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Abstract 

This thesis aims at designing search methods that can produce competitive solutions 

and to some extent, are of higher generality than the state of the art 

search/optimisation systems. Attaining this aim would underpin the next generation 

of automated systems with the goal being to require less specialist knowledge in 

solving complex optimisation problems. The main challenge in this project is to 

develop systems of higher generality which can intelligently select, evolve or 

combine search methods (heuristics) to operate upon a wider range of problems and 

problem instances. This research follows that direction and contributes to the goal of 

exploring the generality boundary of this new trend of automating the design of 

search systems.  

The main contributions in this thesis are divided into two parts. The first part 

investigates different approaches to combine constructive heuristics which are 

capable of producing good solutions for timetabling problems. Chapter 3 presents a 

weighted graph model for the exam timetabling problem where vertices and edges 

store several extra-attributes to improve the process of finding difficult exams and 

selecting timeslots for them. Chapter 4 investigates sequential and linear 

combinations of vertex-selection heuristics that have emerged from the weighted 

graph model. The results on the Toronto exam timetabling benchmark are compared 

with those obtained from other approaches in the literature.  

The second part of the research focuses on raising the level of generality for search 

methodologies by investigating the use of estimation of distribution algorithms into a 

proposed hyper-heuristic for several optimisation problems. Chapter 5 presents an 

extended framework for the best-fit strategy for the three-dimensional strip packing 
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problem. Chapter 6 proposes a hyper-heuristic based on estimation of distribution 

algorithms. Then we investigate the level of generality of the hyper-heuristic by 

applying it to different problem domains (graph colouring, exam timetabling, and 3D 

strip packing). Experimental evidence indicates that the hyper-heuristic can operate 

on a wide range of problems to produce some competitive results. We also 

demonstrate the capability of identifying the effectiveness of the low-level heuristics. 

This may facilitate the development of efficient automated search systems in future 

research. 

Finally, Chapter 7 evaluates all the results obtained and summarises promising future 

research directions. 
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Chapter 1 Introduction 

 

This chapter gives an introduction to the research areas that are investigated in this 

thesis. We firstly provide the background for the exam timetabling and three-

dimensional strip packing fields. We also explore the motivation for developing 

automated approximate methods as well as more generalised methods for the 

problems within these fields. Secondly, we summarise the scope and objectives of 

this research. This research consists of two major parts. In the first part, we propose 

an enhanced weighted graph model, which gives rise to some novel constructive 

heuristics for exam timetabling problem. We also target different approaches to 

combining the use of those constructive heuristics. The remaining part of the thesis 

concerns a hyper-heuristic based on estimation of distribution algorithms to generate 

good sequences of constructive heuristics. To our knowledge, this is the first time an 

estimation of distribution algorithms is employed as the high-level search technique 

for a hyper-heuristic. Both exam timetabling problem and three dimensional strip 

packing problem are used as case studies. Then, we present the contributions of this 

thesis and provide the list of publications and research papers under review. Finally, 

we outline the structure of this thesis. 
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1.1 Background and Motivations 

Meta-heuristics (e.g. tabu-search, simulated annealing and evolutionary algorithms, 

etc.) have been shown to be a particularly effective class of search methodologies for 

many combinatorial optimisation problems (Glover and Kochenberger, 2003). Many 

of the best results reported for such problems are from meta-heuristic approaches. 

However, from a practical point of view, there are still challenging issues for 

practitioners to use meta-heuristics successfully. Particularly, they usually demand 

intensive knowledge resulting in higher costs of implementation and maintenance.  

In practice, many users often employ simple heuristics of inferior performance which 

are much easier to implement and maintain. There is a demand from many small and 

medium companies for cheaper problem solvers which are capable of producing 

good-enough solutions instead of high-cost, complex and domain-intensive systems. 

To improve the performance of algorithms based on such simple heuristics, one 

popular approach is to combine several heuristics for better decision making. 

Another approach is to use hyper-heuristics. A hyper-heuristic has been defined as 

“an automated methodology for selecting or generating heuristics to solve hard 

computational search problems” (Burke et al., 2009). This thesis only focuses on 

hyper-heuristics that select heuristics. Such hyper-heuristics can be understood as 

high-level search methodologies that operate on a set of low-level simple heuristics. 

They aim at choosing appropriate low-level heuristics subject to situations. The 

success of hyper-heuristics depends on how they adapt to a problem solving situation 

based on non-domain specific information, and associate it with a number of given 

low-level heuristics. Examples of domain-independent criteria include solution 

evaluation, computational time, and previous choices of heuristics. Therefore, hyper-
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heuristics are often regarded as a search methodology of higher generality than most 

implementations of heuristics or meta-heuristics. That is, we can select different sets 

of low-level heuristics for different problems (or problem instances) and reuse the 

high-level search methodologies without making many changes. This can help 

facilitate the development of systems which can operate on a range of related 

problems. Moreover, such systems can be deployed by non-specialised users with 

little knowledge of the problem domain. We will investigate the application of our 

proposed search methods on two different types of problems, i.e. exam timetabling 

problem and three-dimensional strip packing problem. These two problems are 

chosen due to two reasons. Firstly, there are a number of benchmark datasets which 

we can use to measure our methods’ effectiveness. Secondly, since the methods 

proposed in this research will be based on constructive heuristics, we aim at testing 

their applications on problems with different numbers of constraints. Constructive 

approaches are usually more applicable for problems with higher numbers of 

constraints due to the difficulty to design effective local search methods. Basically, 

the number of constraints for the three-dimensional strip packing problem is 

considered to be more than the exam timetabling problem. This is due to the 

constraints on boxes being placed strictly inside the container, i.e. boxes are not 

allowed to have intersection with several sides of the container.  

Timetabling is a very active research field covering many different types of problems 

with different characteristics. Most of them can be described as scheduling some 

events to certain times concerning a number of requirements, known as constraints 

which must be satisfied either completely or as much as possible. In this research 

field, exam timetabling problem (ETP) is very popular as searching for high quality 

solutions is challenging. In practice, manually solving an exam timetabling problem 
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is time-consuming and not an easy task especially for institutions with large numbers 

of students, exams and with room limitations, etc. This problem has been addressed 

by the research community for over 40 years (Carter and Laporte, 1996). Most of the 

research efforts focus on developing efficient computer programs and systems to 

search for good timetables.  

Unlike timetabling problems, packing problems can be seen much more often in 

many aspects of daily life. For example, people use their packing skills to arrange 

foods into a fridge or to put clothes into a suitcase. The general form of such 

problems can be described as follows: given a number of items, we need to allocate 

them subject to some specific constraints into a number of available resources so 

that the usage of resources is minimised. This objective in packing problems in 

industry represents financial benefits especially when resources have high unit cost. 

Due to spatial awareness and intuition, packing problems tend to be solved 

effectively by humans. However, in industry, these problems often involve a great 

number of instances. Hiring many “human solvers” to solve those instances may not 

be feasible or cost-effective. This is one of the reasons that research on using 

computers to automate the packing process has received much attention. 

The packing problem we try to solve in this research is the three-dimensional strip 

packing problem (3D-SPP) which involves packing a set of boxes into a three-

dimensional container with fixed width and height, but unconstrained length. The 

sides of the boxes need to be parallel to the container’s walls. The goal is to pack all 

of the boxes into the container so that the resulting length is minimised. Most of the 

research on strip packing in the literature has only addressed one- or two-

dimensional packing. Although the techniques in such research can be used in many 

real world applications such as paper, metal, glass or other sheet material cutting, 
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multi-processor scheduling and basic pallet loading, they cannot be directly applied 

to other industrial problems with another dimension such as three-dimensional block 

cutting (e.g. wood and marble), truck or air cargo loading, or multi-dimensional 

limited resource scheduling. 

The ETP and 3D-SPP both belong to the class of Combinatorial Optimisation 

problems (Papadimitriou and Steiglitz, 1982). This class refers to a set of many 

problems with discrete variables to be optimised such as the travelling salesman 

problem, the quadratic assignment problem and scheduling problems. Both ETP and 

3D-SPP are NP-hard as they are generalisations of the classical NP-hard problems 

i.e. the graph colouring problem and the bin packing problem, respectively (Garey 

and Johnson, 1979). A problem is assigned to the NP (nondeterministic polynomial 

time) class if it is solvable in polynomial time by a non-deterministic Turing 

machine. A problem is said to be NP-hard if an algorithm for solving it can be 

translated into one for solving any other NP-problem. A problem which is both NP 

and NP-hard is called an NP-complete problem. For problems in the NP class with 

inputs of large sizes, it would take too long to find the best solution using exact 

methods. Much of the research efforts in the literature are devoted to developing 

heuristics, meta-heuristics and other inexact algorithms. Although there is no 

guarantee of optimality, with good designs, such algorithms are capable of producing 

solutions of good quality in a limited computational time. 

 

1.2 Scopes and Objectives 

Raising the level of generality of search systems is a major objective of this research. 

However, we are also interested in designing search methods that can produce high-
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quality solutions. These two objectives usually contradict each other. Most of meta-

heuristics are successful after significant amounts of parameter tunings while such 

tunings are usually associated with a low level of generality. In the first part of this 

thesis, our objective is to design approaches that can produce as good as possible 

solutions for the ETP. In the second part, we investigate more on approaches that not 

only can generate good solutions, but also can reduce the amount of parameter 

tunings for different problems. We do not aim at creating a system that requires no 

parameter tuning. Instead, we are more interested in systems where parameter 

tunings require less expert knowledge in particular problem domains. 

The main focus in this research is on simple constructive heuristics. We take into 

account the state-of-the-art heuristics in the literature for the problems and propose 

some novel constructive heuristics. On their own, heuristics have been shown to be 

useful in a number of ways. They tend to be easy to understand and implement 

approaches, and solutions are generated quickly.  

Early research on the ETP focused on constructive sequential heuristics. The 

principal idea is to use a graph colouring model to formulate the exam timetabling 

problem where the aim is to colour (schedule) the most troublesome or difficult 

vertices (exams) as early as possible. Here, a troublesome or difficult vertex is the 

one that is most likely to lead to a poor timetable if its colouring is deferred until 

later in the process. Based on this idea, we present an enhanced weighted graph 

model which extends the conventional graph model. This model holds and keeps 

track of more information relevant to each vertex and colour. A natural by-product of 

this approach is the emergence of some new, promising constructive heuristics for 

the ETP. 
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For the 3D-SPP, we aim at extending the effective best-fit strategy in the literature 

(Allen et al., 2011). Within the extended strategy, we propose simple constructive 

heuristics that simulate human intuition for different packing situations encountered 

in practice. The objectives of these extensions are not only to improve the 

effectiveness of the best-fit strategy, but also to serve as supporting components for 

the hyper-heuristics afterwards. 

Simple heuristics are fast and easy to implement; however, using them separately 

may not produce competitive results. In many decision-making scenarios, it is often 

better to take into account different factors than to rely on only one factor. Motivated 

by that observation, different ways of selecting and combining constructive 

heuristics are examined. Firstly, we investigate a sequential combination of several 

heuristics to select difficult vertices in the ETP. Each heuristic, except the first one in 

a sequence, acts as the tie-breaker for the previous heuristics in the combination. 

Secondly, we design an improved strategy that uses linear combinations on some 

selected vertex-selection heuristics with suitable weight settings. Thirdly, motivated 

by the demands of systems of high generality, we introduce a hyper-heuristic based 

on the idea of estimation of distribution algorithms.  

In the hyper-heuristic research field, it is often understood that a hyper-heuristic 

approach is of higher generality than most implementations of heuristics/meta-

heuristics. Although there will not be a hyper-heuristic with the capability of 

efficiently solving all problems, it is interesting to know what scope hyper-heuristics 

can have in terms of generality. To address this research question, our hyper-

heuristic is applied to four variants of the concerning problems. These are the ETP, 

the ETP with only a hard constraint (known as the graph colouring problem (GCP)), 

the 3D-SPP without a stability constraint, and the 3D-SPP with a stability constraint. 
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Another challenging issue in hyper-heuristic research is to determine how we can 

provide a good set of low-level heuristics. We design our hyper-heuristic which has 

the capability of identifying ‘good’ or ‘bad’ heuristics by itself in different situations. 

An analysis and future research directions on this learning capability will be 

provided in this thesis. 

 

1.3 Contributions 

The following list includes the major contributions of this research: 

 An enhanced weighted graph model is proposed. It holds and keeps track of more 

information relevant to each vertex and colour. 

 New constructive heuristics for the ETP are introduced. Their design is based on 

additional information pertaining to vertices and edges within the enhanced 

weighted graph model. 

 An extension of the best-fit strategy for the 3D-SPP is introduced which is more 

suitable within a hyper-heuristic context then the original strategy. 

 New constructive heuristics within the extended best-fit strategy for the 3D-SPP 

are proposed. 

 Two strategies to combine the use of several simple constructive heuristics for the 

ETP to select vertices and colours are examined, i.e. sequential combination 

strategy and linear combination strategy. 

 A particular linear combination is presented. It shows good results over a set of 

exam timetabling benchmarks. The choice of heuristics and the weight settings for 

the linear combination are justified. 
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 A hyper-heuristic based on estimation of distribution algorithms is proposed. Its 

effectiveness is demonstrated over applications on four different variants of the 

ETP and the 3D-SPP. 

 

We also list here the publications and papers under review of the forementioned 

contributions: 

 Carrington, J.R., Pham, N., Qu, R. & Yellen, J. (2007) An Enhanced Weighted 

Graph Model for Examination/Course Timetabling. Proceedings of 26th 

Workshop of the UK Planning and Scheduling. 

 Burke, E.K., Pham, N., Qu, R. & Yellen, J. (2012) Linear Combinations of 

Heuristics for Examination Timetabling. Annals of Operations Research, 19(1), 

89-109. 

 Burke, E.K., Pham, N. & Qu, R. (2011) A Hyper-heuristic based on Estimation of 

Distribution Algorithms for Examination Timetabling, Under review in European 

Journal of Operational Research. 

 Burke, E.K., Pham, N. & Qu, R. (2011) A Univariate Marginal Distribution 

Algorithm-based Hyper-heuristic for Three-Dimensional Strip Packing Problems, 

Under review in IEEE-Transactions on Evolutionary Computation. 

 

1.4 Thesis Overview 

This thesis is presented in seven chapters. The first chapter presents the overall 

background, scopes and objectives of the research. Chapter 2 describes the ETP and 
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the 3D-SPP encountered in this research. We present the methodologies and 

benchmarks used in the literature for these problems. In addition, this chapter also 

gives an overview of the state-of-the-art constructive hyper-heuristics in the 

literature for the investigating problems.  

Chapters 3 and 4 concerns the ETP. Chapter 3 presents an enhanced weighted graph 

model for the ETP where vertices and edges store several extra-attributes to improve 

the process of selecting difficult exams and selecting timeslots for them. The chapter 

gives an overview of all features of the graph model and new vertex- and colour-

selection heuristics that have arisen. 

Based on the model presented in Chapter 3, Chapter 4 investigates the sequential and 

linear combinations of vertex-selection heuristics. We observe that the sequential 

combination approach is actually a special case of the linear combination approach. 

For the linear combinations, the weights of the heuristic combinations define specific 

roles that each simple heuristic contributes to decisions to select vertices. 

Justifications for the design of the combined strategy are included in this chapter. 

Experiments show promising results compared to other constructive approaches in 

the literature. 

Chapters 5 and 6 mainly address the 3D-SPP. Chapter 5 presents an extended 

version of the best-fit strategy for the 3D-SPP and introduces several extensions for 

it. Particularly, we introduce a number of novel gap-filling and tie-breaking 

heuristics within the extended strategy. The objective of designing these heuristics is 

mainly to provide the hyper-heuristic in the next chapter with a variety of choices to 

select boxes in different situations. We present a procedure to group similar boxes 



24 
 

together to reduce wasted spaces. We also propose an adjustment technique to 

improve compactness by moving boxes around their positions.  

Chapter 6 presents a hyper-heuristic approach which uses an evolutionary algorithm 

to search for the best heuristic sequences. It is based on an estimation of distribution 

algorithm that evolves the probability distribution of heuristics used at different 

stages within the fittest sequences. The proposed hyper-heuristic can be understood 

as a semi-automated method that learns online during the problem solving for the 

problems at hand. We demonstrate the generality of this hyper-heuristic by 

comparing the experimental results from different problems and problem variants 

with the best results from other constructive approaches in the literature. The tested 

problems include: the ETP, the GCP and the 3D-SPP with and without a stability 

constraint. Some of the results obtained represent the best reported results in the 

literature. We also present observations on the capability of the hyper-heuristic in 

identifying effective and ineffective heuristics based on the probability distribution 

learnt after the evolutionary process. We suggest that this may help facilitate the 

development of efficient algorithms in future work. 

Chapter 7 concludes the thesis by identifying and summarising research issues raised 

in this work and how they can be applied in future research. 
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Chapter 2 Literature Survey 

 

This thesis concerns the design of automated constructive search methodologies for 

different variants of the exam timetabling problem and the three-dimensional strip 

packing problem. Specifically, the main contributions include simple constructive 

heuristics and different approaches to combine them. To understand the background 

of this research, this chapter gives descriptions; reviews related heuristic approaches 

(heuristics, meta-heuristics, hyper-heuristics) in the literature and presents 

benchmarks of the investigated problems. 
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2.1 Exam Timetabling Problems (ETP) 

Many institutions encounter exam timetabling problems. Creating timetables 

manually is hard particularly for large educational institutions with hundreds or 

thousands of exams and students. Those challenges have motivated much research 

effort to exploit computer power to construct exam timetables and also to develop 

approaches applicable for many exam timetabling scenarios. This problem draws 

much research effort due to its difficulty. Many benchmark problems in the literature 

still have not been solved to optimality. The ETP concerns the assignment of 

examinations into a number of timeslots.  The inputs of the problem can be stated as 

follows: 

 Ei is a collection of N examinations (i = 1,...,N). 

 T is the number of timeslots. 

 tk (1 ≤  tk  ≤ T) specifies the assigned timeslots for exam k (k ∈ {1,...,N}). 

 C = (cij)N×N is a matrix where each record, denoted by cij (i,j ∈ {1,...,N}), 

represents the number of students taking both exams i and j. 

 M is the total number of students. 

The constraints for the exam timetabling problems can be classified into two types: 

hard constraints and soft constraints.  

 Hard Constraints must be satisfied in a strict manner. Firstly, a student sitting in 

two exams at the same time (student-conflict) must not occur. Another hard 

constraint is that the number of students must be less than or equal to the seat 

capacity of the assigned room. This hard constraint is, however, not enforced. 

The exam timetabling scenario in this research concerns no room capacity and is 
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also called the uncapacitated exam timetabling problem. A timetable that 

satisfies all hard constraints is called feasible. A timeslot that an exam can be 

assigned in without causing any hard constraint conflict is called a valid timeslot 

for that exam. 

 Soft Constraints are not compulsory but the degree of satisfaction of soft 

constraints indicates the quality of solutions. The exam timetabling scenario in 

this research has an objective of minimising the penalty caused by students 

taking exams too close together (exam-spread).  

The objective function of the ETP in this research can be formulated as follows: 
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P(ti, tj) represents the penalty for assigning exams to two timeslots close together.  

In this section, we first provide the references for some surveys on automated exam 

timetabling techniques. Then, we directly review the popular search methodologies 

in the literature for the ETP. Finally, we give a summary of the Toronto benchmark 

dataset. 



28 
 

 

2.1.1 Surveys on Exam Timetabling 

There is a significant amount of exam timetabling research, especially in the last 

fifteen years. In the exam timetabling literature, many researchers proposed and 

developed solutions for specific schools or universities. These proposals were 

implemented by applying various techniques and then tested on some instances of 

real problems. Several surveys on automated exam timetabling problems have been 

published that classify timetabling problems and their methodologies. 

An early survey by Carter (1986) presented an overview of practical applications for 

the exam timetabling problem from 1964 to 1984. These applications mainly used 

the model of graph colouring and worked on constructive heuristics to solve specific 

problems in particular schools. There was no comparison between the approaches in 

this period. 

Carter and Laporte (1996) extended the survey and gave a classification of the 

algorithms. The four groups of techniques were reported as follows: cluster methods, 

sequential methods, generalised search strategies (i.e. meta-heuristics) and constraint 

based approaches. At that point in time, most algorithms solved different variations 

of the exam timetabling problems with simple constraints. To encourage more 

advanced research into exam timetabling problems, the authors published a set of 

test problems (Carter et al., 1996). This is a well-known benchmark nowadays for 

exam timetabling research and is also recognised under another name: the University 

of Toronto benchmark (shortly named as the Toronto dataset). Its details can be 

found in Section 2.1.6. 
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Burke et al. (1997) presented an overview of various techniques for exam 

timetabling problems and emphasised the increasing interest from researchers all 

over the world. 

Schaerf (1999) conducted a survey on automated methods for educational 

timetabling problems and categorised them into: school, course and exam. The paper 

presented mathematical descriptions of the basic search and optimisation problems, 

variants of the problems, and solution approaches published in the literature. The 

basic search problem can be understood as the one which stops searching as soon as 

a feasible solution is found. The optimisation problem further requires the 

satisfaction of soft constraints to be optimised. 

Burke and Petrovic (2002); Petrovic and Burke (2004) presented overviews of 

university timetabling problems and include automated methodologies for exam 

timetabling.  

Lewis (2008) presented a survey of meta-heuristic techniques for university 

(including exam) timetabling problems. In this survey, meta-heuristic algorithms 

were loosely separated into three classes - one-stage optimisation algorithms, two-

stage optimisation algorithms, and algorithms that allow relaxations. The author 

highlighted the importance of having meaningful comparisons between different 

algorithms on benchmark datasets.  

Most recently, Qu et al. (2009b) published a comprehensive survey that summarised 

many recent search methodologies and their results in exam timetabling published 

since 1996. 
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2.1.2 Constructive Methods and Graph Colouring Heuristics  

Early approaches in the literature solved the exam timetabling problems using a 

graph colouring model (Welsh and Powell, 1967; Garey and Johnson, 1979; Carter, 

1986). The connection between a graph colouring model and basic timetabling (or 

scheduling) problems was firstly mentioned by Welsh and Powell (1967). This 

connection opened later research on graph colouring heuristics in timetabling 

(Mehta, 1981, 1982). The graph (vertex) colouring problem can be defined as 

follows. Given a graph, we need to find the smallest number of colours (the 

chromatic number) needed to obtain a feasible vertex colouring. A feasible vertex 

colouring is a colouring where adjacent vertices (two vertices joined by an edge) are 

assigned different colours. In a standard graph representation of an exam timetabling 

problem, exams to be scheduled are represented by vertices. The student-conflict 

hard constraint between two exams, indicating they should be assigned different 

timeslots, is represented by an edge between the corresponding vertices. Exams 

connected by an edge are called neighbours. If we associate each timeslot with a 

colour, then creating a conflict-free timetable is equivalent to constructing a feasible 

vertex colouring. Note that, for the approaches involving this model, we will use the 

terms vertex and colour interchangeably with exam and timeslot, respectively. 

Based on the model, early research efforts were spent on improving a simple 

approximate algorithm that repeatedly executes the following two steps until a 

colouring is obtained. 

1. Select an uncoloured vertex. 

2. Find a colour for that vertex. 
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Most of the work in the exam timetabling literature focuses on designing 

constructive vertex-selection heuristics for step 1. In step 2, the colour chosen is 

usually one of the colours that cause minimum penalty.  

Vertex-selection heuristics can be understood as simple ordering strategies to sort 

vertices by the degree of trouble they may cause if deferred until later. The first 

vertex in a particular ordering strategy can be considered as the most difficult vertex 

according to that strategy. The strength of this approximate algorithm lies mainly in 

the ability to produce a timetable rapidly. In addition, the ordering strategies are 

relatively simple and thus, easy-to-implement. In the literature, many local 

search/meta-heuristic methods integrated these heuristics to construct good initial 

timetables and iteratively improve them. We present, in the next sections, the 

techniques integrating graph colouring heuristics. An overview of such techniques 

can also be found in (Burke et al., 2004c). 

Table 2.1 describes some of the most widely used ordering strategies. We also 

include a random ordering method in Table 2.1 for the purpose of reference in 

following sections. In the literature, there are also other variants of these strategies. 

Heuristic Ordering Strategy 

Saturation Degree (Brelaz, 1979) increasingly by the number of timeslots available for the 

exam in the timetable at the time 

Largest Degree decreasingly by the number of conflicts the exams have with 

the other exams 

Largest Weighted Degree the same as Largest Degree but each conflict (edge) is 

weighted by the number of students involved 

Largest Enrolment decreasingly by the number of enrolments for the exam 

Random Ordering randomly order the exams 

Colour Degree decreasingly by the number of conflicts the exam has with 

those scheduled at the time 

Table 2.1 The most widely used ordering strategies for exam timetabling problems 

Carter et al. (1996) integrated the use of the first five vertex-selection heuristics in 

Table 2.1 with backtracking to construct solutions. The backtracking strategy 
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involved taking the exam with the least number of conflicts and reassigning it to 

another slot, and so on. The largest cliques were used to define the lower-bound on 

the number of timeslots required for the problem. The authors introduced and carried 

out experiments on the Toronto exam timetabling dataset. Each problem represents 

real-world timetabling data from different institutions. Observations showed that 

none of the heuristics was capable of outperforming all other heuristics over all 

tested problems.  

Burke et al. (1998b) investigated the inclusion of random factors into some vertex-

selection heuristics including Saturation Degree, Largest Degree and Colour Degree. 

Instead of selecting the first exam in an ordering strategy, two proposed strategies 

were: (1) tournament selection: generating a random subset of remaining exams and 

taking the first one ordered by the heuristic strategy; and (2) bias selection: instead 

of picking the first one, a random one is picked from the first n exams ordered by the 

heuristic strategy. The heuristic search techniques with random factors were tested 

on three instances of the Toronto dataset and were capable of producing better 

results compared to the method that uses vertex-selection heuristics with 

backtracking. 

Carter and Johnson (2001) observed that real-world exam timetabling data often 

contains many cliques or even larger dense subsets of vertices that are almost 

cliques. They proposed a number of methods to modify the initialisation step to 

include larger subsets of exams by considering subsets that are almost cliques. The 

experiments were conducted on 11 instances in the Toronto benchmark. 

Improvements over previous approaches were reported. 
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Caramia et al. (2001, 2008) used a greedy scheduler to greedily create a feasible 

solution based on a varying priority associated with each exam. In addition, a penalty 

decreaser tries to perturb the solution without increasing the number of timeslots. In 

fact, the penalty decreaser may sometimes decrease the number of timeslots. These 

two processes are repeated until no improvement can be obtained. Then, a penalty 

trader is invoked which tries to trade penalties for timeslots. The author investigated 

different restarting schemes (check pointing) during the search and assignment of 

priority after a check pointing (bridging priority) to improve the performance. The 

algorithm produced some of the best results in the literature for some instances in the 

Toronto dataset. 

Burke and Newall (2004) observed that using a single vertex-selection heuristic in 

the traditional approach of constructing timetables does not perform well in many 

cases. The effectiveness of a vertex-selection heuristic rather changes as the solution 

construction progresses. As an alternative, the authors investigated a process of 

adaptively changing ordering strategies. They introduced a heuristic modifier 

function that updates itself based on the performance of the associated heuristic in 

the previous steps. The value returned from this function was then added into the 

vertex difficulty estimation of the corresponding heuristic. Extensive experiments 

were conducted on 11 instances of the Toronto and the Nottingham dataset (see 

http://www.cs.nott.ac.uk/~rxq/data.htm). Most of the results were generally good and 

occasionally the approach improved the best results.  

Asmuni et al. (2005); Asmuni et al. (2009) used fuzzy weights on a pair of ordering 

criteria to determine the difficulty of vertices. Promising results were reported on the 

Toronto benchmark dataset. Asmuni et al. (2007) extended the same fuzzy strategy 

to three ordering criteria and investigated the effect of altering fuzzy rules instead of 
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fixing them. Corr et al. (2006) examined the application of neural networks to 

construct exam timetables. The difficulty of a vertex was assessed based on the 

returned values from three different orderings including the number of conflicts 

(degree), the number of students enrolled (enrolment) and the number of available 

slots left (saturation degree). The authors tested their methods on the Toronto 

dataset. The work demonstrated the capability to reduce the number of unplaced 

exams (those that cannot be assigned without causing a conflict) compared to 

approaches using single heuristics. 

Abdul-Rahman et al. (2009) investigated the use of adaptive strategies that order the 

exams to be scheduled within a constructive approach. Firstly, a constructor uses 

either largest degree or saturation degree to assign exams into timeslots. Some exams 

might not be scheduled into a non-conflict timeslot. Then, an analyser uses different 

strategies to assign a higher level of difficulty to the unscheduled exams. The authors 

also used some strategies to shuffle the exams to be scheduled at each iteration. 

Good approximate solutions were observed by increasing the difficulty in certain 

ways. For one problem instance, the best result based on constructive heuristics at 

the time was improved. 

Abdul-Rahman et al. (2011b) presented a constructive approach based on adaptive 

strategies that divides the set of exams into a difficult and an easy set. The difficult 

set consists of the exams that cause infeasibility during solution constructions. The 

authors also created a boundary set within the easy set. Their exams are merged or 

swapped with those in the difficult set using a strategy to improve solutions. If no 

improvement can be found, a roulette wheel selection strategy is employed to shuffle 

the current best examination ordering. The results were shown to be competitive to 

previously published constructive approaches. Abdul-Rahman et al. (2011a) 
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improved their previous work by introducing a linear combination of heuristics with 

a heuristic modifier. A difficulty_score based on two strategies was used to 

determine the ordering of the examinations and the exam with the highest 

difficulty_score will be scheduled first. The approach was tested on the Toronto and 

the second international timetabling competition (ITC2007) datasets. The results are 

comparable to the previous approaches. It was observed that changing the weight 

settings for the linear combination has significant effects on the approximate 

solutions. 

As stated before, the main strengths of the constructive approaches include the 

ability to quickly produce solutions and the use of many easy-to-implement 

heuristics. Research directions on this approach focus mainly on different techniques 

to measure the difficulty of vertices and adaptively change the ordering strategies 

during the solution construction. Part of this thesis’s contributions follows these 

directions with the aim of raising the level of contribution for constructive 

approaches among other techniques for the ETP. 

 

2.1.3 Local Neighbourhood Search 

Apart from the simple constructive approaches that build a solution from scratch, the 

ETP (as well as many other combinatorial optimisation problems) can be solved by 

using local neighbourhood search. The basic idea of this approach is to repeatedly 

examine neighbours of the current solution to possibly move to a better one. 
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To explain how a local search approach and some meta-heuristics in the next 

sections solve a combinatorial optimisation problem and, we use the following 

notations: 

 S = a set of candidate solutions and s = a solution 

 f(s) is an evaluation function applied to solution s 

 an objective, either minimise or maximise f(s) depending on the problem 

 a neighbourhood function, N(s), mapping any solution s in S to a set of ‘related’ 

s' solutions in S. 

Local search is often an iterative algorithm that begins with an initial solution. Then 

in each iteration, it generates a number of solutions which are the neighbours of the 

current solution. Depending on the design, the algorithm can either keep the current 

solution or move to one of neighbours generated. A framework for general local 

search techniques is shown in Algorithm 2.1. 

Algorithm 2.1 A Local Search Framework 

initialise(s) 

while (not stop) do 

s' := generate(s)   // where s' ∈ N(s) 

if accept(s') then s := s' 

end while 

 

There are two phases in this framework – an initialisation and an improvement 

phase. In the first phase, the initialise(s) procedure generates a starting solution. The 

improvement phase is iteratively repeated until stopping criteria are satisfied (the 

while loop). The generate(s) function returns a solution s' from the neighbourhood 

N(s). The accept(s') function determines whether to replace the current solution s 

with the new solution s'.  
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Some examples of simple local search heuristics that correspond to different types of 

improvement include: 

 Random Walk: It selects a solution at random from N(s). On its own, this 

technique is the least effective. It is simply a way to perturb solution. 

 Random Gradient Hill Climbing: a classic local search technique. At each step, a 

candidate solution, s’ is selected at random from N(s). If f(s') is an improvement 

over f(s), s' will be accepted to replace s. 

 Gradient Steepest Descent Hill Climbing: every solution in N(s) is evaluated and 

the solution with the best f(s) value is returned by the generate(s) function. If 

f(s') is an improvement over f(s) then s' is accepted to replace s, otherwise the 

algorithm terminates. With a large neighbourhood, computational complexity of 

this local search may become significant. A strategy to increase speed is to 

evaluate only a subset of N(s). 

 Next Gradient Hill Climbing: instead of iterating through all solutions in N(s), 

we accept the first encountered s' during the iteration if f(s') is an improvement 

over f(s). 

Note that the notations and pseudo-codes in this section are for minimisation 

problems. The gradient steepest descent hill climbing will become the gradient 

steepest ascent hill climbing for maximisation problems. 

Although they are simple, local search techniques are stuck in local optima in many 

situations, where all neighbouring solutions are worse than or equal to the current 

solution. They cannot guarantee to obtain the global optimum. The performance of a 

local search is dependent on how it decides to accept new solution states, the type of 

neighbourhood structure (single- or multi-neighbourhood and the size of the 
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neighbourhood), efficient neighbourhood search techniques, and the initial solution 

(Ribeiro and Hansen, 2001).  

In exam timetabling problems, many publications generate neighbours of a solution 

by applying a simple atomic move, i.e. move an exam to a different timeslot. Burke 

and Bykov (2008) proposed a different approach to improve exam timetables, 

namely the late acceptance strategy. In that strategy, the decision to move to a new 

solution is decided by the comparison between that new solution and the solution 

several steps earlier in the search. Their approach yielded some of the best results for 

the Toronto dataset. 

Nevertheless, the simple local search techniques described in this section are rarely 

used on their own. Instead, we often see them being specially altered to escape local 

optima or being hybridised with other meta-heuristics (Burke et al., 1996; Burke and 

Newall, 1999; Schaerf and Di Gaspero, 2001; Merlot et al., 2003; Kendall and 

Hussin, 2005a, 2005b). They are employed to compare performance against other 

new algorithms (Corne and Ross, 1995; Burke and Newall, 2003). 

 

2.1.4 Meta-heuristics 

Meta-heuristics represent a class of heuristic techniques that have been successfully 

applied to solve a wide range of combinatorial optimisation problems over the years 

(Reeves, 1995; Osman and Kelly, 1996; Osman and Laporte, 1996; Glover and 

Kochenberger, 2003). The introduction of meta-heuristics was based on the demand 

for designing more effective techniques that can be applied to a larger number of 
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applications in comparison with simple heuristics at the time. Glover and Laguna 

(1997) defined a meta-heuristic as follows: 

“A meta-heuristic refers to a master strategy that guides and modifies other 

heuristics to produce solutions beyond those that are normally generated in a quest 

for local optimality. The heuristics guided by such a meta-strategy may be high level 

procedures or may embody nothing more than a description of available moves for 

transforming one solution into another, together with an associated evaluation 

rule.” 

For comparison purpose between our research and other applications for the ETP and 

the 3DSPP, we only focus on the following meta-heuristics in this research, i.e. tabu-

search, simulated annealing, great deluge, greedy randomised adaptive search 

procedure, genetic algorithms and memetic algorithms. There are many other meta-

heuristics; however, they are not the subject of this research. 

 

Tabu-Search 

First proposed by Glover (1986), tabu-search can be seen as a very effective meta-

heuristic to solve many combinatorial optimisation problems, especially in the 

scheduling and timetabling fields. Many success stories of using tabu-search can be 

found in (Glover, 1986; Glover and Laguna, 1993; Osman and Laporte, 1996; Voß et 

al., 1999; Voß, 2001). Tabu-search was then clearly defined by Glover and Laguna 

(1997) as follows: 

“Tabu-search is a meta-heuristic that guides a local heuristic search procedure to 

explore the solution space beyond local optimality.” 



40 
 

Tabu-search can be understood as an extension of the steepest descent method. It 

overcomes the possibility of being stuck at local optima by incorporating adaptive 

memory and responsive exploration. During the exploration process, assuming that s 

represents the current solution, tabu-search accepts either improving or non-

improving moves to a subset N'(s) of the neighbourhood N(s). The move, however, 

has to have the best evaluation compared to all other solutions in N'(s). The main 

reason to allow searching only in N'(s) is to reduce the time complexity of the search. 

In addition, it is very likely that searching in N(s) will direct the solution back to s, 

thus leading to cycles around a solution. Tabu-search uses a tabu list to determine 

N'(s). During the search, some moves satisfying some tabu restriction criteria will be 

put into the tabu list and prohibited for a number of iterations (tabu tenure).  

However, the restriction sometimes prohibits breakthrough moves. A breakthrough 

move can be understood as a move to a solution which is better than the currently-

known best solution. Therefore, in tabu-search, an aspiration criterion is employed 

to allow solutions of sufficient quality to escape the tabu restriction. An appropriate 

design for aspiration criteria plays an important role in guiding the search process. 

The aspiration criteria can be time dependent, time independent, or aspiration by 

default. Reeves (1995) discussed other aspiration criteria by objective, search 

direction, and influence. 

There are two different types of using memory to restrict some moves. A typical 

tabu-search uses a short-term memory to restrict a limited number of iterations prior 

to the current iteration (recency-based restriction). There is also a different type of 

restriction which uses longer-term memory to prohibit moves in a certain frequency 

over a larger number of iterations (frequency-based restriction). Tabu-search using 
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longer term memory can be found in (Glover and Laguna, 1997; Taillard et al., 

2001). 

Many research studies have shown that the settings of the tabu tenure, the cardinality 

of N'(s) and the aspiration function are the deciding factors for a successful tabu-

search. The pseudo-code for a tabu-search is presented in Algorithm 2.2. Starting 

with an initial solution s and an empty tabu list T, we repeatedly find the best 

neighbour s' of s which either is not in the tabu list or satisfies an aspiration criterion, 

add s' into the tabu list to restrict the backward move, release expired moves in the 

tabu list, and replace s with s'. The stopping conditions for tabu-search could simply 

be a maximum number of iterations or a maximum number of iterations since the last 

improvement. 

Algorithm 2.2 Tabu-search Algorithm  

initialise(s) 

T := null  

while (not done) do 

 candidate_list := null 

 for s' in N(s) do 

  if (s' ∉ T)  or (aspiration(s') = true) then 

   add s' into the candidate_list 

  end if 

 end for 

 s' := get the best candidate solution in candidate_list 

 add s' into T   

 release expired moves in T 

 update_best_solution(s') 

 s := s' 

end while 

 

Glover and Laguna (1997) investigated two important strategies used in tabu-search: 

intensification and diversification. These two strategies are wisely chosen based on 

the situation in a particular iteration. While intensification strategies involve 

tweaking parameters to focus the search in the area of high quality solutions, 



42 
 

diversification strategies encourage the search to explore unvisited regions in the 

solution space. These strategies may become particularly useful if the landscape of 

the search is understood in advance. 

Tabu-search is a very effective meta-heuristic in exam timetabling. Di Gaspero and 

Schaerf (2001) investigated a family of tabu-search based techniques to solve the 

exam timetabling problem. An objective function with varying weights on hard and 

soft constraints (shifting penalty mechanism) was employed with the purpose of 

exploring a different search landscape. The work used the atomic local move (see 

Section 2.1.3 for a definition). To decide which exam to move, they maintain two 

violation lists. One consists of exams that violate either hard or soft constraints, the 

other one consists of those violating only hard constraints. Various strategies using 

the shifting penalty mechanism and the two violation lists were also studied. The 

experiments were carried out on the Toronto and Nottingham datasets. This 

technique could beat the approach integrating constructive heuristics with clique 

initialisation and backtracking (Carter et al., 1996) in one instance - sta83 I. Di 

Gaspero (2002) further improved their work by employing a multi-neighbourhood 

strategy. He combined tabu-search with different neighbourhoods. The combinations 

were categorised into local search that focused on optimising the objective function 

(recolour), perturbing the current solution (shake) and obtaining more improvement 

(kick). The recolour and shake algorithms were repeatedly applied until no further 

improvement is achieved. After that, the kick was used to improve the solution 

obtained. The authors applied their approach on seven instances in the Toronto 

dataset and showed improvement from their previous work. In three instances, they 

could outperform the results from (Carter et al., 1996). 
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White and Xie (2001) developed a tabu-search called OTTABU to generate exam 

timetables using data provided by the University of Ottawa. The initial solution was 

generated using the constructive vertex-selection heuristic - largest enrolment. That 

initial solution was improved using tabu-search with the atomic local move. In 

addition to a recency short-term memory, the tabu-search also used a frequency 

long-term memory to improve the solution quality. If both short-term and long-term 

memory were used, only the role of long-term memory turned out to be significant. 

An analysis was carried out to estimate the appropriate size of the long-term 

memory. White and Xie (2004) expanded their research and included comparisons 

between these approaches on the Toronto dataset. The results were competitive 

compared to (Carter et al., 1996; Di Gaspero and Schaerf, 2001). The experimental 

results showed that employing memory can significantly improve tabu-search on 

real-world problesms. 

Paquete and Stützle (2002) investigated a tabu-search for exam timetabling that 

added priorities to objectives. Two distinct strategies were proposed. Firstly, 

solutions were compared by the objective function of the higher priority objective 

and ties were broken by using the next lower priority objective. Secondly, solutions 

must satisfy all constraints associated with decreasing priority objectives. A tabu-

search was used in which the tabu tenure was varying during the search based on the 

number of constraint violations at the time. While the first strategy produced more 

consistent results, the second strategy could obtain some comparable results with 

(Carter et al., 1996). The author observed that larger size problems require longer 

tabu tenure to increase diversity. 
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Simulated Annealing 

Annealing is the process of cooling material in a heat bath. The material is heated to 

high energy where there are frequent state changes. It is then gradually cooled to a 

low energy state where state changes are rare. Simulated annealing (SA) emulates 

this physical process whereby the material is slowly cooled until a steady state is 

reached. Simulated annealing can be understood as an extension of the simple 

random gradient descent algorithm. Kirkpatrick et al. (1983) suggested that 

simulated annealing could be used to search for solutions in an optimisation problem 

whose objective is to converge to an optimum state. 

Algorithm 2.3 Simulated Annealing Algorithm 

initialise(s) 

k := 0 

while (k < kmax) do 

 t := temperature(k / kmax)  

 s' := N(s) 

 if P(f(s), f(s'), t) < random() then  

  s := s' 

  update_best_solution(s') 

 end if 

 k := k + 1 

end while 

 

SA repeatedly considers neighbours s' of the current solution s and probabilistically 

decides between changing to s' or staying with s. Typically, improving moves are 

always accepted while worsening moves can be accepted probabilistically based on a 

function P of the temperature t and evaluation difference between f(s') and f(s) . The 

temperature is proportionate with the probability of acceptance, i.e. high temperature 

means high acceptance probability and vice versa. The temperature is gradually 

reduced as the algorithm proceeds. Acceptance probability is calculated as exp(-δ/t) 

where δ is the magnitude of f(s') - f(s) (the difference between the current and new 
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solution evaluation function) and t is the current value of the temperature parameter. 

The pseudo-code in Algorithm 2.3 presents a simulated annealing that iterates 

through kmax iterations. The temperature is calculated as a function of the remaining 

number of iterations.  

Aarts and Korst (1989) showed the importance of setting the cooling schedule (start 

temperature, end temperature, temperature reduction) and the neighbourhood 

structure to the result of SA. The temperature is set at a high value at the beginning 

to allow more worse moves and then it is slowly reduced to reach equilibrium. 

Simulated annealing is a popular meta-heuristic among various optimisation 

problems. An introduction to simulated annealing techniques can be found in 

(Dowsland, 1995; Aarts et al., 2005) . 

Early SA approaches for the exam timetabling problem include (Thompson and 

Dowsland, 1996, 1998). The authors solved the problem in two stages. The first 

stage generated a feasible exam timetable which was then improved on the soft 

constraints using simulated annealing. The authors further investigated the Kempe 

chain neighbourhood. Instead of allowing moving a single exam, a chain of exams 

were considered. Their experiments observed that the solution quality depends not 

only on the cooling schedule and neighbourhood but also on the way it is sampled. 

The system was reported to be successfully applied in Swansea University. 

Bullnheimer (1998) used a model for quadratic assignment problems to formulate a 

practical exam timetabling problem. The soft constraint prefers timetables with 

longer study time between exams for students. He used simulated annealing to 

search for exam timetables based on two neighbourhood structures (four different 
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timeslot moves or randomly pick an exam to move to another random timeslot). The 

system was used to build timetables at the University of Magdeburg. 

 

Great Deluge 

Dueck (1993) introduced great deluge algorithm which is similar to a certain extent 

to the simulated annealing algorithm. The major difference between the great deluge 

algorithm and the SA algorithm is that SA has probability in accepting worsening 

moves. The basic idea of the great deluge is to accept worsening moves if the 

solution quality is better than a certain level B (or threshold). This level is set as the 

evaluation of the initial solution and gradually reduced by a decay factor ∆B. The 

decay factor and an estimation of desired quality represent the parameters in this 

approach. The pseudo-code presented in Algorithm 2.4 demonstrates a great deluge 

algorithm over kmax number of iterations. In the first phase, a solution s is initialised 

and OR is set as a desired quality of the final solution. The level is initialised as the 

evaluation of s while the decay factor is set as (B - OR) / kmax. The algorithm 

repeatedly finds neighbour s' of s, accepts to move to s' if the evaluation of s' is 

below the current threshold and reduces the threshold by a decay factor after each 

iteration. 

Burke et al. (2004a) investigated the great deluge algorithm for the ETP. The first 

feasible solution was required to define the threshold, so it was obtained by running 

the saturation degree graph colouring heuristic for a number of times and the best 

solution (mostly feasible) is taken. Experiments were conducted on the Toronto and 

the Nottingham datasets and the method produced some of the best results compared 

to approaches in (Carter et al., 1996; Di Gaspero and Schaerf, 2001). The authors 
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also implemented a simulated annealing approach but found that the results obtained 

were inferior to using the great deluge.  

Algorithm 2.4 Great Deluge Algorithm 

initialise(s)  

sbest := s 

set the optimal rate for OR 

B := f(s)  // Set the initial level  

∆B := (B - OR) / kmax  

k := 0 

while (k < kmax) do 

 s' := N(s) 

  

 if f(s') < f(sbest) then  

  update_best_solution(s') 

  s := s' 

 else 

  if f(s')   B then  

   s := s' 

  end if 

 end if 

 B := B - ∆B 

 k := k + 1 

end while 

 

Yang and Petrovic (2005) developed a case based reasoning methodology to select 

an appropriate hybridisation of great deluge meta-heuristics with sequential exam-

selection heuristics integrated with other techniques, including clique detection and 

backtracking. Some of the best known results for the Toronto dataset were obtained 

using this methodology. 

 

Greedy Randomised Adaptive Search Procedure 

Greedy randomised adaptive search procedure (GRASP) is a multi-start iterative 

procedure consisting of two phases: construction and local improvement (Resende 
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and Ribeiro, 2003). The construction phase greedily builds solutions on which the 

local improvement will be applied. The process is repeatedly applied and the best 

solution during the local improvement phase is recorded. In the GRASP, the 

construction phase is designed to ensure the variability of solutions. First, this phase 

ranks all candidate elements based on the dynamic benefit of selecting an element. 

Then, well-ranked candidate elements are often placed in a restricted candidate list 

(RCL) and randomly or greedily selected to build up solutions. This construction 

phase can be viewed as a good sampling of initial solutions that lie in promising 

areas of the search space. The pseudo-code for the GRASP is shown in Algorithm 

2.5. 

Algorithm 2.5 Greedy Randomised Adaptive Search Procedure 

k := 0 

while (k < kmax) do 

 s := Ø 

 evaluate the incremental cost of the candidate elements 

 while (s is not a complete solution) do  

  build the restricted candidate list (RCL) 

  randomly select an element e from the RCL 

  add e into s 

  re-evaluate the incremental costs 

 end while  

 

 while (s is not locally optimal) do 

  s' := N(s) 

  if  f(s’) < f(s) then 

   s := s' 

  end if 

 end while 

  

 update_best_solution(s) 

 k := k + 1 

end while 

 

A survey of using GRASP on many operational research problems and industrial 

applications can be found in (Resende and Ribeiro, 2003, 2005). 
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Casey and Thompson (2003) developed an enhanced GRASP algorithm and applied 

it to exam timetabling problems. The authors focused on tuning parameters to find 

the best constructive heuristic and the size n for the RCL. Exams were ordered 

according to one of the constructive vertex-selection heuristics with the saturation 

degree being the most effective. In each iteration, an exam was selected from the 

RCL using a roulette wheel selection and is assigned to the first available period. 

Then the backtracking technique with a tabu list was applied if no feasible period for 

the selected exam was found. The improvement phase was implemented with a 

neighbourhood of Kempe chains. To encourage the diversity in the searching 

process, some techniques were used including a simulated annealing and memory 

function. The method was tested on the Toronto dataset and produced robust results 

across all instances. It could improve best results in some instances.  

 

Genetic Algorithms 

The meta-heuristics discussed so far all belong to the class of methods that search 

from a single solution. There is another class that has also attracted significant 

research interest in exam timetabling (and indeed many other applications): 

population-based meta-heuristics. We present a review on some successful 

techniques for the exam timetabling problems in this class. 

Genetic algorithms (GAs) are evolutionary algorithms which generate solutions to 

optimisation problems using techniques inspired by natural evolution. GA work can 

be seen as early as in (Fraser, 1957) and (Bremermann, 1962). After that, the success 

of GAs was popularised in many publications e.g. (Holland, 1975) and (De Jong, 
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1975). Introductions to genetic algorithms and their various applications can be 

found in (Goldberg, 1989; Sastry et al., 2006). 

Algorithm 2.6 A Genetic Algorithm Framework 

t := 0 

generate initial population P(0)  

evaluate P(0) 

while (not done) do 

 select a set of promising solutions Parents(t) from P(t) 

 generate offspring O(t) from Parents(t) using genetic operators 

 evaluate O(t) 

 incorporate O(t) and P(t) into P(t + 1) 

 t := t + 1 

end while 

 

GAs represent a meta-heuristic that operates on a population of strings 

(chromosomes or genotypes) which encode candidate solutions (individuals). Each 

string consists of a number of encoding characters (genes). Traditionally, solutions 

are represented in binary, i.e. strings of 0s and 1s, but other encodings are also 

possible. The evolutionary process usually starts by generating a random initial 

population. Then, the fitness of every individual in the population is evaluated. The 

selection procedure is then applied to select individuals with preference on the ones 

with higher fitness values. This selection procedure influences the search direction 

towards promising areas in the search space. The offspring are then created by 

applying genetic operators e.g. crossover (taking parts of two selected parents) and 

mutation (randomly making changes in some genes). After evaluating offspring, a 

procedure is used to determine which individuals of the current population and the 

set of offspring get to survive to the next generation. Commonly, the algorithm 

terminates when a certain number of generations or a certain fitness level is reached. 

Usually, controlling parameters of a simple genetic algorithm include the population 
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size, the frequency of crossover and the mutation rate. A general framework for GAs 

can be found in Algorithm 2.6.  

Ross et al. (1998) developed a GA for exam timetabling problems. They used a 

simple direct representation for a timetable, i.e. a sequence of integer numbers where 

the i
th

 number represents the assigned timeslot for exam i.  

Burke et al. (1998a) analysed the initialisation phase of a GA. Specifically, the 

diversity of solutions generated from several graph colouring heuristics were 

examined. A random factor is used in the initialisation process. That was to either 

select exams based on a particular ordering strategy from a randomly generated 

subset of exams to be scheduled or select randomly an exam from the best n exams 

according to an ordering strategy.  

Erben (2001) developed a GA for the exam timetabling problem with only hard 

constraints. In the algorithm, genes of exams with the same timeslot were grouped 

together. Special crossover and mutation operators were designed for the group 

encoding. Although the computational time was small, the results obtained by this 

approach were not impressive. 

Cote et al. (2005) investigated an evolutionary algorithm for the exam timetabling 

problem. Instead of using the recombination operator, the approach used two local 

search operators, i.e a tabu-search and a simplified variable neighbourhood descent 

with Kempe chain. The evaluation function used a ranking procedure based on 

Pareto strength. The authors tested the algorithm on the Toronto and some other 

datasets. The approach was generally robust and obtained competitive results on a 

number of benchmark problems against other methods in the literature. The paper 
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also provided a review on all the state-of-the-art approaches on the Toronto dataset 

at the time. 

Ülker et al. (2007) used grouping representation to tackle the graph colouring 

problem and exam timetabling problem, i.e. vertices (or exams) with the same colour 

(or timeslot) are grouped together. The authors employed Linear Linkage Encoding 

scheme (Du et al., 2004) for groups and tested several new crossover operators on 

both graph colouring and the exam timetabling benchmarks. The results obtained by 

these crossover operators could match the results obtained by well-known crossovers 

investigated in (Galinier and Hao, 1999). 

 

Memetic Algorithms 

Memetic Algorithms (MA) (Moscato, 1989, 1999) represent a class of evolutionary 

algorithms. MA was named from the term “meme” by Dawkins (1990). The main 

difference between GA and MA is that genes are basically not changed during the 

evolutionary process while memes can change. Typically, MA includes knowledge 

of the problem in the form of heuristics, local search techniques, or truncated exact 

methods. Most memetic algorithms in the literature are the combination of genetic 

algorithms with a local improvement technique on every individual after a 

generation. 

A review on MA for exam timetabling problems can be found in (Burke and Landa 

Silva, 2004). 

Burke et al. (1996) developed a memetic algorithm for the exam timetabling 

problem. They investigated a hill climbing operator and different mutation operators 
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for reassigning a set of exams. Hill climbing could improve the quality of solutions 

more than mutation operators, but the computational time was also higher. The 

authors further investigated the initialisation strategies and the diversity in the 

populations of memetic algorithms (Burke et al., 1998a). The trade-off between 

solution quality and diversity can potentially benefit memetic algorithms. Burke and 

Newall (1999) further studied a multi-stage algorithm to solve the exam timetabling 

problem. The approach used different constructive vertex-selection heuristics. It 

assigned each time a subset of the most difficult exams. To avoid infeasibility, 

backtracking and look-ahead techniques were applied. The approach fixed all exams 

assigned in the previous stage and applied the above memetic algorithm to the 

current stage. High quality solutions were obtained especially for large problem 

instances. Running time was improved significantly compared to the previous 

approach. 

 

2.1.5 Hyper-heuristics 

In the last decade or so, hyper-heuristics have emerged as a major area of study 

(Burke et al., 2003). Burke et al. (2009) gave a formal definition of a hyper-heuristic 

as follows. 

"Hyper-heuristic is an automated methodology for selecting or generating heuristics 

to solve hard computational search problems." 

Unlike many existing search methodologies in the literature that work in the search 

space of solutions, hyper-heuristics work in the search space of heuristics.  
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Research motivation for hyper-heuristics originated from the goal of providing 

generic methodologies for combinatorial optimisation problems. Cowling et al. 

(2000) described hyper-heuristics as a class of knowledge poor methods with the aim 

of selecting appropriate heuristics from a pre-defined set of heuristics during the 

search. The success of hyper-heuristics depends on how they adapt to a problem 

solving situation based on no (or in some cases, very little) problem-domain-specific 

information. Examples of domain-independent criteria include solution evaluation, 

computational time, and previous choices of heuristics. Therefore, hyper-heuristics 

are often regarded as a search methodology of higher generality compared to most 

implementations of heuristics or meta-heuristics. They can help facilitate the 

development of systems which can operate on a range of related problems. In fact, 

most of the developed hyper-heuristics in the literature turned out to be cheaper to 

implement and easier to use when compared against other knowledge intensive 

meta-heuristics (Burke and Kendall, 2005). Moreover, such systems can be deployed 

by even non-specialised users with little knowledge of the problem domain. 

Hyper-heuristic research was categorised in (Burke et al., 2009) into two main 

categories, namely heuristic-selection and heuristic-generation. Heuristic-selection 

approaches involve high-level search methodologies that intelligently choose from a 

given set of simple low-level heuristics to construct or improve a solution. Heuristic-

generation approaches focus on generating novel heuristics whose components are 

building blocks or parts of known heuristics. This research focuses only on the 

heuristic-selection direction with the objective of better utilising the simple 

constructive heuristics. A comprehensive survey of the heuristic-generation 

approaches can be found in (Özcan et al., 2008; Burke et al., 2012). Hereafter, the 

term hyper-heuristics is used with the assumption that we are referring to heuristic-
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selection methods. In the heuristic-selection category, hyper-heuristics can be 

considered as either constructive or perturbative. On the one hand, general 

constructive methods build a complete solution from scratch through a definite 

number of decision steps. Hyper-heuristics based on constructive heuristics can be 

understood as methodologies that repeatedly select suitable constructive heuristics 

from a given set and apply them to the partial solution being constructed. On the 

other hand, hyper-heuristics based on perturbative heuristics, in general, start with a 

complete solution, and then select one from a given set of neighbourhood structures 

and acceptance criteria to iteratively improve that solution. In general, two different 

types of perturbative heuristics can be identified as in (Özcan et al., 2008) which are 

mutational heuristics and hill climbers . The main difference between the two types 

is that hill climbers aim to obtain a better candidate solution at each step while 

mutational heuristics are not expected to do so. 

A popular framework for hyper-heuristics is presented in Figure 2.1. In this 

framework, there are two search layers, namely the high-level search and the low-

level search, separated by a domain barrier. The high-level layer includes a search 

method or learning mechanism that manipulates the selection of heuristics in the 

low-level layer. The set of low-level heuristics can include simple constructive/local 

search heuristics or more complex meta-heuristics. They are methods that work 

directly upon problem solutions. The domain barrier between these two layers is 

employed to raise the level of generality. It can be seen as a restriction for the high-

level search techniques on using domain-dependent information.  
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Figure 2.1 A hyper-heuristic framework 

Although the term hyper-heuristic was firstly used by (Denzinger et al., 1996), the 

idea of hyper-heuristics can be traced back to the early 60s (Fisher and Thompson, 

1961, 1963; Crowston et al., 1963);  in production scheduling. During the 90s, 

hyper-heuristics attracted a significant rise in research interest, mostly in the job-

shop scheduling field (Storer et al., 1992, 1995; Fang et al., 1993, 1994; Dorndorf 

and Pesch, 1995; Norenkov and Goodman, 1997; Hart and Ross, 1998; Hart et al., 

1998). They mainly encoded the heuristic choices in the high-level search as 

sequences of heuristics. In these sequence representations, heuristics are sequentially 

applied either to build the current partial solution or to improve a complete solution. 

In the last decade, exam timetabling problems have been tackled by many hyper-

heuristic approaches both constructively and perturbatively.  

Hyper-heuristics based on Constructive Heuristics 

There have been two major directions in constructive hyper-heuristic research for 

exam timetabling. The first one searches for good sequences (or permutations) of 
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heuristics and applies them sequentially. The second one uses different techniques to 

find good combinations of ordering criteria to measure exam difficulty. 

Terashima-Marín et al. (1999) introduced the first hyper-heuristic for the ETP which 

works on the search space of constructive vertex-selection heuristics. The research 

was motivated by observations that some vertex-selection heuristics work better for 

solving certain problem instances. Instead of following the state-of-the-art 

evolutionary algorithms at the time to search for actual timetables, the authors 

evolved heuristic choices for constructing timetables. Their approach used a non-

direct chromosome representation for the construction process. In particular, it used 

heuristic A to choose an exam and heuristic B to place it in a timeslot until a certain 

condition C first holds. After that, the process continues using heuristic D to choose 

and heuristic E to place an exam, and so on. The method showed promising results 

on the Toronto dataset at that time. 

Ahmadi et al. (2003) proposed several constructive heuristics and used a weighted 

decision function to solve a capacitated exam timetabling problem. The set of low-

level heuristics included 6 vertex-selection heuristics, 2 colour-selection heuristics, 

and 3 room-selection heuristics. For each of those three types of heuristics, a random 

ordering strategy was also included. Then, the author used a variable neighbourhood 

search algorithm to find good combinations of weighted heuristics. The only 

experiment was conducted on a real dataset from the University of Nottingham due 

to its rich set of constraints.  

Asmuni et al. (2005, 2009) investigated the potential of implementing a fuzzy 

system for solving exam timetabling problems. Fuzzy models were applied to 

combine the following three heuristics: largest degree (LD), largest enrolment (LE), 
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and saturation-degree (SD). The model took any two of the three heuristics as inputs 

and associated with each heuristic a grade of membership based on a provided 

membership function. Then, the model employed rule set matrices to return a 

variable examweight that measures the overall difficulty of exams. For example, one 

rule of the fuzzy system was “IF LD is high AND LE is high THEN examweight is 

very high”. The authors used a tuning phase to adjust the membership function until 

the best possible system performance was achieved. The proposed system was tested 

on 12 instances of the Toronto exam timetabling benchmark and the results showed 

improvement in one instance (yor-83-I) compared to other constructive approaches. 

Asmuni et al (2007) extended the same fuzzy strategy to three ordering criteria and 

investigated the effect of altering fuzzy rules instead of fixing them. 

Ross et al. (2004); Ross and Marín-Blázquez (2005);  applied a messy genetic 

algorithm (Goldberg et al., 1990) hyper-heuristic based on constructive vertex-

selection heuristics to the capacitated exam timetabling problem. The messy GA was 

used to search for a set of labelled points in a simplified problem-state-description 

space and a heuristic is associated with a point. Given a problem state, the hyper-

heuristic idea was to find its nearest labelled point, applying the associated heuristic 

to extend the growing solution towards a complete solution. The low-level heuristics 

consisted of 16 vertex-selection, 20 colour-selection, and 5 room-selection heuristics. 

Fast and simple algorithms were generated that offered good performance over a 

range of exam timetabling problems.  

Burke et al. (2005); Burke et al. (2006) used a knowledge discovery technique, case-

based reasoning (Leake, 1996) as a heuristic selector and applied it to exam 

timetabling problems. A set of four vertex-selection heuristics: largest-degree, 

largest degree with tournament selection, colour degree, and saturation degree was 
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used in the low-level search. In (Burke et al., 2006), tabu-search was employed to 

discover the most relevant features used in evaluating the similarity between 

problem solving situations in case-based reasoning. The objective was to choose the 

best heuristics from the most similar previous problem-solving situations to 

construct good solutions for the problem at hand. In (Burke et al., 2005), different 

ways of hybridising the low-level graph heuristics (with and without case-based 

reasoning) were compared for solving the Toronto dataset. It was observed that 

employing knowledge-based techniques rather than randomly/systematically 

hybridising heuristics in a hyper-heuristic framework presented better results. 

Burke et al. (2007) developed a hyper-heuristic framework based on commonly used 

graph colouring heuristics. The set of low-level heuristics included largest degree, 

largest weighted degree, colour degree, largest enrolment, saturation degree and a 

random ordering heuristic. The hyper-heuristic used a sequence representation in 

which each element corresponds to one low-level heuristic. The heuristics in a 

sequence were sequentially applied to schedule one exam into the growing solution. 

Tabu-search was employed as the high-level search method to search for fittest 

sequences. This work addressed the existence of two different search spaces in a 

constructive hyper-heuristic (a heuristic combination search space and a solution 

search space). Competitive results were obtained on course and exam timetabling 

benchmark instances. Within the same framework, Qu and Burke (2005) employed 

variable neighbourhood search on two different sets of neighbourhoods. Each 

neighbourhood structure involves randomly changing a small number of heuristics in 

a heuristic sequence. An automated heuristic construction approach was presented in 

(Qu et al., 2009a) to adaptively hybridise the Saturation Degree heuristic with the 

Largest Weighted Degree heuristic, at different stages of the solution construction 
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for exam timetabling. Promising results for the Toronto dataset were obtained using 

these hybridisations in a short running time. 

Qu and Burke (2009) provided a formal definition of an extended version for their 

graph-based framework. Three other high-level search methods were experimented 

with and comparisons were made with the previously implemented tabu-search (a 

steepest descent method, an iterated local search and a variable neighbourhood 

search). The authors suggested that the quality of the solution obtained depends little 

on the choice of neighbourhood structures. In addition, iterative techniques such as 

iterated local search and variable neighbourhood search were found to be more 

effective for traversing the heuristic combination search space than tabu-search. The 

authors observed that the heuristic search space is likely to be smooth and contain 

large plateaus (i.e. areas where different heuristic sequences can produce similar 

quality solutions). Qu and Burke (2009) also investigated hybridisations of their 

hyper-heuristic framework with local search operating on the solution space. The 

motivation was from the observation that not all problem solutions can be mapped 

into a heuristic combination. The hybridisations produced competitive results 

compared with state-of-the-art approaches on the Toronto benchmark. Ochoa et al. 

(2009) further investigated this graph-based framework and studied a fitness 

landscape analysis on the search space of heuristic combinations. Similar to the 

observation in (Qu and Burke, 2009), the study showed a high level of neutrality in 

its landscapes. The most promising feature suggested by the study was that the 

landscape has the shape of a globally convex or big valley structure. It indicates that 

an optimal heuristic combination is likely to be surrounded by many local minima. 

The study also confirms a positional bias in the heuristic combination search space. 
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Heuristics in the early stage of building up a solution tend to be of greater 

significance than those in the later stages. 

Pillay and Banzhaf (2007) investigated a genetic programming based (GP-based) 

hyper-heuristic system for exam timetabling problems. The approach used a similar 

heuristic combination representation i.e. sequences of heuristics. However, the 

length of a sequence was varying with an upper bound limit. Each element in a 

sequence was a single character representing one of five low-level heuristics: largest 

degree, largest enrollment, largest weighted degree, saturation degree, and highest 

cost (decreasingly order exams by their highest possible proximity cost caused by a 

feasible assignment). Genetic programming was applied to evolve good sequences. 

Experiments showed that this evolutionary system outperformed previous hyper-

heuristics on a number of instances in the Toronto dataset. Pillay (2008) extended 

this work by investigating the performance of the system using three different 

heuristic combination representations: fixed length (FHC), variable length (VHC), 

and n – times (NHC). For the NHC representation, each heuristic in a combination is 

associated with a number representing the number of times that heuristic must be 

applied in order. The results suggested that the FHC representation did not perform 

as well as the other two representations. Nevertheless, the performance of VHC and 

NHC was varying and problem dependent. 

Pillay and Banzhaf (2009) developed an alternative approach to combine two or 

three low-level heuristics as tie-breakers in each decision to select an exam. Pillay 

(2009) used a genetic programming approach to evolve functions that calculate the 

difficulty of assigning an exam during the timetable construction process. Each 

approach could obtain improvements to some instances in the Toronto dataset 

compared to other constructive approaches. 
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Hyper-heuristics based on Perturbative Heuristics 

Perturbative hyper-heuristic publications have started to appear only recently. Bilgin 

et al. (2007) employed different heuristic selection and move acceptance 

mechanisms and used their combinations within hyper-heuristics. The authors 

experimented with many different combinations on a set of exam-timetabling 

problems. The comparison results showed that the combination (Choice Function – 

Monte Carlo) outperforms others. The Choice Function selects heuristics by 

analysing their single or pairing performance (improvement and execution time). It 

also considers the overall performance, i.e. to focus or broaden the search based on 

the improvement rate. The Monte Carlo move acceptance mechanism was actually a 

simulated annealing method, i.e. all improving moves are accepted while non-

improving moves can be accepted based on a probability that is decreased over time. 

Ersoy et al. (2007) investigated hyperhill-climbers which adapt the hyper-heuristic 

mechanism into the hill climbing method within memetic algorithms. The authors 

investigated a set of deterministic, adaptive and self-adaptive hyperhill-climbers on 

the Toronto exam timetabling problem instances. The performance of the self-

adaptive hyperhill-climbers was found to be better than the performance of the 

adaptive ones. 

Özcan et al. (2009) proposed a late acceptance strategy and compared its 

combination with a different heuristic selection mechanism. The late acceptance 

strategy only accepts a move to a solution s’ if s’ is improved from the previously 

visited solution L-step backwards from the current solution. The results on an exam 

timetabling problem showed that randomly selecting heuristics at each step performs 

best with the late acceptance strategy. 
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Özcan et al. (2010) developed a Reinforcement Learning and Great Deluge hyper-

heuristic and applied it to a capacitated exam timetabling problem at Yeditepe 

University. The hyper-heuristic selects heuristics using their utility values that were 

adaptively maintained according to their performance. The Great Deluge technique 

was used as the move acceptance mechanism. The authors presented their 

experimental results with different settings. This approach improved performance 

over a Simple Random - Great Deluge hyper-heuristic on the tested problems. 

Burke et al. (2010) investigated a set of Monte Carlo based selection hyper-

heuristics. Similar to the idea of simulated annealing, the Monte Carlo move 

acceptance methods allow acceptance of worsening moves based on a parametric 

probability function. The additional use of reheating within simulated annealing in 

this research was shown to be a very promising hyper-heuristic component. The 

authors also compared and analysed the results obtained from combining different 

heuristic selection and move acceptance mechanisms. 

 

2.1.6 Summary of the Toronto Dataset  

The University of Toronto benchmark dataset consists of 13 real-world exam 

timetabling problems firstly introduced by (Carter et al., 1996) (available at 

http://www.cs.nott.ac.uk/~rxq/data.htm). Since its introduction, it has attracted much 

research effort from the timetabling research community. During the years, 

researchers have reported the best results obtained along with the development of 

advanced algorithms. This dataset still remains an interesting challenge as optimal 

solutions for all instances have not been found yet. Therefore, we test our methods in 

the next chapters on this dataset to compare results against many other existing 
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methodologies. Table 2.2 shows characteristics of the instances. Two versions of the 

dataset have been circulated under the same name over the last ten years. We used 

the naming convention provided in (Qu et al., 2009b). This dataset follows the 

formulation for the ETP provided in Section 2.1. 

Qu et al. (2009b) provided an extensive survey on all search methodologies with 

associated best reported results for this dataset. 

In Table 2.2, the density represents the ratio of the number of edges that have at least 

one common student to the total number of edges of the conflict matrix. Note that 

there are also other exam timetabling benchmark datasets in the literature e.g. the 

University of Nottingham and the University of Melbourne Benchmark datasets 

(available at http://www.cs.nott.ac.uk/~rxq/data.htm), or the exam timetabling 

benchmark datasets from the second International Timetabling Competition 

(available at http://www.cs.qub.ac.uk/itc2007/). However, in this thesis, we focus 

only on the Toronto dataset because there is a significant number of hyper-heuristic 

approaches and approaches based on constructive graph colouring heuristics to 

compare with our approaches. 

Instances No. of  

Exams 

No. of  

Students 

Enrolments Density Timeslots 

car91 I 682 16925 56877 0.13 35 

car92 I 543 18419 55522 0.14 32 

ear83 I 190 1125 8109 0.27 24 

hec92 I 81 2823 10632 0.42 18 

kfu93 I 461 5349 25113 0.06 20 

lse91 381 2726 10918 0.06 18 

pur93 2419 30029 120681 0.03 42 

rye92 482 11483 45051 0.07 23 

sta83 I 139 611 5751 0.14 13 

tre92 261 4360 14901 0.18 23 

uta92 I 622 21266 58979 0.13 35 

ute92 184 2749 11793 0.08 10 

yor83 I 181 941 6034 0.29 21 

Table 2.2 Details of the Toronto exam timetabling benchmark (Carter et al., 1996; Qu et al., 2009b) 



65 
 

2.2 Three-dimensional Strip Packing Problems (3D-SPP) 

In three-dimensional strip packing problems, a number of rectangular boxes, 

specified by their width, length and height, need to be packed into a three 

dimensional rectangular container with unlimited length. The objective is to find a 

feasible packing of all the boxes into the container such that the length of the 

packing is minimised. A feasible packing must obey the following rules: (i) there is 

no overlap between boxes, and (ii) all boxes should be placed fully within the 

container. The 3D-SPP can work with only rectangular boxes (3D rectangular strip 

packing problems) or boxes of any shape (3D irregular strip packing problems). In 

this research, we focus on the 3D rectangular strip packing problems and the 

abbreviation 3D-SPP refers to this class. It is clearly the case that to solve the 3D-

SPP, boxes should be packed parallel to the edges of the container. 

(Wäscher et al., 2006) recently proposed a new classification of cutting and packing 

problems. According to that classification, the 3D-SPP considered here is referred to 

as the open dimension problem (ODP), or more precisely as three-dimensional 

rectangular open dimension problem with one variable dimension (3D-R-ODP).  

Problem Applications 

2D Strip Packing  Paper, metal, glass or other sheet material cutting 

 Pallet loading 

 Multi-processor scheduling 

3D Strip Packing  Marble, foam, wood or other block cutting 

 Truck, air cargo load planning 

 Multi-dimensional limited resource scheduling 

Table 2.3 Real-life applications for strip packing problems 

Strip packing problems are very popular in the cutting and packing research field. 

Many practical real-life applications of strip packing can be seen in Table 2.3. While 

two-dimensional strip packing problems (2D-SPP) have received significant research 

interest in the literature, the number of publications addressing the 3D-SPP is still 



66 
 

relatively low. One reason for this is because the 3D-SPP is particularly difficult due 

to a large number of constraints. However, it represents a suitable context for work 

on constructive heuristics. The 3D-SPP is identical to the 2D-SPP when the width 

(or height) of each box is exactly 1. By solving the 3D-SPP efficiently, we also 

provide solutions for industrial applications of the 2D-SPP. 

For problems concerning loading, there are additional constraints to restrict the 

placements of the boxes. We list in Table 2.4 the practical constraints that might be 

applicable for the 3D-SPP. These practical constraints are taken from a publication 

addressing issues in developing approaches for the three-dimensional container 

loading problem (3D-CLP) (Bischoff and Ratcliff, 1995). 

Constraint Description 

Orientation 

Constraints 

Restrict some rotations of boxes from the maximum six rotations. 

Box Strength 

Constraint 

Limit the weights put on top of a box. A simple form of this constraint can 

be: “stack no more than x box high”. 

Handling 

Constraint 

Large boxes might be required to be put on container’s floor and heavy 

boxes need to be positioned below a certain height. 

Stability 

Constraint 

Require the bottom surface of a box to be fully supported by either 

container’s floor of top surfaces of other boxes. 

Load Stability 

Constraint 

Restrict the movement of boxes during transportation. 

Grouping 

Constraint 

Require similar boxes to stay close together. 

Multi-Drop 

Constraint 

Position boxes in order of dropping time to reduce the work of loading and 

unloading a large part of cargo at each drop. 

Separation 

Constraint 

Separate boxes containing goods that can severely affect other goods (e.g. 

chemical stuff and food) 

Complete 

Shipment 

Constraint 

Require boxes belonging to the same shipment (e.g. computer tower and 

screen) to stay close together. 

Shipment 

Priority 

Constraint 

Some boxes are shipped to customers of higher priority. Those boxes should 

be positioned close to the container’s door.  

Arrangement 

Complexity 

Constraint 

Require packing patterns to be easily handled when unloading. 

Weight 

Distribution 

Constraint 

Require the centre of gravity of the container to be close to the geometrical 

mid-point of the container’s floor. (e.g. The situation often happens if the 

container is lifted onto a ship). 

Table 2.4 Practical constraints for the 3D-SPP (Bischoff and Ratcliff, 1995) 
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This research investigates the 3D-SPP with two of the most widely studied 

constraints: orientation constraint and stability constraint. In particular, experiments 

will be carried out on a benchmark dataset where the orientation constraint is always 

applied while the stability constraint is optional. Thus, we divide the problems into 

two different classes - 3D-SPP with and without the stability constraint. 

The strip packing problem is NP-hard as it is a generalisation of the classical bin 

packing problem. The classical bin packing problem involves finding a minimum 

number of one-dimensional bins of fixed capacity to contain a number of one-

dimensional objects with given sizes. The NP-hardness of the bin packing problem 

can be found in (Garey and Johnson, 1979). Research effort for the 3D-SPP, 

therefore, has concentrated mostly on designing approximate algorithms which can 

result in good, but not necessarily optimal solutions within reasonable computing 

time. Due to the high number of constraints in a 3D-SPP, it is particularly hard to 

design an effective local move. Most of the successes have been obtained from 

constructive methods. We review below different approaches in the literature for the 

3D-SPP. Several methods were actually proposed for the 2D-SPP. However, such 

methods in the simplified problem (2D-SPP) can give, or have already given, 

inspiration for designing approaches for the 3D-SPP. Note that the descriptions of 

methodologies (e.g. tabu-search, simulated annealing, genetic algorithms, and hyper-

heuristics, etc.) are not repeated as they can be found in Section 2.1. 

 

2.2.1 Approximate Algorithms and Constructive Heuristics 

Approximate algorithms for the strip packing problems can be separated into off-line 

and on-line algorithms. In this research, we concern only off-line algorithms, i.e. 
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algorithms which have full knowledge of the input. Most of these algorithms are for 

the two-dimensional problems. However, some of the ideas can still be applicable for 

the three-dimensional problems. These algorithms can be found in (Csirik and 

Woeginger, 1996; Lodi et al., 2002). Some of the most popular approximate 

algorithms and heuristics for strip packing problems are presented as follows. 

For the 2D-SPP, Baker et al. (1980) introduced the bottom-left heuristic (BL), which 

orders the objects according to their areas. The objects were placed at the top right 

corner of the container and repeatedly pushed down and then left as much as 

possible. This method was improved by Chazelle (1983) and called bottom left fit 

(BLF): each object was located at the most bottom place and then pushed left as 

much as possible. Hopper (2000) presented BLD which was an improved strategy of 

BL, where the objects were ordered using various criteria (height, width, perimeter 

and area) and the algorithm selected the best result obtained.  

Burke et al. (2004b) proposed a best fit heuristic (BF) that uses a dynamic ordering 

for the rectangles to be placed. The algorithm went through the available places from 

the most bottom-left one, and selected for each place the rectangle that best fits in it. 

If all rectangles cannot fit the considered place, the algorithm ignores that place and 

considers the next one. 

Karabulut and Inceoglu (2004) extended the BLF method to the Deepest BLF 

(DBLF) method for three-dimensional packing problems. In that method, a box was 

moved to the deepest available position, and then as far as possible to the bottom, 

and then as far as possible to the left. 

Allen et al. (2011) developed a three-dimensional best fit heuristic (3BF) for the 3D-

SPP which is an extension of the best-fit heuristic BF. The 3BF was a constructive 
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approach that gradually arranges boxes into the container. A similar idea with the BF 

was applied to find boxes that fit as much of the deepest gap in the container as 

possible. When more than one box may fit the same biggest gap, one of four 

proposed tie-breaking heuristics was applied. If the gap cannot be filled by any box, 

it was ignored and the construction process continues with the next deepest gaps. 

Some other heuristic approaches based on different ideas of BL and BF were 

proposed by George and Robinson (1980) and Bischoff and Mariott (1990) for the 

3D-SPP. In both cases, a greedy technique was used and loading was carried out by a 

layer-building (or wall building) method: the given container was filled in vertical 

layers, which follow one after the other in the longitudinal direction of the container. 

In this algorithm, each layer was divided into several horizontal strips placed one on 

top of the other; a single strip was constituted by several boxes placed sequentially 

and parallel to the container width. Bischoff and Mariott (1990) introduced some 

heuristics that combine a 2D-packing procedure with the heuristic from (George and 

Robinson, 1980) to fill the layers. Both articles reported that the solution quality of a 

layer-building approach depends mainly on the suitable selection of the layer depths. 

Bortfeldt and Mack (2007) developed a heuristic derived from a branch-and-bound 

approach to build layers for the 3D-CLP proposed by Pisinger (2002). Two 

adaptations to the 3D-SPP were investigated which are the open container and closed 

container approaches. The open container approach assumes an infinite length 

container whilst the closed container approach solves the problem by gradually 

reducing the container’s length until no packing solution is found. The authors 

showed the success of reusing the best parts of the previous best found solutions in 

the closed container approach (SPBBL-CC4). Experiments on the 3D-SPP were 
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reported which shows improving average volume utilisation on the SP-BR dataset 

introduced by Bischoff and Ratcliff (1995). 

 

2.2.2 Meta-heuristics 

Bortfeldt and Gehring (1999) presented a TS and a GA algorithm for the 3D-SPP. 

Both methods were derived from the corresponding algorithms for the 3D-CLP. Two 

different approaches were investigated for each algorithm. The first approach was 

based on a single container with a large container length, while the second approach 

solved a sequence of 3D-CLP instances with decreasing container lengths. Both the 

TSA and the GA were subjected to parallelisation. 

Allen et al. (2011) investigated the integration of 3BF with tabu-search and named 

the method 3BF+TS. The best solution found by 3BF was used as an input for a 

tabu-search in the next phase. The first certain number of boxes in the packing 

solution was kept the same while the remaining boxes were processed using the 

DBLF. The authors used tabu-search to search for different ordering of input boxes 

for the DBLF. The local move was to simply swap two boxes in the list of remaining 

boxes. Results obtained on the SP-BR benchmark without using a stability constraint 

were competitive in comparison with results obtained in (Bortfeldt and Mack, 2007). 

 

2.2.3 Hyper-heuristics  

To our knowledge, hyper-heuristics have not been applied directly to the 3D-SPP. 

We present here some hyper-heuristic approaches on the 2D-SPP of which the ideas 

are also applicable for the 3D-SPP. 
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Terashima-Marín et al. (2006) developed classifier system and messy genetic 

algorithm hyper-heuristics to solve 2D-regular cutting stock problems. The 

representation of a problem state remained the same. It consists of information on the 

number of remaining objects (figures/items) and their size ranges. The heuristic for 

each problem state, however, was represented by a combination of two different 

heuristics: one for selecting objects, one for placing the object into a position. The 

set of heuristics consisted of 8 heuristics for selecting the objects: next-fit, first-fit, 

best-fit, worst-fit, almost worst fit, first fit decreasing, and Djang and Fitch 

heuristics. Two heuristics for object placement were bottom-left, and improved-

bottom-left. Both the classifier system and the messy genetic algorithm were 

evaluated in experiments and both produced competitive results (Terashima-Marín et 

al., 2007). The authors also reported the generalisation on a test phase of generated 

rules after a training phase. The set of trained rules were applied to test cases and 

produced very competitive results, better than using the best single heuristic. 

Terashima-Marín et al. (2008) investigated further on the messy genetic algorithm 

approach for both 2D-regular and 2D irregular bin-packing problems. Experiments 

on different parameter settings were conducted. Rules learnt from the training phase 

could produce some promising results for unseen problems especially when 

compared with the best results from single heuristics. 

Garrido and Riff (2007a, 2007b) also proposed a hill-climbing and a genetic-

algorithm-based hyper-heuristic for solving the 2D strip packing problems online. 

The methods searched for packing strategies for a particular instance instead of 

having a learning phase and a test phase. The representation of chromosomes had 

varying length that consists of a number of the following block (a, b, c, d). The 

meaning of a block was to use a
th

 greedy heuristic, use the b
th

 ordering heuristic, and 
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apply the d
th

 rotation heuristic to locate c objects. The crossover operator was not 

allowed to use a crossing point in the middle of any block. The four most 

competitive single heuristics were chosen to form the set of low-level heuristics 

including: best-fit, bottom-left-fill, a recursive heuristic (HR) that locates the objects 

capable of covering large area on the bottom left corner (Zhang et al., 2006), and a 

heuristic BFDH* (a variation of BFDH (Mumford-Valenzuela et al., 2003)) that 

locates an object with the longest width (from all rotations). The results obtained on 

several testing instances were very competitive; they even outperformed the state-of-

the-art specialised algorithms for such benchmark instances. 

 

2.2.4 Summary of the SP-BR Dataset 

In this thesis, the work on the 3D-SPP will be evaluated on a popular dataset (SP-

BR) in the literature. This dataset consists of 1000 problem instances which were 

initially introduced as benchmarks for the three-dimensional container loading 

problem by Bischoff and Ratcliff (1995). These instances can be downloaded from 

the OR-library (http://people.brunel.ac.uk/~masterjjb/jeb/info.html). The dataset has 

been widely used for the 3D-SPP by assuming an indefinite container length. 

Orientation constraints for all box types are specified clearly in these instances. In 

the literature, publications address this dataset either with or without an addition of a 

stability constraint. The 1000 three-dimensional strip packing instances are divided 

into 10 test cases, namely SP-BR01 to SP-BR10, each with 100 instances. The 

characteristics of these test cases vary from weakly heterogeneous SP-BR01 to 

strongly heterogeneous SP-BR10.  
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We also verify our approach on large instances SP-BR01-XL to SP-BR10-XL which 

are generated based on the original instances. These instances can be downloaded 

from http://www.cs.nott.ac.uk/~rxq/benchmarks.htm. The generating process is 

implemented exactly the same as in (Bortfeldt and Mack, 2007). The container 

width, height and the orientation constraints for all box types remain the same. 

However, the number of boxes per type is increased by multiplying it by a factor 

1000/Nbox, where Nbox represents the total number of boxes in the original instance. 

As the resulting numbers of boxes are truncated to integer numbers, we may need to 

increase the number of boxes of the last type so that the total number of boxes 

reaches 1000.  

The objective of each instance is to find a feasible arrangement that requires a 

minimum container length. However, for each test case of 100 instances, an average 

of the required container lengths gives little knowledge on the performance of an 

approach. A more informative objective is used which is to maximise the volume 

utilisation (VU), calculated as follows: 

volumeUtilisation = optimalLength / actualLength (2.1) 

 

The actualLength is the minimum container length obtained. The optimalLength can 

be estimated by using a lower bound length shown in Equation 2.2: 


















 



)/()( eightcontainerHidthcontainerWbvolumeLengthlowerBound
Bb

 (2.2) 

 

where B is the set of all boxes.  
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2.3 Chapter Summary 

This chapter presented the problem descriptions, the heuristic approaches developed 

over the last decades and benchmark datasets for both the ETP and the 3D-SPP. The 

complexity of the approaches grows along with the increasing power of computing 

hardware. The mostly practical early heuristics were to constructively build solutions 

whilst in more recent research, attention has been paid to more powerful meta-

heuristic techniques such as hill climbing, tabu-search, simulated annealing, and 

evolutionary algorithms, etc. There has been a tendency to hybridise different 

approaches which can significantly improve performance. Recently, hyper-heuristics 

have emerged as an alternative direction to produce methodologies of higher 

generality in timetabling as well as in cutting and packing fields. The performance 

on problem benchmarks was relatively well studied by many approaches. In the 

subsequent chapters, several approaches working on simple constructive heuristics 

for both the ETP and the 3D-SPP are proposed and compared against some 

approaches listed in this chapter. 
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Chapter 3 An Enhanced Weighted Graph Model for the 

ETP 

This chapter presents our first contribution in this research. Most of the approaches 

based on constructive heuristics for the ETP employ a number of traditional graph 

colouring heuristics, e.g. largest degree, largest weighted degree, saturation degree, 

etc. These heuristics use some information associated with vertices and edges to 

measure the difficulty level of a vertex if it is deferred until later in the colouring 

process. Our main aim is to design new constructive heuristics which may estimate 

the difficulty level more precisely, possibly at the cost of longer running time. 

Thus, we introduce in this chapter an enhanced weighted graph model which adds 

more information into each vertex or edge. The model is designed to be adaptable 

to a variety of exam timetabling scenarios. Within this model, some novel vertex- 

and colour-selection heuristics arise naturally. We also introduce a possible 

improvement for the exam timetabling, i.e. a partitioning technique. With the aim 

of evaluating the model's techniques on the Toronto benchmark instances in 

Chapter 4, some of the model’s features are set to be suitable for this benchmark 

only.  
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3.1 The Graph Colouring Model 

We use the following notations to define a common graph. A graph G consists of a 

set V of vertices and a set Edge of edges. A colouring of a graph G is a function c 

which assigns a colour c(v) to each vertex v ∈ V. 

Conventionally, exam timetabling problems can be solved using the graph colouring 

model. Each vertex in the graph corresponds to an exam to be scheduled and each 

colour corresponds to a different timeslot. Accordingly, assigning colour c to vertex 

v represents that the exam corresponding to v is scheduled in the timeslot 

corresponding to c.  

 

3.2 Description of an Enhanced Weighted Graph Model 

The enhanced weighted graph model described in this section incorporates more 

problem specific information at the input and maintains even more information 

pertaining to the partial colouring during the solution process as comparing to the 

existing approaches. In this weighted graph model, each vertex and each edge are 

weighted with several attributes, some of them hold information from the problem 

instance and others hold information that helps guide the colouring process. 

In our enhanced model, associated with each vertex is the set of students who must 

take that exam. Two vertices are joined by an edge, and are said to be adjacent or 

neighbours, if it is undesirable to schedule the corresponding exams in the same 

timeslot. Each edge carries information that tells us how undesirable it would be for 

the corresponding exams to be scheduled in the same timeslot or in timeslots near 

each other. In particular, each edge has two attributes: the set of students taking both 
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exams (intersection subset); and a positive integer indicating the conflict severity if 

the exams are scheduled in the same timeslot. This second attribute is tied to the size 

of the intersection subset.  

To illustrate our model, suppose there are four available timeslots, 0, 1, 2, and 3 for 

five exams, E1, E2, E3, E4, and E5. The set of students taking each of the exams is as 

follows: 

E1: {a, b, c, d, e, f, g, h, i, j} 

E2: {k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z} 

E3: {a, e, k} 

E4: {b, c, d, x, y, z} 

E5: {a, c, e, g, i, j} 

Each edge in the graph shown in Figure 3.1 has the subset of students enrolled in 

both exams corresponding to the endpoints of that edge. 

In general it may be undesirable to assign the same timeslot (colour) to a given pair 

of adjacent exams for a variety of reasons. For this example, however, we consider 

the popular condition which is two vertices are adjacent only if there is at least one 

student taking both exams. 

   
Figure 3.1 Student intersections for pairs of exams 
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For our example, we may set the conflict severity equal to 1, 5, or 25, according to 

the size of the intersection subset. In particular, we set the conflict severity to 1 if the 

intersection size is 1 or 2, to 5 if the intersection size is 3 or 4, and to 25 if the 

intersection size is 5 or greater (see Figure 3.2). We emphasize that these thresholds 

for conflict severity are arbitrarily chosen here. If a conflict-free timetable is a 

requirement, as it is in the Toronto problems then all conflict severities can simply 

be set to one since all conflicts are regarded as equally bad. 

Of course, as mentioned, there will be many situations in which the conflict severity 

depends on other factors. In these situations, an edge might exist even when it 

corresponds to an empty intersection of students. 

  
Figure 3.2 Additional edge attributes 

The proximity penalty of assigning colours ti and tj to the endpoints of an edge is a 

function of how close ti and tj are and the size of the intersection cij. Section 2.1 

presents the function to calculate the proximity penalty for the Toronto dataset. Our 

implementation uses the same function for comparison purposes with the Toronto 

benchmark results. However, if the timeslots are specified by a day, or a start time 
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and duration, then our colour attributes can easily be modified to allow for the 

appropriate change in the proximity evaluation function. 

The overall objective is to produce colourings (timetables) with minimum total 

conflict (zero may be required) and minimum total proximity penalty.  

Knowing the conflict severity and size of the intersection for each edge makes it 

straightforward to keep track of the two kinds of penalties as the colouring 

progresses. When a vertex gets coloured t, that colour becomes less desirable (or 

forbidden) to its neighbours, as do colours in proximity with colour t (i.e. timeslots 

close together with the considered timeslot t).  

Our model keeps track of these two kinds of colour undesirability as follows. Each 

vertex v has a colour-penalties vector that indicates the undesirability of assigning 

each colour to that vertex with respect to conflict penalty and proximity penalty. 

That is, the component of the colour penalties vector corresponding to colour t has 

two values, one is the conflict penalty incurred if v is coloured t, and the other is the 

resulting proximity penalty. 

Using our example and a simplified proximity function, we illustrate how the colour-

penalties vectors change as the graph is coloured. Suppose that any two colours ti 

and tj of the colours 0, 1, 2, and 3 are within proximity if they differ by 1, then the 

proximity penalty incurred when the colours of the endpoints of an edge differ by 1 

equals the intersection size. Suppose further that the colour-penalties vectors for all 

of the vertices are initialised with [0, 0] for all of their colour components. Figure 3.3 

shows the result of colouring vertex E1 with colour 1. 
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Figure 3.3 Colour-penalties vectors after E1 is coloured 1 

As each vertex is coloured, its adjacent vertices’ colour-penalties vectors are 

updated. The ease with which we are able to keep track of both hard and soft 

constraints as the colouring progresses creates new opportunities for the use of more 

sophisticated heuristics tied to this readily accessible information.  

 

3.2.1 The Basic Constructive Approach 

We use a similar constructive approach as used for the classical graph colouring 

problem. It consists of two steps - select a vertex and then colour that vertex. These 

two steps are repeated until all vertices are coloured. Notice that the model will 

easily accommodate more computation-intensive approaches involving backtracking 

and local improvement. However, we keep our focus on simple constructive 

heuristics. Thus, we choose to concentrate on producing fast and essentially one-pass 

colourings. Here, one-pass colouring is understood as obtaining a solution without 

applying backtracking or local improvement during the construction process. 
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3.2.2 Summary of the Model Features and Parameters 

We employ the same notations as used in the ETP formulation in Section 2.1. An 

edge e = (i, j) connecting exams Ei and Ej exists only if cij > 0. The set Edge consists 

of all the edges in the graph. In preparation for the discussion of heuristics, we list 

the key features and parameters on which the heuristics are based. The two edge 

attributes, conflict severity and intersection size, give rise to two different versions of 

the traditional concept of weighted degree of a vertex. 

 Conflict severity (of an edge) – a measure of how undesirable it is to assign the 

same colour to both endpoints of the edge (see examples in Figures 3.1 and 3.2). 

In general, this would depend on several factors, and it could be set interactively 

by the end-user. However, for the Toronto dataset, all conflict severities are set to 

1 as every conflict is of equal weight and prohibited. 

       {
                                   
                                              

 

 Intersection size (of an edge) – the size of the intersection of the two sets 

corresponding to the endpoints of the edge. In exam timetabling, this is simply the 

number of students taking both exams (see examples in Figures 3.1 and 3.2). 

          

 Average intersection size - the average of the intersection sizes of all edges in a 

graph. 

          
∑        ∈    
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 Conflict degree (of a vertex) – the sum of the conflict severities of the edges 

incident on the vertex.  

      ∑      
 ∈               

 

 Intersect degree (of a vertex) – the sum of the intersection sizes of the edges 

incident on the vertex. 

      ∑      
 ∈               

 

 Bad-conflict edge – an edge whose conflict severity exceeds a specified threshold 

value. If a conflict-free timetable (i.e., a feasible colouring) is required, then this 

threshold is set to zero, e.g. the Toronto problem instances. 

       {
                   
                      

 

 Bad-intersect edge – an edge whose intersection size exceeds a specified 

threshold Tie = ais(Edge) * ie, where ie is a multiplier parameter. 

       {
                   

                      
 

 Conflict penalty (for the colour assignment of a vertex) – a measure of how 

undesirable it is to assign that colour to the vertex. This will depend on the colour 

assignments of the vertex’s neighbours and the conflict severities of the relevant 

edges, but it could also depend on other factors (e.g., professor, room, or 

equipment constraints). 

 Proximity (of two colours) – a measure of how close together (in the case of exam 

timetabling) or spread apart (for course timetabling) the two colours are. This is 
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often a secondary objective to optimise in exam timetabling and is typically 

referred to as a soft constraint. For the Toronto instances, the proximity is 

measured as follows: 

 (     )  |     | 

 Proximity penalty (for the colour assignment of two endpoints of an edge) – the 

proximity penalty resulting from the colour assignments of those two vertices. For 

the Toronto instances, the following function is applied to measure that proximity 

penalty. 

 (     )  { 
   (     )               (     )    ⁄   

                                                         
 

 Colour-penalties vector (of a vertex) – indicates, for each colour, the conflict 

penalty and proximity penalty of assigning that colour to the vertex. When a 

vertex is coloured, the colour-penalties vector of each of that vertex’s neighbours 

must be updated accordingly. 

 Bad-conflict colour (for a vertex) – a colour whose conflict penalty for that vertex 

exceeds a specified threshold Tcc (for the Toronto instances, Tcc = 0 since feasible 

colourings are required).  

 Bad-proximity colour (for a vertex) – a colour whose proximity penalty for that 

vertex exceeds a specified threshold Tpc = ais(Edge) * ev * pc, where    

                ⁄

 

is the expected value of the proximity weight and pc is a 

multiplier parameter (see Appendix A for a derivation of ev and an explanation of 

its use). 
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 Bad-colour (for a vertex) – either a bad-conflict colour or a bad-proximity colour 

for that vertex. 

The thresholds for badness are easily adaptable to the requirements of the problem, 

and, in a decision support system, they could be specified by the end-user 

interactively. Chapter 4 provides some studies of the effect that the values of the 

thresholds have on the quality of the solutions.  

 

3.3 Primitive Heuristics 

As addressed, vertex selection and colour selection are the two key components of 

the simple, constructive algorithm. Our implementation uses nine ‘primitive’ 

heuristics for selecting the next vertex to be coloured and four to select a colour for 

that vertex. 

 

3.3.1 Nine Primitive Vertex-Selection Heuristics 

The colouring strategies are based on the classical and intuitive idea that the most 

troublesome vertices should be coloured first; see Table 2.1 for some commonly 

used heuristics. We use variations of those, and we introduce some new ones that 

focus more on the number of bad edges and the number of bad colours. Some of 

these new heuristics rely on the information kept in each vertex’s colour-penalties 

vector, while others use information tied to the edges incident on each vertex. The 

primitive heuristics on which our vertex selectors are based are: 
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0. Maximum number of bad-conflict edges to uncoloured neighbours – vertices 

having the most bad-conflict edges among their incident edges to uncoloured 

neighbours. For the Toronto dataset, this heuristic represents the typical largest 

uncoloured degree heuristic. 

1. Maximum number of bad-conflict colours – vertices having the most bad-

conflict colours. For the Toronto dataset, this heuristic reduces to largest 

saturation degree (see Figure 3.4 for an example). 

2. Maximum number of bad-proximity colours – vertices having the most bad-

proximity colours (see Figure 3.4 for an example). 

3. Maximum number of bad colours – a consolidation of heuristics 1 and 2; a bad 

colour is one whose conflict penalty or whose proximity penalty exceeds its 

respective threshold (see Figure 3.4 for an example). 

4. Maximum conflict sum – vertices with the largest sum of their conflict colour 

penalties. For the Toronto dataset, heuristic 4 is similar to heuristic 1 (saturation 

degree) because all conflict severities are set to 1. 

5. Maximum proximity sum – vertices with the largest sum of their proximity 

colour penalties (see Figure 3.4 for an example). 

6. Maximum conflict degree to uncoloured neighbours – vertices whose incident 

edges to uncoloured neighbours have the largest sum of the conflict severities. 

For the Toronto dataset, heuristic 6 is identical to heuristic 0 (largest uncoloured 

degree) because all conflict severities are set to 1.  
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7. Maximum number of bad-intersect edges to uncoloured neighbours – vertices 

having the most bad-intersect edges among their incident edges to uncoloured 

neighbours (see Figure 3.5 for an example).  

8. Maximum intersect degree to uncoloured neighbours – vertices whose incident 

edges to uncoloured neighbours have the largest sum of the intersection sizes 

(see Figure 3.5 for an example).  

The motivation to introduce some new heuristics here originates from the intuition of 

measuring the difficulty of a vertex. For example, we observe that heuristic 7 may be 

better at evaluating the difficulty of a vertex than its sum counterpart, heuristic 8. To 

illustrate, suppose that the edge weights in Figure 3.5 represent intersection size and 

that all neighbours of vertices v1 and v2 are uncoloured. Then heuristic 8 would 

select v1, whereas, for any bad-intersect-edge threshold greater than one, heuristic 7 

would select v2, which seems to be more difficult. A similar observation can be 

made for heuristic 2 versus heuristic 5 (see Figure 3.4). Experimental justifications 

on these situations are provided in Chapter 4. 

 

Figure 3.4 An example of heuristics that select difficult vertices based on the information retained 

in the colour-penalties vector. Heuristic 1 will select v1, heuristic 2 will select v2, heuristic 3 will 

select v3, and heuristic 5 will select v4, if Tpc < 50 
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Figure 3.5 Heuristic 8 will select v1 while heuristic 7 will select v2 if Tie < 40 

 

3.3.2 Four Primitive Colour-Selection Heuristics 

Given a vertex v that has been selected, the primitive heuristics that we use to choose 

a colour for v are: 

0. Minimum conflict penalty – a colour that has the minimum conflict penalty for 

vertex v. 

1. Minimum proximity penalty – a colour that has the minimum proximity penalty 

for vertex v. 

2. Least bad for neighbours with respect to conflict penalty – a colour which when 

assigned to v causes the fewest good-to-bad conflict penalty switches for the 

uncoloured neighbours of v. 

3. Least bad for neighbours with respect to proximity penalty – a colour which when 

assigned to v causes the fewest good-to-bad proximity penalty switches for the 

uncoloured neighbours of v. 



88 
 

Figure 3.6 shows an example to illustrate the use of different colour-selection 

heuristics. The example presents a particular exam timetabling scenario with the 

following assumptions: 

 There are totally 4 colours (timeslots), i.e. 0, 1, 2, 3. 

 Any 2 colours ti and tj are within proximity if they differ by 1. This leads to the 

proximity penalty, incurred when the colours of the 2 endpoints of an edge 

differ by 1, equals the intersection size of the edge. 

 Colour-penalties vectors of E1, E2 represent the current situation of the partial 

colouring. Edge attributes are as shown in Figure 3.6. 

 Thresholds Tcc = 0 (conflict is not allowed) and Tpc  = 8. 

 E1, E2 are uncoloured while E3, E4, E5 received colours 1, 0, 2, respectively. 

 Vertex E1 is being selected for colouring. 

 

Figure 3.6 An example to illustrate the use of different colour-selection heuristics 
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Vertex E1 cannot receive colours 0 or 1 due to the prohibition of conflict in this exam 

timetabling scenario. We list below the decisions made by the four colour-selection 

heuristics: 

 Heuristic 0 will select either colour 2 or 3 for E1 as both colours cause no 

conflict penalty.  

 Heuristic 1 will select colour 3 for E1 as its resulting proximity penalty is 0 

compared to a proximity penalty of 5 if E1 receives colour 2.  

 Heuristic 2 will select colour 2 which causes no good-to-bad conflict penalty 

switch for E1’s uncoloured neighbours because in the current partial solution, 

colour 2 was already a bad-conflict colour for E2. The selection of colour 3 in 

this case will increase one good-to-bad conflict penalty switch in E1’s 

uncoloured neighbours (i.e. E2). 

 Heuristic 3 will select colour 3 which causes no good-to-bad proximity penalty 

switches for E1’s uncoloured neighbours. The selection of colour 2 here will 

cause two good-to-bad proximity penalty switches on colours 1 and 3 since the 

proximity penalties of these two colours will increase from 2 to 9 (i.e. greater 

than Tpc with the value of 8). 

 

3.4 Switching Selectors in the Middle of a Colouring 

Another feature of this model is the ability to switch from one heuristic to another at 

various stages of the colouring. Including this feature was motivated by the general 

observation that the effectiveness of a heuristic is likely to change as the colouring 
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progresses. The primitive vertex-selection heuristic 1 is perhaps the simplest 

illustration of this behaviour. As we mentioned earlier, this heuristic is essentially 

the traditional saturation degree, which has proven to be among the most preferred 

heuristics for classical graph colouring. However, applying heuristic 1 at the very 

early stages of a colouring will produce a huge number of ties. Moreover, early in a 

colouring, the only vertices with any bad-conflict colours will tend to be those few 

that have neighbours that have already been coloured. Thus, until several vertices are 

coloured, the order in which they are selected will tend toward a simple breadth-first 

order and not be an effective predictor of the difficult-to-colour vertices.  

Accordingly, the primitive heuristic used early in the colouring process should be 

based on the weights of incident edges (e.g., heuristic 0). Then, after a designated 

number of vertices have been selected and coloured, we switch to heuristic 1 when it 

is more likely to be a stronger predictor of the difficulty of a vertex. 

 

3.5 Vertex Partitioning 

Our final innovation involves a preprocessing step that partitions the vertex set and 

allows us to reduce the amount of computation without incurring additional conflict 

penalties. The preprocessing is based on the following simple observation. If v is a 

vertex with degree less than k, and v initially has k colours available, then v can 

safely be left until last to colour, since it will always have at least one non-conflict 

colour available, independent of how its neighbours are coloured and of how heavy 

the edge-weights are between v and its neighbours.  
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The preprocessing uses an iterative partitioning algorithm that places all vertices 

whose colouring can be done last into the easiest-to-colour subset, say s1. Next, for 

each vertex in s1, we calculate a reduced (quasi-) degree of each of its neighbours 

and put all vertices whose reduced degree is less than the number of colours 

available into the next-easiest-to-colour subset, s2. Again, as long as a vertex in s2 is 

coloured before any of its neighbours in s1, it can safely be left uncoloured until its 

other neighbours are coloured. The process continues until no additional vertices can 

be removed from the ‘hardest’ subset and the vertices in that last subset of the 

partition must be coloured first using the specified selection criteria. The pseudo-

code for the vertex partitioning can be found in Algorithm 3.1 where each VS 

represents a vertex subset found over the process. The process starts by initialising a 

degree vector d of which each element represents the number of a vertex’s 

neighbours. Then, the process repeatedly construct each easy subset by comparing 

the degree (or quasi-degree) d[v] of an unassigned vertex v with the total number of 

available colours T, and adds the vertex into the current easy subset if d[v] < T. After 

all easy-to-colour vertices are found, we update the degree vector by reducing the 

degree of those vertices’ unassigned neighbours. Until no easy-to-colour vertex can 

be found, the remaining set of vertices represents the hardest-to-colour subset. 

As long as the subsets are done in order (last to first), vertices in all subsets except 

for the hardest one can be selected arbitrarily with no possibility of incurring a 

conflict penalty. One simply chooses an available colour, whose existence is 

guaranteed by the construction. Thus, in a fairly sparse graph, computation can be 

considerably reduced.  

Another potential advantage to this partitioning strategy is that the vertex-selection 

process after the hardest subset has been coloured can be based solely on proximity 
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considerations. However, this strategy is applicable only for the uncapacitated exam 

timetabling problem without the room constraint. 

Algorithm 3.1 Vertex Partitioning 

initialise the degree vector d 

i := 0 

repeat  

 i := i + 1 

 VSi := Ø 

 for (v ∈ V) do 

  if (d[v] < T) then 

   V := V \ {v} 

   VSi := VSi ∪ {v} 

  end if 

 end for 

 if (VSi ≠ Ø) then  

  for (v ∈ VSi) do 

   for ((v, u) ∈ Edge and u ∈ V) do 

    d[u] := d[u] - 1 

   end for 

  end for 

 end if 

until VSi = Ø 

VSi := V 

 

3.6 Chapter Summary 

The weighted graph model presented in this chapter represents a new direction for 

further research on simple constructive heuristics for exam timetabling problems. 

Some features of this model in our current implementation can show its applicability 

in various exam timetabling scenarios (not limited only to the Toronto benchmark). 

The model can handle pre-coloured vertices, that is, exams that must be assigned to 

certain timeslots. Furthermore, if certain timeslots are forbidden for a particular 

exam, then this can easily be handled by setting an initial nonzero penalty for the 

relevant colour. As we noted earlier, each colour, which represents a timeslot, can 

have attributes associated with fairly general information, like start time, duration 
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and/or finish time instead of having only a single timeslot value as for the Toronto 

benchmark problems. Although it is not a subject of this research, this model can be 

easily extended or integrated with other techniques to develop more advanced and 

powerful algorithms. Based on this model, we further investigate different 

approaches in Chapter 4 to better utilise the simple heuristics to construct exam 

timetables. However, this model and the novel associated heuristics will not be used 

in Chapter 6 within a hyper-heuristic context. The reason is because our hyper-

heuristic only targets heuristics which are fast enough instead of those that require a 

certain number of trials to find a good parameter settings (i.e. bad proximity colour 

parameter pc or bad intersect edge parameter ie). 
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Chapter 4 Combinations of Heuristics for the ETP 

In Chapter 3, we presented a weighted graph model and the primitive 

constructive heuristics associated with it. Algorithms using single heuristics are 

easy to implement, but in many cases, may not produce highly competitive 

results. It is often better to take into account different factors than to reply on 

only one factor. In this chapter, we focus on using combinations of a number of 

primitive heuristics, instead of using a single heuristic, to better select vertices 

and colours. Two different strategies to combine heuristics are investigated, 

namely sequential and linear combinations. Both strategies can be applied on 

vertex- and colour-selection heuristics; however, we focus mainly on the 

combinations of vertex-selection heuristics in this thesis. Whilst sequential 

combinations represent the use of a sequence of heuristics as tie-breakers, 

linear combinations use weights to define specific roles that each simple 

heuristic contributes to the ordering strategy. We include specific explanations 

for the design of our strategies and present the experimental results on 12 

instances of the Toronto dataset. Some competitive results are obtained using 

linear combinations when compared with other constructive methods. 
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4.1 Sequential Combination Strategy (SCS) 

This way of combination allows the use of any number of primitive heuristics to 

form compound vertex selectors and compound colour selectors. A compound vertex 

selector starts with one of the nine primitive vertex-selection heuristics listed in 

Section 3.3.1. As discussed before, the ETP is tackled in this thesis using the 

approximate algorithm which repeatedly incurs a vertex-selection heuristic and a 

colour-selection heuristic. A vertex-selection heuristic will use a particular strategy 

to identify which vertex is likely to cause trouble if deferred until later. Typically, 

there will be several vertices identified as the most difficult with respect to that 

heuristic. This subset of vertices is then narrowed down by applying a second 

primitive heuristic, and so on. Thus, a compound vertex selector consists of a 

sequence of primitive heuristics, where all but the first one in the sequence is 

regarded as a tie-breaker for the ones before it. Once the subset of vertices is pared 

down by the combination of heuristics, a vertex is chosen from the subset (typically 

the first one in the list). Compound colour selectors are similarly constructed from 

the four primitive colour-selection heuristics listed in Section 3.3.2.  

The pseudo-codes for the SCS for selecting a vertex and the SCS for selecting a 

colour are presented in Algorithms 4.1 and 4.2. These two strategies are basically the 

same except that a vertex is selected based on the maximum difficulty while a colour 

is selected based on the minimum trouble (caused to the vertex itself or to the 

vertex’s neighbours). Both processes iterate through the lists of primitive heuristics 

in a corresponding compound selector H. V and C can be understood as the sets of 

candidate vertices and colours, respectively while rV and rC represent the interim 

vertex and colour sets which store the remaining most difficult vertices and most 
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troublesome colours, respectively after applying one more heuristic in the compound 

selectors. V and C are updated accordingly to rV and rC at each iteration, 

respectively. The processes typically reduce the size of V and C in each iteration. At 

the end, if there are still more than one candidate vertices or colours, we simply pick 

the first one in the sets. Such vertex or colour should be selected as early as possible 

according to this SCS. 

Algorithm 4.1 Sequential Combination Strategy for Selecting a Vertex 

Input:  a compound vertex selector H (with vertex-selection heuristics) 

  a list of all uncoloured vertices V 

 

i := 1 

while (i < H.size) do  

 max_difficulty := 0 

 for (v ∈ V) do 

  d := measure the difficulty of vertex v by using heuristic Hi 

  if (d > max_difficulty) then 

   max_difficulty := d 

   rV := {v} 

  else 

   if (d = max_difficulty) then 

    rV := rV ∪ {v} 

   end if 

  end if 

 end for 

 V := rV 

 i := i + 1 

end while 
return V1 

 

We use the following two groups of compound vertex selectors: 

  vs1: 0 7 8 1 2 5 | 1 0 2 5 7 8 | 2 5 7 8 

  vs2: 0 7 8 3 5 | 3 0 7 8 2 5 | 2 5 7 8 

The numbers refer to the primitive vertex-selection heuristics introduced in Section 

3.3.1. The separation for the set of vertices is illustrated in Figure 4.1.  
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Algorithm 4.2 Sequential Combination Strategy for Selecting a Colour 

Input:  a compound colour selector H (with colour-selection heuristics) 

  a list of all available colours C 

 

i := 1 

while (i < H.size) do  

 min_trouble := +∞ 

 for (c ∈ C) do 

  d := measure the trouble caused by colour c by using heuristic Hi 

  if (d < min_trouble) then 

   min_trouble := d 

   rC := {c} 

  else 

   if (d = min_trouble) then 

    rC := rC ∪ {c} 

   end if 

  end if 

 end for 

 C := rC 

 i := i + 1 

end while 
return C1 

 

The vertical lines separate the three compound selectors that form each group. The 

first compound selector in a group is applied to the hardest subset until a certain 

number of vertices (the switching point) have been selected and coloured. Then, the 

second compound selector is applied to the rest of the hardest subset. Finally, the 

third selector, which consists of the four proximity-related primitive heuristics, is 

applied to the remaining (non-hard) vertices.  

 
Figure 4.1 Vertex set separation 

The reason for designing vs1 and vs2 are presented as follows. At the early stage 

(before the switching point), we colour a vertex based on a heuristic using the 

information retained in its incident edges. This is due to that not many vertices 
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adjacent to the considering vertex has been coloured, thus information in the colour-

penalties vector may not represents the true difficulty of a vertex. For the vertices in 

the later part of the hardest subset (after the switching point), we use heuristics based 

on the same idea with saturation degree. Therefore, heuristics 1 and 3 took the 

leading roles. While heuristic 1 is identical to the saturation degree for the Toronto 

dataset, heuristic 3 can be considered as an advanced version of the saturation degree 

because it also takes into account the bad-proximity colours. We always use heuristic 

8 as the tie-breaker for heuristic 7 because they represent different ideas to measure a 

vertex's difficulty by using the same information (see Figure 3.4 for an example). 

Similarly, heuristic 5 is always used as the tie-breaker for heuristic 2 because they 

operate on the same information (see Figure 3.5 for an example). Although the main 

components of these vertex selectors may include up to six heuristics, an observation 

in Section 4.3 will show that there are, in many cases, redundant heuristics. 

We used the following two groups of two compound colour selectors: 

cs1: 0 1 2 3 | 0 1 3 

 cs2: 0 2 3 1 | 0 3 1 

The first compound selector in each group was applied to the entire subset of 

hardest-to-colour vertices, and the second one was applied to the rest of the vertices 

(see Section 3.3.2 for the primitive colour-selection heuristics). The first colour-

selection heuristic is always heuristic 0 to make sure that the selected colour causes 

no conflict if it is possible. Then, two colour selectors use two different strategies to 

order the heuristics in two opposite ways. While cs2 prefers the colours that cause 

less conflict and proximity to the vertex's neighbours first, cs1 prefers colours that 

cause minimum proximity penalty for the vertex itself first. For easy subsets, the 
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same strategies are applied for cs1 and cs2, but colour-selection heuristic 2 is 

unnecessary as for the vertex's neighbours, there is always at least one available 

colour. 

 

4.2 Experimental Results for the SCS 

All experiments in Section 4 are conducted on a PC Pentium 4, 3.4 GHz processor 

with 2GB memory. We test SCS on the Toronto benchmark with the following 

settings:  

switching point = 1..(nExam × 20%); 

pc = 1..120 with an increment of 0.1 

ie = 1..2 with an increment of 1 

This section presents the results of applying the SCS on the Toronto benchmarks. 

We set the number of colours equal to the number of timeslots in the Toronto 

dataset. Table 4.1 presents our best results obtained from several parameter settings. 

The partitioning technique appears to improve solution quality most of the time. 

Except for the “sta83 I” problem instance, all results in column 2 of the table were 

produced using the partitioning pre-processing. 

The Settings column gives the values of the switching point, the multipliers - pc (the 

parameter for bad-proximity colours) and ie (the parameter for bad-intersect edges), 

and indicates the vertex and colour selectors used to produce the given result. The 

last column gives the best results reported in the literature published in (Qu et al., 

2009b) which used different constructive methods. 
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The results from Table 4.1 demonstrate that, for vertex selection, 10 of the 12 best 

results were achieved using vs2. Similarly, using cs1 obtains better results than using 

cs2 in 10 out of 12 instances. Changing threshold values for badness and changing 

the switch point between the first and second compound vertex selector clearly 

affects the performance of the algorithm.  

Problem 
SCS’s  

best results 

Settings   

switching point | pc | ie | vs | cs 
Best reported 

car91 I 5.22 29 | 52.1 | 1 | vs2 | cs1 4.97 

car92 I 4.40 41 | 66.8 | 2 | vs2 | cs1 4.32 

ear83 I 39.28 36 | 46.4 | 1 or 2 | vs2 | cs1 36.16 

hec92 I 12.35 16 | 4.9 | 1 or 2 | vs1 | cs1 10.8 

kfu93 I 18.08 32 | 45.2 | 1 or 2 | vs2 | cs1 14.0 

lse91 12.05 11 | 58.6 | 1 or 2 | vs2 | cs1 10.5 

rye92 10.21 17 | 51.5 | 2 | vs2 | cs1 7.3 

sta83 I 163.05 5 | 18.3 | 1 | vs2 | cs2 158.19 

tre92 8.62 6 | 79.8 | 2 | vs2 | cs1 8.38 

uta92 I 3.62 38 | 28.9 | 1 or 2 | vs1 | cs1 3.36 

ute92 30.60 36 | 65.6 | 1 or 2 | vs2 | cs2 25.8 

yor83 I 42.05 10 | 120 | 2 | vs2 | cs1 40.66 

Table 4.1 SCS’s results with the corresponding settings for the Toronto benchmark. PC refers to the 

parameter for bad-proximity colours. IE refers to the parameter for bad-intersect edges 

The totals for the proximity penalty obtained from this approach are on average 13% 

worse than the best ones reported; however, this approach still holds promise, 

particularly in view of the fact that it is, at the moment, an one-pass algorithm 

without any backtracking or local improvement. The best results reported in the last 

column of Table 4.1 were by different meta-heuristic approaches cited in the 

literature. A notable point is that no single algorithm outperformed others on all 

problems tested here. In the next section, a more generalised approach is presented 

which shows improving performance. 
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4.3 Linear Combination Strategy (LCS) 

The sequential combination strategy uses sequences of primitives as tiebreakers to 

form compound vertex selectors. However, we observe in an experiment that many 

tiebreakers in the sequences are often unnecessary when the set of candidates are 

narrowed down to a single vertex rapidly. Table 4.2 presents the performance of the 

compound vertex selector vs1 (see Section 4.1) with a particular set of parameters 

(pc=50, ie=2, switchingPoint=1), and compound colour selector: cs1 (see Section 

4.1) applied to the hardest vertex subset of the 12 Toronto problem instances. 

 car91 

I 

(507) 

car92 

I 

(392) 

ear83 

I 

(157) 

hec92 

I 

(70) 

kfu93 

I 

(196) 

lse91 

 

(124) 

rye92 

 

(189) 

sta83 

I 

(78) 

tre92 

 

(193) 

uta92 

I 

(458) 

ute92 

 

(89) 

yor83 

I 

(176) 

Primitive 0 112 102 40 30 66 33 74 11 44 95 30 46 
Primitive 7 341 259 103 32 117 85 102 22 132 296 52 117 
Primitive 8 38 18 6 2 2 1 3 0 5 38 2 4 
Primitive 1 16 13 8 6 11 5 10 13 12 29 5 9 
Primitive 2 0 0 0 0 0 0 0 0 0 0 0 0 
Primitive 5 0 0 0 0 0 0 0 0 0 0 0 0 
Unnarrowed 0 0 0 0 0 0 0 32 0 0 0 0 

Table 4.2 The depth level of primitive heuristics called for the hardest vertex subset using vs1. Values 

in parentheses denote the size of the hardest vertex subsets 

Observation results in Table 4.2 show the number of times the set of the most 

troublesome vertices is narrowed down to one vertex after applying a particular 

heuristic in the sequence. In the majority of cases, this happens only after the first 

two heuristics are used. As a result, the remaining primitive heuristics in the 

sequence play no role in the vertex selection. The problem instance sta83 I is unique 

in that there are 32 times in which the set of troublesome vertices is not narrowed 

down to one vertex after applying six primitive heuristics in the sequence. 

This observation motivates a new strategy that combines primitive heuristics more 

effectively. The compound vertex selectors are now (weighted) linear 

combinations of the primitive vertex-selection heuristics. 
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To identify the most troublesome vertices, we apply a heuristic evaluation function f 

to each of the uncoloured vertices, and the vertex having the largest evaluation value 

is chosen. In the first implementation, our function f is a linear combination of seven 

characteristics (parameters) tied to the partial colouring of the weighted graph. Due 

to the use of the Toronto dataset for experiments, where non-conflict timetables are 

compulsory, vertex-selection heuristics 4 and 6 share the same ordering strategies 

with vertex-selection heuristics 1 and 0, respectively. Therefore, for each uncoloured 

vertex v,  

f(v) = a0x0 + a1x1 + a2x2 + a3x3 + a5x5 + a7x7 + a8x8, (4.1) 

 

where ai are nonnegative weights and 

x0 = number of bad-conflict edges to v’s uncoloured neighbours. 

x1 = number of bad-conflict colours counted from the colour-penalties vector of v. 

x2 = number of bad-proximity colours counted from the colour-penalties vector of 

v. 

x3 = number of bad colours counted from the colour-penalties vector of v. 

x5 = sum of the proximity penalties over all colours stored in the colour-penalties 

vector of v. 

x7 = number of bad-intersect edges to v’s uncoloured neighbours. 

x8 = intersect degree to v’s uncoloured neighbours. 

This linear-combination approach is adaptable to colour selection as well, although 

in this research, we focus only on the vertex-selection process. The pseudo-code for 
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the LCS for selecting a vertex is presented in Algorithm 4.3. This strategy simply 

applies the function f in Equation 4.1 to all vertices and selects the vertex that returns 

the maximum value of f as the most difficult vertex. As mentioned, this vertex 

should be coloured as early as possible due to the trouble it might cause if deferred 

until later. 

Algorithm 4.3 Linear Combination Strategy for Selecting a Vertex 

Input: a list of all uncoloured vertices 

 

max_difficulty := 0; 

vmost_difficult := 0; 

for (v ∈ V) do 

 d := f(v); // see Equation 4.1 

 if (d > max_difficulty) then 

  max_difficulty := d; 

  vmost_difficult := v; 

 end if 

end for 

return vmost_difficult 

 

4.4 Justification of Heuristic Selections and Weight Settings for the 

LCS 

The main task in designing linear combinations of primitive heuristics is to set the 

weight vector [a0, a1, a2, a3, a5, a7, a8]. This section focuses on describing one 

approach to tackle this task and justify the decisions by experiments on the 12 

Toronto benchmark instances. In all experiments in this section, we always use the 

vertex partitioning step described in Section 3.5. The compound colour selector cs1: 

0 1 2 3 | 0 1 3 is applied as it showed its efficiency in the SCS experiments. The 

multiplier parameters for the bad-proximity colour threshold and the bad-intersect 

edge threshold are applied for all experiments in this section and are varied as 

follows: 
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 pc = 5 to 75 with increments of 2.  

 ie = 0.5 to 5 with increments of 0.5. 

The results obtained from the algorithm give the average proximity penalty over all 

students. We include in each experiment the best results from other constructive 

methods drawn from the survey paper (Qu et al., 2009b). That is for the purpose of 

observing the progress of our method when new heuristics are added into the linear 

combinations. 

The new vertex-selection heuristics proposed in Chapter 3 are based on the same 

idea with traditional heuristics in the literature. In the following experiments, we 

step-by-step observe the effectiveness of each heuristic in combination with others. 

However, the idea is to create linear combinations based on the idea of combining 

saturation degree and largest weighted degree, which has been very popular in ETP 

research. The other heuristics may act as tie-breakers. 

 

4.4.1 The Effectiveness of using Heuristic 3 – MaxBadColours 

In seven characteristics deduced from the vertex-selection heuristics, four of them 

are based on the information retained in the vertices’ colour-penalties vectors. 

Accordingly, we classify them as colour-penalties-based vertex-selection heuristics. 

x1 = number of bad-conflict colours counted from the colour-penalties vector of 

v (saturation degree). 

x2 = number of bad-proximity colours counted from the colour-penalties vector 

of v. 
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x3 = number of bad colours counted from the colour-penalties vector of v. 

x5 = sum of the proximity penalties over all colours stored in the colour-

penalties vector of v. 

In this group, we claim that heuristic 3 should play a role in linear combinations 

because it is essentially a consolidation of heuristics 1 and 2. Heuristic 2 is 

analogous to the saturation degree (heuristic 1) but is based on proximity instead of 

conflict. 

 

Figure 4.2 Colour-penalties vectors of an example where heuristic 2 is probably better than heuristic 

5. Heuristic 2 would select vertex v1 and heuristic 5 would select vertex v2, if the bad-intersect edges 

threshold 0 ≤ Tpc < 50 

 

In Section 3.3.1, we also suggested that heuristic 2 may be better at evaluating the 

trouble level of a vertex than its sum counterpart, heuristic 5. An extreme example in 

Figure 4.2 shows the colour-penalties vectors of two vertices v1 and v2. Suppose that 

there are four available colours for each vertex (represented by the four component-

pairs in each colour-penalties vector), the first value in each component represents 

the conflict penalty and the second represents the proximity penalty. If we set a bad-

proximity-colour threshold 0 ≤ Tpc < 50, heuristic 2 would return four bad-proximity 

colours (underlined in Figure 4.2a) from v1’s evaluation and as a result, favour v1 

over vertex v2, which has only one bad-proximity colour (underlined in Figure 4.2b). 
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On the other hand, heuristic 5 always selects vertex v2 with the proximity penalty 

sum of 201 before v1 whose proximity penalty sum equals 200.  

The experimental results shown in Table 4.3 reinforce these claims. The experiment 

used the following groups of linear combinations: 

vs1: x3 | x2 

vs2: x1 | x2 

vs3: x2 | x2 

vs4: x5 | x2 

vs5: x1 + .00001x2 | x2 

vs6: x1 + .00001x5 | x2 

These groups are chosen to compare heuristics that measure a vertex’s difficulty 

based on information retained in the colour-penalty vectors, i.e. x1, x2, x3, x5. We 

would also compare heuristic 3 (vs1) with saturation degree with tie-breakers (i.e., 

vs5 and vs6). 

The vertex selector to the left of the vertical line is applied to the hardest vertex 

subset (first), and the one to the right is then applied to all the easy subsets. In vs5 

and vs6, we set a small enough weight (.00001) so that heuristics 2 and 5 will act as 

tiebreakers for heuristic 1. For the easy subsets, we always choose heuristic 2 to 

select the most troublesome vertices since it concerns only proximity and is favoured 

over its sum counterpart 5.  vs1 which uses vertex-selection heuristic 3 could obtain 

better results in 9 out of 12 instances. 
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Problem vs1 vs2 vs3 vs4 vs5 vs6 Best 

reported 

car91 I 5.23 5.44 infeasible infeasible 5.34 5.34 4.97 

car92 I 4.47 4.85 infeasible infeasible 4.66 4.66 4.32 

ear83 I 38.05 44.1 infeasible infeasible 38.99 39.88 36.16 

hec92 I 12.28 infeasible infeasible infeasible 12.69 13.82 10.8 

kfu93 I infeasible infeasible infeasible infeasible 18.68 infeasible 14.0 

lse91 12.23 12.81 infeasible infeasible 12.91 13.33 10.5 

rye92 10.6 11.51 infeasible infeasible 11.02 11.49 7.3 

sta83 I 168.63 164.94 infeasible infeasible 163.04 165.11 158.19 

tre92 8.68 9.89 infeasible infeasible 9.52 9.14 8.38 

uta92 I 3.45 3.75 infeasible infeasible 3.55 3.6 3.36 

ute92 29.39 32.75 infeasible infeasible 30.21 31.2 25.8 

yor83 I infeasible infeasible infeasible infeasible 42.2 infeasible 40.66 

Table 4.3 Comparisons on different groups of linear combinations of coloured-penalties-based 

heuristics. Bold font indicates the best results obtained among the linear combinations. Parameter 

settings are presented in Section 4.4 

 

4.4.2 Linear Combinations of Heuristics 3 and 7 

The remaining three primitive vertex-selection heuristics are classified as edge-based 

vertex-selection heuristics since they are based on the (static) information retained in 

each vertex’s adjacent edges to determine its difficulty. 

x0 = number of bad-conflict edges to uncoloured neighbours (degree). 

x7 = number of bad-intersect edges to uncoloured neighbours. 

x8 = intersect degree to uncoloured neighbours (weighted degree). 

This section mainly compares three edge-based vertex-selection heuristics, i.e. 

heuristics 0, 7 and 8. We demonstrate an example of extreme cases to see how these 

three heuristics work. Then, we provide experimental results on the Toronto dataset 

to understand how these heuristics perform in combination with heuristic 3 (max 

bad-colours). 

For the Toronto instances, heuristics 0 and 8 represent the traditional largest 

uncoloured degree and largest weighted degree, respectively. Heuristic 7, introduced 



108 
 

within the weighted graph model in the previous chapter, involves a threshold to 

determine when an intersection size of an edge is considered ‘bad’. We suggested in 

Section 3.3.1 that counting bad-intersect edges of a vertex (heuristic 7) may be better 

at evaluating the difficulty of the vertex than adding up all the intersection sizes of 

the incident edges (as carried out by heuristic 8).  The example shown in Figure 4.3 

illustrates this claim.  

 

Figure 4.3 Vertex-selection strategies for edge-based primitive heuristics 0, 7, 8. Heuristic 0 would 

select vertex v1, heuristic 8 would select vertex v3, and heuristic 7 would select heuristic v2 if the 

bad-intersect edges threshold 1 ≤ Tie < 50 

We provide an experiment using the following groups of vertex selectors: 

vs1: x3 | x2 

vs2: 10000x3 + x7 | 10000x2 + x7 

vs3: 10000x3 + x8 | 10000x2 + x8 

vs4: 100x3 + 10x7 | 100x2 + 10x7 

vs5: 10x3 + 100x7 | 10x2 + 100x7 

The very large weight of 10000 in the linear combinations vs2 and vs3 is to set 

heuristics 7 and 8 as tiebreakers. Linear combinations vs4 and vs5 test different 

weighting scheme, i.e. (100, 10), (10,100) for the combinations between heuristics 3 

and 7. These are the two main heuristics forming the core of linear combinations in 
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this chapter. As before, the linear combinations for the easy subsets always use 

heuristic 2 instead of heuristic 3 since heuristic 2 is based only on proximity.  

The results shown in Table 4.4 support our claim that heuristic 7 may also be better 

than heuristic 8 when used in linear combinations with heuristic 3. In addition, we 

observe that the higher weight setting for x3 than x7 is likely to produce better 

timetables. 

Problem vs1 vs2 vs3 vs4 vs5 Best reported 

car91 I 5.23 5.21 5.19 5.09 infeasible 4.97 

car92 I 4.47 4.29 4.39 4.32 infeasible 4.32 

ear83 I 38.05 37.65 38.71 36.7 39.93 36.16 

hec92 I 12.28 12.52 12.38 12.52 12.93 10.8 

kfu93 I infeasible 16.93 18.21 16.93 18.4 14.0 

lse91 12.23 11.46 11.49 11.46 12.98 10.5 

rye92 10.6 9.83 10.04 9.74 infeasible 7.3 

sta83 I 168.63 160.26 162.6 160.26 159.61 158.19 

tre92 8.68 8.57 8.58 8.5 9.44 8.38 

uta92 I 3.45 3.47 3.54 3.44 infeasible 3.36 

ute92 29.39 28.41 29.46 28.41 29.44 25.8 

yor83 I infeasible 41.1 41.61 40.74 40.84 40.66 

Table 4.4 Comparisons on different groups of linear combinations between colour-penalties-based 

and edge-based vertex-selection heuristics. Bold font indicates the best results obtained among the 

linear combinations. Parameter settings are presented in Section 4.4 

 

 

4.4.3 The Effect of Including Heuristic 0 in Linear Combinations 

Heuristic 0 applied to the Toronto problems is essentially the traditional largest 

uncoloured degree. As we suggested earlier regarding the dynamic nature of a 

heuristic’s effectiveness as the colouring progresses, applying heuristic 1 (saturation 

degree) at the beginning of the process has no distinguishing effect, whereas 

heuristic 0 (largest degree) does. We investigate this behaviour using the following 

groups of vertex selectors: 
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vs1: 100x3 + 10x7 | 100x2 + 10x7 

vs2: 100x3 + 10x7 + 0.1x0 | 100x2 + 10x7 

vs3: 100x3 + 10x7 + 1x0 | 100x2 + 10x7 

vs4: 100x3 + 10x7 + 10x0 | 100x2 + 10x7 

vs5: 100x3 + 10x7 + 0.1x0 | 100x3 + 10x7 | 100x2 + 10x7, switching point = 10 

With vs1, vs2, vs3 and vs4, we examine the linear combinations of the core 

combination (i.e. heuristic 3 and heuristic 7) with different weight settings for 

heuristic 0, i.e. (0, 0.1, 1 and 10). We also examine the effectiveness of adding 

heuristic 0 only in the early part of colouring (before a switching point as in vs5). 

As before, the vertical line separates the linear combinations for different stages of a 

colouring. For each group, the last linear combination is applied to the easy vertex 

subsets. It always replaces heuristic 3 by its proximity analogue heuristic 2.  For 

vertex selector vs5, the first and second combinations are applied to the hardest 

subset before and after the specified switching point. For each of the selectors from 

vs1 to vs4, the first linear combination is applied to the entire hardest subset. 

The results shown in Table 4.5 show a preference to use a switching point. Vertex 

selector vs5 obtains the best solutions in seven problem instances. Notice that the 

inclusion of heuristic 0 was particularly effective only when being applied before the 

switching point. 
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Problem vs1 vs2 vs3 vs4 vs5 Best reported 

car91 I 5.09 5.15  5.18 5.41 5.09  4.97 

car92 I 4.32  4.33  4.31 4.49 4.32  4.32 

ear83 I 36.7 37.38  37.38  41.37 36.7  36.16 

hec92 I 12.52  12.27 12.47  12.62 12.09  10.8 

kfu93 I 16.93  16.58  17.66  infeasible 16.98  14.0 

lse91 11.46 11.57  11.5  11.61 11.46  10.5 

rye92 9.74 9.83  10.39  12.18 9.74  7.3 

sta83 I 160.26  159.37 160.41  163.83 158.95  158.19 

tre92 8.5 8.47 8.51 8.98 8.5  8.38 

uta92 I 3.44 3.44 3.44 infeasible 3.44  3.36 

ute92 28.41  28.83  28.83  30.16 28.68  25.8 

yor83 I 40.74  40.74  40.67 41.43 40.74  40.66 

Table 4.5 Comparisons on different groups of linear combinations with regards to the inclusion of 

heuristic 0 and switching points. Bold font indicates the best results obtained among the linear 

combinations. Parameter settings are presented in Section 4.4 

 

4.4.4 Using Heuristic 5 and/or 8 as Tiebreakers 

Given the effectiveness of using heuristic 0 as a tiebreaker, it was natural to consider 

the effect of using heuristics 5 and 8 in a similar way.  Table 4.6 shows the results 

for the following groups of selectors: 

vs1: 100x3 + 10x7 | 100x2 + 10x7 

vs2: 100x3 + 10x7 + .00001x5 | 100x2 + 10x7 + .00001x5 

vs3: 100x3 + 10x7 + .00001x8 | 100x2 + 10x7 + .00001x8 

vs4: 100x3 + 10x7 + .00001x8 | 100x3 + 10x7 + .00001x5 | 100x2 + 10x7 + 

.00001x5, switching point = 10 

where vs1, vs2 and vs3 compare the linear combinations of heuristic 3 and heuristic 7 

with a tie-breaker (i.e. heuristic 5 or heuristic 8). Vertex selector vs4 has a switching 

point where before the switching point, the edge-based heuristic 8 is the tie-breaker 

while after the switching point, the colour-penalties-based heuristic 5 is the tie-

breaker. As before, the reason for that difference between two sides of the switching 

point is because the colour-penalties-based heuristics may not provide a precise 
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measure of difficulty at early stage of colouring. Similar to other experiments, 

heuristic 2 replaces heuristic 3 for the easy subsets. 

The comparison of vs1 with three selectors that involve no, one or both heuristics 5 

and 8 as shown in Table 4.6 shows no clear advantage towards using any of them.   

Problem vs1 vs2 vs3 vs4 Best reported 

car91 I 5.09 5.12 5.19 5.12 4.97 

car92 I 4.32 4.29 4.32 4.29 4.32 

ear83 I 36.7 36.73 36.55 36.73 36.16 

hec92 I 12.52 12.52 12.52 12.38 10.8 

kfu93 I 16.93 17.11 17.12 17.17 14.0 

lse91 11.46 11.49 11.54 11.4 10.5 

rye92 9.74 9.77 9.79 9.77 7.3 

sta83 I 160.26 160.07 160.53 160.07 158.19 

tre92 8.5 8.56 8.39 8.56 8.38 

uta92 I 3.44 3.38 3.44 3.38 3.36 

ute92 28.41 29.34 29.24 29.34 25.8 

yor83 I 40.74 40.38 40.74 40.38 40.66 

Table 4.6 Comparisons on different groups of linear combinations with regards to the inclusion of 

heuristic 5 and/or heuristic 8 acting as tiebreakers. Bold font indicates the best results obtained among 

the linear combinations. Parameter settings are presented in Section 4.4 

 

4.4.5 Improving the Linear Combination Strategy 

Based on the experimental results described in the previous sections, we focus here 

on one specific vertex selector. The vertex selector we present here consists of a 

linear combination of heuristics 3, 5, and 7 applied to the entire hardest vertex 

subset, and a linear combination of heuristic 2, 5, and 7 applied to all of the easy 

subsets.  We use the same weight vector, [a, a5, a7], for both linear combinations.  

Thus, our vertex selector has the form 

ax3 + a5x5 + a7x7  |  ax2 + a5x5 + a7x7 

The characteristics of the four primitive heuristics are repeated below. 

x2 = number of bad-proximity colours counted from the colour-penalties vector 

of v. 
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x3 = number of bad colours counted from the colour-penalties vector of v. 

x5 = sum of the proximity penalties over all colours stored in the colour-penalties 

vector of v. 

x7 = number of bad-intersect edges to uncoloured neighbours. 

 

4.5 Experimental Results for the LCS 

We test the vertex selector in Section 4.4.5 using each of the eight sets of values for 

[a, a5, a7] shown in Table 4.7:  

(1000, 0.00001, 1) 

(1000, 0, 1) 

(100, 0.00001, 10) 

(1000, 0, 10) 

(100, 0.00001, 15) 

(1000, 0, 15) 

(100, 0.00001, 50) 

(1000, 0, 50) 
Table 4.7 Sets of weight settings 

Also, for each linear combination, we vary the two threshold parameters, pc and ie, 

over a large range of values as follows: 

 pc = 5 to 90 with increments of 0.1 (851 different values). 

 ie = 0.5 to 5.5 with increments of 0.1 (51 different values). 

The compound colour selector cs1: 0 1 2 3 | 0 1 3, introduced in Section 4.1, is used 

here. 

 

4.5.1 The Effect of Vertex Partitioning as a Pre-processing Step 

All the results (up to this point) in this chapter were produced by assuming the use of 

the vertex partitioning pre-processing.  Here, we investigate the effect of using 

vertex partitioning with the improved vertex selector. Table 4.8 shows the best 
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results obtained for each problem instance with and without vertex partitioning. 

Vertex partitioning produced better results for seven problem instances (bold font) 

and was equal or only slightly inferior for the remaining five problem instances. 

These results show that vertex partitioning is a promising approach to improve exam 

timetabling solutions. 

Problem Our best results  

with partitioning 

Our best results  

without partitioning 

car91 I 5.05 5.03 

car92 I 4.22 4.24 

ear83 I 36.07 36.06 

hec92 I 11.71 12.12 

kfu93 I 16.02 16.02 

lse91 11.15 11.28 

rye92 9.47 9.42 

sta83 I 158.86 158.96 

tre92 8.37 8.39 

uta92 I 3.37 3.38 

ute92 28.18 27.99 

yor83 I 39.53 39.73 

Table 4.8 Comparison on groups of linear combinations with and without using the pre-processing 

step of vertex partitioning 

 

4.5.2 The Overall Performance of Linear Combinations of Primitive Vertex-

selection Heuristics  

Table 4.9 lists the lowest proximity penalty obtained for a feasible solution on each 

of the 12 Toronto problem instances. It indicates the use of vertex partitioning (2 

options), the weight vectors (8 options), and the values of the threshold multipliers 

pc (851 options) and ie (51 options) used to obtain each best result for our vertex 

selector. For each problem instance, the total number of sets of parameters examined 

is 694416. The average execution time for one set of parameters for each problem 

instance is reported.  
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Problem Settings (used vertex 

partitioning, weight 

vector for heuristics 

[3(2), 5, 7], threshold 

multipliers) 

Avg. Exec. 

Time per 

set of 

parameters 

(seconds) 

LCS  

Best  

Results 

SCS 

Results 

Best  

constructive  

reported 

Best 

cited 

car91 I 
No, [100, .00001, 50],  

pc=79, ie=3.3 
156.5 5.03 5.22 4.97 4.5 

car92 I 
Yes, [1000, .00001, 1],  

pc=61.5, ie=5 
106.61 4.22 4.40 4.32 3.93 

ear83 I 
No, [1000, .00001, 1],  

pc=43, ie=0.7 
7.22 36.06 39.28 36.16 29.3 

hec92 I 
Yes, [100, 0, 15],  

pc=35.4, ie=0.5 
1.38 11.71 12.35 10.8 9.2 

kfu93 I 
Yes, [100, .00001, 50],  

pc=86.8, ie=3.1 
14.89 16.02 19.04 14.0 13.0 

lse91 
Yes, [1000, .00001, 1],  

pc=30, ie=4.5 
8.49 11.15 12.05 10.5 9.6 

rye92 
No, [100, 0, 50],  

pc=31, ie=3.7 
26.08 9.42 10.21 7.3 6.8 

sta83 I 
Yes, [100, 0, 10],  

pc=11.1, ie=0.7 
1.52 158.86 163.05 158.19 157.0 

tre92 
Yes, [100, .00001, 15],  

pc=50, ie=2.5 
10.33 8.37 8.62 8.38 7.9 

uta92 I 
Yes, [1000, 0, 1],  

pc=78.6, ie=3.6 
119.08 3.37 3.62 3.36 3.14 

ute92 
No, [100, 0, 10],  

pc=6.1, ie=4.8 
1.54 27.99 30.60 25.8 24.4 

yor83 I 
Yes, [100, .00001, 50],  

pc=39.6, ie=1.7 
5.6 39.53 42.05 40.66 36.2 

Table 4.9 Summary of the results obtained from using linear combinations of primitive vertex-

selection heuristics compared with other approaches. The best constructive reported and the best cited 

results are taken from (Qu et al., 2009b) 

The comparison of the LCS and the SCS demonstrates a significant superiority of 

the linear combination strategy. We also see that LCS can improve on the best 

results reported for constructive algorithms on four out of the twelve problem 

instances (bold font). 

The best results from the LCS in Table 4.9 are obtained by conducting an 

exhaustive search from a large range of parameter settings. Therefore, it requires a 

significantly large execution time. This experiment rather demonstrates the 

possibility of finding better timetables within the search space of linear 

combinations of the primitive vertex-selection heuristics. Further research on the 

landscape of the parameter search space represents a promising future research 

direction. 
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4.6 Chapter Summary 

We find the results of using combination strategies encouraging, given that they 

involve a one-pass construction without backtracking. The results suggest that 

linear combinations of primitive heuristics supersede their use sequentially as tie-

breakers. Moreover, the tie-breaker effect could be alternatively achieved by 

setting one weight much larger than another. Weight settings in linear 

combinations also allow different heuristics to play a more equal role in the 

selection process, which has the potential to lead to more effective heuristics and is 

worthy of further investigation. We provided a set of experiments to justify the 

decisions to select heuristics and set weights to efficiently solve the exam 

timetabling problem. Suggestions about the effectiveness of the newly proposed 

constructive heuristics compared to the conventional heuristics are also justified by 

experiments. The vertex partitioning technique in the weighted graph model is 

shown to be a useful technique.  

Chapters 3 and 4 focus on tailor-made approaches that exploit particular problem 

specific information. Chapter 6 will focus on raising the level of generality of 

search methodologies by developing a hyper-heuristic with the capability of 

solving different problems. To pave the way for Chapter 6, Chapter 5 presents a 

heuristic strategy which is suitable within a hyper-heuristic context for one of the 

investigated problems (i.e. the 3D-SPP). 
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Chapter 5 An Extended Best-Fit Strategy for the 3D-SPP 

Chapters 3 and 4 provide our contributions in designing a weighted graph model and 

introducing new constructive heuristics which may be more precise in measuring the 

difficulty level of vertices at the cost of longer running time. We then propose two 

different strategies to combine heuristics to improve further the decision to select 

vertices and colours. This chapter will be mainly on improving a constructive 

approach for the 3D-SPP while in Chapter 6, both the 3D-SPP and the ETP will be 

investigated in applications of a hyper-heuristic. This chapter presents an extended 

version of the ‘best-fit’ strategy for three-dimensional strip packing problems. From 

that, we introduce several novel constructive heuristics based on human packing 

intuition. Some of them are designed to be suitable for the 3D-SPP with different 

sets of constraints (in this research, we consider orientation and stability constraints). 

The heuristics provide more, possibly better decision options concerning different 

problem solving situations. Within the extended strategy, we also propose an 

adjustment technique to move the box around its position and a procedure to group 

similar boxes together to increase the compactness of packing. The main aim of 

these extensions is to improve the effectiveness of the best-fit strategy, especially for 

the use within a hyper-heuristic context. 
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5.1 The Three-Dimensional Best-Fit Strategy (3BF) 

As described in Section 2.2, the 3D-SPP concerns packing a number of rectangular 

boxes, specified by their width, length and height, into a three dimensional 

rectangular container with unlimited length. The objective is to find a non-

overlapping packing of all the boxes into the container such that the length of the 

packing is minimised. Recently, Allen et al. (2011) developed the three-dimensional 

best-fit strategy by extending the best-fit strategy (2BF) for the 2D stock cutting 

problem (Burke et al., 2004b). The idea of the 3BF is to search dynamically from the 

list of unpacked boxes in order to find the most suitable boxes to fill the available 

gaps. The aim of the 3BF is to gradually pack boxes as compactly as possible into 

the deepest gaps inside the container. For reference purposes within this research, we 

choose the deepest-bottom-left corner of a box or a container as its origin and define 

the coordinate terminology, as shown in Figure 5.1. A gap is defined as an 

unobstructed space within the container originated from a starting point, i.e. its 

closest coordinate to the container origin. The packing of a selected box into a gap is 

understood as placing the origin of the box onto the starting point of the gap. The 

3BF heuristic repeatedly makes the following two decisions until all boxes are 

accommodated: 

 Gap-finding: finds a number of the deepest gaps inside the container.  

 Box-placement: finds boxes that can fill the largest gaps. If there are ties, one of 

the tie-breaking heuristics will be used to further reduce the options. If no box 

can fit into the deepest gaps, those gaps are ignored and the gap-finding process 

will continue at the next deepest level. Note that, the ignored gaps will not be 

revisited. 
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Figure 5.1 Coordinate terminology 

An advantage of filling the deepest gaps is that when a box is considered to be 

placed into the container, we only need to check collisions with other boxes on the x- 

and z-axis. This is due to the boxes already placed not having the nearest y 

coordinate greater than the nearest y coordinate of the box being considered.  

 

5.2 Extensions for the 3BF Strategy 

Within the hyper-heuristic context, the main drawback of the 3BF is that the process 

of searching for boxes offers little diversification due to the largest gap filling 

criterion. We provide an alternative approach in this section to compensate for that 

drawback. In addition, we also present our approaches in finding the deepest gaps, 

breaking box selection ties and improving the compactness of the packing. 

  

5.2.1 Gap-finding Process 

In the first decision of gap-finding, different strategies may be used, ranging from 

finding all the deepest gaps to only the deepest-bottom-left gap. For the 3D-SPP 

without the stability constraint (3D-SPP-NS), these gap-finding methods generate 

significantly different packing outcomes. This is due to the fact that, at a decision 
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point, we may place a box into the deepest gap near the top of the container without 

concerning the support of its bottom surface. From the implementation point of 

view, finding all the deepest gaps requires large computational cost. We devise the 

following fast gap-finding process which shows from experimental experience 

almost as good results as finding all the deepest gaps. 

In this fast gap-finding process, a ‘row(y, z)’ is defined as all coordinates with a 

fixed length (y) and a fixed height (z). As the sizes of a box are integers, only a 

limited number of coordinates may lie on a row. The process considers those 

coordinates which are not being contained by other boxes on the deepest-bottom 

row(y, z) as the candidate gaps. In addition, to reduce the number of candidate gaps, 

only coordinates on a row with x being 0 or equivalent to the x-coordinate of 

adjacent boxes already accommodated are considered. Adjacent boxes are those with 

the furthest y ≥ y-coordinate, and the highest z ≥ z-coordinate of the row being 

considered. Figure 5.2a presents an example of the deepest-bottom row and two 

candidate gaps (i.e. starting points marked as 1 and 2). If no box fits into any gap in 

that row, the gap-finding process will find gaps in the next deepest-bottom row (i.e. 

the row that contains two other candidate gaps with starting points 3 and 4 in Figure 

5.2a). Otherwise, if a box can be placed into either starting point 1 or 2 in Figure 

5.2a, the deepest-bottom row of the next step may remain the same (e.g. Figure 5.2b) 

or vary (e.g. Figure 5.2c). 

 

5.2.2 Box-placement Process 

In the box-placement decision, a combination of two heuristics is used for each gap: 

gap-filling and tie-breaking heuristics. The first one plays a major role in finding a 
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list of boxes that can fill the largest gap and the second one uses a particular strategy 

to break any existing ties. There are also different ways to define the largest gap that 

boxes can fill. For example, a box that can fill the maximum gap-width is not 

necessarily the box that can fill the maximum gap-height. We consider three gap-

filling heuristics GF1, GF2, and GF3 in Table 5.1 with different definitions of the 

box that can fill the largest gap.  

 
Figure 5.2 Examples of the deepest-bottom rows and starting points of candidate gaps 

For the 3D-SPP-NS, 3BF has been shown to be a highly effective constructive 

heuristic (Allen et al., 2011). However, within the hyper-heuristic context, GF1, 

GF2, and GF3 provide limited diversity in the box being selected, i.e. in many cases, 
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there is only one box satisfying the criteria of these gap-filling heuristics. Therefore, 

we introduce three variants of these gap-filling heuristics in Table 5.1 to select 

boxes. The variant GF1P for GF1 selects boxes that cover at least P percent of the 

xz-covering area of the boxes found by GF1. Similar definitions are applied for 

GF2P and GF3P. A small-enough value of P will result in a higher number of 

candidate boxes, thus increasing the search space of packing solutions for hyper-

heuristics. Note that when P is set to 100, these variants become their original gap-

filling heuristics. All experiments in this research use the proposed variants with a 

parameter P instead of the pure gap-filling heuristics. 

In this research, the gap-filling heuristics will be chosen intuitively based on problem 

characteristics. For the 3D-SPP-NS, it is sufficient to use only GF1P to construct 

towards a compact packing. For the 3D-SPP with the stability constraint (3D-SPP-

WS), boxes selected by GF2P and GF3P are also considered as they may have higher 

impacts on the overall packing quality. For instance, boxes selected by GF3P 

generally provide greater support on the top surface for other boxes than boxes 

selected by GF1 P.  

Gap-filling heuristic Description 

GF1 - Max xz-covering Area Selects boxes that cover the maximum area on the 

cutting xz-surface containing the considering row and 

perpendicular to container's y-axis (see Figure 5.3a). 

GF2 – Max Volume Selects boxes that cover the maximum volume (see 

Figure 5.3b). 

GF3 – Max xy-covering Area Selects boxes that cover the maximum area on the 

cutting xy-surface containing the considering row and 

perpendicular to container’s z-axis (see Figure 5.3c). 

GF1P 

 

Selects boxes that cover at least P percent of the xz-

covering area of the boxes found by GF1. 

GF2P Selects boxes that cover at least P percent of the 

volume of the boxes found by GF2. 

GF3P Selects boxes that cover at least P percent of the xy-

covering area of the boxes found by GF3. 

Table 5.1 Three gap-filling heuristics and their variants in the box-placement procedure 
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There is another motivation for designing these variants for the gap-filling heuristics. 

Although the original heuristics are likely to produce a high quality packing, they 

often lead to wasted space. For example, when a box covers the most area on the xz-

surface of the gap, it may leave the remaining space on the x-axis and the z-axis too 

small to contain any extra boxes. By considering other boxes or their rotations that 

cover slightly less area, the overall utilisation of the space may be improved. Figure 

5.4 presents an example of such scenarios. The assignment of box 1 which covers the 

maximum xz-area results in a wasted space (grey area), while by selecting box 2, 

boxes 3 and 4 are able to fill the remaining space.  

 

 
Figure 5.3 An example of different gap definitions. Grey areas represent the gaps 

 

 
Figure 5.4 An example of reducing wasted space by assigning a box with a slightly smaller xz-

covering area 
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The variants of the gap-filling heuristics with a large-enough P will consider more 

boxes while still preserving the ‘best-fit’ characteristic. After a variant of a gap-

filling heuristic is applied, tie-breaking heuristics are employed to further improve 

the decision making to select the most suitable box for the chosen gaps. The tie-

breaking heuristics listed in Table 5.2 are designed concerning different packing 

situations encountered in practice. Some of them will be applied for both the 3D-

SPP-NS and the 3D-SPP-WS; some will be applied for only one problem class. 

Tie-breaking heuristic Description 

TB1 - Maximum xz-

covering Area 

Prefers boxes that have the larger xz-covering area to fill as much gap 

on the deepest surface as possible. 

TB2 - Maximum Volume Prefers boxes with a larger volume. 

TB3 - *Maximum xy-

covering Area 

Prefers boxes that have the larger xy-covering area to support other 

boxes. 

TB4 - Maximum Contact 

Area 

Prefers boxes covering larger area of surfaces which is in contact 

with other placed boxes. 

TB5 - *Minimum Rotations 

with Maximum min_length 

Prefers boxes with a smaller number of rotations. It is very likely 

there will be ties. In these cases, the minimum length of all rotations 

of each box is measured, denoted as min_length. In the tie list, we 

prefer the box that has a higher min_length. For example, some 

boxes may have large width and length, but small height, and can be 

rotated only on z-axis. Leaving these boxes until the late stage of 

packing may significantly increase the resulting container’s length. 

TB6 - Maximum Furthest_y 

Surrounding Contact 

Calculates the contact length of edges surrounding the furthest-y 

surface. This prefers boxes that may form a vertical wall at the 

furthest-y surface and thus are less likely to increase the container 

length. An example is shown in Figure 5.5. 

TB7 - *Minimum Wasted  

Volume 

Prefers boxes that may generate the least wasted space to the overall 

packing. We calculate all wasted spaces adjacent to the top, bottom, 

left, and right surfaces of the box placement. See Figure 5.6 for an 

example of the wasted spaces on the right surface of different 

candidate placements. The implementation for this heuristic is 

simplified and presented in Appendix B. 

TB8 – *Maximum Support Prefers boxes that can support a larger number of unallocated boxes 

on their top surface. 

Table 5.2 The list of tie-breaking heuristics. The novel ones proposed in this research are marked with 

(*). The remaining is originated from (Allen et al., 2011) 

 

If ties exist after applying a gap-filling and a tie-breaking heuristic, we sort the list of 

qualified boxes in descending order of the largest width, then height and then length 

of the boxes. This is to encourage the early assignment of bigger boxes. After that, if 

there are still ties, the first encountered box in the ordered list is selected. 
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Figure 5.5 Maximum Furtest_y Surrounding Contact (see Table 5.2) fits a candidate gap with the 

preferred box in the order of: a, b, c, and then d. The solid bold lines represent the contact with other 

boxes with the same level of the furthest-y. The dotted lines represent the contact with other boxes 

with the furthest-y coordinate being greater than the furthest-y coordinate of the considering box. The 

heuristic prefers boxes that can form vertical walls with other boxes. Otherwise, it prefers boxes that 

have the furthest-y coordinate not exceeding the furthest-y coordinates of adjacent boxes 

 

 
Figure 5.6 Minimum Wasted Volume (see Table 5.2) fits a candidate gap G with the preferred box in 

the order of: b, c, and then d. The grey areas represent wasted spaces. During the packing process, the 

information of the box types with the minimum width (minBoxSizeX) and minimum height 

(minBoxSizeZ) are dynamically updated 
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5.2.3 Assembled Box 

We allow a number of boxes of the same type to be combined as a single box which 

is called an assembled box. An assembled box must be of rectangular shape, and is 

treated exactly the same as a single box. An example in Figure 5.7a demonstrates all 

possibilities to form an assembled box from a box type with quantity 4. Note that 

assembled boxes along the y-axis (e.g. in Figure 5.7b) are not allowed in this 

research. This follows the objective of the 3BF to heuristically pack the gaps deeply 

inside the container to receive as compact a packing as possible. A small amount of 

wasted volume towards the left, right, top, and bottom surfaces caused by one box 

may be accumulated to become a significant amount of wasted volume if that box is 

assembled on the y-axis. 

               

         
Figure 5.7 Examples of assembled boxes 

 

5.2.4 A Technique to Adjust Box Positions 

To further improve the compactness of packing, we introduce here a simple yet 

effective adjustment technique to slide a box after it is placed into a candidate gap. 

For the 3D-SPP-NS, the technique concerns sliding a box either left, right, up, or 

down, while this technique is only applied to slide a box left or right in the 3D-SPP-

WS. The main process of this adjustment includes the following steps: 
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 Given a direction to slide the box, we calculate the colliding distances (see an 

example in Appendix B) from all points on the corresponding edge of the box’s 

furthest-y surface (e.g. if the direction is to the right, the corresponding edge is the 

right edge). 

 If the colliding distances from all those points are the same and smaller than the 

corresponding minimum box size (i.e. minBoxSizeX for sliding left and right, 

minBoxSizeZ for sliding up or down), the box is moved as much as possible 

towards the direction of that surface. 

Figure 5.8a presents an example of placing box 3 into a position that results in 

wasted volume (dark area) on its right side. The adjustment is applied to slide box 3 

to the right until it touches the container wall. Not only may this adjustment reduce 

wasted volume (dark areas in Figure 5.8), but it may also create larger gaps (grey 

area) for the next packing step. It is equivalent to increase the box-placement options 

for the neighbour gaps, thus increasing the chance of achieving a more compact 

packing.  

If the stability constraint is applied, the calculated distances and the moves of the 

boxes are subject to the support on its bottom. In addition, the adjustment is made 

only if it does not reduce the supporting area connected to the top surface of the 

considered box. For the example presented in Figure 5.8, concerning the stability 

constraint, box 3 will not be moved because the top surface of box 3 together with 

box 2 forms a larger supporting area. 
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Figure 5.8 Adjusting the box position 

 

5.2.5 Tower Processing 

The nature of the 3BF is to repeatedly find a box to fill the deepest gaps. It is likely 

that a box that covers a small xz-area with large length y is placed at the end. 

Accommodating that box may result in a significant increase to the overall length of 

the container i.e. it forms a tower. The container length can sometimes be reduced 

simply by rotating the tower and assigning it to another, possibly not deepest 

position. A tower processing procedure as in (Burke et al., 2004b; Allen et al., 2011) 

is also implemented in this research. After all boxes are placed into the container, the 
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box with the furthest y may be rotated and assigned to a different position to reduce 

the overall y. This process is repeated until no reduction is possible. Similar to the 

technique to adjust box positioning in Section 5.2.4, for the 3D-SPP-WS, changing a 

box’s position is subject to the supporting requirement in both old and new positions. 

 

5.2.6 Pseudo-code for the Extended Strategy 

The pseudo for our extended strategy is presented in Algorithm 5.1. For the input of 

a sequence of heuristics, each heuristic in the sequence is represented by a 

combination of a gap-filling heuristic and a tie-breaking heuristic. Our extended 

strategy first initialises the remaining number of boxes Nremaining to be the total 

number of boxes N and finds the deepest bottom row R. Then, a while-loop 

repeatedly accommodates at each iteration a single box or an assembled box. The 

process at each iteration follows the following order. We apply the in-turn heuristic 

to find all qualified box placements on row R and store them in the list LP. If there is 

at least one qualified box placement, we will take the first qualified (assembled) box 

b in the list and get its assumed position p. We then apply the technique proposed in 

Section 5.2.4 to find a better position p' for the box (possibly not moving) and place 

it into that position. Nremaining is deducted by the number of boxes in b. However, if 

there is no qualified box placement on row R, we continue by processing the next 

deepest bottom row and ignoring all unoccupied gaps in the current row R. The 

process stops after all boxes are accommodated. At the end, the tower processing is 

applied to further improve the volume utilisation. 
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Algorithm 5.1 The Extended Best-Fit Strategy 

Input: the number of boxes N 

  a sequence of heuristics H1…Hn  

 

Nremaining = N 

i := 1 

find the deepest bottom row R 

 

while (Nremaining > 0) do 

 use heuristic Hi to find the list of qualified box placements LP on R 

  

 if (LP.length > 0) then   

  b := get the first qualified (assembled) box from LP 

  p := get the box’s positioning 

  adjust the box to a new position p' 

  place box b into position p' 

  update the number of remaining unassigned boxes Nremaining 

  i := i + 1 

 else 

  find the next deepest bottom row R' 

  R := R' 

 end if 

end while 
apply tower processing procedure 

 

 

5.3 Comparison between the new Strategy and the Original 3BF 

We compare our extended 3BF with the previously implemented 3BF for the 3D-

SPP-NS on the datasets SP-BR and SP-BR-XL. Four sequences of random heuristics 

are generated in which each element represents a heuristic for the 3D-SPP-NS. Each 

heuristic is applied in order to pack one or several boxes until all boxes are 

accommodated. The volume utilisations obtained from those sequences are 

compared with the results obtained from the 3BF using four different tie-breaking 

heuristics implemented in (Allen et al., 2011).  
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5.3.1 Experimental Settings 

Experiments were conducted on a PC Pentium IV 3.4GHz with 2GB memory. 

Heuristics 

Each heuristic is represented by a box-placement strategy which combines one or 

more gap-filling heuristics (see Table 5.1) as the main `selection mechanism with 

one tie-breaking heuristic (see Table 5.2) to shorten the list of qualified boxes. Such 

combinations are denoted as: 

[Gap-filling heuristic] [Tie-breaking heuristic]. 

Each heuristic can be one of the following combinations: 

H1 - [GF1P] [TB1] 

H2 - [GF1P] [TB2] 

H3 - [GF1P] [TB4] 

H4 - [GF1P] [TB5] 

H5 - [GF1P] [TB6] 

H6 - [GF1P] [TB7] 

Fitness Measurement 

Instead of measuring the required length for the container, we use the volume 

utilisation function (see Section 2.2.4) as the fitness evaluation for packing solutions.  

Parameter Settings for the Gap-filling Heuristics 

For all experiments, we set the parameter P (defined in Section 5.2.2) for the gap-

filling heuristics GF1P, GF2P, and GF3P as in Table 5.3. As weakly heterogeneous 

test cases have less box types, P is set to smaller values to increase the number of 

considering options at each decision point. These values for P are also selected 

empirically by performing trial runs and will be used throughout all experiments on 
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the 3D-SPP in this thesis. We aim at having more box options for each decision step 

while still keeping the characteristic of the ‘best-fit’ strategy. 

SP-BR(-XL) 01 02 03 04 05 06 07 08 09 10 

P 65 65 75 75 85 85 85 90 90 90 

Table 5.3 Parameter settings for the gap-filling heuristics in different test cases 

 

5.3.2 Experimental Results 

For each test case of the SP-BR and SP-BR-XL datasets, the result is for the first 10 

instances (similar to the compared approach). We report the mean volume 

utilisations obtained by our approaches from 3 different runs (MVU). The standard 

deviations (StDev) are also presented.  

Tables 5.4 and 5.5 show the comparison results on the datasets SP-BR and SP-BR-

XL, respectively. The average results are comparable on both SP-BR and SP-BR-XL 

dataset; however, for the weakly heterogeneous test cases (i.e. 1 and 2) we currently 

set P only at 65%. If the running time is strictly limited, a higher value of P will 

result in significant improvement in volume utilisation due to the selections of larger 

boxes for the gaps. However, adjusting P is not the subject of this research. We aim 

at using a fixed set of P to test different problem situations.  

Test case 3BF  

(Allen et al., 2011) 

 Extended 3BF  

VU(%) Time(s)  MVU(%) StDev(%) Time(s) 

SP-BR01 88.7 0.3  87.4 0.58 0.3 

SP-BR02 89.0 0.4  88.2 0.29 0.3 

SP-BR03 87.8 0.5  88.1 0.48 0.3 

SP-BR04 87.8 0.6  87.5 0.11 0.4 

SP-BR05 87.7 0.7  88.7 0.47 0.4 

SP-BR06 87.6 0.9  88.2 0.33 0.5 

SP-BR07 87.4 1.1  87.9 0.34 0.5 

SP-BR08 86.8 1.3  86.8 0.24 0.6 

SP-BR09 86.5 1.6  87.3 0.40 0.s6 

SP-BR10 86.3 2.0  86.4 0.49 0.7 

Average 87.6   87.6   

Table 5.4 Results on the SP-BR dataset from four randomly generated sequences for the 3D-SPP-NS 
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Test case 3BF  

(Allen et al., 2011) 

 Extended 3BF  

VU(%) Time(s)  MVU(%) StDev(%) Time(s) 

SP-BR01-XL 92.2 8.6  91.0 0.39 3.4 

SP-BR02-XL 92.2 10.2  90.6 0.37 3.9 

SP-BR03-XL 91.8 12.5  91.8 0.04 4.2 

SP-BR04-XL 92.0 14.9  92.1 0.26 4.6 

SP-BR05-XL 92.4 16.8  93.4 0.20 4.6 

SP-BR06-XL 92.5 19.4  93.6 0.14 5.1 

SP-BR07-XL 92.4 22.9  93.2 0.11 5.2 

SP-BR08-XL 92.6 26.2  94.2 0.18 5.5 

SP-BR09-XL 92.1 30.1  94.1 0.07 5.7 

SP-BR10-XL 92.5 35.3  94.0 0.12 6.3 

Average 92.3   92.8   

Table 5.5 Results on the SP-BR-XL dataset from four randomly generated sequences for the 3D-SPP-

NS 

 

5.4 Chapter Summary 

We presented in this chapter an extended version of the 3BF. The use of gap-filling 

heuristics with parameter P can offer more options to select boxes at every decision. 

Four new tie-breaking heuristics in Table 5.2 are proposed based on the common 

intuition of human packing in different situations. By using suitable combinations of 

gap-filling and tie-breaking heuristics, larger areas in the solution space can be 

explored compared to the original 3BF. A particular set of settings for parameter P, 

which will be used throughout all experiments in this research, has shown 

comparable results with those obtained by the original 3BF. The next chapter will 

investigate the application of a hyper-heuristic which uses this extended 3BF within 

one of the experimented domains – the 3D-SPP. 
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Chapter 6 An Estimation of Distribution Algorithm-based 

Hyper-heuristic (EDA-HH) 

We investigate a hyper-heuristic method based on estimation of distribution 

algorithms (EDAs) to solve different classes of the exam timetabling problems and 

the 3D strip packing problems. The challenge is to develop automated methods 

which choose and hybridise suitable heuristics based on problem solving situations 

from a given set of low-level heuristics. The EDA-based hyper-heuristic works on 

the search space of constructive heuristics and is not restricted to solve one problem 

but is applicable for a number of optimisation problems. We demonstrate a higher 

level of generality by applying the hyper-heuristic on four different problem variants 

i.e. the ETP, the ETP with only the student-conflict hard constraint, the 3D-SPP 

without a stability constraint and the 3D-SPP with a stability constraint. For the 3D-

SPP, this hyper-heuristic works on the extended best-fit strategy presented in 

Chapter 5. The hyper-heuristic can produce comparable results to those obtained 

using other approaches reported in the literature. Some of the results are even better 

than the best reported ones. We also present the probability distributions of the low-

level heuristics which are hybridised by EDA-HH in solving the investigated 

problems. These probability distributions naturally represent a technique to identify 

effective or ineffective heuristics during and after the search. This capability of our 

hyper-heuristic may help facilitate more intelligent hyper-heuristics in future 

research.  
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6.1 A Review on Estimation of Distribution Algorithms 

Evolutionary algorithms represent a class of population-based approaches which 

include two essential procedures: selecting high-quality solutions (parents) and 

applying variation operators to these solutions to obtain offspring with close 

characteristics to their parents. By repeatedly applying these procedures coupling 

with updating the population in each iteration, the solutions obtained from the 

evolutionary algorithms gradually evolve to have better fitness. One of the main 

requirements for success of an evolutionary algorithm is therefore to have an 

efficient variation operator that captures the features which distinguish high-quality 

solutions from the inferior ones. In many problem domains, the interaction between 

variables (genes) has a positive impact on the quality of solutions such as groups of 

variables being close together (building blocks) or linkage between variables. 

Despite being successful in many applications, traditional genetic operators 

(crossover and mutation) in genetic algorithms usually cause the disruption of the 

groups or linkage between variables having positive effects in solution fitness due to 

random nature. One of the directions to avoid these disruptions is to change the 

variation process.  

 

6.1.1 Introduction on EDAs 

Estimation of Distribution Algorithms (Baluja, 1994; Mühlenbein and Paaß, 1996; 

Larrañaga and Lozano, 2002; Pelikan et al., 2002) were proposed as an alternative 

for GAs within evolutionary algorithms. EDAs replace genetic operators with 

explicit modelling of gene distribution in promising individuals and sample new 

offspring from that distribution. EDAs have attracted increasing research interest 



136 
 

recently and been successfully applied to numerous problems including amino-acid 

alphabet reduction for protein structure prediction (Bacardit et al., 2007), economic 

dispatch (Chen and p. Chen, 2007), forest management (Ducheyne et al., 2004), 

portfolio management (Lipinski, 2007), environmental monitoring network design 

(Kollat et al., 2008), multi-objective knapsack (Shah and Reed, 2010). In all these 

publications, EDAs were shown to either achieve better performance or be capable 

of solving problems of the largest size compared to other techniques. We outline in 

Algorithm 6.1 the pseudo-code of a basic EDA. 

Algorithm 6.1 EDA pseudo-code 

t := 0; 

generate initial population P(0) 

evaluate P(0) 

while (not done) do 

 select a set of promising solutions I(t) from P(t) 

 build probabilistic model M(t) from I(t) 

 sample M(t) to generate new candidate solutions O(t) 

 evaluate O(t) 

 incorporate O(t) and P(t) into P(t + 1) 

 t := t + 1   

end while 

 

EDAs contain all basic procedures of an evolutionary algorithm. Starting from 

generating solutions for the initial population, EDAs then repeatedly select 

promising parent solutions (e.g. using truncation selection or tournament selection 

techniques) and sampling offspring candidate solutions based on the probability 

distribution of variables in the parent solutions obtained from a probabilistic model, 

until some stopping criteria is met (usually after a predefined number of iterations or 

when a solution of sufficient quality is found). The step of incorporating the 

offspring candidate solutions with the population solutions of the current iteration 

will select a certain number of solutions for the new population based on some 

criteria (e.g. fittest solutions). Many EDAs usually replace the whole population by 
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its offspring. As mentioned, the step that differentiates EDAs from other 

evolutionary algorithms is the construction of a probabilistic model and the process 

of sampling new candidate solutions based on the model.  

 

6.1.2 A Classification of EDAs 

EDAs can be categorised into three categories based on the solution representation of 

the problem, i.e. discreet variables, permutation and real-valued variables. Candidate 

solutions in EDAs are usually of fixed length. However, variables can either have a 

finite cardinality (discreet variables) or receive a real value that covers an infinite 

domain. Candidate solutions can also be represented by a permutation over a given 

set of elements, e.g. the travelling salesman problem and the quadratic assignment 

problem. This research concerns only EDAs for discreet variables. A brief survey on 

the other types of EDAs can be found in (Pelikan et al., 2002; Hauschild and 

Pelikan, 2011). For EDAs with discreet variables, EDAs can be divided into three 

groups: Univariate, Bivariate and Multivariate based on the level of interactions 

among variables. 

Univariate EDAs assume no interaction among variables. The joint probability 

distribution of a solution which will be used afterward in the sampling process is 

simply the product of univariate marginal probabilities of all variables in that 

solution. The algorithms in this category have simple model building and sampling 

procedures and can solve problems where variables are independent.  However, for 

problems with variable interactions, they tend to produce poor results. Different 

variants in this category include: Population-based Incremental Learning (PBIL) 
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(Baluja, 1994), Univariate Marginal Distribution Algorithm (UMDA) (Mühlenbein 

and Paaß, 1996) and Compact Genetic Algorithm (cGA) (Harik et al., 1997). 

For bivariate EDAs, pair-wise interactions among variables in the solutions are 

considered. Therefore, the probabilistic models of the algorithms in this category 

contain factors involving conditional probability of two interacting variables. New 

solutions are also sampled in a certain ordering of variables to address the 

conditional probabilities. These algorithms outperform univariate EDAs in problems 

with pair-wise variable interactions; however, they tend to fail when multiple 

interactions among variables exists in the problem. Mutual Information 

Maximisation for Input Clustering (MIMIC) (De Bonet et al., 1997), Combining 

Optimiser with Mutual Information Tree (COMIT) (Baluja and Davies, 1997) and 

Bivariate Marginal Distribution Algorithm (BMDA) (Pelikan and Mühlenbein, 

1999) all use bivariate models to estimate probability distribution. 

Multivariate EDAs use probabilistic models capable of capturing multivariate 

interactions between variables. However, constructing such models becomes 

particularly computational expensive with the increasing order of interactions. 

Searching through all possible models is usually infeasible. Algorithms using 

multivariate models of probability distribution include: Extended Compact Genetic 

Algorithm (ECGA) (Harik, 1999), Bayesian Network Algorithm (EBNA) 

(Etxeberria and Larrañaga, 1999), Factorised Distribution Algorithm (LFDA) 

(Mühlenbein and Mahnig, 1999), Bayesian Optimisation Algorithm (BOA), (Pelikan 

et al., 2000), Hierarchical Bayesian Optimisation Algorithm (hBOA) (Pelikan, 

2005), Markovianity-based Optimisation Algorithm (MOA) (Shakya and Santana, 

2008), Affinity Propagation EDA (AffEDA) (Santana et al., 2010). 
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The algorithms listed in this section tackle problems with a discreet variable 

representation. More general EDAs can obviously solve a broader class of problems. 

However, there is a trade-off that affects the choice of EDAs between the 

expressiveness of a probabilistic model and the computational complexity in the 

model building and the sampling processes. 

 

6.2 Motivations on an EDA-based Hyper-heuristic 

The focus of this chapter is on a constructive hyper-heuristic with the high-level 

search technique employing the idea of EDAs. It aims at selecting the most 

appropriate heuristics subject to problem solving situations. An objective of hyper-

heuristic research is that they should be methods of higher generality than most 

meta-heuristics, i.e. they should be applicable for different problems or different 

classes of a problem. A key issue in hyper-heuristic research is to explore to what 

extent hyper-heuristics can reach in terms of generality. This chapter addresses that 

issue and contributes by providing the experimental results of applying a 

constructive hyper-heuristic to solve four different problems, i.e. the ETP, the ETP 

with only the student-conflict hard constraint known as the graph colouring problem 

(GCP), the 3D-SPP-NS and the 3D-SPP-WS. 

Following the hyper-heuristic framework in Figure 2.1, the high-level search remains 

the same for the encountered problems while the sets of low-level heuristics and the 

evaluation functions (or fitness measurement for heuristic-choice solutions) are 

distinctively chosen.  
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Assuming that an individual is a sequence of genes, where each gene represents one 

low-level heuristic, the motivations of applying a high-level search mechanism based 

on EDAs are as follows. 

 First, sampling new individuals based on the estimation of gene distribution of 

promising individuals is equivalent to generating new individuals with added 

knowledge.  Thus, results are very likely to outperform an arbitrarily random 

sampling process. The comparison with solutions obtained from random 

selections of low-level heuristics has been widely used to justify many hyper-

heuristic approaches.  

 Second, as a constructive hyper-heuristic, the solution on the high-level search is 

represented by a number of heuristics being applied consecutively. By using an 

EDA as the high-level search technique, we can put the focus on exploring the 

building block of high-quality heuristic-choice solutions. In this case, a building 

block is understood to be a group of low-level heuristics close together within a 

particular stage in the solution construction. Obtaining probability distributions of 

heuristics in these building blocks supports the generation of new individuals with 

similar characteristics. 

 Third, the estimation of gene distribution naturally provides insights into the 

importance of genes during the evolutionary process. This helps not only analyse 

the effectiveness of low-level heuristics, but it also enables the design of more 

intelligent search mechanisms in future work that control the search 

intensification and diversification based on the removal and addition of low-level 

heuristics. 
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 Last but not least, to the best of our knowledge, this is the first attempt in 

applying an EDA as the high-level search technique within a hyper-heuristic 

context. 

Note that the following terms are used interchangeably within the context of our 

EDA-HH approach. An individual is equivalent to a sequence or a heuristic-choice 

solution. A gene is equivalent to a low-level heuristic. 

 

6.3 Heuristic-Choice Solution Representation, Fitness Measure, and 

Construction Stages 

The hyper-heuristic approach in this research follows many other approaches in the 

literature where a heuristic-choice solution is represented by a sequence of low-level 

heuristics. Each element in a sequence can be a single low-level heuristic or a 

number of low-level heuristics depending on the employed solution construction. For 

example, in the exam timetabling problem, the constructive decisions at each step 

concern the selection of one exam and the selection of one timeslot, i.e. one step 

requires a pair of low-level heuristics to select an exam and to select the timeslot for 

that exam. However, in the problems encountered in this chapter, we focus on 

investigating sequences in which each element represents only a single low-level 

heuristic for one type of constructive decision (see Table 6.1). If each step needs 

more than one constructive decision, the rest will be suggested by fixed strategies. 

Problem Investigating heuristics 

ETP Heuristics to select an exam 

GCP Heuristics to select a vertex 

3D-SPP-NS 
Heuristics to select a box, i.e. a compound heuristic (A gap-filling heuristic 

and a tie-breaking heuristic) 
3D-SPP-WS 

Table 6.1 Heuristic types for the encountering problems 
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After all pairs of low-level heuristics in a sequence are consecutively applied, we 

obtain a solution. In this research, the fitness of a heuristic-choice solution in the 

high-level search is simply set as the evaluation of the solution obtained in the low 

level. The evaluation of the solutions in the low level will be provided for each 

problem.  

For the ETP and GCP, the length of a sequence is equal to the number of exams and 

vertices, respectively. We divide a sequence into a number of stages Nstage where 

each stage consists of a fixed number of elements Lblock (with the exception of the 

last stage). For the 3D-SPP-NS and 3D-SPP-WS, the length of a sequence varies as 

each low-level heuristic may assign either one box or a number of boxes (an 

assembled box) to a gap. Despite this varying length, each heuristic will be 

associated with one packing stage as follows. For each problem instance, an 

approximate container’s length is divided into Nstage intervals of equal length. The 

approximate container’s length is set as the minimum container’s length obtained 

from a number of randomly generated solutions in an initialisation procedure in our 

hyper-heuristic. A box belongs to stage i if its origin is placed within the i
th

 interval. 

If a solution has some boxes placed beyond the approximate container’s length, these 

boxes will belong to the last stage. As the extended 3BF repeatedly fills the deepest 

gaps, boxes will be packed in a consecutive order of stages (i.e. 1, 2, 3, ..., Nstage).  

 

6.4 The High-level Search Technique 

A high-level search technique based on EDAs will evolve the probability distribution 

towards those that are likely to sample fitter heuristic-choice solutions to 

subsequently produce high-quality packing. This technique employs a probabilistic 
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model based on univariate EDAs, i.e. it assumes no dependency among variables. 

However, we consider each variable here as a construction stage of the problems 

instead of a single step of using a low-level heuristic to assign one exam or 

accommodate one box. The rationale behind the use of construction stage is due to 

an assumption that particularly differentiated decisions from genes in steps close 

together should be avoided. As a stochastic approach, the EDA high-level search 

technique will not rapidly reduce the variation of heuristic choices within a stage 

while it can enforce the assumption. Considering each variable as a construction 

stage also solves the problem of sequences with different lengths in the 3D-SPP due 

to the use of assembled boxes. 

A univariate EDA is employed instead of more advanced models due to its 

simplicity in implementation. This is also because of the uncertainty in the 

dependency between low-level heuristics in different stages. Nevertheless, an 

investigation on more complex EDAs represents one direction in our future work. 

The hyper-heuristic keeps track of a two-dimensional probability matrix pij, 0 ≤ i < 

Nstage; 0 ≤ j < H, where H represents the number of choices of low-level heuristics 

that can be assigned to an element of a sequence. The description of the high-level 

search technique consists of the steps outlined in Algorithm 6.1. 

The calculation of pij uses the Laplace correction (additions of 1 and H on the 

numerator and denominator, respectively) to avoid situations where a low-level 

heuristic will disappear permanently after a particular generation. The stopping 

criterion here is to simply limit the running time or the number of generations. The 

fittest sequence obtained during this evolutionary process will represent the best-

found packing solution. For the 3D-SPP-NS and the 3D-SPP-WS problems, the 
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approximate container length discussed in Section 6.3 is obtained after step 1 in 

Algorithm 6.1. 

Algorithm 6.1. The High-Level Search Technique  

1. Set the generation index t = 0, generate a population Dt with N random 

sequences. 

2. Evaluate the population. 

3. Select Nselect ≤ N sequences from Dt using tournament selection with size S. 

4. In generation t, the probability of the j
th
 low-level heuristic appeared in the i

th
 

construction stage of the selected sequences from step 2 is estimated as: 
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where )( jX ik   represents the number of times the j
th
 low-level heuristic 

appeared in the i
th
 construction stage of the k

th
 selected sequence. ikC  represents 

the number of low-level heuristics needed for the i
th
 construction stage of the 

k
th
 selected sequence. 

5. Generate the next generation Dt+1 by sampling off-springs in which the 

probability of genes in the i
th
 construction stage receive value j is pij. Set t = 

t+1. 

6. If stopping criterion is not satisfied, go to step 2. Otherwise, stop the process 

and output the best solution. 

  

The aim of this hyper-heuristic is not to solve a specific problem. By online 

learning on only the probability of low-level heuristics previously used at different 

stages of solution construction, the high-level search relies only on non-domain-

specific information, and thus can be generalised on different problems.  

 

6.5 Performance of the EDA-HH 

We demonstrate in this section the generality of our EDA-HH by applying it to 

four different problems. The settings in EDA-HH for each problem include only a 
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set of low-level heuristics and a fitness measurement for sequences. The algorithm 

was implemented in Java using JDK 1.6 and experiments were conducted on a PC 

Pentium IV 3.4GHz with 2GB memory. 

 

6.5.1 EDA-HH for Exam Timetabling and Graph Colouring 

The EDA-HH approach is tested on the 13 Toronto benchmark instances (see 

Section 2.1.6) in both the exam timetabling and the graph colouring context. 

Low-level Heuristics 

The set of low-level heuristics includes five constructive heuristics listed in Table 

6.2. 

Low-level 

heuristic 

Description 

H1 Largest Degree (LD) - Exam in conflict with the largest number of exams is 

considered to be more likely to cause conflict if deferred until later. 

H2 Largest Weighted Degree (LWD) - Exam with the maximum total number of 

students in conflict are more likely to cause high penalty. 

H3 Saturation Degree (SD) - Exam with the least number of valid timeslots should be 

scheduled earlier since it may not have any timeslots available at a later stage. 

H4 Largest Enrolment (LE) - Exam with largest enrolment should be selected first 

since its high number of students may cause high penalty if scheduled at a later 

time. 

H5 Largest Coloured Degree (LCD) - Exam with the largest number of conflicts with 

those already scheduled would be difficult to schedule since it would have less 

choice of valid timeslots. 

Table 6.2 Exam-selection low-level heuristics 

In Chapter 3, we propose new heuristics sharing the same idea of traditional graph 

colouring heuristics, e.g. max-bad-colours and max-bad-intersect-edges. However, in 

this chapter, we only target heuristics which is fast instead of those that require a 

certain number of trials to find a good parameter settings (i.e. bad proximity colour 

parameter pc or bad intersect edge parameter ie). 
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Apart from those in Table 6.2, we also include H12, H13, H22, H23, H32, H33, H42, 

H43, H52, H53 into the set of low-level heuristics. H12, H13 use the same ordering 

strategy as H1, but take the second and the third vertex, respectively in the ordering 

list instead of the first one. The additions are the same for H2, H3, H4 and H5. A 

larger set of low-level heuristics provides a larger search space of heuristic 

combinations and improves the decision diversity. 

For the exam timetabling problem, the set of low-level heuristics consists of all 15 

exam-selection heuristics. For the graph colouring problem, the set includes only 9 

heuristics (H1, H12, H13, H3, H32, H33, H5, H52, H53). Those using the ordering 

strategies of H2 and H4 are excluded as there is no penalty from the soft constraint in 

the graph colouring problem. 

Fitness Measurement 

For the exam timetabling problem with the student-conflict hard constraint and the 

exam-spread soft constraint, the strategy to choose a timeslot for a selected exam 

prefers a timeslot that causes no conflict and the least penalty. If there are ties, the 

tie-breaking strategy will choose the one that reduces the least number of valid 

timeslots for those unassigned neighbours of the considered exam. The evaluation of 

a feasible timetable in the Toronto dataset is given in Section 2.1. If a feasible 

timetable cannot be found (i.e. the timeslot assignment for a selected exam causes 

conflict at some point during solution construction), the fitness for that heuristic-

choice solution s will be calculated as )()( iLMsf  , where M is a big-enough 

value, i.e. greater than any possible evaluation of a feasible solution; L is the length 

of the sequence while i represents the first position in the sequence where 

infeasibility occurs.  
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For the graph colouring problem (i.e. the exam timetabling problem with only the 

student-conflict hard constraint), the evaluation can be simply the number of 

timeslots to obtain a feasible solution. When an exam is selected, we identify the 

minimum number of remaining valid timeslots for its neighbours, 

minNeighbourValidTimeslot. The timeslot-selection strategy will select the one with 

the highest minNeighbourValidTimeslot. The tie-breaker in this case is the same as 

the one for the exam timetabling problem described above. If there is no valid 

timeslot for an exam, the total number of timeslots is increased by one. However, 

experimental observations show that a significant number of sequences produce the 

same fitness, i.e. timetables using the same number of timeslots. Using the above 

evaluation function provides little distinction on the quality of solutions. Therefore, 

we employ here the evaluation function for graph colouring proposed by (Culberson, 

1992). It concerns not only the number of colours, k, but also the colouring sum in a 

given colouring π: 

 


Vv
vkVf )()(    

where V is the set of all vertices and π(ν) is the colour assigned to vertex ν. This 

evaluation function prefers solutions having bigger size colour classes, thus it 

reduces smaller size colour classes and the overall number of colours used. A colour 

class is understood to be a set of all vertices with the same colour. 

Experimental Setup 

The parameters for the high-level search were set to be the same for both testing 

problems. Some parameter values (including population size, number of generations, 

tournament size, and number of heuristics in a stage) were selected empirically by 
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performing several trial runs. We then carry out extensive experiments on six sets of 

parameters presented in Table 6.3. 

Parameters EDA-HH- 

TOUR6 

EDA-HH-

TOUR9 

EDA-HH-

TOUR12 

Population N – No. of Generations G (100 – 20000), (1000 – 2000) 

Selection amount Nselect 20% of N 

Tournament size S 6% of N 9% of N 12% of N 

Number of heuristics in a stage Lblock 10 

Maximum running time 24 hours. 

Table 6.3 High-level search parameter values 

Results on the Exam Timetabling Problem 

For each instance, EDA-HH is executed 10 times. In all runs using any set of 

parameters, the hyper-heuristic could find feasible solutions. Table 6.4 shows the 

best and average soft constraint penalty cost with the average running time of each 

setting on the Toronto uncapacitated exam timetabling instances. 

Table 6.4 shows a clear preference to use a larger population size in EDA-HH (i.e. 

N=1000). In EDA-HH (1000-2000), the tournament selection TOUR9 could find a 

greater number of best results than both the tournament selections TOUR6 and 

TOUR12.  

We also compare our hyper-heuristic with other hyper-heuristics tested on the same 

benchmark dataset in the literature. The main objective of a hyper-heuristic 

algorithm is to raise the level of generality over all instances rather than finding the 

best solution for some instances. Thus, we evaluate all hyper-heuristic approaches by 

calculating their average percentage differences to the best results reported in the 

literature. The algorithms producing the best results for the 13 exam timetabling 

problem instances are listed in Table 6.5 and the descriptions of the algorithms can 

be found in Chapter 2.1. 
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Table 6.6 presents the soft constraint penalty costs for the EDA-HH and other hyper-

heuristic approaches. As described in Section 2.1.5, these constructive hyper-

heuristic approaches work on the search space of heuristics. They either search for 

good sequences of low-level heuristics and apply them sequentially, or select good 

combinations of ordering criteria to measure the difficulty of unassigned exams. 

Table 6.7 shows the average percentage differences of the hyper-heuristic 

approaches to the best results reported in the literature. The approaches in Tables 6.6 

and 6.7 include: 

(1) The tabu-search developed by Burke et al. (2007) 

(2) The variable neighbourhood search with two neighbourhoods (Qu and Burke, 2005)  

(3) The automated heuristic construction using heuristic hybridisation (Qu et al., 2009a)  

(4) Four different high-level search techniques based on local search (Qu and Burke, 2009)  

(5) The fuzzy logic system on a pair of ordering criteria by Asmuni et al. (2005)  

(6) The fuzzy logic system with tuning (Asmuni et al., 2009) 

(7) The extended fuzzy logic system on three ordering criteria (Asmuni et al., 2007)  

(8) The evolutionary algorithm on variable-length sequences (Pillay and Banzhaf, 2007)  

(9) The approach that combines heuristics as tie-breakers (Pillay and Banzhaf, 2009)  

(10) The genetic programming to evolve functions to order exams (Pillay, 2009)  

(11) The linear combination approach in Chapter 4. 

From Tables 6.6 and 6.7, the EDA-HH has produced promising results over all 

instances compared to the best results reported in the literature for each of the 

problems. It also demonstrates high generality over all instances compared to other 

hyper-heuristic approaches. We obtained the lowest average percentage differences 

to the best results cited in the literature. 

Results on the Graph Colouring Problem 

For each Toronto benchmark instance, EDA-HH is executed 10 times. Table 6.8 

shows the best and average number of required colours with the average running 

time for each setting on the Toronto instances. We also compare our EDA-HH with 

the results obtained by using a hyper-heuristic that randomly selects heuristics (RS-

HH).  
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Table 6.4 Experimental results on the Toronto exam timetabling benchmark. Bold values represent the best results obtained from our EDA-HH 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Instance EDA-HH 

(100-20000) 

EDA-HH 

(1000-2000) 

Approx. 

Average 

Running  

Time (hours) 
TOUR6 TOUR9 TOUR12 TOUR6 TOUR9 TOUR12 

Best Avg. Best Avg. Best Avg. Best Avg. Best Avg. Best Avg. 

car91 I 5.13 5.17 5.14 5.17 5.13 5.16 4.98 5.00 4.95 4.99 4.96 5.00 10.05 

car92 I 4.36 4.38 4.33 4.36 4.29 4.33 4.12 4.16 4.16 4.17 4.09 4.16 6 

ear83 I 36.41 36.65 35.93 36.37 35.91 36.30 35.11 35.59 34.99 35.38 34.97 35.56 1.03 

hec92 I 11.59 11.79 11.75 11.85 11.73 11.85 11.25 11.34 11.11 11.32 11.25 11.37 0.33 

kfu93 I 14.93 15.25 14.81 15.12 14.75 15.11 14.09 14.49 14.19 14.50 14.15 14.32 1.93 

lse91 10.97 11.12 10.91 11.05 10.89 11.06 10.77 10.89 10.77 10.90 10.71 10.87 1.64 

pur93 4.77 4.78 4.76 4.77 4.76 4.78 4.71 4.73 4.71 4.74 4.72 4.73 24 

rye92 9.86 10.03 9.87 10.03 9.9 10.02 9.23 9.31 9.2 9.33 9.25 9.32 2.95 

sta83 I 157.64 157.95 157.82 157.96 157.81 157.97 157.75 157.92 157.81 157.92 157.76 157.91 0.58 

tre92 8.5 8.56 8.49 8.53 8.51 8.54 8.28 8.31 8.27 8.34 8.29 8.33 1.91 

uta92 I 3.43 3.45 3.43 3.45 3.43 3.44 3.35 3.37 3.33 3.36 3.34 3.36 8.27 

ute92 26.77 27.06 26.91 27.19 27.05 27.21 26.18 26.79 26.68 26.85 26.68 26.82 0.61 

yor83 I 40.23 41.11 40.45 41.26 40.81 41.26 38.25 38.79 37.88 38.58 38.31 38.91 1.02 
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Instance Caramia et al. 

(2001) 

Yang and 

Petrovic (2005) 

Burke and Bykov 

(2008) 

car91 I 6.6 4.5 4.58 

car92 I 6.0 3.93 3.81 

ear83 I 29.3 33.7 32.65 

hec92 I 9.2 10.83 10.06 

kfu93 I 13.8 13.82 12.81 

lse91 9.6 10.35 9.86 

pur93 3.7 - 4.32 

rye92 6.8 8.53 7.93 

sta83 I 158.2 158.35 157.03 

tre92 9.4 7.92 7.72 

uta92 I 3.5 3.14 3.16 

ute92 24.4 25.39 24.79 

yor83 I 36.2 36.35 34.78 

Table 6.5 Best results reported in the literature on the Toronto exam timetabling benchmark. Bold font indicates best results. ‘-’ represents the corresponding instance is not 

tested by the method 
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Instance Best 

reported 

EDA-

HH 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

car91 I 4.5 4.95 5.36 5.4 5.11 5.3 5.29 5.29 5.19 - 4.97 - 5.03 

car92 I 3.81 4.09 4.53 4.7 4.32 4.7 4.56 4.54 4.32 - 4.28 - 4.22 

ear83 I 29.3 34.97 37.92 37.29 35.56 35.54 37.02 37.02 36.16 36.74 36.86 37.39 36.06 

hec92 I 9.2 11.11 12.25 12.23 11.62 12.23 11.78 11.78 11.6 11.55 11.85 11.43 11.71 

kfu93 I 12.81 14.09 15.2 15.11 15.18 15.09 15.81 15.8 15.03 14.22 14.62 - 16.02 

lse91 9.6 10.71 11.33 12.71 11.32 12.71 12.09 12.09 11.35 10.90 11.14 - 11.15 

pur93 3.7 4.71 - - - - - - - - 4.73 - - 

rye92 6.8 9.2 - - - - 10.35 10.38 9.75 9.35 9.65 - 9.42 

sta83 I 157.03 157.64 158.19 158.8 158.88 159.2 160.42 160.42 158.64 158.22 158.33 158.38 158.86 

tre92 7.72 8.27 8.75 8.67 8.52 8.67 8.67 8.67 8.47 8.48 8.48 - 8.37 

uta92 I 3.14 3.33 3.88 3.54 3.21 3.32 3.57 3.57 3.52 - 3.4 - 3.37 

ute92 24.44 26.18 28.01 29.68 28.0 30.32 27.78 28.07 27.55 26.65 28.88 27.31 27.99 

yor83 I 34.78 37.88 41.37 43 40.71 40.24 40.66 39.80 39.25 41.57 40.74 39.96 39.53 

Table 6.6 Soft constraint penalty costs for hyper-heuristic approaches on the Toronto exam timetabling benchmark. Bold font indicates best results from hyper-heuristic 

approaches. ‘-’ represents the corresponding instance is not tested by the method 
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Instance EDA-

HH 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

car91 I 10.00 19.11 20.00 13.56 17.78 17.56 17.56 15.33 - 10.44 - 11.78 

car92 I 7.35 18.90 23.36 13.39 23.36 19.69 19.16 13.39 - 12.34 - 10.76 

ear83 I 19.35 29.42 27.27 21.37 21.30 26.35 26.35 23.41 25.39 25.80 27.61 23.07 

hec92 I 20.76 33.15 32.93 26.30 32.93 28.04 28.04 26.09 25.54 28.80 24.24 27.28 

kfu93 I 9.99 18.66 17.95 18.50 17.80 23.42 23.34 17.33 11.01 14.13 - 25.06 

lse91 11.56 18.02 32.40 17.92 32.40 25.94 25.94 18.23 13.54 16.04 - 16.15 

pur93 27.30 - - - - - - - - 27.84 - - 

rye92 35.29 - - - - 52.21 52.65 43.38 37.50 41.91 - 38.53 

sta83 I 0.39 0.74 1.13 1.18 1.38 2.16 2.16 1.03 0.76 0.83 0.86 1.17 

tre92 7.12 13.34 12.31 10.36 12.31 12.31 12.31 9.72 9.84 9.84 - 8.42 

uta92 I 6.05 23.57 12.74 2.23 5.73 13.69 13.69 12.10 - 8.28 - 7.32 

ute92 7.12 14.61 21.44 14.57 24.06 13.67 14.85 12.73 9.04 18.17 11.74 14.53 

yor83 I 8.91 18.95 23.63 17.05 15.70 16.91 14.43 12.85 19.52 17.14 14.89 13.66 

Average 13.17 18.95 20.47 14.22 18.61 20.99 20.87 17.13 16.91 17.81 15.87 16.48 

Table 6.7 Percentage differences between hyper-heuristic approaches and the best reported results in the literature on the Toronto exam timetabling benchmark. ‘-’ represents 

the corresponding instance is not tested by the method 
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Instance EDA-HH 

(100-20000) 

EDA-HH 

(1000-2000) 

Approx. 

Average  

Running  

Time (hours)  

RS-HH  

(2*10
6
  

evaluations with 

time limit = 24hrs) 

Max  

Clique  

(Battiti, 2001) TOUR6 TOUR9 TOUR12 TOUR6 TOUR9 TOUR12 

Best Avg. Best Avg. Best Avg. Best Avg. Best Avg. Best Avg. 

car91 I 29 29 29 29 29 29 28 28 28 28 28 28 12.31 29 23 

car92 I 27 27.5 27 27.2 27 27.2 27 27 27 27 27 27 7.59 28 24 

ear83 I 22 22 22 22 22 22 22 22 22 22 22 22 1.15 22 21 

hec92 I 17 17 17 17 17 17 17 17 17 17 17 17 0.25 17 17 

kfu93 I 19 19 19 19 19 19 19 19 19 19 19 19 4.45 19 19 

lse91 17 17 17 17 17 17 17 17 17 17 17 17 3.09 17 17 

pur93 32 32 32 32 32 32 32 32 32 32 32 32 24 33 29 

rye92 21 21 21 21 21 21 21 21 21 21 21 21 5.38 21 21 

sta83 I 13 13 13 13 13 13 13 13 13 13 13 13 0.51 13 13 

tre92 20 20 20 20 20 20 20 20 20 20 20 20 1.86 20 20 

uta92 I 29 29.2 29 29.3 29 29.1 29 29 29 29 29 29.1 10.08 30 26 

ute92 10 10 10 10 10 10 10 10 10 10 10 10 0.77 10 10 

yor83 I 18 18 18 18 18 18 18 18 18 18 18 18 1.13 19 18 

Table 6.8 Experimental results on the Toronto graph colouring benchmark. Underline instances represent easy instances; bold instances represent hard instances. Bold values 

represent the best results obtained by our EDA-HH 
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It is well known that the size of the maximum clique of a graph can be used as the 

lower bound to find the chromatic number of that graph. A clique in a graph is a 

subset of vertices where every two vertices are connected. The maximum clique 

found by a reactive local search technique on this benchmark (Battiti and Protasi, 

2001) is also listed in Table 6.8 for comparison purposes. 

For eight instances underlined in the ‘Instance’ column in Table 6.8, the optimal 

colourings can be found after generating only a few sequences. Although the best 

found result for ear83 I is greater than the maximum clique, we carry out a complete 

search on the solution search space and know that it is the optimal colouring. For the 

remaining five hard instances, we observe the same superiority of evolving 

sequences on a larger population as for the exam timetabling problem. Moreover, 

EDA-HH is always at least as good as the hyper-heuristic that randomly selects 

heuristics. This demonstrates the effectiveness of the learning process from the 

estimation of distribution algorithm in the high-level search. 

Instance EDA-

HH 

(1) (2) (3) 

car91 I 28 28 28 30 

car92 I 27 28 28 29 

ear83 I 22 22 22 22 

hec92 I 17 17 17 17 

kfu93 I 19 19 19 19 

lse91 17 17 17 17 

pur93 32 35 36 - 

rye92 21 21 21 - 

sta83 I 13 13 13 13 

tre92 20 20 20 20 

uta92 I 29 32 30 31 

ute92 10 10 10 10 

yor83 I 18 19 19 19 

Table 6.9 The minimum number of colours found by constructive approaches on the Toronto graph 

colouring benchmark. Bold values indicate new best solutions while optimal results are underlined. ‘-’ 

represents the corresponding instance is not tested by the method 

Table 6.9 shows the EDA-HH performance in comparison with other constructive 

approaches in the literature including: 



 

156 
 

(1) The constructive approach by Carter et al. (1996) 

(2) The sequential construction method by Caramia et al. (2001) 

(3) The automated heuristic construction using heuristic hybridisation (Qu et al., 2009a) 

EDA-HH obtained better results than the best reported results in the literature in four 

hard instances (i.e. car92 I, pur93, uta92 I, and yor83 I). 

 

6.5.2 EDA-HH for the 3D-Strip Packing 

We also show the generality of our hyper-heuristic by evaluating it on the 3D strip 

packing domain. EDA-HH was tested on the SP-BR and SP-BR-XL datasets 

introduced by (Bischoff and Ratcliff, 1995) (see Section 2.2.4) for both the 3D-SPP-

NS and the 3D-SPP-WS. 

Low-level Heuristics 

A low-level heuristic for the 3D-SPP is represented by a box-placement strategy 

which combines one or more gap-filling heuristics (see Table 5.1) as the main 

selection mechanism with one tie-breaking heuristic (see Table 5.2) to shorten the 

list of qualified boxes. Such combinations are denoted as: 

[Gap-filling heuristic] [Tie-breaking heuristic]. 

For the 3D-SPP-NS, the set of low-level heuristics includes the following 

combinations: 

H1NS - [GF1P] [TB1] 

H2NS - [GF1P] [TB2] 

H3NS - [GF1P] [TB4] 

H4NS - [GF1P] [TB5] 

H5NS - [GF1P] [TB6] 

H6NS - [GF1P] [TB7] 
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For the 3D-SPP-WS, the set of low-level heuristics includes: 

H1S - [GF1P + GF2P + GF3P] [TB1] 

H2S - [GF1P + GF2P + GF3P] [TB2] 

H3S - [GF1P + GF2P + GF3P] [TB3] 

H4S - [GF1P + GF2P + GF3P] [TB5] 

H5S - [GF1P + GF2P + GF3P] [TB6] 

H6S - [GF1P + GF2P + GF3P] [TB8] 

Note that a compound gap-filling heuristic [GF1P + GF2P + GF3P], used in the 3D-

SPP-WS, will consider all boxes that satisfy at least one criteria of GF1P, GF2P, or 

GF3P. 

Fitness Measurement 

Instead of measuring the required length for the container, we use the volume 

utilisation function (see Equation 2.1) as the fitness evaluation for the heuristic 

solutions.  

Experimental Setup 

The parameters were set to be the same for both the 3D-SPP-NS and the 3D-SPP-

WS. Some parameter values (including population size, selection amount, 

tournament size, grid, and number of stages) were selected empirically by 

performing several trial runs. We then carry out extensive experiments on the two 

sets of parameters presented in Table 6.10.  

Parameters Set 1 Set 2 

Population size N 20 400 

Stopping criteria 160 seconds 50 generations 

Selection amount Nselect 40% of N 

Tournament size S 30% of N 

Number of stages Nstage 5 

Grid (see an example in Appendix B) 5×5 

Table 6.10 Parameter settings 

The settings of the parameter P (defined in Section 5.2.2) for the gap-filling 

heuristics GF1P, GF2P, and GF3P are consistent with those set in Section 5.3.1.  
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Results on the 3D Strip Packing Problems  

For each test case, the result is for the first 10 instances (similar to comparison 

approaches). We report the mean volume utilisations obtained by our approaches 

from 3 different runs (MVU). The standard deviations (StDev) are also presented.  

EDA-HH is experimented on the parameter set 1 to compare with the 3BF+TS 

(Allen et al., 2011) and the SPBBL-CC (Bortfeldt and Mack, 2007). The results in 

Tables 6.11 and 6.12 demonstrate clear improvements on most of the test cases, i.e. 

increases of 1.9% and 1.2% from the best reported average volume utilisations for 

SP-BR and SP-BR-XL datasets, respectively.  

Test case 3BF+TS  SPBBL-CC4  EDA-HH 

VU(%)  VU(%)  MVU(%) StDev(%) 

SP-BR01 90.0  87.3  91.5 0.11 

SP-BR02 89.6  88.6  91.4 0.15 

SP-BR03 89.0  89.4  91.1 0.17 

SP-BR04 88.8  90.1  91.3 0.14 

SP-BR05 88.5  89.3  90.9 0.05 

SP-BR06 88.6  89.7  90.8 0.08 

SP-BR07 88.7  89.2  90.6 0.17 

SP-BR08 88.3  87.9  89.6 0.10 

SP-BR09 87.9  87.3  89.6 0.11 

SP-BR10 87.9  87.6  89.3 0.14 

Average 88.7  88.6  90.6  

Table 6.11 Results of EDA-HH on the SP-BR dataset for the 3D-SPP-NS using the parameter set 1 

(i.e. running time limit is 160 seconds) 

 

Test case 3BF+TS  SPBBL-CC4  EDA-HH 

VU(%)  VU(%)  MVU(%) StDev(%) 

SP-BR01-XL 92.4  86.9  91.9 0.14 

SP-BR02-XL 92.4  88.3  91.8 0.15 

SP-BR03-XL 91.9  89.8  93.0 0.08 

SP-BR04-XL 92.1  90.2  92.8 0.14 

SP-BR05-XL 92.5  89.9  94.1 0.07 

SP-BR06-XL 92.6  91.5  94.0 0.06 

SP-BR07-XL 92.6  91.0  94.1 0.11 

SP-BR08-XL 92.8  90.8  94.6 0.11 

SP-BR09-XL 92.3  90.9  94.9 0.06 

SP-BR10-XL 92.7  90.4  94.6 0.06 

Average 92.4  90.0  93.6  

Table 6.12 Results of EDA-HH on the SP-BR-XL dataset for the 3D-SPP-NS using the parameter set 

1 (i.e. running time limit is 160 seconds) 
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Test case 3BF+TS  SPBBL-CC4  EDA-HH 

VU(%)  VU(%)  MVU(%) StDev(%) 

SP-BR01 90.0  87.3  93.1 0.14 

SP-BR02 89.6  88.6  93.2 0.08 

SP-BR03 89.0  89.4  93.5 0.06 

SP-BR04 88.8  90.1  93.5 0.06 

SP-BR05 88.5  89.3  92.9 0.08 

SP-BR06 88.6  89.7  92.8 0.07 

SP-BR07 88.7  89.2  92.3 0.02 

SP-BR08 88.3  87.9  91.9 0.06 

SP-BR09 87.9  87.3  91.3 0.06 

SP-BR10 87.9  87.6  91.4 0.02 

Average 88.7  88.6  92.6  

Table 6.13 Results of EDA-HH on the SP-BR dataset for the 3D-SPP-NS using the parameter set 2 

 

In order to understand further the capability of our approach, we allow the EDA-HH 

to run for a longer time, i.e. using the parameter set 2. Running times vary from 

approximately 2 hours for each instance in the SP-BR01 to approximately 5 hours 

for each instance in the SP-BR10. Apparently, the volume utilisations obtained on 

the SP-BR dataset for the 3D-SPP-NS are significantly improved as shown in Table 

6.13. The aim here is, however, not to compare with the results obtained from other 

approaches but only to demonstrate the capability of our hyper-heuristic if the 

running time is not restricted. 

We also show the generality of our hyper-heuristic by carrying out a similar 

experiment on the SP-BR dataset for the 3D-SPP-WS. Table 6.14 presents our 

results with the best results obtained from two different approaches TSACC-4P and 

GACC-4P in (Bortfeldt and Gehring, 1999). The hyper-heuristic can generate better 

volume utilisations in six test cases. Overall, the average volume utilisation of all 10 

test cases is better than both approaches, i.e. an increase of 1.3% from TSACC-4P. 

The results shown in Tables 6.13 and 6.14 also demonstrate that given enough 

running time, our hyper-heuristic can solve both variants of the 3D-SPP to a 

competitive level. 
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Test case TSACC-4P  GACC-4P  EDA-HH 

VU(%)  VU(%)  MVU(%) StDev(%) 

SP-BR01 92.3  86.2  90.4 0.11 

SP-BR02 93.5  84.3  91.2 0.15 

SP-BR03 92.3  88.6  91.3 0.01 

SP-BR04 90.8  89.0  90.4 0.13 

SP-BR05 89.9  88.5  90.0 0.05 

SP-BR06 89.2  88.1  90.2 0.29 

SP-BR07 87.1  88.7  88.9 0.08 

SP-BR08 83.9  87.8  87.9 0.11 

SP-BR09 80.9  84.3  86.8 0.05 

SP-BR10 79.1  82.1  84.9 0.03 

Average 87.9  86.8  89.2  

Table 6.14 Results of EDA-HH on the SP-BR dataset for the 3D-SPP-WS using the parameter set 2 

 

The Importance of Improvement Techniques 

Experiments before this point always use the improvement techniques (i.e. box 

assembly, box position adjustment and tower processing). We demonstrate the 

importance of having these techniques in constructing packing solutions in Table 

6.15. The columns show results of the following settings: 

(1) EDA-HH without using any improvement techniques. 

(2) EDA-HH with assembled boxes. 

(3) EDA-HH with assembled boxes and box position adjustment. 

(4) EDA-HH with all three improvement techniques. 

Test case (1)  (2)  (3)  (4) 

MVU StDev MVU StDev MVU StDev MVU StDev 

SP-BR01 85.9 0.26  90.2 0.14  91.1 0.16  91.5 0.11 

SP-BR02 86.5 0.12  89.9 0.15  91.0 0.18  91.4 0.15 

SP-BR03 84.8 0.15  89.6 0.09  90.8 0.14  91.1 0.17 

SP-BR04 85.6 0.17  89.6 0.14  90.4 0.09  91.3 0.14 

SP-BR05 85.2 0.22  89.6 0.16  90.6 0.12  90.9 0.05 

SP-BR06 84.8 0.12  89.8 0.18  90.1 0.11  90.8 0.08 

SP-BR07 85.9 0.18  88.8 0.13  89.7 0.14  90.6 0.17 

SP-BR08 85.0 0.13  88.2 0.11  89.3 0.09  89.6 0.10 

SP-BR09 84.7 0.15  87.9 0.14  88.8 0.14  89.6 0.11 

SP-BR10 85.3 0.21  87.1 0.17  88.5 0.16  89.3 0.14 

Average 85.4   89.1   90.0   90.6  

Table 6.15 Results of EDA-HH using different sets of improvement techniques. Experiments are 

carried out using the parameter set 1 on the SP-BR dataset for the 3D-SPP-NS. The unit for volume 

utilisations and standard deviations is percent. 
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6.6 The Learning Capability of the EDA-HH 

We present in this section the probability distributions of low-level heuristics. The 

observations show that certain low-level heuristics are often better than others on 

providing appropriate decisions in particular problem solving situations during the 

search. We also suggest a future hyper-heuristic research direction based on this 

capability of identifying the effective and ineffective heuristics. 

 

6.6.1 Probability Distribution Observations on Exam Timetabling 

Figure 6.1 shows the plots of the probability distribution of low-level heuristics from 

the run obtaining the best results of four sample instances: hec92 I, sta83 I, ute92 

and yor83 I. The probability of a heuristic (e.g. Saturation Degree – H1) is 

represented by the sum probability of its related heuristics (i.e. H12, H13). This 

probability distribution is recorded after the last generation of the evolutionary 

process. The probability at each stage on a curve represents the average probability 

of its last five stages. The remark we can make here is that saturation degree is an 

effective heuristic for the exam timetabling problem over a large period of solution 

construction; however, it is rarely used in the early stage. For instance sta83 I, the 

saturation degree is not particularly stronger than other low-level heuristics. 

 

6.6.2 Probability Distribution Observations on Graph Colouring 

Figure 6.2 presents the probability distribution of low-level heuristics from the run 

obtaining the best results of four hard instances: car91 I, car92 I, uta92 I and yor83 

I. This probability distribution is recorded similarly as for the exam timetabling 
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problem. The charts support the argument that different heuristics are suitable for 

different stages of the colouring process. Saturation degree has been shown to be 

among the most preferred exam-selection heuristics for the graph colouring variant.  

However, applying saturation degree at the beginning of the colouring process is 

likely to produce a significant number of ties. Largest degree is most likely to be 

chosen at the very beginning of a colouring. Note that this observation applies to 

all other instances of the benchmark. 

 

6.6.3 Probability Distribution Observations on 3D Strip Packing 

Figures 6.3 and 6.4 present the average probability distributions of the first 10 

instances for four sample test cases of the 3D-SPP-NS and the 3D-SPP-WS that 

EDA-HH obtained after the evolutionary process. These probability distributions 

show no general trend on the usage of low-level heuristics over all instances. That 

illustrates the capability of EDA-HH in adapting to different situations to produce 

competitive results. There are, however, some particular observations on the 

effectiveness of tie-breaking heuristics in different packing stages. 
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Figure 6.1 Plots of the final probability distribution of low-level heuristics obtained for hec92 I, sta83 

I, ute92 and yor83 I 
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Figure 6.2 Plots of the probability distribution of heuristics at the end of the evolutionary process for 

the hardest graph colouring instances in the Toronto dataset 
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For the 3D-SPP-NS (see Figure 6.3): 

 Maximum Contact Area and Maximum xz-covering Area are the two most 

frequently used heuristics, especially for weakly heterogeneous data. 

 Maximum Furthest_y Surrounding Contact is least likely to be used. 

 Minimum Wasted Volume is more likely to be used at the early and late stages of 

packing. 

 Minimum Rotations with Maximum min_length is more effective with stronger 

heterogeneous data.  

For the 3D-SPP-WS (see Figure 6.4): 

 Maximum Volume and Maximum xz-covering Area are the two most frequently 

used heuristics at the early stage, especially for stronger heterogeneous data. 

 Similar to the 3D-SPP-NS, Minimum Rotations with Maximum min_length is 

more effective with stronger heterogeneous data.  

 

6.6.4 A Suggestion on Learning Capability of the EDA-HH 

We further investigate the EDA-HH to understand its capability in learning. This 

could help facilitate more intelligent hyper-heuristics in future work to adaptively 

balance between the performance and computational time demands. The 

intensification and diversification of the searching process can be adjusted by 

including effective low-level heuristics or excluding ineffective low-level heuristics. 
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Figure 6.3 Average probability distributions of the first 10 instances for four test cases of the 3D-SPP-

NS 
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Figure 6.4 Average probability distributions of the first 10 instances for four test cases of the 3D-SPP-

WS 
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Hyper-heuristics on a smaller set of effective low-level heuristics are more likely to 

achieve better results in a shorter computational time. However, with a larger set of 

low-level heuristics, hyper-heuristics are likely to explore better solutions eventually 

at the cost of longer computational time. The issue here lies in the selection of low-

level heuristics to be added or removed. Our hyper-heuristic naturally represents a 

method that is capable of identifying the effectiveness of low-level heuristics by 

simply examining the obtained probability distribution during or after the 

evolutionary process. The following two experiments are carried out to examine the 

hyper-heuristic’s ability to learn effective and ineffective heuristics after the 

evolutionary process. The results can possibly help to better solve other instances 

which share the same characteristics. 

The experiments are conducted on the car92 I graph colouring instance with the 

parameter settings EDA-HH-TOUR12 (1000-2000). In the first experiment, the set 

of low-level heuristics includes the largest degree heuristic (H1) and nine other 

heuristics based on the saturation degree heuristic (H3, H32...H39). Figure 6.5a 

shows the probability distribution obtained at the end of the evolutionary process for 

the largest degree heuristic at each stage. Although the largest degree heuristic is 

placed into a set of many heuristics based on the saturation degree heuristic, EDA-

HH still learned to use it frequently at the very beginning of the colouring process. 

Similarly, the second experiment is conducted on the pool of nine largest degree 

based heuristics (H1, H12...H19) and one saturation degree heuristic (H3). Even 

being put into a set of nine largest degree based heuristics, the saturation degree 

heuristic can still be picked regularly by EDA-HH at the appropriate stages of the 

colouring process. Figure 6.5b illustrates this phenomenon, especially from stages 4 
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to 16. In graph colouring, the decisions to select difficult vertices in that early part 

have a strong influence to the overall colouring.  

 
                                    a                                                                          b 

Figure 6.5 The learning capability of the EDA-HH on the selection of appropriate low-level heuristics 

at different stages 

This promising observation motivates the design of more intelligent hyper-

heuristics in our future work. 

 

6.7 Chapter Summary 

In this chapter, we developed a simple yet effective EDA-based hyper-heuristic 

and examined its high generality by applying it to four different problems. With 

little modifications in the high-level search involving almost no domain-specific 

information, the hyper-heuristic could provide many competitive results on four 

investigating problems. Given that there are many optimisation problems in 

practice which can be solved using constructive methods, this hyper-heuristic can 

be applied to many other problem domains and represents a cost-effective 

methodology. 

One observation from this chapter is that the option to use constructive approaches 

in general and this hyper-heuristic in particular for a problem domain is dependent 
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largely on the number of constraints that the problem carries. We see a greater 

level of success of using our hyper-heuristic on the 3D-SPP-NS and 3D-SPP-WS 

than on the ETP and the GCP. The difference is from the particular difficulty in 

designing a good neighbourhood structure for the 3D-SPP. With fewer constraints, 

effective neighbourhood structures for the GCP and ETP were found, so 

methodologies concerning local search techniques tend to achieve better results 

with the GCP and ETP. 

In addition to the generality of the hyper-heuristic, we also show the superiority of 

packing solutions with the improvement techniques proposed in Chapter 5. Last 

but not least, we demonstrate the capability of our hyper-heuristic in identifying 

‘good’ or ‘bad’ heuristics and suggest an approach for future work to better utilise 

that capability in more intelligent hyper-heuristics. 
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Chapter 7 Conclusions and Future Work 

 

This chapter summarises the contributions and promising future research directions 

in this thesis with a focus on constructive approaches. Firstly, we introduce a novel 

weighted graph model for exam timetabling and based on that, we propose a number 

of novel constructive heuristics. Secondly, we develop different ways of selecting 

and combining several constructive heuristics (i.e. sequentially and linearly) at each 

decision step. The effectiveness of these approaches is demonstrated on the ETP. 

Thirdly, an extended strategy for the three-dimensional best fit algorithm is 

introduced as a set up for a hyper-heuristic context. Finally, a hyper-heuristic based 

on estimation of distribution algorithms is investigated. In particular, the hyper-

heuristic demonstrated its high level of abstraction by producing competitive 

performance on four different problem variants. We also observe the use of 

probability distributions learned from the hyper-heuristic in identifying ‘good’ or 

‘bad’ heuristics from a given set of low-level heuristics. These contributions are 

summarised in the subsequent sections. 
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7.1 Summary of the Heuristic-Combination Approaches 

The first part of this research concerns different approaches to combine constructive 

graph colouring heuristics to solve the ETP. Apart from the conventional heuristics 

in the literature e.g. largest weighted degree, or saturation degree, we also examine 

some novel constructive heuristics based on information provided within the 

enhanced weighted graph model. 

 

7.1.1 The Enhanced Weighted Graph Model for the ETP 

We introduced the enhanced weighted graph model in Section 3.2 – a graph model 

for exam timetabling whose vertices and edges have several attributes that make it 

adaptable to a variety of exam timetabling scenarios. Apart from the experiments 

of the model in this thesis, there are also some notable model features that have not 

been used. The model can handle pre-coloured vertices, i.e. exams that must be 

assigned to certain timeslots. Furthermore, we can forbid the assignment of certain 

timeslots for a particular exam by setting an initial nonzero penalty for the relevant 

colour. Whilst each timeslot in the Toronto benchmark problems is simply a single 

number, for different exam timetabling scenarios, timeslots in our model can have 

attributes associated with general information such as start time, duration and/or 

finish time.  

Some new vertex- and colour-selection heuristics arise naturally from this model, 

and our implementation allows the use and manipulation of various combinations 

of them along with or separately from the classical heuristics that have been used 

for decades. In addition, the model supports the change from a linear combination 
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of heuristics to another linear combination during the colouring process by using a 

designated switching point. 

We also introduce the vertex partitioning technique which is an initialisation step 

before the colouring starts. It separates vertices with at least a guaranteed non-

conflict colour from the remaining vertices (i.e. the hardest subset). This technique 

has been shown to be useful for the majority of the Toronto benchmark instances. Its 

major advantage is that the exam-selection process after the hardest subset has been 

coloured can be based solely on soft constraint penalty, thus possibly leading to 

better solutions. 

 

7.1.2 The Heuristic-Combination Approaches for the ETP 

We investigate two different strategies in Chapter 4 to combine heuristics, i.e. 

linearly (LCS) and sequentially (SCS), within the enhanced weighted graph model. 

It is clearly the case that the LCS is the generalisation of the SCS. The tie-breaker 

effect in the SCS can be achieved by setting one weight to be much larger than the 

other in the LCS. The weights of the linear combinations define specific roles that 

each simple heuristic contributes to the process of ordering vertices.  

The effectiveness of the newly proposed constructive heuristics from the enhanced 

weighted graph model compared to the conventional heuristics is justified by 

experiments on different linear combinations. We presented a specific selection of 

heuristics and weight settings which have shown competitive results compared to 

many other constructive approaches in the literature. The main idea is to combine, 

with different weights, the two newly proposed heuristics - maximum number of 
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bad colours (heuristic 3) and maximum number of bad-intersect edges (heuristic 

7). Whilst the the SCS results are on average 13% worse than the best constructive 

results reported in the literature for the Toronto dataset, the LCS can significantly 

outperform the SCS and improve on the best reported constructive results in four 

instances.  

 

7.2 Summary of the EDA-based Hyper-heuristic 

The second part of this research focuses on raising the level of generality for search 

methodologies by investigating the use of an estimation of distribution algorithm 

within a hyper-heuristic context to solve four different optimisation problems. The 

modifications made in the high-level search are limited and involve almost no 

domain-specific information. The results obtained by the EDA-HH on all four 

problems are competitive. In practice, many optimisation problems can be solved 

using constructive methods and such constructive processes typically can be divided 

into stages. Therefore, the EDA-HH is cost-effective and partly contributes to the 

direction of designing search methodologies of higher generality than other search 

systems based on meta-heuristics in the literature.  

The EDA-HH also represents a mechanism to learn the effectiveness of a given set 

of heuristics by simply examining the probability distribution of heuristics learnt 

during/after the evolutionary process. Observations on the effectiveness of low-level 

heuristics for several datasets of the investigated problems have been presented in 

Chapter 6. 
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We also observe the relation in solution quality produced by our constructive 

hyper-heuristic and the number of constraints in the investigated problems. The 

level of success of using our hyper-heuristic on the 3D-SPP-NS and 3D-SPP-WS 

has been seen to be higher than on the ETP and the GCP. The difference is from 

the particular difficulty in designing a good neighbourhood structure for local 

search-based methods for the 3D-SPP. The conclusion is that for problems with a 

significantly high number of constraints, constructive methods represent a better 

alternative compared to iterative methods. 

 

7.2.1 The Extended 3BF Strategy for the 3D-SPP 

An extended strategy for the three-dimensional best-fit algorithm is introduced in 

Chapter 5 with the aim of improving the suitability when it is applied within a hyper-

heuristic context. We proposed variants of gap-filling heuristics, new tie-breaking 

heuristics, an adjustment technique for box positioning, and a procedure to select 

assembled boxes.  

The improved 3BF strategy represents an efficient approach to construct packing 

solutions. The results obtained show that it is as good as the original 3BF in terms of 

finding high quality solutions (see Section 5.3). In addition, the extended 3BF offers 

more diversification in finding good combinations of different heuristics. In a hyper-

heuristic context, using suitable combinations of gap-filling and tie-breaking 

heuristics, larger areas in the solution space can be explored compared to the original 

3BF. The four new tie-breaking heuristics are proposed based on the common ideas 

of human in packing to accommodate boxes in different situations. Techniques to 

increase the compactness of packing solutions (i.e. the use of assembled boxes, the 
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technique to slide a box around its position, and the tower processing) have been 

shown to be effective. 

 

7.2.2 The Results of the EDA-HH on the ETP 

The EDA-HH is applied to the 13 instances of Toronto benchmark dataset on both 

the exam timetabling and the graph colouring domains in Section 6.5.1. For the 

exam timetabling domain, we compare our EDA-HH with other hyper-heuristics 

tested on the same benchmark. The EDA-HH generalises well over all exam 

timetabling instances compared to other constructive hyper-heuristic approaches. It 

outperforms others on 12 instances. We also reduce the gap between the results 

obtained from hyper-heuristic approaches and the best results from all approaches in 

the literature. Given that there is no local improvement and backtracking involved, 

we found our results encouraging. For the graph colouring domain (the ETP with 

only a hard constraint), the EDA-HH also shows promising results by obtaining 

newly best reported colourings in four hard instances. Note that the settings for the 

high-level search are the same for both investigated domains. 

 

7.2.3 The Results of the EDA-HH on the 3D-SPP 

The EDA-HH is applied to the SP-BR dataset for both the 3D-SPP-NS and the 3D-

SPP-WS in Section 6.5.2. For the 3D-SPP-NS, given the same running time of 160 

seconds, our EDA-HH can clearly improve on all test cases of the SP-BR dataset, i.e. 

an increase of 1.9% from the best reported average volume utilisation in the 

literature. The EDA-HH also generalises well for large instances of the SP-BR-XL 
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dataset with an increase of 1.2% from the average volume utilisation obtained by 

other approaches. We also demonstrate the capability of our EDA-HH if the running 

time is not restricted. The results obtained in that case is very competitive compared 

the other approaches in the literature (see Section 6.5.2). 

 

7.3 Future Work 

The results obtained in this thesis encourage us to further develop more advanced 

and powerful algorithms in future research.  

For the heuristic-combination approaches for the ETP on the enhanced weighted 

graph model there are several directions emerging: 

 Further testing of the effectiveness of switching from one linear combination of 

heuristics to another during the colouring.  One goal here would be to identify 

certain problem characteristics that would determine which weights to use. 

 Reducing the sensitivity of the discrete-valued, threshold-based primitive 

heuristics by designing new continuous-valued analogues.  For example, instead 

of counting an edge as either bad or not, according to whether its weight exceeds 

a threshold, count it as 1 towards the badness degree if it exceeds the threshold 

and if it does not, count the fraction of its weight over the threshold.  

 Analysing the landscape of the search space of threshold parameters (pc and ie) in 

order to reduce the computational time in finding the best sets of parameter 

settings. 
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 We can design algorithms with a feedback loop that automatically adjust the 

parameters for the switching point, thresholds and weight vectors of linear 

combinations to suitable settings based on the algorithm’s past performance.  

Also, if the number of primitive heuristics can be reduced, the dimension of the 

corresponding search space in the context of hyper-heuristics becomes more 

tractable. 

 Adding a backtracking component to the algorithm is likely to reduce the total 

proximity penalty. A similar backtracking procedure as in (Carter et al., 1996) can 

be tested. Another approach is to check when a colour assignment for a selected 

vertex incurs a proximity penalty above some threshold, the algorithm un-colours 

or re-colours some other vertex or vertices in order to reduce the selected vertex’s 

proximity penalty. 

 Designing an improvement method that takes a given colouring produced by our 

algorithm and looks for vertices whose colours can be changed to decrease the 

total proximity penalty while maintaining feasibility. 

 Adding a random factor into the vertex and colour selection processes and 

compare further the efficiency of the novel vertex-selection heuristics (e.g. max 

bad-intersect edges and max bad-colours) with the corresponding traditional 

heuristics (e.g. largest weighted degree and saturation degree). 

For the EDA-based hyper-heuristic, the following directions are promising for future 

research: 

 Integrating simple backtracking or local improvement into the evolutionary 

process to further improve the results. 



 

179 
 

 Examining a wider range of parameter settings including population size, 

different selection mechanism, parameters for selection mechanism, and stage 

settings, etc. 

 Finding or designing other 3D strip packing datasets and applying EDA-HH on 

them. 

 Designing and investigating more intelligent hyper-heuristics e.g. a hyper-

heuristic that adjusts the intensification and diversification in the high-level 

search by removing or adding low-level heuristics. 

 Implementing more complex estimation of distribution algorithms on the high-

level search that take into account the dependency between stages.  
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Appendix A - Explanation and Derivation of the Expected 

Value ev 

In this thesis, ev represents the expected value of the proximity weight associated 

with two different colours randomly chosen from a set of x colours.  This 

mathematical calculation is the weighted average of all possible proximity weights 

arising from pairs of colours, taking into account the size and frequency of each 

possible proximity weight.  The product (ev)*(avgIntersectionSize) is a measure of 

the contribution to the total proximity penalty that a randomly selected edge with 

randomly coloured endpoints makes.  Both of these quantities are completely 

determined by the problem instance, and what we regard as a bad proximity penalty 

for assigning a given colour to a given vertex depends on the value of this product.  

In particular, our bad-proximity threshold is directly proportional to this product, 

where the multiplier pc is the constant of proportionality. Several of the results 

reported in this paper were obtained by experimenting with different values of pc. 

NOTATION: Let proxWt(c1,c2) denote the proximity weight for  two different 

colours, c1 and c2. For the Toronto problems, proxWt(c1, c2) 2
5-|c1-c2|

  if 0 < |c1 - c2| 

<= 5 and = 0 if |c1 - c2|  > 5. 

Theorem: Let c1 and c2 be two different colours chosen randomly from a set of x 

colours, and let ev be the expected value of proxWt(c1, c2).  Then 

1)x(x

11462x
ev




  
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Proof: First observe that the total number of possible pairs of different colours = 

2

)1(

2










 xxx
. Next we count the number of pairs of colours having each possible 

proximity weight. 

There are x-1 pairs of colours having proxWt = 16, namely {1,2}, {2,3}, …, {x-1, x}. 

There are x-2 pairs of colours having proxWt = 8, namely {1,3}, {2,4}, …, {x-2, x}. 

There are x-3 pairs of colours having proxWt = 4, namely {1,4}, {2,5}, …, {x-3, x}. 

There are x-4 pairs of colours having proxWt = 2, namely {1,5}, …, {x-4, x}. 

There are x-5 pairs of colours having proxWt = 1, namely {1,6}, …, {x-5, x}. 

All other pairs of colours have proxWt = 0.   

ev is the weighted average of all these proxWt values.  Thus, 

1)x(x

11462x

2

1)x(x

5)(x4)2(x3)4(x2)8(x1)16(x
ev













 


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Appendix B - A Simplified Implementation of the Minimum 

Wasted Volume Heuristic (TB7) 

Most of the tie-breaking heuristics in Table 5.2 are trivial to implement and not the 

subject of this paper. Among the four novel tie-breaking heuristics (marked with * in 

Table 5.2), the Minimum Wasted Volume heuristic TB7 requires the highest 

computational complexity. However, it deals with the situation as shown in Figure 

5.4 more efficiently. In the context of hyper-heuristics, each of these tie-breaking 

heuristics will be called many times. Therefore, an efficient implementation is 

necessary. 

We firstly define the colliding distance of a point A on a particular box’s surface S. 

Suppose that we have a vector V with the initial point A and being perpendicular to 

S. The direction of the vector is towards the corresponding container’s wall (e.g. if S 

is on the left surface of the box, the direction of V will be towards the container’s left 

wall). The terminal point of V will be the first point that the vector collides with 

another box surface or the container wall. The colliding distance of point A on 

surface S is represented by the length of V. If the colliding distance is smaller than 

the corresponding minimum box size (i.e. if S is the left or right surface, the 

corresponding minimum box size will be minBoxSizeX; if S is the top or bottom 

surface, the corresponding minimum box size will be minBoxSizeZ), it will represent 

a wasted distance. Typically, the wasted volume towards a surface of a candidate 

box is calculated by checking the colliding distances of all points on that surface and 

adding up the wasted distances (e.g Figure B.1a). However, that requires significant 

running times to check each box. We simplify the implementation of this tie-

breaking heuristic by defining an n×n grid on a box surface. For the considered 
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surfaces of a candidate placement, we check and add up its wasted distances only 

from the intersecting points on the n×n grid. An example of a 3×3 grid on the right 

surface of a candidate placement is shown in Figure B.1b. 

For the 3D-SPP-NS, the considered surfaces include the left, right, top, and bottom 

surfaces. This simplification uses a greedy method to suggest boxes that are likely to 

produce the minimal wasted volume for a candidate gap. It might not choose the 

same box as in the typical implementation. For example, the simplification might 

choose the box in Figure B.1d instead of the box with smaller wasted volume in 

Figure B.1b. However, in many situations, using a small grid still produces the same 

box selections (i.e. in this example, the box in Figure B.1c is correctly selected as 

having the minimum wasted volume) while the computational time is reduced 

significantly. For the 3D-SPP-WS with the stability constraint, this tie-breaking 

heuristic is not applied.  

 

 

Figure B.1 A 3×3 grid to calculate the colliding distances of the right surface of a candidate box 

placement. If the sizes of a considering surface are not divisible by the size of the grid, the quotient 

will be truncated to integer value. The length of bold arrows indicates the wasted distance 
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