

that the decision maker (or network administrator) can provide compromised solutions. 

This chapter formulates a bi-objective optimization problem to investigate the conflicting 

interests of service providers and network users, namely the cost-delay bi-objective 

optimization (CDBO) problem. The CDBO problem can be seen as an extended version 

of the delay constrained NCRM problem in Chapter 5 and another variant of the NCRM 

problem in Chapter 3. The datasets for the delay constrained NCRM problem are adapted 

for the CDBO problem, which has been publicly available. 

We adapt NSGA-II for the CDBO problem by developing two problem specific 

schemes, namely a new initialization scheme and an individual delegate scheme (IDS). 

The first scheme is developed based on the feature of the BLS encoding, where solutions 

closer to the all-one solution are more likely to be feasible solutions. This scheme can 

provide a population of diversified and feasible solutions, which helps to diversify the 

search at the beginning of the evolution. As insufficient feasible individuals are produced 

during the evolution, duplicates and similar variants of the nondominated individuals 

gradually dominate the population, which could harm the population diversity and avoid 

the search approximating upexplored parts of the PF. To overcome this problem, the IDS 

is proposed which removes those individuals crowded at a single point in objective space 

from the population and leaves more space to other significant individuals, which helps 

to diversify the search during the evolution. This scheme is a complement of the original 

diversity preservation mechanism in NSGA-II. With the two schemes incorporated, the 

adapted NSGA-II is reported to perform better than a number of MOEAs when tackling 

the CDBO problem. 

This work has been published at Information Sciences. 
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Chapter 7  Conclusions and Future Work 

7.1  Conclusions 

As a breakthrough concept emerged at the beginning of the new century, network 

coding is leading the evolution of routing and switching technologies in communication 

networks. An ideal application of network coding is supporting real-time and high-speed 

multicast data transmission. However, there are a number of barriers to be overcome, 

before the deployment of efficient network coding based multicast (NCM). Among them, 

to find appropriate NCM routing solutions are of practical importance. However, routing 

problems for NCM have received only a few concerns in the literature (Xing and Qu, 

2012). The objective of the thesis is to use population-based evolutionary algorithms 

(EAs) to study the routing problems for NCM. The main findings and achievements are 

summarized below. 

7.1.1  Three EAs for the Network Coding Resource Minimization 

(NCRM) Problem 

The thesis started with the investigation into the NCRM problem. This is a NP-hard 

combinatorial optimization problem (COP) (Kim et al, 2007a). Prior to the research in 

my thesis, there had been a number of attempts for addressing the NCRM problem by 

using greedy search (Fragouli and Soljanin, 2006; Langberg et al, 2006) and EAs. EAs 

have shown better performance than greedy search (Kim et al, 2006). However, there are 

some limitations in the existing EAs when used to solve the NCRM problem. We find 

that there is still large gap between the best results achieved by the existing EAs and the 

global optima (Xing and Qu, 2011a, 2012). The existing EAs include GAs and QEA 

(Kim et al, 2006, 2007a, 2007b; Xing et al, 2010), which are all based on BLS encoding. 

In the study of the existing GAs and QEA, we have the following findings. We find the 

GAs (Kim et al, 2007a, 2008b) cannot effectively explore feasible regions in the search 
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space. This is because there are too many infeasible solutions in the search space and the 

crossover operation cannot effectively locate feasible solutions. We also find that QEA 

(Xing et al, 2010) are sensitive to instances since its performance is overly dependant on 

a key parameter, RAD. The above gaps motivate us to develop appropriate EAs for the 

NCRM problem. In the thesis, we propose three tailored EAs, including PBIL, cGA and 

pEA (see Chapter 4). 

We first adapt PBIL for the NCRM problem. We choose PBIL because it is fit for 

BLS encoding. The gradually changing probability vector (PV) reflects the continuity in 

the search and takes advantage of the promising solutions previously found to guide the 

search to locate and explore promising regions in the search space, which is a significant 

advantage when used in solving the highly-constrained problem concerned. We also 

notice that EDAs having similar PV update schemes with PBIL may also be suited to 

BLS encoding. During the evolution, PV gradually converges to an explicit solution and 

its uncertainty degree decreases. We find that the search may fail to escape some local 

optimum if the degree of the uncertainty of PV is lower enough. According to this feature, 

we for the first time develop an entropy-based restart scheme for PBIL. This scheme uses 

the average entropy to represent the degree of uncertainty. In the thesis, the threshold 

value of the average entropy is calculated based on empirical experiments and used as the 

criterion to restart the search. The threshold value affects the performance of PBIL and 

should be set properly. If the value is extremely small, the search may waste time on 

exhaustively exploiting a very small region; if it is extremely large, the search is forced 

to restart without carrying out effective local exploitation. The restart scheme has shown 

to enhance the global exploration ability of PBIL. The adapted PBIL performs better than 

existing EAs in terms of the best results obtained (Xing and Qu, 2011a). However, this 

PBIL still suffers high computational cost. Motivated by this, we decided to develop 

another EA which requires less computational cost. 

We then investigate the adaptation of cGA for the NCRM problem. We choose cGA 

because: (1) its PV update process also reflects the continuity in the search, which helps 

to track promising regions; (2) cGA was reported to be very fast (Callagher et al, 2004). 

We develop three enhancement schemes to adapt cGA for the problem concerned, i.e. the 

use of all-one solution, a PV restart scheme and a problem specific local search operator. 
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According to the feature of BLS encoding, solutions closer to the all-one solution are 

more likely to be feasible. The first scheme sets the initial elite solution as an all-one 

solution, which helps the PV to locate feasible regions in the search space. The second 

scheme is a PV restart scheme and designed based on the features of BLS encoding and 

the structure of cGA. In this restart scheme, the key parameter is the predefined number 

of consecutive generations (gc). We notice that the PV restart scheme helps to stop 

ineffective evolution and increase the global exploration ability of cGA. We also notice 

that the setting of gc is more tolerant than that of the parameter in the restart scheme in 

PBIL. The third scheme is a local search operator based on graph theory. To the best of 

my knowledge, this is the very first problem specific local search operator incorporated 

into evolutionary process for the NCRM problem. This operator has shown to greatly 

improve the best results obtained by cGA. The adapted cGA gains better performance 

than PBIL in terms of the best results found and the computational time. 

The two pieces of work above are based on the application of BLS encoding, the 

typical encoding approach used in solving the NCRM problem. We find two weaknesses 

of BLS encoding and its variant (BTS encoding), namely high proportion of infeasible 

solutions in the search space and high computational cost in the fitness evaluation, which 

may deteriorate the performance of EAs. Therefore, we investigate an alternative to BLS 

and BTS encodings, namely the path-oriented encoding. We adapt the new encoding for 

the NCRM problem and develop three basic components to build up the evolutionary 

framework (called pEA), including the initialization, crossover, and mutation. The new 

encoding and its corresponding fitness evaluation do not suffer the weaknesses above. It 

is noted that the mutation operator is greedy-based and only accepts the solution if it is 

better. In addition, we discuss the setting of mutation probability in pEA. We argue that a 

constant value is not suited to the situation in pEA since the basic units (BUs) change 

with the number of receivers (d). A constant value may cause dramatically difference in 

the mutation operations incurred during the evolution. Hence, the mutation probability is 

set to 1/d to ensure a stablized performance of mutation for different NCM sessions. We 

also develop a local search operator which is based on the path-oriented encoding. This 

operator shows strong local exploitation ability. pEA with this operator incorporated is 
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shown to outperform the proposed PBIL and cGA and other existing EAs regarding the 

overall optimization performance.  

7.1.2  Formulation of the Delay Constrained NCRM Problem and the 

Adaptation of PBIL 

NCM has promising potentials to support real-time multimedia applications. These 

applications usually require stringent quality-of-service (QoS) guarantees, in particular, 

the transmission delay (i.e. end-to-end delay) (Aurrecoechea et al, 1998; Chalmers and 

Sloman, 1999; Stregel and Manimaran, 2002). To make NCM applicable to support those 

real-time multimedia applications, one need to consider the QoS issues in routing (Walsh 

and Weber, 2008). This importance is not considered in the NCRM problem. Therefore, 

we extend the original NCRM problem by adding the maximum transmission delay as a 

constraint and for the first time formulate the delay constrained NCRM problem (Xing 

and Qu, 2011b). 

The delay constrained NCRM problem is a variant of the original NCRM problem. 

They are based on the same underlying network model. The only difference between 

them is in that the former considers the maximum transmission delay (also called 

end-to-end delay) of NCM as a constraint. It is noted that the transmission delay of a path 

can be estimated in advance since the propogation time of each link along the path can be 

estimated based on the distance and the propogation medium. In the new problem, we 

provide a model to calculate the transmission delay in each path in the NCM. We adapt 

the datasets for the NCRM problem for the delay constrained NCRM problem by 

associating each link in the network with a propogation delay and each coding operation 

with a data processing delay, respectively. The datasets are available at 

http://www.cs.nott.ac.uk/~rxq/benchmarks.htm. Compared with the NCRM problem, the 

new one with delay constraint also reflects the user experience which is necessary when 

using NCM to support real-time multimedia applications. 

We select three EAs to study the delay constrained NCRM problem, including GAs 

based on BLS/BTS encoding and PBIL in Section 4.1. Only minor changes are made to 

the fitness evaluation to handle the delay constraint. A feasible solution in the NCRM 

problem can become infeasible if it cannot meet the delay constraint. We notice that a 
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severer delay bound leads to an increase in the difficulty for problem solving. This is 

because a severer delay constraint turns a proportion of feasible solutions to infeasible 

ones, which reduces the number of feasible solutions in the search space. And the 

reduction contributes to a harder problem. We find that PBIL is better than GAs and has 

a more stablized performance when the delay constraint is changed. This is because PBIL 

is more suited to BLS encoding and relatively easily locate promising regions. On the 

other hand, we also notice that the restart scheme used in PBIL in Section 4.1 has some 

weaknesses when used in solving the delay constrained NCRM problem, namely that the 

threshold value of the average entropy is calculated based on empirical experiments for 

the NCRM problem (but not for the new problem) and that the search restarts from 

scratch without the use of the promising solutions found (which would lose necessary 

guidance towards promising regions). We hence propose a substitute for the restart 

scheme to adapt PBIL for the delay constrained problem. The substitute consists of a new 

PV update scheme and a PV mutation. The PV update scheme is deliberately designed 

for the highly constrained problem here, which takes advantage of the historically best 

solutions. The combination of the two has shown to improve the global exploration 

ability and avoid local optima simultaneously. PBIL with the combination outperforms 

PBIL with restart scheme in terms of the best results obtained. 

7.1.3  Formulation of the Cost Delay Bi-Objective Optimization 

(CDBO) Problem and the Adaptation of NSGA-II 

Naturally, the interests of service providers and those of network users conflict with 

each other. Service providers look for cheap routing solutions that may sacrifice service 

quality for end users; while network users desire for good user experience that may be 

quite expensive (Pu et al, 2009). It is worth studying how to well compromise between 

the two sides (Xu, 2011). NCM is a young communication technique and potential 

suitable for supporting one-to-many data delivery (Li et al, 2003). When considering the 

applications of NCM, one should be concerned with not only the cost of routing solutions 

but also user experience (Wang et al, 2006). It is important to investigate the trade-off 

between the two sides in the context of NCM.  
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For the above reasons, we extend the delay constrained NCRM problem by taking 

into account the conflicting interests of service providers and network users and, for the 

first time, formulate the CDBO problem where total cost and delay are two objectives for 

minimization (Xing and Qu, 2013). This is a multiobjective optimization problem (MOP). 

The total cost is the summation of coding and link costs incurred in the NCM. We select 

total cost as an objective because the sum is more accurate than coding/link cost to 

estimate the network resource used in the NCM and it can reflect the interests of service 

providers (Xing and Qu, 2013). We select maximum transmission delay as the other 

objective because it is one of the most important QoS parameters and reflects the 

interests of network users (Zhang et al, 2009). The CDBO problem reflects the interests 

of both sides; the resulting trade-off can be used by the decision maker to compromise 

between the two sides (Xing and Qu, 2013). We believe it provides an early step research 

towards wider range of intelligent resource optimization in NCM. 

The CDBO problem is a variant of the delay constrained NCRM problem (also a 

variant of the NCRM problem). Their basis is the same underlying network model and 

the graph decomposion method. In order to obtain the datasets for the new problem, we 

extend the datasets for the delay constrained NCRM problem by associating each link in 

the network with a link cost and each coding operation with a coding cost. The datasets 

have been made publicly available at http://www.cs.nott.ac.uk/~rxq/benchmarks.htm. 

NSGA-II is selected to initiate the investigation into the CDBO problem. Two 

problem specific schemes are developed to adapt NSGA-II for the MOP, including an 

initialization scheme and an individual delegate scheme (IDS). The initializaiton scheme 

is designed based on the feature of BLS encoding and aims to generate an initial 

population of diversified and promising individuals. It helps to initiate a diversified 

search for NSGA-II. We find the original diversity preservation mechanism (DPM) in the 

NSGA-II cannot well handle the spread of duplicates and similar variants of the 

nondominated individuals in the population, which prevents the search from effectively 

approximating the unexplored parts on Pareto-optimal front (PF). The IDS complements 

the original DPM in NSGA-II and diversify the population regarding both decision and 

objective spaces. It is shown that the two adaptation schemes help NSGA-II achieve 

better results in terms of the obtained approximation of PF. 
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7.2  Future Work 

NCM routing problems are challenging yet practically important to the deployment 

of NCM. The more the practical factors considered, the fitter the problems modelled with 

respect to the real world applications. On the other hand, sophisticated algorithms need to 

be developed to effectively address the related problems. Therefore, further investigation 

can be dedicated to the following problems and issues. 

7.2.1  More Practical Problem Formulation 

The three routing problems in the thesis are based on a simple network model in the 

context of NCM. There are some limitations in the problem formulations above. First, 

the problems above are modelled as static optimization problems which only mimic the 

environment of a snapshot of a communication network at some time point. The status of 

the network never changes over time. This may not mimic the dynamic feature of real 

communications networks, where the states of links/nodes may change over time (Xu, 

2011). The members (including the source and the receivers) in the multicast group do 

not change. There is no one leaving the group and no extra receiver joining the group, 

which is also unrealistic (Zhao et al, 2009). In the future work, the problems above can 

be extended considering the dynamic and stochastic environments in real world networks, 

e.g. assuming the changes incur in the network topology and the multicast group (Zhao et 

al, 2009).  

On the other hand, the network model in the thesis is simple and does not include the 

heterogeneous feature of the real networks, where a large scale network consists of a set 

of sub-networks which may be based on different topology structures, operating systems 

and protocols. For example, some sub-networks may have ring topology and others may 

have clustering structures. Heterogeneous feature is an important feature in large scale 

communications networks (Benslimane, 2007; Harte, 2008). As NCM has promising 

potentials to support data delivery in large scale networks, it would be more practical to 

incorporate the heterogeneous feature (such as different topological structures) into the 

problem formulations above. 
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7.2.2  Fitter Algorithmic Design 

In Chapter 6, NSGA-II is used to study the CDBO problem. This algorithm does not 

show very promising results when addressing the MOP above since it is only a baseline 

multiobjective EA (MOEA) and not quite suited to combinatorial optimization problems 

(COPs) (Zhou et al, 2011). Nowadays, MOEAs based on decomposition (MOEA/Ds) are 

considered as state-of-the-art and have been successfully applied to a number of COPs 

such as multi-objective knapsack problem, multiobjective travelling salesman problem, 

and deployment in sensor networks (Li and Landa-Silva, 2008, 2011; Konstantinidis et al, 

2010; Cheng et al, 2011; Zhou et al, 2011; Shim et al, 2012). In the future, efforts can be 

made in adapting MOEA/D for the CDBO problem. On the other hand, problem-specific 

local search operators have reflected significant advantage in enhancing the exploitation 

ability of EAs, e.g. cGA in Section 4.2 and pEA in Section 4.3. Also, incorporating local 

search into the evolutionary framework is encouraged in the field of EC so as to take 

advantage of the two sides (Moscato and Cotta, 2007; Krasnogor, 2009; Whitley et al, 

2010; Zhou et al, 2011). It would be interesting to develop appropriate local search 

operators (based on domain knowledge) and incorporate them into the evolutionary 

framework of EAs. 
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