

Metaheuristic Approaches for

QoS Multicast Routing Problems

by

Ying Xu, BSc, MSc.

Thesis submitted to the University of Nottingham
for the degree of Doctor of Philosophy

January 2011

 2

Contents

List of Figures ..5

List of Tables..8

Abstract ..11

Acknowledgements..12

CHAPTER 1. Introduction..13

1.1 Background and Motivations ..13

1.1.1 Quality of Service (QoS) Routing ..14

1.1.2 QoS Multicast Routing ...15

1.1.3 Multicasting on the Internet..17

1.1.4 Motivations...21

1.2 Issues and Aims ..22

1.2.1 Issues Related to QoS Multicast Routing ...22

1.2.2 Two Case Studies ...24

1.2.3 Aims ...25

1.3 Overview of the Thesis ...26

CHAPTER 2. The Optimisation Technique: Metaheuristics ...28

2.1 Introduction...28

2.2 Basic Concepts and Definitions ..28

2.2.1 Combinatorial Optimisation ...28

2.2.2 Multi-objective Optimisation ...29

2.2.3 Heuristics..30

2.2.4 Metaheuristics ..31

2.3 Overview of Metaheuristics ..32

2.3.1 Metaheuristics in Combinatorial Optimisation...32

2.3.2 Metaheuristics in Multi-objective Optimisation ...41

 3

2.4 Summary...46

CHAPTER 3. The QoS Multicast Routing Problem ...47

3.1 Introduction...47

3.2 Basic Model of Multicast Routing ..47

3.2.1 The Steiner Tree Problem...48

3.2.2 Related Work for the Steiner Tree Problem ...48

3.3 Overview of QoS Multicast Routing Problems...49

3.3.1 Network Model for QoS Multicast Routing Problems ...52

3.3.2 Network Simulator for QoS Multicast Routing Problems..54

3.3.3 Summary of QoS Multicast Routing Algorithms ...55

3.4 The DCLC Multicast Routing Problem ..61

3.4.1 Introduction ..61

3.4.2 Problem Definition ...62

3.4.3 Related Work for the DCLC Multicast Routing Problem ..62

3.4.4 Benchmark Instances of the DCLC Multicast Routing Problem..................................68

3.5 The Multi-Objective Multicast Routing Problem ...70

3.5.1 Introduction ..70

3.5.2 Problem Definition ...70

3.5.3 Related Work for the Multi-objective Multicast Routing Problem72

3.5.4 Benchmark Instances of the Multi-objective Multicast Routing Problem74

3.6 Summary...75

CHAPTER 4. Metaheuristic Approaches for the DCLC Multicast Routing Problem.......................77

4.1 Introduction...77

4.2 Variable Neighbourhood Descent Search Algorithms ..77

4.2.1 Algorithm Description..78

4.2.2 Experiments and Results ..83

4.3 A Hybrid GRASP Algorithm..90

4.3.1 Algorithm Description..90

 4

4.3.2 Experiments and Results ..95

4.4 A Jumping Particle Swarm Optimisation Algorithm ..100

4.4.1 Algorithm Description..102

4.4.2 Experiments and Results ..106

4.5 A Scatter Search with Path-relinking Algorithm ..117

4.5.1 Algorithm Description..118

4.5.2 Experiments and Results ..121

4.6 Summary...127

CHAPTER 5. Fitness Landscape Analysis for the DCLC Multicast Routing Problem129

5.1 Introduction...129

5.2 Fitness Landscape Analysis Methods ...129

5.1.1 Fitness Distance Correlation (FDC) Analysis ..130

5.1.2 Auto-correlation Analysis...131

5.3 Experimental Study...132

5.3.1 Experimental Results of FDC Analysis ..133

5.3.2 Experimental Results of Auto-correlation Analysis ...140

5.4 Summary...145

CHAPTER 6. Metaheuristic Approaches for the Multi-objective Multicast Routing Problem......146

6.1 Introduction...146

6.2 An Evolutionary Multi-objective Simulated Annealing Algorithm with Variable

Neighbourhoods...146

6.2.1 Algorithm Description..147

6.2.2 Experiments and Results ..153

6.3 A Simulated Annealing based Genetic Local Search Algorithm ..161

6.3.1 Algorithm Description..162

6.3.2 Experiments and Results ..171

6.4 Summary...182

CHAPTER 7. Conclusions and Future Work..183

 5

7.1 Summary of the Thesis ...183

7.1.1 Contributions on the DCLC Multicast Routing Problem ...185

7.1.2 Contributions on the Multi-objective Multicast Routing Problem186

7.1.3 List of Presentations ...186

7.1.4 List of Publications...187

7.2 Future Work..187

References…………………………………………………………………………………….................. 190

 6

List of Figures

Figure 1. 1 An example multicast routing network..14

Figure 3. 1 An example of a random network graph and a multicast tree..53

Figure 3. 2 The NSF network. dij, cij and tij are shown on each link. ...74

Figure 3. 3 The NTT network. Over each link (i, j), a delay dij is shown. ...75

Figure 4. 1 The pseudo-code of the basic VND.. 78

Figure 4. 2 The pseudo-code of the VNDMR Algorithm ... 80

Figure 4. 3 An example network and solutions obtained by BSMA and VNDMR1 81

Figure 4. 4 Tree cost and execution time vs. network size (group size = 10) 84

Figure 4. 5 Execution time vs. group size (network size = 50) ... 84

Figure 4. 6 Tree cost and execution time vs. network size (group size = 10) 86

Figure 4. 7 Tree cost and execution time vs. network size (group size = 10% of network size) 87

Figure 4. 8 Execution time vs. network size of VNDMR1, VNDMR2 and Ghaboosia and
Haghighat’s Path Relinking .. 89

Figure 4. 9 The pseudo-code of the construction phase in the hybrid GRASP algorithm 91

Figure 4. 10 The framework of the GRASP-VND+pilot algorithm.. 93

Figure 4. 11 An illustrative example of the representation of the multicast tree............................... 103

Figure 4. 12 An example of the path replacement operator .. 105

Figure 4. 13 Computational time of JPSO with different swarm sizes without local search on small
Steinb instances... 108

Figure 4. 14 Computational time of variants of JPSO on small instances .. 110

Figure 4. 15 Computational time of variants of JPSO on large instances ... 110

Figure 4. 16 Evolution across iterations of JPSO with |P| = 5, different settings of cooperation and
local search on a Steiner tree problem of small size (network size = 75, instance
steinb12).. 111

Figure 4. 17 Evolution across iterations of JPSO with |P| = 20, different settings of cooperation and
local search on a Steiner tree problem of medium size (network size = 100, instance
steinb16).. 112

Figure 4. 18 Evolution across iterations of JPSO with |P| = 20, different settings of cooperation and
local search on a Steiner tree problem of large size (network size = 500, instance
steinc01).. 112

 7

Figure 4. 19 The pseudo-code of the SSPR algorithm.. 119

Figure 4. 20 An example of the PR process on the random network shown in Figure 3.1 120

Figure 4. 21 The computational time of the SSPR algorithm ... 122

Figure 5. 1 Pseudo-code of the local search heuristic LS for producing the local optima134

Figure 5. 2 Fitness-distance scatter plots on selected instances with different delay bounds137

Figure 5. 3 Scatter plots of costs of the one-flip neighbours to the optimum or best solution on two
instances...143

Figure 6. 1 The framework of the VEMOSA algorithm ..150

Figure 6. 2 Two example solutions (multicast trees) for the NSF network152

Figure 6. 3 An example of the backup-path-set by using the path-switching operator on the NSF
network ..152

Figure 6. 4 The non-dominated solutions found by variants of algorithms for the problems of |V| =50
with different group sizes in 160 seconds……………………………………...............…..155

Figure 6. 5 The non-dominated solutions found by variants of algorithms for problems of |V| =100
with different group sizes in 160 seconds ..156

Figure 6. 6 The pseudo-code of the MOSAGLS algorithm ...163

Figure 6. 7 An example multicast tree and its representation on the NSF network164

Figure 6. 8 An example of the two-point crossover operation...166

Figure 6. 9 An example of the mutation operation ..167

Figure 6. 10 An example solution after the local search on the solution in Figure 6.9(b)168

Figure 6. 11 The pseudo-code of search directions tuning based on the SA strategy171

Figure 6. 12 The non-dominated solutions found by MOSAGA, MOEA1 and MOEA2174

Figure 6. 13 The non-dominated solutions found by MOSAGA with different mutation rates.........175

Figure 6. 14 The non-dominated solutions found by MOSAGLS and MOSAGA..176

 8

List of Tables

Table 3. 1 Summary of single-objective QoS multicast routing algorithms in the literature56

Table 3. 2 Categorized multi-objective multicast routing algorithms by the objectives and constraints
considered in the problem (MOGA: multi-objective genetic algorithm)61

Table 3. 3 The problem characteristics of Steinb from the OR-library (|V|, |E|, |R| denote the number

of nodes, the number of edges and the number of destinations in the instances,
respectively, ‘OPT’ denotes the optimal solution) ...69

Table 3. 4 The problem characteristics of Steinc from the OR-library (|V|, |E|, |R| denote the number

of nodes, the number of edges and the number of destinations in the instances,
respectively, ‘OPT’ denotes the optimal solution) ...69

Table 4. 1 Tree cost vs. group size (network size = 50)...84

Table 4. 2 Average tree cost and execution time vs. network size (group size = 10)85

Table 4. 3 Average tree cost and execution time vs. group size (network size = 50)86

Table 4. 4 Average tree costs of the proposed VNDMR1, VNDMR2 and some existing heuristics and

algorithms on the random networks of 10-100 nodes ..88

Table 4. 5 Average tree cost, standard deviation of the tree cost and execution time of VNDMR1 and
VNDMR2 on the random networks ...88

Table 4. 6 Performance of GRASP-VND+pilot, GRASP-VND, Multi-VND and GRASP-CST for

unconstrained Steiner tree problems (∆1 = ∞). ………………………………………....96

Table 4. 7 Performance of GRASP-VND+pilot, GRASP-VND, Multi-VND and GRASP-CST for
Steiner tree problems with ∆2 = 1.1×Delay(TOPT) ..97

Table 4. 8 Performance of GRASP-VND+pilot, GRASP-VND, Multi-VND and GRASP-CST for

Steiner tree problems with ∆3 = 0.9×Delay(TOPT). ...98

Table 4. 9 Summary of average results for the three experiments on the Steinb in the OR-library
……………………………………………………………………………………………99

Table 4. 10 Average tree costs of GRASP-VND+pilot, GRASP-VND, Multi-VND, GRASP-CST and

some existing heuristics and algorithms on the random networks with 10-100 nodes.....99

Table 4. 11 Average tree cost, standard deviation of the tree cost and execution time of
GRASP-VND+pilot, GRASP-VND, Multi-VND and GRASP-CST on the random
networks...100

Table 4. 12 JPSO with different swarm sizes and no local search (‘OPT’ denotes the optimal solution

and values in bold are the best results obtained) ..107

Table 4. 13 JPSO using different settings of cooperation between particles and local search...........109

Table 4. 14 Comparison between JPSO and GRASP-CST approaches on Steinb problems (Values in
the columns (‘OPT’) and in bold report the optimal solutions for each instance)..........113

 9

Table 4. 15 Comparison between JPSO and GRASP-CST within the fixed computing time on Steinb

problems (‘OPT’ denotes the optimal solution for each instance, bold number means
better tree cost or shorter computing time) ..114

Table 4. 16 Comparison between JPSO, GRASP-CST and DPSO-STP approaches on Steinc

instances (‘OPT’ denotes the optimal solution for each instance, bold number means
better tree cost)...114

Table 4. 17 Average tree costs of JPSO and some existing heuristics and algorithms on the random

networks of 10-100 nodes ..115

Table 4. 18 Average tree cost and standard deviation of JPSO on 10 network sizes compared with
VNDMR and GRASP-CST..116

Table 4. 19 Comparison of different population size (Psize) within the SSPR algorithm (best results

are in bold) ...122

Table 4. 20 Experimental results for minimum Steiner tree problem (∆1 = ∞) (the best results are in
bold, the values marked with ‘*’ denote the optimal solution)123

Table 4. 21 Experimental results for the DCLC multicast routing algorithm with ∆2 =1.1×Delay(TOPT)

(Values in the second column (‘∆’) are delay bounds, the best results are in bold, the
values marked with ‘*’ denote the optimal solution) ...124

Table 4. 22 Experimental results for the DCLC multicast routing algorithm with ∆3 = 0.9×

Delay(TOPT) (Values in the second column (‘∆’) are delay bounds, the best results are in
bold) ...125

Table 4. 23 Average tree costs of SSPR-TS, SSPR-VND and some existing heuristics and algorithms

on the random networks of 10-100 nodes ..125

Table 4. 24 Average tree cost and standard deviation of the SSPR algorithms compared with
GRASP-VND and Multi-VND on the random networks...126

Table 5. 1 Fitness distance correlation on the Steinb instances with different delaybounds (‘OPT’

denotes the cost of the optimal solution for each unconstrained Steiner tree instance, ∆:
the value of delay bound for the corresponding problem instance)135

Table 5. 2 Fitness distance correlation analysis of the landscape from four local search methods on

four instances of different sizes and delay bounds (The bold number denotes the best
result) ...139

Table 5. 3 The auto-correlation analysis on the Steinb instances with different delay bounds (|V| is

the network size; |R| is the multicast group size; the landscape diameter n = diamGL =
|V| – |R| – 1)..141

Table 5. 4 The autocorrelation analysis of three neighbourhood operators on four instances in

Steinb with different delay bounds (|V| is the network size; |R| is the multicast group size;
the landscape diameter n = diamGL = |V| – |R| – 1. pure: the pure random one-flip
operator; link: the link based operator; node: the node based operator).........................144

Table 6. 1 Parameter settings in EMOSA and VMOSA algorithms ...154

Table 6. 2 The maximum, minimum and average number of non-dominated solutions found by

different algorithms for the NSF network in Figure 6.2(a) and the computational time of

 10

each algorithm (|NDS|: the number of non-dominated solutions; % in PF: the lowest
percentage of non-dominated solutions belonging to PF, i.e. Min{|NDS|}/|PF|, here |PF|
= 16)...157

Table 6. 3 Two different multicast groups within the NTT network………….157

Table 6. 4 The total number of non-dominated solutions for each multicast group of the NTT

network with two different multicast groups shown in Table 6.3158

Table 6. 5 Four variants of algorithms for solving the NTT network with small multicast group 1
(The best results are in bold) ..158

Table 6. 6 Four variants of algorithms for solving the NTT network in Figure 6.4 with large

multicast group 2 (The best results are in bold) ...159

Table 6. 7 The total number non-dominated solutions of YPF on the random networks of four
objectives ...159

Table 6. 8 Comparison of different algorithms on random network of |V| = 50 with different group

sizes (Computational time = 360 seconds, the best results are in bold)160

Table 6. 9 Comparison of different algorithms on random network of |V| = 100 with different group
sizes (Computational time = 360 seconds, the best results are in bold)160

Table 6. 10 Comparison of MOSAGA with different parameter settings for solving the NSF network

(|NDS|: the number of non-dominated solutions; Running time = 60 seconds in each run)
…………………………………………………………………………………………172

Table 6. 11 Average computing time of MOSAGA, MOEA1 and MOEA2 on the random networks...

…………………………………………………………………………………………174

Table 6. 12 Average computing time of MOSAGA and MOSAGLS on the random networks……176

Table 6. 13 Number of non-dominated solutions found by different algorithms on the NSF network
with four objectives (|NDS|: the number of non-dominated solutions; % in PF: the lowest
percentage of non-dominated solutions belonging to PF, i.e. Min{|NDS|}/|PF|, here |PF|
= 16)...177

Table 6. 14 The total number of non-dominated solutions in YPF calculated by using the six-step

procedure for the two instances of the NTT network with respect to all five objectives....
…………………………………………………………………………………………178

Table 6. 15 Results of different algorithms for solving the NTT network with small multicast group 1

…………………………………………………………………………………………179

Table 6. 16 Results of different algorithms for solving the NTT network with large multicast group 2
…………………………………………………………………………………………179

Table 6. 17 The average number of non-dominated solutions on each type of random network…..180

Table 6. 18 Comparison of different algorithms on random networks of |V| = 50 with different group

sizes (Computational time for each run is 320 seconds)………………………………180

Table 6. 19 Comparison of different algorithms on random networks of |V| = 100 with different group
sizes (Computational time for each run is 320 seconds) ..181

 11

Abstract

The rapid evolution of real-time multimedia applications requires the Quality of Service (QoS) based

multicast routing in underlying communication networks. This thesis is concerned with the investigation of

metaheuristic approaches for QoS multicast routing problems. The underpinning mathematical structure of

the QoS multicast routing problem is the constrained Steiner Tree problem which is a well-known

NP-complete problem. Metaheuristics are a family of generic high level search strategies that can be

adapted for tackling many optimisation problems, including the QoS multicast routing problems concerned

in the thesis.

This thesis contains two main parts to systematically investigate metaheuristic approaches on different

QoS multicast routing problems. In the first part, four new metaheuristic approaches have been developed

and investigated for the Delay-Constrained Least-Cost (DCLC) multicast routing problem. The

performance of these proposed metaheuristics is evaluated by means of extensive experiments on a number

of benchmark instances from the OR-library and some random networks generated by a multicast routing

simulator. Experimental results demonstrate that the proposed metaheuristic approaches are promising

solutions for the DCLC multicast routing problem and superior to other existing algorithms in the literature.

The first theoretical analysis of the fitness landscape on the DCLC multicast routing problem has been

conducted on a set of benchmark instances. Two fitness landscape analysis techniques, the fitness distance

correlation analysis and the auto-correlation analysis, have been used to investigate the underlying

landscape characteristics of the problem. The second part of the thesis investigates multi-objective

multicast routing problems. In recent research, the multi-objective multicast routing problem has emerged

with multiple inter-dependent and conflicting objectives while satisfying certain constraints. Two novel

hybrid metaheuristic approaches, a hybrid evolutionary multi-objective simulated annealing algorithm with

variable neighbourhoods and a simulated annealing based multi-objective genetic local search algorithm,

have been proposed and investigated for solving the multi-objective multicast routing problem concerning

multiple objectives simultaneously. A large amount of systematic experiments have been performed to

demonstrate the effectiveness and efficiency of both hybrid metaheuristics for the problem.

 12

Acknowledgements

I would like to thank my financial sponsors, the Hunan University (China) and the University of

Nottingham (UK), for providing the opportunity to study in UK.

I would like to express my deepest gratitude and admiration to my first supervisor Dr. Rong Qu for her

guidance, ideas, advice and continuous support during my PhD program. I also thank my second supervisor

Prof. Graham Kendall for his valuable comments and great help.

I would like to thank all members of the ASAP Group to make my PhD study within ASAP an enjoyable

and memorable experience. Many thanks to Dr. Dario Landa-Silva for his valuable discussions and advice

with regard to my research. Special thanks go to Juan Castro-Gutiérrez, Hui Li, Francisco Romero

Campero, Janathan Blakes, Fang He and Huanlai Xing for their help not only to my research but also to my

social life during my PhD career.

I would like to dedicate this work to my parents, my brother, my husband, my son, all my family and

friends for their great supports and encouragements throughout my PhD.

Chapter 1 Introduction

 13

CHAPTER 1. Introduction

The first chapter contains three introductory sections. The first section introduces the background and

motivations of the research topics. The second section summarizes the issues together with the research

aims of the work included in the thesis and finally, the third section gives a general overview of the thesis.

1.1 Background and Motivations

The enormous investments in communication and switching technologies have resulted in a new generation

of high speed networks. Generally speaking, communication networks can be classified into two categories:

local area networks (LANs) and wide area networks (WANs). A LAN covers a small geographical region, for

instance a room, a building or a cluster of buildings. A WAN represents a computer network that covers a

broad area, such as a metropolis, a nation, or several nations. For example, the Internet is a typical WAN

interconnected by millions of computer networks to provide an internet service for global users worldwide.

With the rapid growth of internet infrastructure, size, services and number of users, many issues and

challenges, such as the number and locations of network nodes (computers or routers), routing mechanisms,

resource reservation, flow scheduling, and admission control, etc, have arisen in computer communication

networks. More details can be found in Minoux (1989); Amiri and Pirkul (1997); and Queiroz and Jr

(2003). Among them, network routing is a fundamental engineering task in any WAN, especially for

today’s internet. For a given network, the purpose of the network routing is to send information (data

streams or packets, etc.) through a path or a set of paths from a source to a destination or an end user. Its

main objective is to reduce the total cost while maximising the utilisation of network resources.

Depending on the number of destinations, network routing can be categorized into three basic types:

unicast (one to one), broadcast (one to all) and multicast (one to many). Unicast is the traditional

point-to-point communication where the information is sent through a path from one source to one

destination. Broadcast is when information is sent from one source to all nodes in the network. Multicast

aims at sending information from one or more sources to a set of destinations in the network. Figure 1.1

presents an example network of multicast routing. Multicast can be considered as a generalization of both

Chapter 1 Introduction

 14

unicast and broadcast, since unicast is the special case of multicast when the number of destination nodes is

one. If the destination nodes include all nodes in the network, then the routing becomes broadcast. Network

routing is a complex problem in large networks due to the significantly large number of possible paths via

the potential intermediate nodes a packet might traverse before reaching its final destination. Thus, the

routing algorithm has a significant impact on the development and performance of computer

communication networks.

Figure 1. 1 An example multicast routing network

1.1.1 Quality of Service (QoS) Routing

Nowadays, the Internet Protocol (IP) based networks are rapidly becoming the main carriers of various

multimedia applications, including video/audio conferencing, distance education, E-commerce, interactive

distributed games and internet telephony, etc. These real time multimedia applications have a wide diversity

of Quality of Service (QoS) (Ma and Steenkiste, 1997; Xiao and Ni, 1999) requirements for traffic, including

the cost, bandwidth, end-to-end delay, delay jitter, packet loss ratio and hop count, etc. The notion of QoS in

networks means the data delivery service should satisfy certain performance requirements or metrics. These

metrics define the QoS guarantees that a network should provide. However, originally, the Internet was

designed to support the best effort service for time independent information streams such as file transfer and

electronic mail, and thus no QoS guarantees can be provided. In order to support QoS requirements, new

challenges for network routing have emerged to satisfy certain constraints defined by the QoS requirements.

QoS routing (Paul and Raghavan, 2002a) in computer networks is defined as the process of transferring

information from a source to a destination (or a group of destinations) through network elements, including

hosts and routers, under certain constraints or performance metrics. It means that QoS constrained network

routing must be able to utilise the network resources efficiently while providing the requested QoS

Chapter 1 Introduction

 15

requirements. QoS routing is a difficult task due to the following reasons. The multimedia applications have

very diverse QoS requirements which make the routing problem intractable. In reality, the network state

changes dynamically due to the nodes joining in or leaving the network, link congestions, and transmission

failures. The increasing network size makes it very hard to gather updated state information in a dynamic

environment. The QoS routing problem has been proven to be a NP-complete problem (Wang and Hou, 2000)

due to the high computation complexity of searching a path based on certain combinations of QoS metrics.

More details about research challenges in QoS routing can be found in (Masip-Bruin et al., 2006). For these

reasons, fast and efficient algorithms are required to support QoS routing for multimedia transmission.

In general, QoS routing problems can be classified into two major classes, namely unicast routing and

multicast routing. QoS unicast routing is relatively easier, and is defined as finding a route from a single

source to a single destination node that satisfies a set of QoS constraints. On the other hand, QoS multicast

routing (Striegel and Manimaran, 2002) can be defined as follows: for a given source node, a set of

destination nodes, a set of QoS constraints, and an optimisation objective, the goal is to send information from

the source to all destinations simultaneously, while optimising the objective and satisfying certain QoS

constraints. A QoS unicast routing problem can be treated as a special type of QoS multicast routing problem

with only one destination, while the latter is more complex than the former as finding paths between a source

and several destinations is more difficult than finding a path between a source and a single destination.

1.1.2 QoS Multicast Routing

Since the 1990s, the rapid evolution of numerous real time multimedia applications has been stimulating

the demand for QoS based multicast routing in the underlying computer communication networks. QoS

multicast routing is an important communication technique to support data transmission in computer

networks; it aims at transferring information simultaneously from one or more sources (or senders) to a

group of destinations (or receivers), namely the multicast group, while satisfying a set of QoS constraints.

The thesis addresses the multicast routing problem with single source. A multicast group may be either

dense-mode, in which group members are densely distributed in the network, or sparse-mode, where

members are widely distributed in a sparse environment. A solution to the QoS multicast routing problem is

to build a multicast tree, which spans from the source node to all destinations and satisfies certain QoS

Chapter 1 Introduction

 16

requirements. The main goals of QoS multicast routing are to efficiently allocate network resources,

balance the network load, reduce congestion hot spots and provide adequate QoS guarantees for end users

of multimedia applications (Wang and Crowcroft, 1996; Chen and Nahrstedt, 1998; Paul and Raghavan,

2002). Conventional unicast routing is inefficient, since it relies on point-to-point transmission and requires

the source to build an independent path to every destination, and the same information might travel the

same link many times, thus creating unnecessary traffic on the link and wasting network resources. By

avoiding sending data packets from the source to each destination separately, multicast routing can utilise

network resources more efficiently, as a data packet traverses each link only once, and some of the links are

shared.

Real world multicast applications have a variety of QoS requirements. Some commonly required QoS

metrics are briefly introduced as follows. First, in order to make good use of network resources, it is

important to minimise the total cost of the multicast tree during the transmission. The total cost of the

multicast tree is the sum of costs of links included in the tree, where each link cost is normally defined as

the bandwidth utilisation or network resource cost on the link. Second, most real world applications of

multicast routing problems are delay-sensitive for data delivery. For example, in interactive video/audio

conferencing, the video/audio is expected to be consistent among all participants, without excessive delay.

The delay-constrained multicast routing problem is thus defined as sending the video/audio from the sender

to each participant within a predefined delay threshold. The end-to-end delay from the sender to each

participant is the sum of all delays of links along the transimission path. In addition, as it is desirable for all

participants to hear and see the speakers at nearly the same time, another time related constraint is the delay

jitter (variation), which is defined as the difference between the minimum and maximum delay among all

the end-to-end delays from the source to each destination. Many real-time applications, such as video

conferencing and interactive games, are bandwidth-intensive. The multicast routing problem with

bandwidth constraint is the requirement that the bandwidth of each link, i.e. the capacity of the link, in the

constructed multicast tree should be above a bandwidth threshold. Finally, because congestion on the link

may cause delay or failure of information transmission, it is important to minimise the maximal link

utilisation, which reflects the congestion level in the current network, within the multicast tree. The link

utilisation is defined as the ratio of the used link resource to the link capacity.

Chapter 1 Introduction

 17

1.1.3 Multicasting on the Internet

Multicasting is the ability of a communication network to deliver information from a source to multiple

destinations at different locations. Multicast routing can be easily implemented by broadcasting in a LAN

since a small number of nodes are included in the LAN, while implementing multicasting in a WAN presents

a challenge due to the large number of nodes included in the WAN. The work in this thesis therefore focuses

on the multicast routing problems in WANs which may be connections of LANs. As a typical WAN, the

Internet is the main carrier of the emerging real time multimedia applications; QoS multicast routing on the

Internet thus becomes an important mechanism to support data transmissions to multiple end users of these

multimedia applications. The following subsections briefly introduce the architecture of the Internet and then

summarize some existing multicast routing protocols employed on the Internet.

1.1.3.1 The Architecture of the Internet

Today’s Internet uses the standard Internet Protocol Suite (TCP/IP, i.e. Transmission Control Protocol

/Internet Protocol) to provide services for billions of users. The Internet Service Providers (ISPs) connect their

networks via Internet Exchange Points (IXP) to the Internet. For administration purposes, the Internet is

divided into many administrative domains called Autonomous Systems (ASs). An AS is a connection of

networks and gateway routers under the control of its own internal policy to collect and exchange information.

Within an AS, routing is achieved by using the Interior Gateway Protocol (IGP), while the Exterior Gateway

Protocol (EGP) passes the routing information across different ASs.

Originally, the architecture of the Internet and the Internet Protocol (IP) at the network layer were

designed on the simple concept of best-effort delivery. It means the network provides no guarantee that each

packet will reach its destination nor that it can arrive within a certain time. The reliability of the Internet

depends on the Transmission Control Protocol (TCP) at the transport layer of the network to keep track of

packets and then retransmit if required. However, the mechanisms used in TCP, such as the flow and

congestion control schemes, are not sufficient to provide QoS support for either real-time continuous

multimedia applications or multicast routing. In 1992, the Internet Engineering Task Force (IETF) firstly

Chapter 1 Introduction

 18

provided a multicast service on the Internet over the multicast backbone (Casner and Deering, 1992). Since

then, several multicast routing protocols have been proposed to support multicasting on the Internet.

1.1.3.2 Multicast Routing Protocols on the Internet

A multicast routing protocol should be able to collect and maintain state information, select the most

appropriate path among the various paths available from the sender(s) to receivers, and handle the changes in

the networks or the multicast group. Based on where the multicast routing protocol is deployed, the Internet

employs three types of multicast routing protocols. The first type of protocol is implemented on a host to

support its joining or leaving a multicast group. The Internet Group Management Protocol (IGMP) (Deering et

al., 1989) is an example of this type of protocol. The second type of protocol is the Multicast Interior Gateway

Protocol (MIGP), which is deployed on multicast routers to enable multicast routing within an AS. Some

examples of MIGPs include the Distance Vector Multicast Routing Protocol (DVMRP) (Waitzman et al.,

1988); Multicast Open Shortest Path First (MOSPF) (Moy, 1994); Core Based Tree (CBT) (Ballardie et al.,

1993); and Protocol Independent Multicast (PIM) (Deering et al., 1996). The third type of protocol is applied

on border routers to allow multicast routing to transfer between different ASs. The Border Gateway Multicast

Protocol (BGMP) (Thaler et al., 1998) belongs to this type of protocol.

IGMP is employed by a host to support multicast communication between the host and the neighbouring

multicast router. It enables a multicast router to keep track of changes in the multicast group by sending

messages between the host and the multicast router. For example, if a host joins a new group, it sends a

join-group report to the multicast router. When a host leaves a group, it sends a leave-group report to the

multicast router.

DVMRP is the first protocol implemented for IP multicast routing. DVMRP is widely used by most

multicast routers of the Internet for supporting multicasting. DVMRP forwards packets through a multicast

tree which is rooted at the source and spans all destinations by the reverse shortest paths aggregating these

shortest paths into the tree. The Bellman-Ford algorithm (Bertsekas and Gallager, 1992) is used in DVMRP to

build the unicast routing table and find the shortest paths for each destination. In addition, DVMRP supports

dynamic multicast which allows destination nodes to join or leave dynamically during the multicast routing

session. This is realized by periodically broadcasting the source packets to all nodes in the network. Both the

Chapter 1 Introduction

 19

unicast routing table and the broadcasting scheme used in DVMRP cause serious performance problems,

especially when the number of destination nodes is large; thus DVMRP is inefficient and inflexible for large

networks.

MOSPF uses the Dijkstra’s shortest path algorithm (Bertsekas and Gallager, 1992) to create the shortest

path trees from the source to all destination nodes. In the Dijkstra’s algorithm, at each step, a new node with

the minimum path cost from the source is added to the current tree in a greedy manner. After building a

multicast tree, MOSPF prunes the non-destination leaves in the tree so that the network resource can be saved.

The disadvantages of MOSPF are the scalability and computational resources. MOSPF needs extra

computational time to prune multicast trees which is time consuming in large networks and is therefore

impractical in large-scale networks. In addition, other QoS requirements are not considered in MOSPF since

the Dijkstra’s algorithm only creates the shortest paths in terms of one QoS requirement, usually the cost.

In order to reduce the state information stored at each router, CBT protocol is designed to build a single

delivery tree rooted at a core router for each multicast group, regardless of the location of the source node.

The delivery tree of a multicast group is shared by all nodes that send messages to the destinations of the

multicast group. Messages from a source node to any group are sent toward the core router by a unicast path

until these messages reach a router which is included in the corresponding delivery tree. A new issue arising

in CBT is the selection of the core of the delivery tree, which is the key factor in constructing multicast trees.

The selection of the core is another optimisation problem since it is difficult to choose a core which yields

optimal routs for all multicast group members.

PIM is developed to provide the scalability of multicast routing protocol in large networks. It has two

modes of operation: PIM-Dense Mode (PIM-DM) and PIM-Sparse Mode (PIM-SM). PIM-DM is similar to

DVMRP, both building the reverse shortest paths for destinations, but PIM-DM is more flexible as it works

independently of a particular unicast routing protocol while working with any one that is available. In the

cases where multicast destination nodes are sparsely distributed in the network, PIM-SM can choose a centre

router for each multicast group. During the multicast routing, data packets are sent from the source to the

centre router first and then directed to the destination nodes. Due to the complexity of PIM, it is difficult to

deploy on large-scale networks.

Chapter 1 Introduction

 20

BGMP is employed on border routers to support multicast communication across different ASs. BGMP

consists of two components: the MIGP component and the BGMP component. The MIGP component

employs the MIGP protocol within an AS. The BGMP component enables multicasting between ASs by

constructing a bidirectional centre-based tree to connect the border routers of different ASs which include the

destination nodes. The root of the centre-based tree is the entire AS which claims the multicast transmission.

In general, a multicast routing protocol consists of a set of functional components to consider all

possible situations in real world networks, such as the collection and update of state information, the

construction of multicast trees, error control, flow scheduling, failure handling and connection management.

The above mentioned multicast routing protocols all have their strengths and drawbacks. The main

shortcoming of the above multicast routing protocols is their lack of providing any QoS support. For example,

none of these protocols is designed to find a delay-bounded multicast tree that satisfies the delay constraint for

the delay-sensitive application. Furthermore, these protocols do not consider the capacity constraint or other

QoS requirements in the network. To support QoS on the Internet, other techniques have also been proposed,

such as the Resource Reservation Protocol (RSVP) which aims to provide resource reservations for both

unicast and multicast data flows (Braden et al., 1997), and the differentiated services architecture (Black et

al., 1998) which provides differentiated quality of services by assigning different priority levels to data

packets as requested by users or applications. For more detailed discussions of multicast routing protocols, the

reader may refer to some surveys in Sahasrabuddhe et al. (2000); Wang and Hou (2000); Striegel and

Manimaran (2002); and Paul and Raghavan (2002b).

Some recent multicast routing protocols for supporting QoS requirements have been proposed (e.g.

Faloutsos et al., 1998; Chen et al., 2000; Chen and Shavitt, 2004). These QoS multicast routing protocols

normally reply on simple unicast routing algorithms to iteratively grow a search tree by selecting the shortest

paths which connect each new member to an on-tree node in terms of one particular QoS requirement.

However, these shortest paths may not be the best choice for the other QoS requirements. As previously

mentioned, the real-time multimedia applications on the Internet involve group users and demand different

QoS requirements. Thus, multicast routing protocols need more intelligent and effective routing algorithms to

support diverse QoS requirements in real world applications. To support QoS multicast routing on the Internet,

the component for constructing multicast trees in a multicast routing protocol plays an important role. As a

Chapter 1 Introduction

 21

result, many multicast routing algorithms, which can be used as a component in the protocol to support

multicast routing, have been proposed in the literature. A well designed multicast routing algorithm in a

multicast routing protocol can greatly improve the performance of the multicast routing protocol. This thesis

focuses on designing efficient and effective QoS multicast routing algorithms that optimise the network

resource utilisation and provide adequate QoS guarantees for end users.

1.1.4 Motivations

The multicast routing problem without QoS constraints, i.e. the unconstrained multicast routing problem, is

equivalent to the Minimum Steiner Tree Problem in Graphs (MStTG) (Hwang and Richards, 1992). The

MStTG problem aims to search for a minimum cost Steiner tree spanning a subset of nodes in the graph.

The MStTG problem is a well know NP-complete problem (Garey and Johnson, 1979) and has been widely

studied for decades, while it still presents a great research challenge. Many real-time multimedia applications

require the underlying computer network to provide QoS multicast communication which satisfies certain

QoS requirements. The QoS multicast routing problem is subject to several QoS constraints, and can be

seen as the constrained MStTG problem. The QoS multicast routing problem is thus also NP-complete

problem, in which more QoS constraints need to be considered in addition to finding a minimum cost

multicast tree. This can also be proven by the fact that the complexity of finding a path subject to two or

more independent metrics in any possible combination is NP-complete (Wang and Crowcroft, 1996; Chen

and Nahrestedt, 1998). The QoS multicast routing problem is mainly considered as a single-objective

optimisation problem subject to some QoS constraints in the literature. In recent research, another more

challenging QoS multicast routing problem which optimises multiple objectives in real world applications,

namely the multi-objective multicast routing problem, has emerged (Fabregat et al., 2005).

The importance and challenge of the QoS multicast routing problem have led to increased research

interest from the scientific community. As a result, various optimisation algorithms, such as exact methods,

heuristics, and metaheuristics, have been proposed for solving QoS multicast routing problems since the

1990s. As pointed out by Salama et al. (1997), most of the early heuristic algorithms are based on the

deterministic procedure, and are either computationally expensive or inefficient in tackling the multicast

routing problems. In recent research, the majority of state-of-the-art algorithms for multicast routing

Chapter 1 Introduction

 22

problems are based on metaheuristics including simulated annealing, genetic algorithm, tabu search, greedy

randomized adaptive search algorithms (GRASP) and path relinking, etc.

The research in this thesis focuses on applications of metaheuristic approaches for solving QoS

multicast routing problems in computer networks. Metaheuristics are general high-level frameworks that

coordinate simple heuristics and rules to find good approximate solutions to computationally difficult

optimisation problems. They are among the most effective solution strategies for solving optimisation

problems in practice and have been applied to a very wide variety of problems in telecommunications,

computer communications, and network design and routing (Martins et al., 2004; Ribeiro et al., 2007).

Despite the increasing research attention of metaheuristics which deal with many real-world complex

optimisation problems, the investigation of metaheuristics for QoS multicast routing problems has not been

fully explored. Some recent metaheuristics, such as variable neighbourhood search, scatter search and

jumping particle swarm optimisation have not been applied for variants of the problem. The motivation of

the work in this thesis is to investigate the recent and hybrid metaheuristic methods for QoS multicast

routing problems and to evaluate the proposed metaheuristic algorithms by simulation experiments. In

addition, although the theoretical analysis of fitness landscape has been shown to be useful for observing

the behaviour of search algorithms and thus can help in predicting their performance (Wright, 1932), few

research efforts have been made to analyse the underlying landscape features of the multicast routing

problem. The lack of the theoretical analysis of the landscapes for the multicast routing problem motivates

the fitness landscape analysis of the problem within this thesis. Furthermore, this thesis has designed and

evaluated some hybridized metaheuristic approaches for the more complicated multi-objective multicast

routing problem.

1.2 Issues and Aims

1.2.1 Issues Related to QoS Multicast Routing

To provide QoS to multicast routing is a difficult task due to a number of issues. First, numerous real-time

multimedia applications have diverse QoS requirements such as the cost, bandwidth, delay, delay jitter, and

packet loss ratio. Multiple constraints often make the multicast routing problem intractable. Second, many

Chapter 1 Introduction

 23

practical issues (e.g. state information collection and update, handling network dynamics and multicast

group changes, tree maintenance and scalability) have to be taken into consideration when integrating a

multicast routing algorithm into a multicast routing protocol (Wang and Hou, 2000).

There are several ways of classifying QoS multicast routing problems, depending on the considered

QoS requirements, there are different classes of QoS multicast routing problems (Wang and Hou, 2000).

For example, one well studied multicast routing problem is the delay constrained least cost multicast routing

problem, where the objective is to minimise the total cost of the multicast tree while satisfying the end-to-end

delay constraint from the source to each destination. One interesting version of the multicast routing problem

is to construct a minimum cost multicast tree where the degree of each node is constrained. The degree of a

node is the number of links which connect the node and are included in the tree. This is particularly useful in

high speed networks, where the speed requirement can tolerate a bounded number of copies of the received

information at each node. Some multicast routing problems concern multiple QoS requirements

simultaneously. An example of such problems as these is to build a minimum cost tree while satisfying

several QoS requirements including the end-to-end delay, delay jitter and bandwidth.

According to the state of the multicast group, i.e. the group of destination nodes, multicast routing

problems can also be divided into two categories: the static (off-line) multicast routing problem, if the

multicast group remains unchanged, and the dynamic (on-line) multicast routing problem with the members

joining or leaving the multicast group at any time. In the static multicast routing problem, members in the

multicast group remain unchanged, while in the dynamic multicast routing problem, nodes can leave or join in

the multicast group during the multicast session. Clearly the multicast routing problem with the dynamic

multicast group is more complicated due to the uncertainty of which nodes can be added or removed; another

difficulty of the dynamic multicast routing problem is how to maintain and rearrange the multicast tree after

the changes in the multicast group. This thesis focuses, however, on the static multicast routing problem. The

reason is that research on the static multicast routing problem can be seen as a basis for more advanced

research on the dynamic multicast routing problem. The algorithms proposed for solving the static multicast

routing problem in the thesis can be extended and adopted for solving the dynamic multicast routing problem

in the future.

Chapter 1 Introduction

 24

A further classification of multicast routing problems is in terms of the number of multicast trees to be

constructed in the problem. For simplicity, many algorithms in the literature consider one multicast tree at a

time; however, in reality there may be more than one multicast group concurrently. A complicated multicast

routing problem therefore arises, namely the group multicast routing problem. This type of multicast routing

problem is actually a scheduling problem, where a group of multicast routing requests needs to be organized

at the same time. In this case, the network resource must be shared according to the requirements of multiple

multicast groups.

1.2.2 Two Case Studies

The focus of this thesis is the applications of metaheuristic methods to the QoS multicast routing problem.

Two types of QoS multicast routing problems have been chosen as the case studies in this thesis: one is the

Delay-Constrained Least-Cost (DCLC) multicast routing problem, a widely studied single-objective

multicast routing in the literature; the other is a multi-objective multicast routing problem with multiple

objectives to be optimised simultaneously.

The DCLC multicast routing problem concerns the two commonest and most important QoS

requirements in real time applications: to minimise the total cost of the multicast tree while satisfying the

end-to-end delay bound. The cost of a multicast tree is defined as the total cost of all the links included in

the tree. The end-to-end delay is the total delay of the links along the path from the source to each

destination in the multicast group. The DCLC multicast routing problem can be reduced to the

Delay-Constrained Steiner Tree (DCST) problem, which is known to be NP-complete (Guo and Matta,

1999). The DCLC multicast routing problem thus demands effective and efficient intelligent algorithms.

At the early stage of research in the literature, the multicast routing problems are mainly defined and

solved as a single-objective optimisation problem subject to some QoS constraints. When different

conflicting objectives and realistic constraints are considered simultaneously, the multicast routing

problems can be formulated as more complicated multi-objective optimisation problems. With the recent

developments in multi-objective research, multi-objective optimisation algorithms have been investigated

for multicast routing problems (Roy et al., 2002; Cui et al., 2003; Roy and Das, 2004; Crichigno and Baran,

2004a; Crichigno and Baran, 2004b; Koyama et al., 2004; Diego and Baran, 2005; Fabregat et al., 2005; Li

Chapter 1 Introduction

 25

et al., 2007; and Rai et al., 2010). In this thesis, a multi-objective multicast routing problem that

simultaneously minimises five real world objectives, including the total tree cost, the maximal end-to-end

delay, the delay jitter, the average delay and the link utilisation of the constructed multicast tree, has been

selected as another case study.

1.2.3 Aims

With the rapid emergence of multimedia applications, QoS multicast routing is a key requirement of the

underlying networks that support such applications. Due to the complexity and challenge of various QoS

multicast routing in real world applications, multicast routing problems have attracted significant research

attention in the area of computer networks and algorithmic network theory (Salama et al., 1997; Diot et al.,

1997; Yeo et al., 2004; Oliveira and Pardalos, 2005; and Masip-Bruin et al., 2006) since the 1990s. As a

result, many algorithms have been proposed for solving variants of QoS multicast routing problems in the

past two decades.

Overall, the aim of this research is to investigate effective and efficient metaheuristic approaches for

solving the two types of multicast routing problems. In addition, the fitness landscape of the DCLC

multicast routing problem has been analysed for the first time to provide the theoretical foundations of the

landscape characteristics on the multicast routing problem. Specifically, the thesis aims to:

1. Identify important issues of various QoS multicast routing problems in computer communication

networks.

2. Investigate new metaheuristic approaches for solving the DCLC multicast routing problem.

3. Analyse the fitness landscape of the DCLC multicast routing problem.

4. Design novel hybridized metaheuristic algorithms for solving the multi-objective multicast

routing problem.

5. Evaluate and compare the respective performance of the proposed metaheuristic algorithms on

the two cases of multicast routing problems by intensive experiments on some benchmark

problems and random networks.

Chapter 1 Introduction

 26

1.3 Overview of the Thesis

The thesis is organized as follows: Chapter 2 overviews some mostly studied metaheuristic methods that have

been adapted for solving a wide range of optimisation problems in the field of operational research. The

principles associated with these metaheuristics are discussed. Brief overviews of metaheuristics for both

combinatorial and multi-objective optimisation problems are also presented in this chapter. Chapter 3

introduces various QoS multicast routing problems in the applications of computer communication networks.

As case studies in this thesis, two QoS multicast routing problems, the DCLC multicast routing problem and

the multi-objective multicast routing problem, have been formally defined and the related work has been

reviewed. Chapter 4 presents the proposed metaheuristic approaches for the DCLC multicast routing problem.

Four new metaheuristic algorithms, including a variable neighbourhood descent search, a GRASP algorithm,

a jumping particle swarm optimisation and a scatter search algorithm, have been implemented and

investigated for solving the DCLC multicast routing problem. The large amount of experimental results has

demonstrated the performance of the proposed algorithms on a set of benchmark instances and a group of

random networks compared with other algorithms and heuristics in the literature. Chapter 5 analyses the

fitness landscape of the DCLC multicast routing problem for the first time. Two fitness landscape analysis

methods, the fitness distance analysis and auto-correlation analysis, have been applied to analyse the

landscape of the problem. Experimental study has been carried out on a set of benchmark instances and the

landscape features of the problem have been discussed in this chapter. Chapter 6 specifically studies two novel

hybridized metaheuristic frameworks for the multi-objective multicast routing problem. An evolutionary

multi-objective simulated annealing algorithm with variable neighbourhoods has been proposed and

investigated on some benchmark networks as well as on some random networks. The advantages of the

proposed hybridized algorithm have been discussed in comparison with two conventional evolutionary

algorithms. Furthermore, a simulated annealing based genetic local search algorithm has also been designed

and investigated for the multi-objective multicast routing problem. Experimental results show that simulated

annealing based strategies integrated in the genetic local search algorithm contribute to better solutions for the

multi-objective multicast routing problem compared with other algorithms in the literature. Finally, Chapter 7

Chapter 1 Introduction

 27

concludes the thesis, summarizing the contributions on both the DCLC multicast routing problem and the

multi-objective multicast routing problem, and presenting the directions for future research.

Chapter 2 The Optimisation Technique: Metaheuristics

 28

CHAPTER 2. The Optimisation Technique: Metaheuristics

2.1 Introduction

The emergence of metaheuristics for solving complex optimisation problems is an important achievement

of the past 25 years in the area of operational research. This chapter firstly introduces some main concepts

and definitions related to metaheuristics. Next, the principles of some most popular metaheuristic methods

in the literature, including simulated annealing (SA), tabu search (TS), variable neighbourhood search

(VNS), greedy randomized adaptive search procedure (GRASP), genetic algorithm (GA), scatter search

(SS), particle swarm intelligence (PSO), path relinking (PR), and Ant Conoly Optimisation (ACO) are

presented. Finally, the chapter briefly reviews the applications of metaheuristics in both the combinatorial

optimisation and the multi-objective optimisation problems.

2.2 Basic Concepts and Definitions

Due to the effectiveness and efficiency of metaheuristics to deliver near-optimal solutions for complex

optimisation problems such as the combinatorial optimisation problems and the multi-objective optimisation

problems, the study and development of metaheuristics have become an important research area in

operational research. The following subsections will go through a number of fundamental concepts and

definitions used throughout the thesis.

2.2.1 Combinatorial Optimisation

Combinatorial optimisation problems (Papadimitriou and Steiglitz, 1982; Cook et al., 1998) refer to a set of

problems with discrete variables to be optimised that include many different types of problems, such as the

travelling salesman problem, the quadratic assignment problem, timetabling, scheduling, planning, resource

allocation, decision making and routing.

A Combinatorial Optimisation Problem P=(S, f) can be defined as (Blum and Roli, 2003):

 ·a set of variables X={ x1,…, xn };

Chapter 2 The Optimisation Technique: Metaheuristics

 29

 ·variable domains D1,…, Dn;

 ·constraints among variables;

 ·an objective function f, where f : D1×…×Dn→ℜ ;

 The set of all possible feasible solutions is

 S = {s = {(x1, v1) ,…, (xn, vn)}| vi∈Di, s satisfies all the constraints}.

S is usually called a search (or solution) space which includes all the candidate solutions for the problem.

Assuming a minimisation problem is considered, to solve the combinatorial optimisation problem, one has

to find a solution s*∈S with minimum objective function value, i.e. f(s*) ≤ f(s), ∀s∈S. s* is called the

globally optimal solution of problem P=(S, f).

In complexity theory, problems are usually classified into two types: P and NP. The problem class P

(standing for polynomial) is the set of problems that can be solved by a deterministic algorithm in

polynomial time, while the problem is NP (standing for nondeterministic polynomial) means that the

problem can be solved in polynomial time by a nondeterministic algorithm. Assuming that P≠NP,

NP-complete (Garey and Johnson, 1979) problems are considered to be the hardest problems in NP because

finding a polynomial time algorithm for the problems in NP-complete is unlikely. For combinatorial

optimisation problems that are NP-complete with no polynomial time algorithm exists, solving them is

difficult because it requires exponential computation time. Because of this, exact methods (e.g. linear

programming, dynamic programming, branch and bound and Lagrangian relaxation) can be

computationally expensive and impractical especially for problems with a large solution space. In such

circumstances, approximation approaches, such as heuristics and metaheuristics, are able to deliver

near-optimal solutions in a significantly reduced amount of time for combinatorial optimisation problems,

which makes them extremely important methods in the area of operational research.

2.2.2 Multi-objective Optimisation

Multi-objective optimisation has become an important and challenging research topic due to the

requirement of simultaneous optimisation of several conflicting objectives in many real world optimisation

problems. It consists of finding a set of alternative solutions where multiple objectives are optimised at the

Chapter 2 The Optimisation Technique: Metaheuristics

 30

same time while satisfying all the constraints (Ulungu and Teghem, 1994; Deb, 2005). A general

multi-objective optimisation problem with m objectives and r restrictions can be defined as follows:

Optimise F(x) = (f1(x), f2(x), …, fm(x)) (2.1)

s.t. e(x) = (e1(x), e2(x), …, er(x))

where x∈X is a vector of decision variables (a solution), X denotes the decision space of the set of feasible

regions of the solution space; F(x) is the image of x in the m-objective space given by the vector of

m-objective functions fi(x), i∈{1, …, m}. The set of restrictions e(x) determines the set of feasible

solutions. In general, there is no unique optimal solution but a set of solutions, none of which can be seen

as superior to the others when all the objectives are taken into account. If X consists of a discrete set of

solutions, then the problem defined in Eq. (2.1) is called a multi-objective combinatorial optimisation

problem.

Without loss of generality, assuming in a minimisation context, for any two decision vectors u, v∈X, u

is said to dominate v, denoted by u ; v, iff fi(u) ≤ fi(v) for all i∈{1, …, m} and there exists at least one

objective j∈{1, …, m} satisfying fj(u) < fj(v). A solution x* is said to be Pareto-optimal if no solution in X

dominates x*. The set of all Pareto-optimal solutions in X is called the Pareto-optimal set. Correspondingly,

the objective vectors of all solutions in the Pareto-optimal set in X is called the Pareto-optimal front (PF).

2.2.3 Heuristics

As defined by Reeves in (Reeves, 1996),

“A heuristic technique (or simple heuristic) is a method which seeks good (i.e. near optimal) solutions

at a reasonable computation cost without being able to guarantee optimality, and possibly not

feasibility. Unfortunately, it may not even be possible to state how close to optimality a particular

heuristic solution is ”.

A heuristic can therefore be used to find good-quality solutions to optimisation problems quickly, without

necessarily providing any guarantee of solution optimality. Heuristics are often specific to the problem, so a

heuristic which works for one problem might not be used to solve another. One simple example is hill

Chapter 2 The Optimisation Technique: Metaheuristics

 31

climbing, which is a basic local search heuristic. Local search heuristic explores the search space, i.e. the

set of all solutions for a problem, by defining a neighbourhood of the current solution. For a search space S,

a set of neighbours of the current solution s∈S is given by a function N(s), where N represents a

neighbourhood structure, and N(s)⊆ S is called the neighbourhood of s. A hill climbing method starts from

an initial solution and keeps moving to a neighbour solution if and only if the neighbour solution is better

than the current solution with respect to the objective function, until a stopping criterion is met. The

drawback of hill climbing is that it is easy to get trapped in a local optimum. A local optimum with respect

to a neighbourhood structure N for a minimisation problem is a solution ŝ such that ∀ s∈N(ŝ): f(ŝ)≤ f(s),

where f is the objective function of the problem.

2.2.4 Metaheuristics

To prevent simple heuristics from getting trapped in local optima, a new kind of advanced heuristic

approaches by combining basic heuristics in higher level frameworks has emerged in the area of

operational research. These approaches are nowadays called metaheuristics. The term metaheuristic was

firstly coined by Glover (1986), which combines two Greek words. The prefix meta means “beyond, in a

higher level”, the meaning of heuristic is “to find”, derived from the verb heuriskein. There are different

definitions of metaheuristic in the literature, for example:

“A metaheuristic is formally defined as an iterative generation process which guides a subordinate

heuristic by combining intelligently different concepts for exploring and exploiting the search space,

learning strategies are used to structure information in order to find efficiently near-optimal solution.”

(Osman and Kelly, 1996)

 “A metaheuristic is an iterative master process that guides and modifies the operations of subordinate

heuristics to efficiently produce high-quality solutions. It may manipulate a complete (or incompelete)

single solution or a collection of solutions at each iteration. The subordinate heuristics may be high (or

low) level procedures, or a simple local search, or just a construction method .” (Voß et al., 1999)

Metaheuristics represent a family of generic search strategies that can be adapted for solving various

combinatorial optimisation problems (Martins et al., 2004). As a general high-level framework that

specifies simple heuristics, a metaheuristic provides a method to tackle different types of complex problems

Chapter 2 The Optimisation Technique: Metaheuristics

 32

with relatively few modifications. Metaheuristics overcome the shortcoming of heuristics that are normally

used in optimisation as a means of solving specific problems.

2.3 Overview of Metaheuristics

Despite the recent advances in the performance of mathematical programming algorithms, however, exact

methods can solve only small instances in acceptable computational time for many complex optimisation

problems. Approximate approaches based on metaheuristics are effective and flexible for delivering

near-optimal solutions to complex problems, thus metaheuristics become important tools in the area of

operational research. The last two decades have witnessed numerous applications of metaheuristics for both

combinatorial optimisation problems and multi-objective optimisation problems, a brief overview of which

is presented in the following subsections.

2.3.1 Metaheuristics in Combinatorial Optimisation

Metaheuristics have been intensively investigated and widely applied to many real world applications,

including scheduling, production planning, resource assignment, supply chain management, decision

support systems and bio informatics (Osman and Kelly, 1996; Glover and Kochenberger, 2003; Gendreau

and Potvin, 2005; Ribeiro et al., 2007; and Blum et al., 2008).

Blum and Roli present an overview of metaheuristics for the applications to combinatorial optimisation

problems (Blum and Roli, 2003). According to their classifications, metaheuristics can be classified in

different ways. One commonly used classification distinguishes between how many solutions that are used

at a time: single solution-based metaheuristics such as hill-climbing, simulated annealing and tabu search,

or population-based metaheuristics such as genetic algorithm, ant colony optimisation, scatter search and

particle swarm intelligence. They outline the different components and principles that are used in some

important metaheuristics and compare these metaheuristics based on two main concepts: intensification and

diversification, which guide the search in the metaheuristic methods. Comparing advantages and

disadvantages of different metaheuristics, they point out the importance of mixing and hybridization of

metaheuristics for optimisation.

Chapter 2 The Optimisation Technique: Metaheuristics

 33

Gendreau and Potvin provide a survey of metaheursitics and related applications to combinatorial

optimisation (Gendreau and Potvin, 2005). A number of well-known metaheuristics are introduced and

divided into two categories: single-solution metaheuristics (including GRASP, simulated annealing, tabu

search and variable neighbourhood search) and population metaheuristics (including ant colony

optimisation, evolutionary algorithms and scatter search). A unifying framework with some algorithmic

components is illustrated to provide a general view of metaheuristics. A review of applications of

metaheuristics is also presented for vehicle routing and scheduling problems. Finally, some most recent

developments in the field of metaheuristics are discussed.

Ribeiro et al. provide a valuable summary of metaheuristics for optimisation problem in computer

communications, telecommunications, network design and routing (Ribeiro et al., 2007). The summary

reviews the principles associated with some of the main metaheuristics (e.g. simulated annealing, tabu

search, GRASP, variable neighbourhood search, genetic algorithms, particle swarm optimisation and path

relinking), and gives the templates for basic implementations of these metaheuristics.

Blum et al. present an overview of the recent developments of hybrid metaheuristics for optimisation

problems (Blum et al., 2008). Some examples of the combinations of metaheuristics with other classic

optimisation techniques, such as linear programming, dynamic programming or branch and bound, for

different complex combinatorial optimisation problems are discussed in the book. These hybrid

metaheuristic approaches demonstrate that they can provide more efficient and higher quality solutions for

combinatorial optimisation problems because the hybridization can combine the advantages of different

optimisation techniques and thus complement the strengths of one another.

More information about metaheuristics is detailed by Glover and Kochenberger (2003) and Resende and

de Sousa (2004). In the following subsections, some popular metaheuristic methods which have been

widely used in many applications of combinatorial optimisation problems will be outlined in turn.

2.3.1.1 Single Solution based Metaheuristics

1) Simulated Annealing (SA)

The concept of simulated annealing in combinatorial optimisation was introduced by Kirkpatrick et al.

(1983), based on an analogy between the physical annealing process of solids and the problem of solving

Chapter 2 The Optimisation Technique: Metaheuristics

 34

combinatorial optimisation problems. Annealing is known as a thermal process, where a solid is melted by

increasing its temperature and then followed by a progressive temperature decrease aimed at recovering a

solid state of lower energy. For a combinatorial optimisation problem, a solution corresponds to a state of

the physical system and the solution cost to the energy of a state.

The procedure of SA metaheuristic is guided by the cooling schedule which starts from a high

temperature, i.e. the initial temperature, and repeatedly reduces the temperature until the temperature

arrives at the final temperature or a certain stopping criterion is satisfied. In each iteration, a neighbourhood

solution is obtained by randomly choosing a move of the current solution. If the neighbouring solution is

better, it is accepted automatically. Otherwise, the non-improving neighbouring solution is accepted with a

probability given by the Metropolis criterion, where the probability of acceptance depends on the current

temperature and the difference between the fitness of the neighbouring solution and the current solution.

SA thus has the ability in this process of escaping from local optima by visiting worse neighbours, which

makes it a very effective metaheuristic when exploring the search space of complex combinatorial

optimisation problems.

Owing to its simplicity of implementation and effectiveness in many problems, in practice, SA has been

applied to solve a variety of combinatorial optimisation problems, including graph colouring, route

planning, scheduling and timetabling (Thompson and Dowsland, 1998; Liu, 1999; and Bouleimen and

Lecocq, 2003). More detailed implementations and developments of SA are discussed in Aarts and Ten

Eikelder (2002); Hederson et al. (2003) and Suman and Kumar (2006). The disadvantage of SA is that its

convergence speed and quality of solutions rely on the choices of several parameters such as the initial

temperature, the temperature decrement and the stopping criterion in the cooling schedule, which need to

be tuned for different problems.

2) Tabu Search (TS)

Tabu search was proposed by Glover (1986). The principle of TS is to make use of a short-term memory,

called the tabu list, to drive the search by escaping from local optima and avoiding cycling (Glover, 1997).

The tabu list stores the forbidden neighbours which are a set of previously visited solutions (or attributes of

recently visited solutions), so as to prevent the search from trapping in local optima. Different from hill

climbing or other simple local search procedures, TS is deterministic where, at each iteration, the best

Chapter 2 The Optimisation Technique: Metaheuristics

 35

non-forbidden neighbourhood solution of the current solution is selected, even if it leads to a worse solution

with respect to the objective function. TS is thus able to escape from the local optima. The search

procedure stops after a fixed number of iterations or a maximum number of continuous iterations without

improvements to the best known solution.

Besides the short-term memory, some long-term memories have also been used for the purpose of

providing intensification or diversification in the algorithm. For example, a frequency memory can be used

to count how often certain attributes are found in previously visited solutions. Neighbourhood solutions

which contain attributes with high frequency counts can then be penalized to allow the search to visit other

regions of the search space. The diversification of search is then realised.

TS is effective in providing solutions very close to the optimal solution. It has been widely applied to

various complex combinatorial optimisation problems in many domains (Skorin-Kapov, 1990; Gendreau et

al., 1994; Glover and Laguna, 1997; and Gaspero and Schaerf, 2001). Detailed descriptions and recent

developments of TS can be found in Glover and Laguna (2002), in Gendreau (2002) and in Gaspero and

Schaerf (2007). However, in order to achieve good performance, the implementations of TS algorithms

often need to appropriately tune parameters such as the size of tabu list and the stopping criterion.

3) Variable Neighbourhood Search (VNS)

Variable neighbourhood search, jointly invented in the mid 1990s by Mladenović and Hansen (1997), is an

efficient metaheuristic for solving combinatorial optimisation problems. The basic idea is to systematically

change the employment of different neighbourhoods within a local search. This makes the search more

flexible to explore the solution space of the problem, and potentially leads to better solutions which are

difficult to obtain by using standard single neighbourhood based local search algorithms (Jari et al., 2007;

Burke et al., 2008). A basic VNS works as follows. An initial solution is generated as the current solution,

and then the algorithm exploits a set of predefined neighbourhoods around the current solution in the search

space. A solution is selected at random in the first neighbourhood of the current solution. If its fitness value

is better than the current solution, the algorithm moves to that solution and continue the search with the first

neighbourhood. Otherwise, the search proceeds to the next neighbourhood. The search stops when a

stopping condition is satisfied. A widely used variant of VNS is the deterministic variable neighbourhood

Chapter 2 The Optimisation Technique: Metaheuristics

 36

descent (VND) search where the best neighbouring solution, instead of a random one, of the current

solution is selected in each neighbourhood structure, and no local search method is applied after each

neighbourhood.

The basic principles of VNS are easy to apply and reply on few parameters: the stopping criterion and

the number of neighbourhoods. Recently, some hybrids of VNS with other metaheuristics, such as TS or

GRASP, have been reported (Martins et al., 2000; Hansen and Mladenović, 2003). Detailed description and

applications of VNS can be found in Hansen and Mladenović (2003).

4) Greedy Randomized Adaptive Search Procedure (GRASP)

Greedy Randomized Adaptive Search Procedure (Feo and Resende, 1995) is a multi-start metaheuristic

used in a wide variety of combinatorial optimisation problems. Each GRASP iteration consists of two

phases: a construction phase which creates a feasible initial solution and a local search phase which

explores the neighbourhood of the initial solution. The construction phase builds the feasible solution in a

greedy randomized manner by iteratively creating a candidate list of elements, called the restricted

candidate list (RCL). The quality of each element in RCL is evaluated by a certain greedy function. The

size of RCL is limited either by the number of the elements or by the quality of the elements with respect to

the best candidate element. At each step, an element is randomly selected from RCL and added in the

unfinished solution until a feasible solution is obtained. Through the randomized manner, the best current

element is not necessarily chosen when constructing the initial solution; the construction phase in GRASP

thus makes the search diversified. After the construction phase, a local search phase is applied to improve

the current solution with better neighbouring solutions until a local optimum is found, which intensifies the

search. After applying a given number of iterations, the best overall solution is output as the final result.

GRASP is easy to implement with few parameters needing to be set and tuned, such as the maximum

number of iterations and the size of RCL in the construction phase.

GRASP is a very effective metaheuristic and has been applied to a wide range of combinatorial

optimisation problems including the vehicle routing problem (Kontoravdis and Bard, 1995); the graph

planarization problem (Resende and Ribeiro, 1997); the traffic assignment (Prais and Ribeiro, 2000); the

job shop scheduling problem (Binato et al., 2001); and the minimum spanning tree problem (Souza et al.,

2003). Recently, some advanced GRASP algorithms hybridised with other methods have been proposed.

Chapter 2 The Optimisation Technique: Metaheuristics

 37

For example, in Höller et al. (2008), the pilot method is incorporated in a VNS and a GRASP approach for

the design of SDH/WDM networks. The pilot method is a tempered greedy method by performing

repetition, which intends to record the best result before arriving at a promising solution. It may be seen as

an intelligent technique to look ahead to possible choices after certain iterations have been applied to

support the final decision of respective options; applications of pilot methods can be found in Bertsekas et

al. (1997); Duin and Voß (1999); and Höller et al. (2008). In the two hybrid algorithms, one pilot method is

applied to decide the ordering of the neighbourhood structures explored in VNS; another pilot method is

invoked subsequently to the standard GRASP to find better solutions by redirecting transit traffic in the

networks. Both hybridised algorithms combined with the pilot methods have shown to obtain better

solutions, while the computational time has been considerably increased. See Resende and Ribeiro (2005);

Festa and Resende (2008); and Festa and Resende (2009) for extensive surveys of recent advances and

applications of GRASP metaheuristics.

2.3.1.2 Population based Metaheuristics

1) Genetic Algorithm (GA)

Genetic algorithm was first proposed by Fraser (1957). It is a population-based evolutionary algorithm

motivated by the evolution and adaptation of species to the environment, based on the Darwinian principle

of natural selection. A population of solutions evolves from one generation to the next through a series of

operators, i.e. selection, crossover and mutation, to generate new solutions. A solution in the population

needs to be encoded as a chromosome (e.g. a bit or integer string). An objective function is defined to

evaluate the quality of each solution. The selection method chooses good quality solutions in the population

as the parents. The idea behind selection methods is to prefer better solutions to worse ones, and many

selection methods have been used to accomplish this idea, such as roulette-wheel selection, tournament

selection and ranking selection, etc. The crossover operator takes the selected parents and combines them to

generate one or two offspring solutions. The role of crossover is to inherit some desirable features from

parents to the next generation. Before updating the old population, the mutation operation is applied to each

offspring by some random perturbations with certain probability in order to introduce some new traits

which are not presented in the current parent solutions. This evolutional process is repeated for a given

Chapter 2 The Optimisation Technique: Metaheuristics

 38

number of generations, and the best solution found is returned as the final solution. The distinctive feature

of genetic algorithms is that it can explore a population of solutions and create new offspring solutions

through the combination of good attributes of two parent solutions. A good introduction about genetic

algorithms can be found in Holland (1975).

GAs have been successfully applied to many combinatorial optimisation problems (Holland, 1992;

Reeves, 2003; and Buriol et al., 2005). Based on the standard framework outlined above, hybridization can

be an extremely effective way to improving the performance and effectiveness of GAs. One common form

of hybridization is to apply a local search operator as an intensification strategy in GA to improve the

offspring solution until a local optimum is reached. The combination of GA and local search is known as

the memetic algorithm. A good introduction to memetic algorithms can be found in Moscato and Cotta

(2003). Refer to Hart et al. (2003); Krasnogor et al. (2004); and Krasnogor and Smith (2005) for recent

advances in the theory and applications of memetic algorithms.

2) Scatter Search (SS)

Scatter search (SS) (Glover, 1998; Glover et al., 2000; and Glover et al., 2003) is a population-based

metaheuristic. The basic procedure of SS starts with producing a large set of diverse solutions by a

diversification generation method. An initial reference set of solutions is then selected from the diverse

solution set, where all solutions in the reference set are ordered according to the quality. Scatter search

repeatedly operates on a subset of the reference set to generate new solutions by combining elements of

solutions selected from the subset using a solution combination method. The aim of scatter search is to

derive new solutions from combined solutions in order to yield better solutions. An improvement method

may be applied upon the new solution to further improve its quality. If the newly-created solution is better

than the worst solution currently in the reference set, the new solution replaces the worst solution and the

reference set is reordered. The reference set is thus updated to constitute elite solutions obtained from the

previous search. This procedure is repeated until no better solutions can be generated from the reference set

anymore.

The basic design of SS is very flexible, since each component in SS can be implemented in different

ways. Recent research has shown that SS is effective in yielding promising outcomes for solving a wide

variety of combinatorial optimisation problems. Examples include quadratic assignment (Cung et al., 1997),

Chapter 2 The Optimisation Technique: Metaheuristics

 39

graph coloring (Hamiez and Hao, 2002), arc routing (Greistorfer, 2003), and nurse rostering (Maenhout and

Vanhoucke, 2006; and Burke et al., 2010). More detailed descriptions and different improvements of SS

metaheuristic can be found in Laguna (2002); Greistorfer (2003); and Glover et al., (2006).

3) Path Relinking (PR)

Path relinking was originally proposed by Glover (1996). It is an evolutionary method which generates new

solutions by exploring trajectories that connect elite solutions in the search space. A typical path relinking

procedure starts from creating a reference set of diverse initial solutions. At each step, a pair of solutions

(the initiating solution and guiding solution) is chosen from the reference set. Starting from the initiating

solution, a path relinking process generates a path in the neighbourhood space leading toward the guiding

solution, and better solutions may be obtained by exploring the path connecting the two solutions. A

neighbourhood structure is applied to generate moves, i.e. neighbourhood solutions, along the path. The

main goal of path relinking is to introduce attributes that are presented in the elite guiding solution to the

intermediate solutions so that better solutions may be generated.

Path relinking has been suggested as an approach to integrate intensification and diversification

strategies (Glover et al., 2000). In the literature, most recent implementations of path relinking have been

considered and proposed in conjunction with many other metaheuristic algorithms, such as GRASP, SS, or

TS (Laguna and Martí, 1999; Glover et al., 2006; Bastos and Ribeiro, 2001; and Resende and Ribeiro,

2005).

4) Particle Swarm Optimisation (PSO)

Particle swarm optimisation proposed by Kennedy and Eberhart (1995) is a bio-inspired population-based

metaheuristic based on swarm intelligence. It is inspired by the behaviour of swarms of fishes or flocks of

birds to find a good food place. A PSO algorithm maintains a population of particles (the swarm), where

each particle represents a location (solution) in a search space. The particles start at random locations and

search for the minimum (or maximum) which are evaluated according to a given objective function by

moving in a multi-dimensional continuous space (search space). The movements of a particle depend on its

velocity and the good locations have been found by the particle itself or other particles in the swarm. In

Chapter 2 The Optimisation Technique: Metaheuristics

 40

such a way, particles can interact by sharing information about their positions both locally and globally.

The coordination of movements of the particles in the swarm is the appealing aspect of PSO.

The original PSO was designed for continuous optimisation problems. A variant called Discrete Particle

Swarm Optimisation (DPSO) has been designed by Kennedy and Eberhart (1997). In DPSO, particles no

longer move in a multi-dimensional continuous space, since a discrete exploration of search space is more

appropriate for solving combinatorial optimisation problems. For example, a recent DPSO algorithm

named Jumping Particle Swarm Optimisation (JPSO) was introduced by Moreno-Pérez et al. (2007) to

solve combinatorial optimisation problems. Later, it was used by Consoli et al. (2008) to tackle the

minimum labelling Steiner tree problem. This approach has also been recently applied to deal with the

vehicle routing problem with time windows (Castro-Gutiérrez et al., 2009).

PSO is relatively easy to understand and to implement. A number of variants exist in the literature and

have been highly successful in dealing with a range of combinatorial optimisation problems, such as job

shop scheduling (Sha and Hsu, 2006), flow shop scheduling problems (Lian et al., 2006; Tasgetiren, 2007),

resource constraint project scheduling (Zhang et al., 2006), the Travelling Salesman Problem (TSP)

(Onwubolu and Clerc, 2004), the Steiner tree problem (Consoli et al., 2008), and the vehicle routing

problem with time windows (Castro-Gutiérrez et al., 2009). More information about developments of PSO

can be found in Kennedy and Eberhart (1995) and at http://www.swarmintelligence.org/.

5) Ant Colony Optimisation (ACO)

Ant Colony Optimisation is a metaheuristic proposed by Dorigo (1992) which simulates the behaviour of a

natural ant colony seeking the shortest path from the nest to a food source in the real world. ACO uses a

colony of artificial ants (agents) that work cooperatively and that communicate through a pheromone trail.

An ant chooses the shortest path to the food source based on the level of pheromone on each available path.

After an ant finishes its tour, it leaves a certain amount of pheromone on the path it travels according to the

distance of that tour. The principle is the shorter the path, the more pheromone is left along the path. Thus,

the more ants pass along a certain path, the higher the level of pheromone is deposited on the path, and so

other ants are more likely to follow this path. ACO is an iterative process where the pheromone trail is

transferred from one iteration to the next. To prevent the pheromone information from influencing the later

iterations for too long, some amount of pheromone evaporates during subsequent updates of the pheromone

Chapter 2 The Optimisation Technique: Metaheuristics

 41

values. The idea of ACO is to allow the ants to find good solutions for a given optimisation problem by

making a sequence of decisions based on a probability proportional to the pheromone trail.

In recent years, ACO has been successfully applied to different types of combinatorial optimisation

problems, including the travelling salesman problem (Stützle and Dorigo, 1999), the vehicle routing

problem (Gambardella et al., 1999), the sequential ordering problem (Gambardella and Dorigo, 2000), the

resource constrained project scheduling problem (Merkle et al., 2002), and the communication network

routing problem (Pinto and Baran, 2005; Huang et al., 2007). For more detailed descriptions of ACO, refer

to Dorigo and Di Caro (1999); Maniezzo and Carbonaro (2002); and Dorigo and Stützle (2003).

2.3.2 Metaheuristics in Multi-objective Optimisation

Many real world applications, such as problems in engineering, finance, and logistics, are recognized to be

multi-objective. There does not exist a single optimal solution but rather a set of solutions which are the

best trade-offs among the objectives, known as the Pareto optimal solutions, for decision-makers to choose.

Over the past two decades, metaheuristics have gained increasing popularity in multi-objective optimisation

due to the flexibility for implementation and the ability to find multiple Pareto-optimal solutions in a single

run. Thus many metaheuristic algorithms, including GA, SA, TS, PSO and ACO, have been investigated to

solve different multi-objective optimisation problems (Ulungu and Teghem, 1994; Ehrgott and Gandibleux,

2000; Jones et al., 2002; Landa-Silva et al., 2004; Gandibleux et al., 2004; Konak et al., 2006; Li et al.,

2007; Li and Landa-Silva, 2008; Liu et al., 2008; Wei et al., 2009; Balram et al., 2010; Liu et al., 2010;

and Martins and Costa, 2010). The majority of research studies in this area have focused on generating a set

of non-dominated Pareto optimal solutions for these complex multi-objective optimisation problems.

2.3.2.1 Multi-objective GA (MOGA)

Due to the population-based nature and the ability to simultaneously search different regions of a solution

space, genetic algorithms (GAs) have become the most popular metaheuristic for solving multi-objective

optimisation problems in the literature. The multi-objective GA extends the generic single-objective GA by

finding a set of non-dominated solutions. Since the first multi-objective GA was proposed by Schaffer

(1985), variations of multi-objective genetic algorithm have been developed, including Niched Pareto

Chapter 2 The Optimisation Technique: Metaheuristics

 42

Genetic Algorithm (NPGA) (Horn et al., 1994); Non-dominated Sorting Genetic Algorithm (NSGA)

(Srinivas and Deb, 1994); Multi-objective Genetic Algorithm (MOGA) (Murata and Ishibuchi, 1995);

Strength Pareto Evolutionary Algorithm (SPEA) (Zitzler and Thiele, 1999); Pareto Evolutionary-based

Selection Algorithm (PESA) (Corne and Knowles, 2000); Dynamic Multi-objective Evolutionary

Algorithm (DMOEA) (Yen and Lu, 2003); and MultiObjective Evolutionary Algorithm based on

Decomposition (MOEA/D) (Zhang and Li, 2007). These multi-objective GAs differ in their fitness

assignment approaches, in diversification strategies, and in maintaining elitism.

Different approaches of assigning fitness value for solutions in the population have been investigated. A

classical approach is the weighted sum approach, where a weight is assigned to each objective function so

that the multi-objective problem is converted to a single objective problem with a scalar objective function.

For the multi-objective problem defined in Section 2.2.2, the weighted sum of a linear combination of

different objectives called the weighted linear utility function can be defined as follows:

Minimise g(ws) (x, λ) = λ1f1(x) + λ2f2(x) + ··· +λmfm(x) (2.2)

where fi(x), i∈{1, …, m} represents the m-objective functions, λ is a weight vector,

∑ =

m

i i1
λ = 1. Each λi ∈[0,1] is associated with one objective function fi(x).

Function (2.2) is also called the weighted scalarising function, which is one of the mostly used scalarising

functions in multi-objective algorithms in the literature (see more details of other scalarising functions in

Miettinen, 1999).

In MOGA (Murata and Ishibuchi, 1995), a weighted sum of multiple objective functions is used to

evaluate solution fitness by generating a random normalized weight vector for each solution during the

search phase at each generation. Another commonly used approach is the Pareto-ranking which utilises the

Pareto dominance to evaluate fitness for solutions. Goldberg (1989) firstly presents the idea to rank the

individual by its degree of non-domination in the population. This has been widely used within GA for

multi-objective optimisation. Individuals that are non-dominated with respect to all other individuals in the

population are ranked 1. For the unranked individuals that are non-dominated with respect to the remaining

individuals are assigned the rank 2, and so on, until all individuals have been ranked. Other Pareto-ranking

approaches include non-domination sorting (Srinivas and Deb, 1994; Deb et al., 2000) and strength Pareto

ranking (Zitzler and Thiele, 1999).

Chapter 2 The Optimisation Technique: Metaheuristics

 43

In order to obtain a set of diverse and uniformly distributed Pareto optimal solutions in the objective

space, i.e. a good approximation to the true Pareto front, several diverse strategies have been developed,

such as fitness sharing (Horn et al., 1994; Murata and Ishibuchi, 1995; and Miller and Shaw, 1996), which

encourage the search in unexplored regions of a Pareto front, and crowding distance (Deb et al., 2000)

which aims at diverse solutions along the Pareto front by measuring population density around a solution.

The maintenance of elitist solutions for multi-objective GA is also important. Multi-objective GA uses

two principal methods to implement elitism: maintaining elitist solutions in the population or storing elitist

solutions in an external population (Jensen, 2003). For example, Zitzler and Thiele (1999) maintain an

external population which stores non-dominated solutions that found during the search. Sarker et al. (2002)

propose a multi-objective GA with a dynamic population size and a pure elitist strategy where only

non-dominated solutions participate to generate the next generation.

Several valuable surveys on multi-objective GA can be found in the literature. A recent overview and

tutorial of GA for multi-objective optimisation, focusing on the issues and components of implementing

multi-objective GA, has been presented by Konak et al. (2006). For further discussions on state-of-the-art

multi-objective GA algorithms, please refer to surveys by Deb (2001); Coello et al. (2002); Konak et al.

(2006); Li et al. (2007); Wei et al. (2009); and Liu et al. (2010).

2.3.2.2 Multi-objective SA (MOSA)

Multi-objective simulated annealing algorithms have been investigated by researchers for solving a range

of multi-objective optimisation problems (Serafini, 1992; Czyzak and Jaszkiewicz, 1998; Ulungu et al.,

1999; Haidine and Lehnert, 2008; Li and Landa-Silva, 2008; and Martins and Costa, 2010). The main

concern of adapting simulated annealing to multi-objective optimisation problems is the acceptance

probability of neighbouring solutions. A good survey of multi-objective simulated annealing algorithms for

solving both single and multi-objective optimisation problems and their performance comparisons is

presented by Suman and Kumar (2006).

The first simulated annealing algorithm for multi-objective problems was proposed by Sefarini (1992).

It is a single-solution based simulated annealing. At each step, the algorithm optimises the weighted

scalarizing function and uses the acceptance probability defined by the weighted scalarizing function to

Chapter 2 The Optimisation Technique: Metaheuristics

 44

determine local search moves. In order to find more non-dominated solutions, the random weight vector of

scalarizing function is adjusted slightly to diversify the search.

Czyzak and Jaszkiewicz (1998) present a population-based MOSA with adaptive search directions. The

algorithm simultaneously optimises multiple weighted scalarizing functions. To diversify the search to the

unexplored regions of the search space, it adaptively tunes the weight vector of each solution during the

search according to the closeness to its neighbourhood solutions.

Ulungu et al. (1999) propose an effective multi-objective simulated annealing algorithm for

bi-objective knapsack problems. In the MOSA algorithm, a number of predefined weight vectors determine

a set of weighted linear utility functions. Each of the functions is optimised sequentially by an independent

SA process. The outcome of the algorithm is a set of non-dominated solutions generated during the

optimisation.

A recent Evolutionary Multi-objective Simulated Annealing (EMOSA) algorithm, developed by Li and

Landa-Silva (2008), has been tested for solving benchmark TSP problems. The EMOSA algorithm

combines the strengths of the SA-based local search and the evolutionary search. In the EMOSA algorithm,

a competitive mechanisim between similar members in the population and a two-phase strategy for

adaptively tuning the search directions, have shown to be effective in comparison with other MOSA

algorithms.

2.3.2.3 Multi-objective TS (MOTS)

Although tabu search has been successfully applied to many single objective problems, it has not been fully

explored for solving multi-objective optimisation problems. As pointed out by Jones et al. (2002), among

metaheuristic algorithms for multi-objective optimisation, only about 6% algorithms apply TS, while the

majority (around 70%) algorithms employ GA, and almost 24% are developed by SA. Gandibleux et al.

(1997) present a multi-objective tabu search algorithm. In the algorithm, the current solution is repeatedly

replaced by a neighbouring solution with the highest value of weighted scalarizing function. The weight

vector is modified periodically so that the search direction is diversified accordingly. Two tabu lists have

been applied: one is used to prevent the algorithm from returning to previously visited solutions and

another is designed for changing the weight vector.

Chapter 2 The Optimisation Technique: Metaheuristics

 45

Kulturel-konak et al. (2006) propose a multi-objective tabu search algorithm for the series parallel

system redundancy allocation problem. Instead of using a priori weighting and scaling of objectives, the

proposed algorithm randomly activates an objective using a multinomial probability mass function.

Experiments show that the algorithm is effective in identifying a set of diverse Pareto optimal solutions.

2.3.2.4 Hybrid Multi-objective GA

In recent multi-objective optimisation research, some hybridizations of GA have been applied to different

multi-objective optimisation problems, such as GA with local search algorithms, i.e. memetic algorithms

(Ishibuchi and Murata, 1998; Jaszkiewicz, 2002; and Mendoza et al., 2010). These memetic algorithms

have been shown to be very effective for complex multi-objective optimisation problems, due to the ability

of local search to find local optima effectively over a relatively small part of the search space. Ishibuchi and

Murata (1998) apply a local search procedure to each offspring generated by crossover and mutation

operations, where a randomly generated weight vector is used to evaluate the fitness values of

neighbourhood solutions. A characteristic feature of their algorithm is that only a small number of

neighbourhood solutions are examined to reduce the computation time spent by the local search.

Jaszkiewicz (2002) proposes a multi-objective genetic local search (MOGLS) algorithm for the travelling

salesman problem. In each generation, the algorithm draws a random weighed linear utility function and

constructs a temporary population composed of a number of best solutions among the current population. A

local search is then applied to each offspring of two parents randomly selected from the temporary

population. Their experiments show that the proposed algorithm outperforms Ishibuchi and Murata’s

algorithm (1998) and a Pareto-ranking-based GA.

2.3.2.5 Other Metaheuristic Approaches

Other metaheuristics such as ACO, SS, VNS and PSO, have also been applied, although with relatively less

research effort, for multi-objective optimisation problems in recent work (e.g. Doerner et al., 2001;

Beausoleil, 2005; Liu et al., 2006; and Adibi and Zandieh, 2010). For example, Beausoleil (2005)

developed a hybrid Multi-objective Scatter Search (MOSS) with tabu search for nonlinear multi-objective

optimisation problems. A multi-start tabu search is applied as the diversification method to generate

Chapter 2 The Optimisation Technique: Metaheuristics

 46

diversified solutions in MOSS. A frequency memory is used to diversify the search to less visited areas and

it is shared by the sequence of tabu searches. Weighted combinations of reference solutions are designed as

the combination method in the scatter search phase.

2.4 Summary

This chapter first introduces some basic concepts related to metaheuristics, and then presents a brief overview

of the principles of nine popular metaheuristics which have been widely used for combinatorial optimisation

problems; finally it reviews various multi-objective metaheuristics in the area of multi-objective optimisation.

Due to the effectiveness and efficiency of delivering near-optimal solutions for complex problems,

metaheuristics play a very important role in the area of operational research. As reviewed in this chapter,

metaheuristics have been investigated within many application areas such as logistics, transportation,

telecommunication networks, manufacturing and heath care.

As stated in Chapter 1, the two case studies in the thesis, i.e. the DCLC multicast routing problem and

the multi-objective multicast routing problem, belong to NP-complete problems, meaning that both

problems are very challenging due to the high computational expenses for finding an optimal or a set of

Pareto optimal solutions. Because of this, exact methods can be computationally expensive and impractical,

especially for large-scale problems. In such circumstances, metaheuristic approaches should be more

appropriate choices for solving these two problems, since many metaheuristic algorithms have already been

successfully applied in recent years to various combinatorial optimisation problems and multi-objective

optimisation problems. The summary of these metaheuristic algorithms in this chapter aims to provide a

comprehensive overview of metaheuristics which may be adapted or hybridized for the DCLC multicast

routing problem and the multi-objective multicast routing problem discussed in this thesis.

Chapter 3 The QoS Multicast Routing Problem

 47

CHAPTER 3. The QoS Multicast Routing Problem

3.1 Introduction

The general problem of multicast routing has received increasing attention in the areas of computer

communications and operational research (Salama et al., 1997; Yeo et al., 2004; Oliveira et al., 2005; and

Fabregat et al., 2005). The QoS multicast routing is a valuable technique for sending messages from

source(s) to a set of destinations that belong to the same multicast group while minimising the utilisation of

network resources and satisfying certain QoS requirements. With the increasing demand of numerous

multimedia applications, the QoS requirements of the multicast routing in the underlying computer

networks take into account several attributes such as the cost, delay, delay variation, bandwidth and hops

count. In this chapter, the underlying mathematic model of multicast routing, i.e. the Steiner tree problem,

is firstly introduced. Secondly, an overview of the QoS multicast routing problem is presented including the

network model and network simulator of the problem, and related work for various QoS multicast routing

problems. Finally, the two case studies of the QoS multicast routing problem, the DCLC multicast routing

and the multi-objective multicast routing problems, are formally defined and the related work is reviewed.

3.2 Basic Model of Multicast Routing

As mentioned in Chapter 1, the unconstrained multicast routing problem which tries to construct a

multicast tree with the minimum tree cost without considering any other constraints can be modelled as the

MStTG problem (Hwang and Richards, 1992), a well known NP-complete problem (Garey and Johnson,

1979). When solving real time multicast routing problems, more QoS constraints need to be considered in

addition to the problem of finding a Steiner tree. In this case, the QoS multicast routing problem can be

modelled as the constrained Steiner tree problem. As the underlying mathematical model of multicast

routing problems, the Steiner tree problem and a number of related problems have been widely studied for

decades, and still present great research challenges.

Chapter 3 The QoS Multicast Routing Problem

 48

3.2.1 The Steiner Tree Problem

Given a weighted graph G = (V, E), where V is a set of nodes, and E is a set of edges, respectively. Each

edge e(i, j)∈E between nodes i and j in V is associated with a weight W(e): E → ℜ+, where ℜ+ are

nonnegative real numbers. For a subset of nodes S ⊆V, the Steiner tree problem is defined as constructing a

tree which connects all the nodes in S using a subset of edges in E. Extra nodes in V\S may be added to the

Steiner tree, called the Steiner nodes. Based on the above definitions, the MStTG problem can then be

formulated as follows:

The Minimum Steiner Tree Problem: the objective of the MStTG problem is to find a minimum

weighted tree T in G, T⊆E, which spans all nodes in S and some of the nodes in V\S. The weight of

the tree W(T) is the sum of the weights of all edges in the tree T, i.e. W(T) = ∑
∈Te

eW)(.

3.2.2 Related Work for the Steiner Tree Problem

The MStTG problem and its variants have been widely investigated as a classical optimisation problem in

the literature. A large amount of exact and heuristic algorithms have been developed for solving the typical

NP-complete problems (Takahashi et al., 1980; Ko et al., 1981; Kou et al., 1981; Duin and Voß, 1997; Koch

and Martin, 1998; Duin and Voß, 1999; Barahona and Ladanyi, 2006; and Costa et al., 2006). In recent years,

many metaheuristic algorithms, such as tabu search (Ribeiro and Souza, 2000; Bastos and Ribeiro, 2001),

VNS (Canuto et al., 2001; Gruber and Raidl, 2005), GRASP (Martins et al., 2000; Ribeiro et al., 2002),

and PSO (Zhong et al., 2008; Consoli et al., 2008), have been applied for solving variants of MStTG

problems. Surveys of Steiner tree problems can be found in Hwang and Richards (1992); Voß (1992); Duin

and Voß (1997); Koch and Martin (1998); Zachariasen (1999); and Costa et al. (2006).

KMB (Kou-Markowsky-Berman) (Kou et al., 1981) is a representative heuristic for the Steiner tree

problem, where the Prim’s minimum spanning tree algorithm (Prim, 1957) is applied to construct the

unconstrained Steiner tree. In the Prim’s algorithm, for a connected weighted undirected network, the tree

is repeatedly constructed from an arbitrary node until it spans all the nodes in the network, where the total

weight of all edges in the tree is minimised. Koch and Martin (1998) use a branch and cut method with

Chapter 3 The QoS Multicast Routing Problem

 49

pre-processing, reduction techniques and primal heuristics to solve the Steiner tree problem. Such

techniques have also been widely studied on other variants of the Steiner tree problems (Barahona and

Ladanyi, 2006; Costa et al., 2006).

Duin and Voß (1999) have successfully applied pilot methods with heuristic repetition to the MStTG

problem. Four Steiner tree heuristics from the literature have been used as the sub-heuristics in the

formulated pilot methods. Experiments show that a pilot method always delivers good solutions when using

a more accurate sub-heuristic. Martins et al. (2000) and Ribeiro et al. (2002) have applied GRASP to solve

the MStTG problem. Martins et al. (2000) describe a hybrid GRASP heuristic with two local search

strategies for the MStTG problem. The proposed algorithms are tested on a group of parallel processors.

Computational results show that their GRASP heuristic has high possibilities of finding the optimal

solutions. Ribeiro et al. (2002) present a hybrid GRASP with weight perturbations and two adaptive

path-relinking heuristics on a set of elite solutions for the MStTG problem. One is the path relinking with

complementary move; the other is the path relinking with weight penalization. Experiment results on a

broad set of benchmark problems illustrate the effectiveness and the robustness of their GRASP algorithm.

Both GRASP algorithms are restricted to deal with Steiner tree problems with no constraints. Consoli et al.

(2008) propose a novel jumping particle swarm optimisation algorithm to tackle the minimum labelling

Steiner tree problem.

3.3 Overview of QoS Multicast Routing Problems

The rapid growth of group communications and multimedia applications over the Internet has accelerated

the need for QoS multicast routing support in computer communication networks. The introduction of

applications demanding QoS makes the multicast problem more challenging due to the varied QoS

requirements for real time multicast applications. These QoS requirements can be classified into link

constraints (e.g. bandwidth), path constraints (e.g. end-to-end delay or path cost), and tree constraints (e.g.

delay variation). QoS multicast routing problems are NP-complete as they can be reduced to the

constrained Steiner tree problems, a classical NP-complete problem. The nature of the QoS multicast

routing problem and the variety of requirements that exist in the real time applications have attracted

increasing research attention from the areas of both computer communications and operational research on

Chapter 3 The QoS Multicast Routing Problem

 50

developing various optimisation and search algorithms, including exact methods, heuristics and

metaheuristics, for variants of QoS multicast routing problems (Noronha and Tobagi, 1994; Diot et al.,

1997; Salama et al., 1997; Chen et al., 1998; Pasquale et al., 1998; Wang and Hou, 2000; Sahasrabuddhe et

al., 2000; Youssef et al., 2001; Striegel and Manimaran, 2002; Paul and Raghavan, 2002b; Yeo et al., 2004;

Oliveira et al., 2005; and Fabregat et al., 2005).

An early survey of problems, protocols and mechanisms related to multicast communication has been

carried out by Diot et al. (1997). After analyzing the issues and challenges of multicast routing, the

mechanisms in different levels including node-level, hop-by-bop and end-to-end for providing multicast

transmission are discussed. The paper also presents some existing multicast routing applications and

algorithms.

A detailed simulation comparison of some of the most important multicast routing algorithms is made

by Salama et al. (1997). The comparison is based on the quality of the generated multicast trees and the

efficiency in managing the network resources of these algorithms. Simulation results show that most of the

early heuristic algorithms for tackling the multicast routing problems are deterministic, and these

algorithms either need long computational time or generate low quality solutions. Algorithms which are

more scalable and efficient need to be developed.

Pasquale et al. (1998) present an overview of research in multimedia multicasting. The authors discuss

the issues arising from the multicasting in computer networks to support real time multimedia applications,

including quality of service, resource reservations, routing, error and traffic control, and heterogeneity.

Wang and Hou (2000) provide a comprehensive overview of existing multicast routing algorithms,

protocols, and the issues and challenges of providing QoS support to multicast routing protocols. In the

paper, multicast routing problems are classified according to their objective functions and QoS constraints.

Based on the classification, some multicast routing algorithms have been described and their advantages

and disadvantages have been discussed. The authors categorize existing multicast routing protocols into

two types: the source-based and core-based protocols. In addition, issues related to multicast routing

protocols, such as the collection and updating of state information, the construction of multicast trees, state

and tree maintenance, and scalability in large networks, have been analysed. Furthermore, the challenges in

Chapter 3 The QoS Multicast Routing Problem

 51

providing QoS in multicast routing have also been outlined and some of the approaches to solutions have

been illustrated.

Almost at the same time, Sahasrabuddhe et al. (2000) provide a tutorial about two important topics in

multicasting, including multicast routing algorithms and protocols employed on the Internet. In this tutorial,

some of the important issues in multicasting, including the classification of multicast routing algorithms,

different QoS properties, dynamic multicast groups, scalability, survivability and fairness within multicast

routing are illustrated. Several existing multicast routing protocols are then discussed in detail.

Striegel and Manimaran (2002) present a survey of QoS multicasting issues. In the article a multicast

“life cycle” model is defined, which consists of four steps: multicast group (session) creation, multicast tree

construction with resource reservation, data transmission and multicast session teardown. Then some

important issues involved in a typical multicast session, such as multicast group dynamics, network

dynamics and traffic dynamics, are discussed. To provide QoS multicasting support and to solve various

issues that have occurred during the multicast session, several multicast routing protocols have been

proposed on the Internet. The authors introduce and analyse these protocols.

Paul and Raghavan (2002b) review a number of multicast routing algorithms and protocols. The article

introduces some multicast routing algorithms according to the different types of multicast trees, such as

source tree, shared tree and Steiner tree, generated by these algorithms. The features of some existing

multicast routing protocols are analysed. Some of the issues relating to the implementation and deployment

of multicast on the Internet are discussed.

A recent overview on applications and combinatorial optimisation problems in the area of multicast

routing is presented by Oliveria and Pardalos (2005). The paper discusses different combinatorial problems

associated with multicast routing in terms of varied constraints, such as the Steiner tree in graphs, Steiner

tree with delay constraints, dynamic multicast routing and the degree-constrained Steiner tree problem, and

then compares the related algorithms for each type of the main problems.

At the early stage of research, the multicast routing problems were defined and solved mainly as a

single-objective optimisation problem subject to some QoS constraints. When a range of inter-dependent

and conflicting QoS objectives and constraints are considered simultaneously, the QoS multicast routing

problems can be more appropriately defined as multi-objective optimisation problems. With the recent

Chapter 3 The QoS Multicast Routing Problem

 52

advances in multi-objective research, multi-objective optimisation algorithms have been investigated for

multicast routing problems with more realistic constraints and objectives. A survey of multi-objective

optimisation heuristics for a variety of multicast routing problems is presented by Fabregat et al. (2005).

The authors review and classify multi-objective multicast routing heuristics according to their objective

functions, constraints and methods used in the heuristics. Based on the classification, a General

Multi-objective Multi-tree model is proposed, which considers multi-tree multicast (i.e. different trees can

be built from a source to the same multicast group) with splitting (i.e. a flow can be split into sub-flows) in

a multi-objective context. A multi-objective evolutionary algorithm inspired by the Strength Pareto

Evolutionary Algorithm (Zitzler and Thiele, 1999) has been implemented for the multicast routing problem

with multiple objectives and constraints.

3.3.1 Network Model for QoS Multicast Routing Problems

To model the general multicast routing problem, a computer network is represented by a connected,

directed graph G = (V, E) with |V| = n nodes and |E| = l links, where V is a set of nodes and E is a set of

links, respectively. The nodes in V include a source node s, a set of destination nodes which receive data

stream from the source, denoted by R ⊆ V – s, called the multicast group. A multicast routing problem is to

build a multicast tree rooted at the source which spans all the destination nodes in the multicast group. The

|R| (the cardinality of R) represents the number of destinations, called the group size. Relay nodes in a

multicast tree are intermediate nodes, excluding the source and destination nodes, along the paths from the

source to destinations. The following notations are used in the rest of the thesis:

(i ,j)∈E: Link from node i to node j, i, j∈V.

cij∈ℜ+: Cost of link (i ,j), such as the bandwidth utilisation or communication cost.

dij∈ℜ+: Delay of link (i ,j), sum of queuing delay, transmission delay and propagation delay of the

link. Queuing delay is the waiting time of the data in the routing queue. Transmission delay

is the time of pushing the data onto the network link. Propagation delay is the transmitting

delay of the data before reaching its destination.

zij∈ℜ+: Capacity of link (i ,j), measured in Mbps.

Chapter 3 The QoS Multicast Routing Problem

 53

tij∈ℜ+: Current traffic of link (i ,j), measured in Mbps.

φ∈ℜ+: Traffic demand (bandwidth requirement) of a multicast request, measured in Mbps.

P(u, v) = {(u, i), (i, j), …, (k, v)}: A path from node u to v as an ordering set of links.

T(s, R): Multicast tree rooted at source s and spanning all members of R.

Cost(T): Cost of the tree, given by Cost(T) = ∑
∈Tji

ijc
),(

, i.e. the sum of the costs of all links in the tree.

pT(s, rd) ⊆T(s, R): Path connecting source s and a destination rd∈R in the multicast tree T.

d(pT(s, rd)): Delay of path pT(s, rd), given by d(pT(s, rd)) = ∑
∈) ,(),(dT rspji

ijd , rd∈R.

Delay(T): Delay of the tree, given by Delay(T) = Max{d(pT(s, rd)), rd∈R}, i.e. the maximum delay

among all the paths from source to each destination.

In the network model, the link is bidirectional, i.e. the existence of a link e = (i, j) from node i to node j

implies the existence of another link e' = (j, i) for any i, j∈V. Due to the asymmetric nature of computer

networks, it is possible that cij ≠ cji , dij ≠ dji , zij ≠ zji , and/or tij ≠ tji.

For the ease of understanding, Figure 3.1 presents a simple example of a random directed network

graph with |V| = 9 nodes and |E| = 14 links; the numbers beside each link are the cost and delay of the

directed link, i.e. cij / dij, the source node s = 5, the multicast group R = {0, 2, 7}. An example multicast

tree connected by bold arrow lines is shown in the figure below.

Figure 3. 1 An example of a random network graph and a multicast tree

Generally, given a network topology, a source node s, a multicast group R, and a set of optimisation

objective functions, the multicast routing problem is to construct a multicast tree that optimises the

Chapter 3 The QoS Multicast Routing Problem

 54

objective functions. One important and common optimisation objective is defined as minimising the cost of

a multicast tree. In order to support QoS requirements for the real time applications, a set of constraints,

such as the end-to-end delay bound, delay jitter, bandwidth and packet loss ratio, is given to the constrained

multicast routing problem. Depending on the constraints considered and the objective function used,

various multicast routing problems exist in the literature. These include the bandwidth-constrained

minimum cost multicast routing problem; the delay-constrained least-cost (DCLC, also called the

delay-constrained minimum cost) multicast routing problem; the delay-bandwidth-constrained minimum

cost multicast routing problem; and the delay-delay jitter-constrained minimum cost multicast routing

problem. None of these problems are polynomial solvable, because of this, numerous algorithms have been

proposed in the literature. This thesis focuses on the QoS multicast routing problem, i.e. the constrained

multicast routing problem.

3.3.2 Network Simulator for QoS Multicast Routing Problems

In order to evaluate the performance of the proposed QoS multicast routing algorithms, researchers

normally use network simulator to run experiments. There are several tools available which can be used as

the network simulators, such as the OPNET, NS (Network Simulator), Matlab, and other random network

topology generators. In this thesis, a QoS multicast routing simulator (MRSIM) has been implemented in

C++ based on Salama’s generator (Salama et al., 1997). MRSIM generates random network topologies

using the Waxman model described by Waxman (1988). The Waxman model has been widely used for

algorithm evaluations in communication networks. The positions of the nodes in MRSIM are fixed in a

rectangle of size 4000×4000km2. The link delay is defined as the propagation delay of the link, and queuing

and transmission delays are negligible. The link cost is assigned as the current total bandwidth reserved on

the link. The Euclidean metric is then used to determine the distance between pairs of nodes (u, v) with a

probability is given by

P(u, v) = β exp(-l(u, v)/αL) α, β ∈ (0,1] (3.1)

Chapter 3 The QoS Multicast Routing Problem

 55

where l(u, v) is the distance from node u to node v. The parameters α and β can be set to obtain desired

characteristics in the graph. For example, a large β gives nodes with a high average degree, and a small α

gives long connections. L is the maximum distance between two nodes.

3.3.3 Summary of QoS Multicast Routing Algorithms

The QoS multicast routing problem has attracted the attention of many researchers over the past twenty

years and consequently, many algorithms have been proposed to solve diverse QoS multicast routing

problems. This section gives a brief summary of a number of QoS multicast routing algorithms in the

literature.

The QoS multicast routing problems are initially considered within the single-objective context by

minimising the cost of the multicast tree subject to certain constraints. Most of the early algorithms are

based on heuristics, which can be classified into two main categories: source-based (or centralized) and

distributed multicast routing algorithms. The source-based multicast routing algorithms assume that each

node has all the network status information necessary to construct the multicast tree (e.g. Kompella et al.,

1993a; Widyono, 1994; Sun and Langendoerfer, 1995; Zhu et al., 1995; Haberman and Rouskas, 1997; Sun

and Langendoerfer, 1998; and Zhang et al., 2001). Centralized multicast routing algorithms are not

practical for large-scale networks, since they assume each node has the complete information of the

network for constructing the multicast tree. Some distributed multicast routing algorithms have been

proposed. In the distributed multicast routing algorithms, it is not necessary to maintain the entire network

status information in each node, and every intermediate node participates in constructing the multicast tree

(e.g. Kompella et al., 1993b, Bauer and Verma, 1995; Shaikh and Shin, 1997; Jia, 1998; and Guo and

Matta, 1999). Distributed multicast routing algorithms are normally problem-specific and have some

shortcomings, such as being time consuming or complex to implement. With the emergence of

metaheuristics in the area of operational research for solving a wide range of optimisation problems, some

metaheuristic algorithms, including SA, GA, TS, PR and GRASP have in the past decade been investigated

for various multicast routing problems.

Table 3.1 summarizes several heuristic and metaheuristic algorithms for the single-objective multicast

routing problems with diverse QoS constraints in the literature, categorized by the type of heuristics, and

Chapter 3 The QoS Multicast Routing Problem

 56

ordered in the year of publication. From the table, it can be seen that one of the widely studied QoS

multicast routing problems is the DCLC (delay-constrained least-cost) multicast routing problem, which

concerns two of the commonest and most important QoS requirements, the cost and delay of the multicast

tree. The cost of a multicast tree is defined as the sum of costs on all the edges in the tree. The tree delay is

the maximal end-to-end delay of the paths from the source to each destination. The DCLC multicast routing

problem is thus chosen as one of the case studies; the related algorithms for the problem will be discussed

extensively in a later section.

Table 3. 1 Summary of single-objective QoS multicast routing algorithms in the literature

Algorithms Description

Kompella et al. (1993a) KPP, the first centralized heuristic for the delay-constrained least-cost multicast routing
problem, based on Floyd’s shortest path algorithm (Floyd, 1962)

Kompella et al. (1993b) DKPP, distributed heuristic for the delay-constrained least-cost multicast routing
problem, based on Prim’s minimum spanning tree algorithm(Cormen et al., 1997)

Widyono (1994) CAO, centralized heuristic for the delay-constrained least-cost multicast routing
problem, based on Bellman-ford’s shortest path algorithm (Cormen et al., 1997)

Zhu et al. (1995)
BSMA, centralized heuristic for the delay-constrained least-cost multicast routing
problem, based on based on Dijkstra’s shortest path algorithm (Bertsekas and Gallager,
1992) and a Kth shortest path algorithm (Eppstein, 1998)

Sun and Langendoerfer (1995) CDKS, centralized heuristic for the delay-constrained least-cost multicast routing
problem, based on Dijkstra’s shortest path algorithm

Haberman and Rouskas (1997) CCDVMA, centralized heuristic for the delay-delay jitter-constrained minimum cost
multicast routing problem

Sun and Langendoerfer (1998) CKMB, centralized heuristic based on the KMB heuristic for Steiner trees, uses
Dijkstra’s shortest path algorithm

Bauer and Varma (1995) Distributed heuristics for the degree-constrained minimum cost multicast routing
problem

Shaikh and Shin (1997)
DDMC, distributed heuristic for the delya-constrained least-cost multicast routing
problem, uses Prim’s minimum spanning tree and Dijkstra’s shortest path tree
algorithms

Jia (1998)
DSPH, distributed heuristic for the delay-constrained least-cost multicast routing
problem with dynamic group changes, based on Prim’s minimum spanning tree
algorithm and Bellman-ford’s shortest path algorithm

Sriram et al. (1999) CRCDM, centralized heuristic for the delay-constrained least-cost multicast routing
problem with dynamic group changes

Guo and Matta (1999) QDMR, distributed heuristic for the delay-constrained least-cost multicast routing
problem, based on DDMC

Sun and Langendoerfer (1999) Distributed heuristic for the delay-constrained least-cost multicast routing problem with
dynamic group changes

Zhang et al. (2001) DCMA, centralized heuristic for the delay-constrained least-cost multicast routing
problem

Heuristics

Wang et al. (2002) STH and CSH, group multicast routing heuristics with multiple multicast groups under
a capacity limited constraint

Lu and Liu (2000) Distributed delay and delay-variation constrained minimum cost multicast algorithm ACO
Algorithms Huang et al. (2007) Source-based ant algorithm for the delay-constrained least-cost multicast routing

problem
Wang et al. (2001) Bandwidth-delay-constrained least-cost multicast algorithm
Tran and Harris (2003) Delay and delay-variation constrained least-cost algorithm for dynamic multicast

routing
Haghighat et al. (2004) Delay and delay-variation constrained minimum cost multicast algorithm
Hamdan and El-Hawary (2004) Delay and delay-variation constrained minimum cost multicast algorithm
Randaccio and Atzori (2006) Group multicast routing algorithm under the bandwidth constraint

GA-based
Algorithms

Zahrani et al. (2008) Capacity-constrained group multicast routing genetic local search algorithm
TS-based

Algorithms Youssef et al. (2002) TS, tabu search algorithm for the delay-constrained least-cost multicast routing problem
based on Dijkstra’s shortest path algorithm

Chapter 3 The QoS Multicast Routing Problem

 57

Skorin-Kapov and Kos (2003) TS-CST, tabu search algorithm for the delay-constrained least-cost multicast routing
problem based on Prim’s spanning tree algorithm

Wang et al. (2004) TSDLMRA, tabu search algorithm for the delay-constrained least-cost multicast routing
problem based on the Kth shortest path algorithm

Ghaboosi and Haghighat (2006) TS-based, tabu search algorithm for the delay-constrained least-cost multicast routing
uses the Kth shortest path and Prim’s algorithm

Wang and Jiang (2004) Delay-constrained least-cost multicast routing algorithm SA-based
Algorithms Zhang et al. (2005) Distributed delay and delay-variation constrained minimum cost dynamic multicast

algorithm
GRASP

Algorithms Skorin-Kapov and Kos (2006) GRASP-CST, GRASP algorithm for the delay-constrained least-cost multicast routing
problem applies a tabu search in the local search phase

PSO
Algorithms Sun et al. (2006) QPSO, for the minimum cost multicast routing problem with multiple constraints

including delay, bandwidth, delay jitter and package loss
PR

Algorithm Ghaboosi and Haghighat (2007) Path relinking algorithm for the delay-constrained least-cost multicast routing problem
based on the prüfer number

Wang et al. (2005) Hybrid PSO and GA algorithm for the minimum cost multicast routing problem with
multiple constraints (bandwidth,delay,delay jitter, and loss rate) Hybrid

Algorithms Zhang et al. (2009) Hybrid GA and SA algorithm for the minimum cost multicast routing problem with
multiple constraints including delay, bandwidth, and delay jitter

In addition to the DCLC multicast routing problem, algorithms for tackling multicast routing with

diverse QoS requirements have been proposed. Bauer and Varma (1995) propose two approaches for the

degree-constrained minimum cost multicast routing problem. The first approach is to design two distributed

heuristic algorithms for the problem, namely, the shortest path heuristic (SPH), and the Kruskal-based

shortest path heuristic (K-SPH) (Kruskal, 1956). Both heuristics are distributed by relying on the shortest

path under degree constraint information available at each node. Distributed SPH starts from the source

node and repeatedly connects other destination nodes to the sub-tree by the shortest degree-constrained

path until all the destination nodes are included in the tree. Distributed K-SPH initializes the multicast tree

from a forest of sub-trees, each sub-tree including the source or a destination node. The algorithm then

repeatedly connects sub-trees into larger sub-trees by the shortest degree-constrained path until a single tree

remains or until no further connections are possible. The second approach is a post-processing heuristic. It

first constructs a Steiner tree with no degree constraint and then modifies the solution to satisfy the degree

constraint. This is realized by removing the edges which connects the nodes over the degree constraints and

finding alternative paths to reconnect the sub-trees so that the degree constraints are not violated.

CCDVMA (Cost Conscious Delay and Delay Variation Multicast Algorithm) (Haberman and Rouskas,

1997) is a heuristic for the delay and delay-variation constrained minimum cost multicast routing problem.

It first constructs a feasible tree of least cost paths from source to all destination nodes. Second, for each

destination node, CCDVMA constructs a tree that includes the path from source to the destination in the

feasible tree. Then the algorithm repeatedly adds more “good” paths, i.e. the path that satisfies the

Chapter 3 The QoS Multicast Routing Problem

 58

constraints, from on-tree nodes to off-tree destinations, until all destination nodes are included in the tree.

The feasible tree with the least cost is eventually selected as the result. Lu and Liu (2000) present a

distributed multicast routing algorithm based on ant colony optimisation for the delay and delay-variation

constrained minimum cost multicast routing problem. A pheromone table is maintained at each node which

gives the probabilities of selecting neighbouring links. An ant moves from one node to next node

depending on the probability, i.e. the pheromone strength, for each neighbourhood link. The pheromone is

updated to allocate more probability to the paths with smaller delay and delay variation. Hamdan and

El-Hawary (2004) address the delay and delay-variation constrained low cost multicast routing problem

using a genetic algorithm. The chromosome of each solution is represented by a string of genes; each gene

is associated with a destination and represents a possible path from the source to the corresponding

destination. After forming the initial population, the evolution process including reproduction, crossover

and mutation is applied to evolve the current population to the next in a given number of generations.

Zhang et al. (2005) propose an efficient distributed simulated annealing based algorithm for the delay and

delay-variation constrained multicast routing problem. After constructing an initial feasible multicast tree

that satisfies the delay and delay-variation constraints, a simulated annealing phase is designed to reduce

iteratively the total tree cost without violating the two constraints. In addition, the algorithm supports

dynamic changes in the multicast group. Sun et al. (2006) consider a QoS multicast routing problem to find

a minimum cost multicast tree subject to a number of constraints including the delay, bandwidth, delay

jitter and package loss. A quantum-behaved particle swarm optimisation (QPSO) algorithm is proposed to

solve the problem. The particles in their QPSO algorithm use an integer coding that associates a position

with a list of nodes from the source to the destination. The QPSO outperforms a GA and another PSO when

applied to a small problem instance of 23 nodes.

Some recent novel hybridised algorithms have been proposed for solving the QoS multicast routing

problem with multiple constraints. Wang et al. (2005) develop a hybrid algorithm combining PSO and GA

to tackle the multi-constrained multicast routing problem, where the objective is to minimise the tree cost

while satisfying a number of constraints including the bandwidth, delay, delay jitter and error rate in

non-deterministic scenarios. The tests carried out show that their hybrid algorithm outperforms a single-GA

algorithm on both the tree cost and the converge rate. Zhang et al. (2009) propose a hybrid genetic

Chapter 3 The QoS Multicast Routing Problem

 59

simulated annealing algorithm for the least cost QoS multicast routing problem with a number of

constraints including the delay, delay jitter and bandwidth. The chromosome of a multicast tree is

represented by a tree structure coding. The crossover operation in GA uses an adaptive crossover

probability to improve the evolutionary efficiency. The mutation operation of GA is based on SA, where a

neighbouring solution is accepted with the probability calculated by SA. Their simulation results show that

the hybrid algorithm can solve the QoS multicast routing problem efficiently.

Some algorithms for the multicast routing problem with dynamic changes in the multicast group have

also been proposed (Jia, 1998; Sriram et al., 1999; and Sun and Langendoerfer, 1999). The dynamic

multicast routing problem presents a greater challenge, since the members in the multicast group can join in

or leave the group at different times. For example, CRCDM (Controlled Rearrangement for Constrained

Dynamic Multicasting) is proposed by Sriram et al. (1999) for the delay-constrained minimum cost

multicast routing problem with dynamic group changes. The algorithm includes a new destination node by

a delay-constrained shortest path to the existing multicast tree. When deleting a destination node, CRCDM

takes actions depending on the position of the destination node. If the destination node is a leaf node, the

destination node with unnecessary edges will be removed from the tree. If the destination node is an

intermediate node and cannot be removed, the node will be marked. CRCDM uses a quality factor to

represent the usefulness of a portion of the multicast tree to the overall dynamic routing process. Once the

usefulness of a particular part of the tree drops below a threshold, a rearrangement technique is applied to

modify the tree. Tran and Harris (2003) propose a genetic algorithm to address the dynamic multicast

routing problem. By rearranging a part of the existing multicast tree, the algorithm reduces the tree cost,

while the end-to-end delay and delay variation constraints remain satisfied.

In reality, a number of multicast applications may try to use the network to send information to multiple

destinations at the same time. This creates a new and more complex network optimisation problem, namely

the group multicast routing problem, which consists of multiple multicast sessions concurrently. In this case,

the network resources, such as capacity (bandwidth), must be shared accordingly with the requirements of a

group of multicast sessions. As a result, this group multicast routing problem with capacity constraints can be

modelled as the multicast packing problem and has attracted the attention of some researchers (Chen et al.,

1998; Wang et al., 2002; Randaccio and Atzori, 2006; and Zahrani et al., 2008), as described in the literature.

Chapter 3 The QoS Multicast Routing Problem

 60

For example, Wang et al. (2002) consider the multicast packing problem with multiple multicast groups under

the limited capacity constraint. The authors propose two heuristic algorithms, the Steiner-tree-based heuristic

and the cut-set-based heuristic, to solve the problem. However, the simulation results show that if the

available bandwidth is only just enough, the two algorithms may fail to find a solution even if the solution

exists. Randaccio and Atzori (2006) propose a genetic algorithm to build a set of multicast trees

simultaneously for the group multicast routing problem under the bandwidth constraint. A single cost function

is used by combining the transmission delay and the bandwidth usage. Experimental results show that the

proposed algorithm is able to obtain a better distribution of multiple session traffics. Zahrani et al. (2008)

design a genetic local search algorithm with pre-processing by logarithmic simulated annealing for the group

multicast routing problem for cost minimisation subject to the capacity constraint. In the algorithm, a solution

is represented in a sequence of the group of multicast requests. The partially mixed crossover operation is

applied to pairs of parents. A logarithmic simulated annealing procedure is used to estimate the maximum

depth of the deepest local optima in the landscape. Based on the estimation, a local search is further applied to

improve each individual. Their experimental results demonstrate that the proposed genetic local search

algorithm can achieve better results.

In contrast to the traditional single-objective algorithms, some multi-objective algorithms have been

developed in recent research for solving multicast routing problems with more realistic features. When

different conflicting objectives are considered simultaneously, multicast routing problems become much

more complicated multi-objective optimisation problems, as already recognized by many researchers

(Fabregat et al., 2005). Table 3.2 summarizes a number of algorithms developed for solving multi-objective

multicast routing problems in the literature, categorized by the objectives and constraints considered in the

work, and ordered by the year of the publication. It can be seen that different metaheuristics, e.g. genetic

algorithm, ant colony algorithm, artificial immune algorithm and particle swarm optimisation, have been

investigated for multi-objective multicast routing problems with various objectives. Due to the nature of

multi-objective optimisation, where a set of alternative solutions is considered, it is not surprising that

genetic algorithms, one of the most studied population-based algorithms, have been adapted in most

multi-objective multicast routing algorithms. Other population-based algorithms, such as an ant colony

optimisation algorithms designed by Pinto and Baran (2005), and a hybrid genetic algorithm with particle

Chapter 3 The QoS Multicast Routing Problem

 61

swarm optimisation algorithm proposed by Li et al. (2007), have also been developed in the multi-objective

multicast routing literature. Detailed review of these multi-objective multicast routing algorithms is

presented in Section 3.5, where the multi-objective multicast routing problem will be modelled and

discussed as a case study.

Table 3. 2 Categorized multi-objective multicast routing algorithms by the objectives and constraints considered in the

problem (MOGA: multi-objective genetic algorithm)

Objectives Constraints

Algorithms C
ost

D
elay

A
verage
D

elay

D
elay

Jitter

L
ink

U
tilisation

B
andw

idth

Packet
L

oss

H
op C

ount

B
andw

idth

D
elay

D
elay

Jitter

MOGA (Roy et al., 2002) based on Non-dominated Sorting
genetic algorithm x x x
MOGA (Cui et al., 2003) based on Pareto dominance x x x x
MOGA (Roy and Das, 2004) based on Niched Pareto Genetic
Algorithm for the QoS-based mobile multicast routing x x x
MOGA (Crichigno and Baran, 2004a) and an improved
MOGA (Crichigno and Baran, 2004b) based on Strength
Pareto Evolutionary Algorithm

x x x x x

A heuristic algorithm (Donoso et al., 2004a) for the
multi-objective multicast routing problem x x x x x
Multi-objective optimisation model (Donoso et al., 2004b) for
dynamic multicast routing x x x x x
MOGA (Fabregat et al., 2004) based on Non-dominated
Sorting genetic algorithm x x x
Multi-objective ant colony optimisation system and
multi-objective Max-Min ant system (Pinto and Baran, 2005) x x x x x
MOGA (Fabregat et al., 2005) based on Strength Pareto
Evolutionary Algorithm x x x x x
Multi-objective immune algorithm (Wang et al., 2006) x x x x x
A hybrid genetic algorithm and a particle swarm optimisation
algorithm (Li et al., 2007) x x x x x
MOGA (Rai et al., 2010) with Fuzzy based parameter setting
for QoS multicasting in wireless ad hoc networks x x x
MOGA (Huang and Liu, 2010) for QoS multicasting in
wireless ad hoc networks x x x x

3.4 The DCLC Multicast Routing Problem

3.4.1 Introduction

In real-time applications, two of the most important QoS requirements for constructing multicast trees are

the delay and cost. The end-to-end delay from the source to each destination is the sum of delays along the

path. The cost of the multicast tree is the sum of cost on the edges in the multicast tree. The minimum cost

tree is called a Steiner tree (Hwang and Richards, 1992). The problem of finding a Steiner tree is known to

Chapter 3 The QoS Multicast Routing Problem

 62

be NP-complete (Garey et al., 1977; Garey and Johnson, 1979). The DCLC multicast routing problem is

equivalent to the Delay-Constrained Steiner tree (DCST) problem, which is also NP-complete (Guo and

Matta, 1999).

3.4.2 Problem Definition

Applications may assign different delay bounds for each destination rd∈R. In this thesis, the delay bound

for all destinations is assumed to be the same, and is denoted by ∆. Given the definitions in Section 3.2.1,

the DCLC multicast routing problem, i.e. the DCST problem, can be formally defined as follows:

The Delay-Constrained Steiner Tree (DCST) Problem: Given a network G, a source node s, a

destination node set R, a link delay function d(.), a link cost function c(.), and a delay bound ∆, the

objective of the Delay-Constrained Steiner Tree (DCST) Problem is to construct a multicast tree

T∈T(s, R) such that the tree delay Delay(T) is within the delay bound, and the tree cost Cost(T) is

minimised. So we can define the objective function:

min{Cost(T) | Delay(T) ≤∆; T ∈T(s, R) } (3.2)

3.4.3 Related Work for the DCLC Multicast Routing Problem

As previously reviewed, the DCLC multicast routing problem has been well studied, resulting in many

heuristics and metaheuristics that construct the delay-constrained minimum cost multicast tree proposed in

the literature. Most heuristic algorithms are classified as source-based if the source is assumed to have all

the information necessary to construct the multicast tree, while others are classified as distributed

algorithms, if they are not required to maintain the entire network status information in each node, and

multiple nodes are participating in constructing the multicast tree. This subsection reviews the related

heuristics including source-based and distributed heuristics, and metaheuristic algorithms for the DCLC

multicast routing problem. The aim is to give a brief overview of the existing approaches proposed for this

problem in the literature. The summary of algorithms reviewed in the following subsections is not intended

to be exhaustive, as only some representative or well-known algorithms are included.

Chapter 3 The QoS Multicast Routing Problem

 63

3.4.3.1 Source-based Heuristics for the DCLC Multicast Routing Problem

Some typical source-based heuristic algorithms include CAO (Widyono, 1994), KPP (Kompella et al.,

1993a), CDKS (Sun and Langendoerfer, 1995), BSMA (Zhu et al., 1995) and CKMB (Sun and

Langendoerfer, 1997).

KPP (Kompella-Pasquale-Polyzos) is the first source-based heuristic for DCLC multicast routing

problems (Kompella et al., 1993a). It computes constrained paths for Steiner tree problems, assuming that

the link delays and delay bounds are integers, while the link cost may take any non negative real value.

KPP extends the KMB heuristic by taking the delay constraint into consideration. KPP starts with reducing

the network to a complete graph over the source node and all the destinations nodes in the multicast group,

where each link in the graph represents a delay-constrained shortest path between the two nodes and its cost

is the length of the shortest path in the original network. KPP then uses the Prim’s algorithm to construct a

minimum spanning tree for the complete graph under the delay constraint. Finally, KPP replaces the links

in the minimum spanning tree with the paths in the original network and prunes the non-destination leaves

to obtain a multicast tree. The time complexity of KPP is O(∆n3), where ∆ is the delay bound, n is the

number of nodes in the network.

CAO (Constrained Adaptive Ordering) proposed by Widyono (1994) is based on the Bellman-Ford

shortest path algorithm by considering the delay constraint in the heuristic. It incrementally adds a new tree

branch by merging in the delay-constrained minimum-cost unicast path from the current sub-tree leading to

an unconnected destination node until all destination nodes are included in the tree. The time complexity of

CAO is O(2n). However, this complexity can be exponential in many cases and thus makes CAO is not

suitable for large-scale networks.

CDKS (Constrained Dijkstra’s) (Sun and Langendoerfer, 1995) is a heuristic for constructing

delay-constrained multicast trees based on the Dijkstra’s shortest path algorithm. It first constructs a

delay-constrained low cost tree and then computes the delay-constrained shortest path for those destination

nodes which are not yet included in the constructed multicast tree.

BSMA (Bounded Shortest Multicast Algorithm) (Zhu et al., 1995), one of the best known

delay-bounded multicast routing algorithms developed in the 1990s, starts by computing a delay-bounded

Chapter 3 The QoS Multicast Routing Problem

 64

shortest path tree for the given source and multicast group. It defines a superedge as the longest simple path

between two end nodes such that all internal nodes are relay nodes (i.e. nodes in the multicast tree

excluding the source and the destination nodes) with the node degree equals to 2. It iteratively replaces a

superedge in the tree with delay-constrained lower cost path until the tree cost cannot be further reduced. A

k-Shortest path algorithm (Eppstein, 1998) is used to find the lower cost path. Due to its efficient

performance on tree cost, it was regarded as the best deterministic DCLC multicast algorithm and is still

being frequently used to compare the performance of many recent multicast routing algorithms. However,

BSMA requires excessive execution time for large size networks as it uses the k-shortest path algorithm.

This can be seen in its high time complexity O(kn3log(n)), where k is the parameter used in the k-shortest

path algorithm.

Like the KPP heuristic, CKMB (Constrained KMB), proposed by Sun and Langendoerfer (1998), also

extends KMB by adding the delay constraint into the KMB heuristic. CKMB starts by defining a closure

graph over the source and the destinations in the multicast group. From the closure graph, CKMB ends with

a delay constrained multicast tree. The main goal of CKMB is to reduce the time complexity of KPP.

Instead of using the Prim’s algorithm in KPP, a greedy approach similar to the Dijkstra’s shortest path

algorithm is used in CKMB to construct a constrained spanning tree of the closure graph. As a result, the

time complexity of CKMB is reduced to O(mn2), where m is the number of destination nodes.

3.4.3.2 Distribution Heuristics for the DCLC Multicast Routing Problem

Beside the source-based heuristics, some distributed heuristics have been proposed, such as DKPP

(Kompella et al., 1993b), DDMC (Shaikh and Shin, 1997), DSPH (Jia, 1998), and QDMR (Guo and Matta,

1999).

DKPP (Distributed KPP) is a distributed minimum spanning tree heuristic based on the Prim’s

algorithm. DKPP starts from the source node and spans the tree by adding destinations one at a time until

all destination nodes are included in the tree. One destination is added to the tree by a shortest path with

extra checking to ensure that the delay constraint is satisfied during the expansion of the tree.

DSPH (Distributed Shortest Path Heuristic) is a shortest path based distributed algorithm for the DCLC

multicast routing problem. It sequentially expands the multicast tree by a delay bounded shortest path from

Chapter 3 The QoS Multicast Routing Problem

 65

the tree to one destination until all destination nodes are covered. Although DSPH has good performance

on tree cost, its computational time is extremely high, especially for large networks.

DDMC (Destination-Driven MultiCasting) uses a greedy strategy combining the Prim’s minimum

spanning tree and the Dijkstra’s shortest path algorithms. It operates in a similar way to the Prim’s

algorithm. The primary difference is that the incremental cost of a destination node to the adjacent node is

set to zero, so that DDMC reduces the tree cost by biasing toward paths that pass through destination nodes.

DDMC shows significant improvement in terms of tree cost compared with other shortest path tree

algorithms.

QDMR (QoS Dependent Multicast Routing) extends the DDMC algorithm to obtain delay-constrained

low-cost multicast trees. Similar to DDMC, QDMR uses a weight function to adjust dynamically how far

the current on-tree node is from violating the delay bound. QDMR expands the current tree by adding the

node with the lowest weight until all destination nodes are mounted in the tree.

3.4.3.3 Metaheuristics for the DCLC multicast routing problem

In recent years, metaheuristic algorithms such as genetic algorithm (Wang et al., 2001); tabu search

(Youssef et al., 2002; Skorin-Kapov and Kos, 2003; Wang et al., 2004; Yang and Wen, 2005; Ghaboosi

and Haghighat, 2006); simulated annealing (Wang and Jiang, 2004), GRASP (Skorin-Kapov and Kos,

2006); ant colony optimisation (Huang et al., 2007), and path relinking (Ghaboosi and Haghighat, 2007)

have been investigated for the DCLC multicast routing problem.

Youssef et al. (2002) present a tabu search algorithm to construct the minimum cost delay bounded

multicast tree. Their algorithm starts with an initial feasible solution, and builds a sink tree for each

destination using the Dijkstra’s shortest path algorithm. In a given iteration, the algorithm refines the tree to

a lower cost. Skorin-Kapov and Kos (2003) propose a tabu search-based algorithm called TS-CST (Tabu

Search - Constrained Steiner Tree) for the DCLC multicast routing problem. TS-CST uses a binary string to

represent a solution (a multicast tree). The neighbouring solutions include all the solutions whose binary

representation is exactly one bit different in the binary string from the current solution. A move in the

TS-CST is to choose the best new neighbouring solution as the current solution in the next iteration. A tabu

list of length one prevents the algorithm from repeating the last performed move. TS-CST stops after a

Chapter 3 The QoS Multicast Routing Problem

 66

pre-defined number of iterations without improvements. Wang et al. (2004) propose an efficient DCLC

Multicast Routing algorithm based on tabu search. The main disadvantage of the algorithms proposed in

Youssef et al. (2002) and Wang et al. (2004) is that they randomly select the paths to be added or deleted,

which may lead to a disjointed multicast tree. Yang and Wen (2005) apply tabu search to the problem of

pre-planning delay-constrained backup paths for multicast trees to minimise the total cost of all the back up

paths. Ghaboosi and Haghighat (2006) propose a tabu search-based algorithm for the DCLC multicast

routing problem. The tabu search algorithm creates initial solutions based on the Dijkstra’s algorithm, and

iteratively refines the initial solution by using a modified Prim’s algorithm to switch edges chosen from the

backup path set.

Wang and Jiang (2004) propose a simulated annealing algorithm for the DCLC multicast routing

problem. Compared with a genetic algorithm, their experimental results show that the simulated annealing

algorithm has the ability to converge to the optimal solution in a short time. This indicates that the

simulated annealing algorithm is a high-efficient approach in multicast routing.

Skorin-Kapov and Kos (2006) develop a GRASP metaheuristic for the DCLC multicast routing

problem. During each iteration, a greedy randomized initial solution is constructed by using the Dijkstra’s

shortest path algorithm in the construction phase. A modified tabu search heuristic TS-CST (Tabu Search -

Constrained Steiner Tree) (Skorin-Kapov and Kos, 2003) is then applied to improve the initial solution in

the local search phase. After a fixed number of iterations, the best solution found during the GRASP

procedure is accepted as the final solution.

Ghaboosi et al. (2007) present the first path relinking approach for the DCLC multicast routing problem.

Their algorithm applies prüfer numbers to represent multicast trees, i.e. solutions. After generating a

reference set of random initial solutions, the path relinking algorithm operates repeatedly on pairs of

randomly chosen elite solutions. A repair procedure deals with infeasible solutions when they appear. At

the end of each iteration, the algorithm updates the reference set by replacing the worst solution in the

reference set by the better ones generated in the relinking process. The best solution in the reference set is

output as the final solution after a given number of iterations. One disadvantage of the path relinking

algorithm is its high time complexity since it has to spend a lot of time to repair infeasible solutions during

Chapter 3 The QoS Multicast Routing Problem

 67

the path relinking phase, especially when the network size increases and many infeasible solutions may

occur.

Huang et al. (2007) propose a source-based ant algorithm for the DCLC multicast routing problem. The

algorithm starts from constructing a set of backup paths from the source to each destination by using the

Dijkstra’s shortest path algorithm. The movement of an ant from one node to another depends on the

corresponding pheromone strength of each neighbouring link given by a probability function. At the end of

each iteration, the pheromone will be updated to leave more pheromone on the link with shorter journeys

by an ant. Simulation results show the ant algorithm is effective in terms of cost and convergence speed.

One shortcoming of the source-based algorithm is its scalability for large-scale networks.

3.4.3.4 Landscape of the DCLC Multicast Routing Problem

As reviewed above, many heuristic and metaheuristic algorithms have been proposed for the DCLC

multicast routing problem, while most of these studies focus mainly on the performance of the proposed

algorithm by showing that the algorithm is effective and superior to other algorithms. The performance of a

given algorithm is determined by its efficiency and its effectiveness. The quality of a solution found by the

algorithm reflects the effectiveness of an algorithm, and the computational time is usually a measure of the

efficiency of the algorithm. Instead of applying a specific heuristic or metaheuristic for a particular

optimisation problem, a useful research direction in operational research is to analyse the fitness landscape

of the problem before designing a certain search algorithm. The theoretical analysis of fitness landscape has

shown to be useful for observing the behaviour of search algorithms and thus can help in predicting their

performance (Wright, 1932). However, few efforts have been made in establishing the theoretical

foundations of the landscape analysis of the QoS multicast routing problem. There are only three related

studies of the landscape analysis for the multicast routing problem conducted by Zahrani et al. (2006; 2007;

2008). In (Zahrani et al., 2006), a logarithmic simulated annealing (LSA) is used to perform more detailed

landscape analysis on three instances. They emphasise on the approximation of optimal parameter settings.

The difference between two parameters; the estimation of the maximum value of the minimum escape

height from the local optima; and the maximum increase value of the objective function between two

successive improvements of the best objective function value found during the local search time, are

Chapter 3 The QoS Multicast Routing Problem

 68

observed in LSA by a number of experiments. The results show that the difference depends mainly on the

cost function and the capacity constraint, while only slightly on the particular network structure. Zahrani et

al. have further extended their work (2007), by introducing a LSA based genetic local search (GLS)

algorithm for the landscape analysis on the multicast routing packing problem, where a sequence of

multicast requests is scheduled. In the algorithm, a solution is represented as an ordered sequence of a group

multicast requests. The simple KMB (Kou et al., 1981) heuristic is used to construct the single multicast

tree for each multicast request, where two QoS requirements (the cost and capacity) are considered. The

GLS applies the partial mixed crossover (PMX) operation to pairs of individuals. As the pre-processing

step in the GLS, a simulated annealing procedure with a logarithmic cooling schedule performs the

landscape analysis by estimating the depth of the deepest local minima. Experimental results on two

benchmark instances show that the proposed LSA-based GLS together with the PMX operation

outperforms two variants of GLS algorithms with either LSA or PMX only. The same GLA algorithm with

a LSA as the pre-processing step is applied by Zahrani et al. (2008) on more instances for the group multicast

routing problem with the capacity constraint. The PMX operation is used on pairs of parents. Similarly, a

simulated annealing with the logarithmic cooling schedule is used to estimate the value of maximum depth of

local optima in the landscape. A local search procedure is then applied by swapping two random points in

each individual. The same conclusion that the GLS combined with LSA and PMX outperforms the algorithms

using either LSA or PMX is obtained as that drawn by Zahrani et al. (2007).

To the best of my knowledge, no research has been carried out on the landscape analysis for the DCLC

multicast routing problem. In order to give a better understanding of landscape properties for the DCLC

multicast routing problem, the first landscape analysis on the problem will be presented in Chapter 5. This

may contribute to more advanced search algorithms for various related applications of the DCLC multicast

routing problem in the future by providing the method to predict the performance of the designed

algorithms.

3.4.4 Benchmark Instances of the DCLC Multicast Routing Problem

In this subsection, some benchmark instances of the DCLC multicast routing problem in the literature are

summarised. These instances will be used to test the proposed algorithms.

Chapter 3 The QoS Multicast Routing Problem

 69

1) Steinb Problems from the OR-library

Steinb is a set of 18 small and medium sized (50-100 nodes) benchmark instances from SteinLib in the OR

library (Beasley, 1990). SteinLib is a publicly available library of test instances for the MStTG problem.

Characteristics of Steinb instances are given in Table 3.3.

Table 3. 3 The problem characteristics of Steinb from the OR-library (|V|, |E|, |R| denote the number of nodes, the number

of edges and the number of destinations in the instances, respectively, ‘OPT’ denotes the optimal solution)

No. |V| |E| |R| OPT No. |V| |E| |R| OPT No. |V| |E| |R| OPT

B01 50 63 9 82 B07 75 94 13 111 B13 100 125 17 165
B02 50 63 13 83 B08 75 94 19 104 B14 100 125 25 235
B03 50 63 25 138 B09 75 94 38 220 B15 100 125 50 318
B04 50 100 9 59 B10 75 150 13 86 B16 100 200 17 127
B05 50 100 13 61 B11 75 150 19 88 B17 100 200 25 131
B06 50 100 25 122 B12 75 150 38 174 B18 100 200 50 218

2) Steinc Problems from the OR-library

Steinc is a set of large and hard networks with 500 nodes in the OR-library. Details of Steinc instances are

given in Table 3.4.

Table 3. 4 The problem characteristics of Steinc from the OR-library (|V|, |E|, |R| denote the number of nodes, the number

of edges and the number of destinations in the instances, respectively, ‘OPT’ denotes the optimal solution)

No. |V| |E| |R| OPT No. |V| |E| |R| OPT No. |V| |E| |R| OPT No. |V| |E| |R| OPT
C01 500 625 5 85 C06 500 1000 5 55 C11 500 2500 5 32 C16 500 12500 5 11
C02 500 625 10 144 C07 500 1000 10 102 C12 500 2500 10 46 C17 500 12500 10 18
C03 500 625 83 754 C08 500 1000 83 509 C13 500 2500 83 258 C18 500 12500 83 113
C04 500 625 125 1079 C09 500 1000 125 707 C14 500 2500 125 323 C19 500 12500 125 146
C05 500 625 250 1579 C10 500 1000 250 1093 C15 500 2500 250 556 C20 500 12500 250 267

As can be seen from the tables, the optimal solution for each instance on both Steinb and Steinc is

known in the OR-library. The network topology of each instance is generated by using the simulator

MRSIM. Since Steinb and Steinc instances are for the Steiner tree problem, only a cost function is assigned

to the links in each instance. The delays of the links are randomly assigned for each instance in the

experiments.

Chapter 3 The QoS Multicast Routing Problem

 70

3.5 The Multi-Objective Multicast Routing Problem

3.5.1 Introduction

In the literature of the QoS multicast routing problem, most early algorithms treat the problem as a

single-objective problem with several constraints. Lately, the multi-objective context of the multicast

routing problem has been gradually recognized (Roy et al., 2002), and since 2003 an increasing number of

algorithms have been proposed as shown in Table 3.2. When a range of inter-dependent and conflicting

multiple QoS objectives and constraints (e.g. the cost, delay, bandwidth, link utilisation, delay variation,

packet lost ratio and hop count) in real world applications are considered simultaneously, the QoS-based

multicast routing problems can be more appropriately defined as multi-objective optimisation problems.

3.5.2 Problem Definition

As can be seen in Table 3.2, a range of QoS requirements exist in the multicast routing problem. If all these

requirements are considered simultaneously, the QoS multicast routing problem will become extremely

complicated to be solved. This study concerns the multi-objective multicast routing problem with five

common and important objectives for static computer networks where the status of the networks is known

and remains unchanged. In addition to the four objectives, i.e. the cost, the maximum end-to-end delay, the

link utilisation, and the average delay of the multicast tree, considered in (Crichigno and Baran, 2004a),

another important QoS requirement, the delay variation of the multicast tree, is chosen as the fifth objective.

These five QoS requirements are selected due to the following reasons. The cost of the multicast tree is the

main concern of service providers since it directly influences the network resource utilisation. For many

delay-sensitive interactive multimedia applications, the maximal end-to-end delay, average delay, and

delay variation of the multicast tree should be minimised to make sure the transmitted information arrive at

the receivers in a real-time manner. The link utilisation is a basic requirement for transmitting information,

and directly reflects the congestion of traffic transmission. Based on the notations defined in Section 3.3.1,

the multi-objective multicast routing problem concerned in this thesis is then defined to find a multicast

tree while minimising the values of the following five objectives:

Chapter 3 The QoS Multicast Routing Problem

 71

The cost function of the multicast tree: C(T) = φ · ∑
∈Tji

ijc
),(

 (3.3)

The maximal end-to-end delay of the multicast tree:

DM(T) = Max{d(pT(s, rd))}, rd∈R
(3.4)

The maximal link utilisation:

α(T) = Max
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ +

ij

ij

z
tφ , (i, j)∈T (3.5)

The average delay of the multicast tree:

DA(T) = ∑
∈Rrd

d
R ||
1 (pT(s, rd))

(3.6)

The delay variation of the multicast tree:

DV(T) = Max{d(pT(s, rd))} – Min{d(pT(s, rj))}, rd, rj∈R

(3.7)

Objective (3.3) aims to minimise the cost function of the multicast tree T, which is a combined measure of

transmission costs and the bandwidth requirement of the multicast request. Objective (3.4) minimises the

maximal delay time of sending the data via the multicast tree so that they arrive destinations within a

shortest bounded time. Objective (3.5) tries to minimise the maximal link utilisation, i.e. traffic demand

over the available bandwidth on the links. Objective (3.6) minimises the average delay time of sending the

data so they arrive all |R| destinations in the shortest possible time. Objective (3.7) minimises the delay

variation of the multicast tree, which is defined as the difference between the maximum and minimum

delays among all the path delays from the source to each destination. Note that objective (3.4) concerns the

maximal end-to-end delay within the multicast tree, while objectives (3.6) and (3.7) minimise the average

delay and the delay variation, respectively, concerning the delay to all destinations in the network. As

indicated by the literature, these objectives represent the most common requirements in communications. It

remains interesting future work to formulate a wide range of various objectives in the above defined

problem for different applications with specific requirements.

In communication networks, the total bandwidth of datagram on a link must not exceed the limited

bandwidth available. Thus, the total traffic on link (i, j), i.e. the traffic demand φ of a multicast request plus

the current traffic tij, is subject to a link capacity zij:

φ + tij ≤ zij, ∀(i, j)∈T(s, R) (3.8)

Chapter 3 The QoS Multicast Routing Problem

 72

3.5.3 Related Work for the Multi-objective Multicast Routing

Problem

As shown in Table 3.2, most of the algorithms for various multi-objective multicast routing problems with

multiple objectives and constraints are based on metaheuristics. To the best of my knowledge, there are

only two exceptions in studies by Donoso et al. (2004a; 2004b). Donoso et al. (2004a) propose a heuristic

algorithm for the multi-objective multicast routing problem. The algorithm searches a set of multicast trees

by optimising the weighted sum function composed of four QoS requirements: the maximal link utilisation,

hop count, bandwidth consumption and end-to-end delay in the multicast tree. Donoso et al. (2004b) extend

their work by proposing a multi-objective optimisation model for solving the same problem with dynamic

multicast groups. In the case of dynamic membership changes in the multicast group, the model rearranges

the previously constructed tree while considering the multiple available paths in order to optimise the

defined multi-objectives.

The majority of metaheuristic approaches for the multi-objective multicast routing problem are based

on MOGA. Some MOGA algorithms have been proposed for the problem in wireless ad hoc networks. For

wireless networks, the situation becomes more sophisticated due to the unpredictable mobility of users and

their variations in QoS requirements. Roy et al. (2002) adapt the multi-objective non-dominated sorting

based genetic algorithm (Srinivas and Deb, 1994) to optimise simultaneously the end-to-end delay,

bandwidth and residential bandwidth utilisation rather than combining them into a single weighted sum

objective function for the multi-objective multicast routing problem in wireless networks. In the algorithm,

each individual, i.e. the generated multicast tree, is encoded to a chromosome consisting of the sequence of

nodes along the path from the source to each destination. The population is ranked based on the

individual’s non-dominance. After the tournament selection using the non-dominated sorting, the basic GA

operations are applied to the selected parents to generate offspring solutions. Roy and Das (2004) present a

QoS-based mobile multicast routing protocol based on MOGA. Simulation results demonstrate the

proposed protocol is able to discover a set of near-optimal solutions within a few iterations and it is fast and

efficient in tackling dynamic changes in the multicast group and imprecise network information in wireless

networks. Rai et al. (2010) propose a MOGA algorithm for the QoS multicast routing problem in wireless

Chapter 3 The QoS Multicast Routing Problem

 73

networks. In the algorithm, a fuzzy-based selection technique is used for the initialization of multiple QoS

parameters, including the bandwidth, end-to-end delay, delay jitter, packet loss rate and blocking

probability. Their simulation results show the proposed algorithm is able to obtain near-optimal solutions

for QoS multicast routing in varying network conditions. Huang and Liu (2010) present a MOGA

algorithm based on the CBT (Core Based Tree, Ballardie et al., 1993) protocol. Experiment results show the

proposed algorithm is capable of achieving fast convergence and obtaining a set of diversified

non-dominated solutions.

 For the multi-objective multicast routing problem within the scenario of static computer networks

considered in this thesis, several algorithms based on MOGA have been proposed in the literature. Cui et al.

(2003) propose a MOGA algorithm based on the Pareto dominance for the multi-objective multicast

routing problem. The chromosome of each individual is encoded using the same representation as that used

by Roy et al. (2002). The fitness of an individual is based on Pareto ranking and density calculation. The

crossover and mutation operations are designed as those in standard GA. Experiments demonstrate that the

proposed algorithm is capable of discovering a set of non-dominated solutions within a finite evolutionary

generation. Two multi-objective evolutionary algorithms with an external population of Pareto optimal

solutions have been proposed by Crichigno and Baran (2004a, 2004b) using the strength Pareto

evolutionary algorithm (Zitzler and Thiele, 1999). Experimental analysis shows that the MOGA algorithm

proposed by Crichigno and Baran (2004b), with a binary tournament selection, outperforms the MOGA

algorithm proposed by Crichigno and Baran (2004a), with a roulette wheel selection.

A variety of other population-based metaheuristics also appear in the multi-objective multicast routing

literature. Two ant colony optimisation algorithms, namely MOACS (Multi-Objective Ant Colony System)

and M-MMAS (Multi-objective Max-Min Ant System), have been developed by Pinto and Baran (2005).

Compared with Crichigno and Baran’s traditional MOEA algorithm (2004b), both MOACS and M-MMAS

are able to find more non-dominated solutions on some benchmark problems. Furthermore, MOACS can

find generally better non-dominated solutions than M-MMAS and MOEA. Wang et al. (2006) propose a

multi-objective multicast routing model based on an artificial immune system with a gene library and a

clone search operator to search for better solutions. The algorithm can effectively identify a set of Pareto

optimisation solutions compromising multiple QoS objectives. A Hybrid Genetic Algorithm and Particle

Chapter 3 The QoS Multicast Routing Problem

 74

Swarm Optimisation algorithm, called HGAPSO, is investigated by Li et al. (2007) for the multi-objective

multicast routing problem. In HGAPSO, new generations are created not only by the crossover and

mutation operations in GA but also by PSO. The upper-half individuals in the population are chosen as

elites and will be regarded as a swarm and enhanced by PSO before reproducing to the next generation. The

hybrid algorithm outperforms the standard GA on randomly generated problems.

3.5.4 Benchmark Instances of the Multi-objective Multicast Routing

Problem

Two commonly used benchmark instances of the multi-objective multicast routing problem in the literature

are summaried as follows:

1) The NSF (National Science Foundation) Network

The NSF network was a major part of early 1990s Internet backbone and has been tested in the existing

literature by a number of researchers as a benchmark problem (Cui et al., 2003). The NSF network with 14

nodes is shown in Figure 3.2.

Figure 3. 2 The NSF network. dij, cij and tij are shown on each link.

s = 5, R = {0, 4, 9, 10, 13}, φ = 0.2Mbps, zij = 1.5Mbps.

2) The NTT (Nippon Telephone Telegraph of Japan) Network

The NTT network is also a benchmark problem for testing the multi-objective multicast routing problem in

the literature (see Crichigno and Baran, 2004b). The NTT network topology with 55 nodes and 142 links is

shown in Figure 3.3. The cost cij of each link is set to 1, and the current traffic tij on each link is set as

randomly loaded with around 50% of its total link capacity, which are the same as those in (Diego and

Baran, 2005).

11, 8, 0.1

8, 9, 0.8 5, 7, 0.6

7, 6, 0.2

8, 7, 0.3
5, 3, 0.1

7, 10, 0.7
16, 9, 0.6

7, 1, 0.6
8, 7, 0.1

14, 3, 0.7

9, 3, 0.2

7, 6, 0.1

15, 1, 0.6

7, 4, 0.1

20, 4, 0.5

7, 2, 0.1

13, 9, 0.7

9, 2, 0.9
9, 4, 0.2

0

3

1

4

10

2

7

8

5

6
9

11

12

13

4, 1, 0.5

Chapter 3 The QoS Multicast Routing Problem

 75

Figure 3. 3 The NTT network. Over each link (i, j), a delay dij is shown

3.6 Summary

This chapter has overviewed various QoS multicast routing problems and algorithms. Firstly, the Steiner

tree problem as the underlying model of the multicast routing problem is introduced. Several related studies

for the classical NP-complete problem are also discussed. Secondly, the general network model for the QoS

multicast routing problem is presented. The network simulator used in this thesis for generating network

topology and evaluating the performance of QoS multicast routing algorithms is introduced. A number of

QoS multicast routing algorithms proposed in the literature are then categorized and briefly summarized.

Thirdly, two QoS multicast routing problems, the DCLC multicast routing problem and the multi-objective

multicast routing problem, are chosen as the case studies. The two NP-complete problems are then in turn

formally defined. Related heuristic and metaheuristic algorithms selected from the literature for these two

problems are reviewed. In addition, some benchmark instances in the literature for both problems are also

introduced.

The main purpose of this chapter is to give an overview of the current research advances for the QoS

multicast routing problem in computer networks. The importance and challenge of the QoS multicast

routing problem in real world applications have attracted significant research attention in the areas of both

computer networks and operational research. Many algorithms have therefore been proposed in the past

two decades for solving various QoS multicast routing problems. Due to the efficiency and effectiveness of

metaheuristics for tackling combinatorial optimisation problems, most of the state-of-the-art algorithms are

based on metaheuristic methods, as reviewed in this chapter. However, as far as I know, some recent

Chapter 3 The QoS Multicast Routing Problem

 76

metaheuristic methods, such as variable neighbourhood search and Scatter Search, have not been

investigated by researchers. In addition, some hybrid approaches have not been explored for the

multi-objective multicast routing problem. Furthermore, few researches have been carried out into the

analysis of the landscape of the QoS multicast routing problem in the literature. Based on the above

observations, the motivation of the research in this thesis is to investigate effective and efficient

metaheuristic approaches for solving the two selected multicast routing problems and to analyse the

landscape properties of the DCLC multicast routing problem such that more advanced search algorithms

for various related applications of the problem may be proposed in the future.

Chapter 4 Metaheuristic Approaches for the DCLC Multicast Routing Problem

 77

CHAPTER 4. Metaheuristic Approaches for the DCLC

Multicast Routing Problem

4.1 Introduction

The emergence of metaheuristics for solving a variety of combinatorial optimisation problems is a rapid

growing field in operational research. As reviewed in Chapter 2, metaheuristics are powerful algorithmic

approaches which have been successfully applied to many difficult combinatorial optimisation problems.

The DCLC multicast routing problem, as defined in Chapter 3, is a NP-complete combinatorial

optimisation problem and numerous algorithms have been proposed in the literature for tackling the

problem. In recent years, metaheuristic approaches for the DCLC multicast routing problem are gaining an

increasing attention by some researchers. However, the applications of metaheuristics for the problem have

not been fully explored. As far as I am concerned, some recent metaheuristics still remain unexplored for

the problem. Motivated by this, four new metaheuristic approaches, including VND search algorithms, a

hybrid GRASP algorithm, a JPSO algorithm, and a SS with PR algorithm, have been proposed for the

DCLC multicast routing problem. A large amount of simulations has been carried out to test the

performance of these proposed algorithms. Experimental results demonstrate the effectiveness and

efficiency of these algorithms compared with some existing heuristics and algorithms. These four proposed

algorithms will be presented in details in the following subsections.

4.2 Variable Neighbourhood Descent Search Algorithms

The basic idea of VNS is to systematically change the employment of different neighbourhoods within a

local search. Unlike many standard metaheurisitcs where only a single neighbourhood is employed, VNS

can traverse among different areas of the search space which are defined by different neighbourhood

structures. This is due to that a local optimum defined by one neighbourhood structure is not necessarily the

local optimum of another neighbourhood structure. The search of VNS is thus more flexible within the

Chapter 4 Metaheuristic Approaches for the DCLC Multicast Routing Problem

 78

solution space of the problem, and potentially leads to better solutions which are difficult to obtain by using

single neighbourhood based local search algorithms.

In this section, the first VNS approach is investigated for the DCLC multicast routing problem.

Although VNS has been applied to Steiner tree problems, e.g. VNS as a post-optimisation procedure to the

prize-collecting Steiner tree problem (Canuto et al., 2001), and the bounded diameter minimum spanning

tree problem (Gruber and Raidl, 2005), as far as I am aware, no other research has been carried out on

using VNS for the DCLC multicast routing problem.

Let us denote by Nℓ, ℓ = 1, …, ℓmax, a finite set of pre-designed neighbourhood structures, and by Nℓ (x)

the set of solutions by employing the ℓ th neighbourhood operator upon an incumbent solution x. The

proposed algorithm is based the variable neighbourhood descent (VND) search (Mladenović and Hansen,

1997), a deterministic version of VNS where the best neighbouring solution in each neighbourhood

structure is always selected. The pseudo-code of the basic VND search is presented in Figure 4.1.

Figure 4. 1 The pseudo-code of the basic VND

4.2.1 Algorithm Description

4.2.1.1 Initialization

In the proposed VND Multicast Routing (VNDMR) algorithm, firstly an initial solution T0 is created and

then iteratively improved while the delay constraint is satisfied, by employing three neighbourhoods until

the tree cost cannot be reduced. As in (Zhu et al., 1995), each solution, i.e. a multicast tree, is represented

by using a predecessor array. For the network with |V| = n nodes, there are n bits in the array and each bit

(from 0 to n-1) represents one node in the network. The value of each bit in the array is set to the bit

Initialization:
Define the set of neighbourhood structures Nℓ, ℓ = 1, …, ℓmax; generate an
initial solution x;
Repeat

(1) Set ℓ = 1;
(2) Repeat the following steps until ℓ = ℓmax:

(a) Exploration of neighbourhood:
Find the best neighbour x' of x, x'∈Nℓ(x);

(b) Move or not:
If the solution x' is better than x, then x ← x', ℓ = 1;
otherwise, set ℓ = ℓ + 1;

Until no improvement is obtained

Chapter 4 Metaheuristic Approaches for the DCLC Multicast Routing Problem

 79

number of the current node’s predecessor. To investigate the effects of different initial solutions within the

VNDMR algorithm, two variants of the algorithm (namely VNDMR0 and VNDMR1) with the same

neighbourhood structures are designed, but starting from different initial solutions produced by using the

following two heuristics:

• Initialization by DKSLD (VNDMR0): the Dijkstra’s shortest path algorithm is used to construct the

least delay multicast tree;

• Initialization by DBDDSP (VNDMR1): The Destination-Driven Shortest Path (DDSP) algorithm in

(Gruber and Raidl, 2005), a distributed shortest path unconstrained multicast tree algorithm, is

extended by considering the delay bound in DDSP. This modified DBDDSP (Delay-Bounded DDSP)

algorithm is used as the initialization in VNDMR1.

4.2.1.2 Neighbourhood Structures within the VNDMR Algorithms

The main characteristic of the VNDMR algorithm is to design three simple yet effective neighbourhood

structures. Each neighbourhood aims to reduce the tree cost and at the same time satisfying the delay

constraint. The pseudo-code of VNDMR is presented in Figure 4.2. The neighbourhood structures within

VNDMR0 and VNDMR1 are based on an operation called path replacement, where a path in tree Ti is

replaced by another new path not in tree Ti, resulting in a new tree Ti+1. The delay-bounded path replacement

operation guarantees that tree Ti+1 is always a delay-bounded and loop free tree. To present the candidate

paths chosen in path replacement, a superpath is defined as any longest simple path between two nodes in

tree Ti, in which all internal nodes, except the two end nodes of the path, are relay nodes and each relay node

connects exactly two tree edges. The superpath is the same as superedge defined in BSMA (Zhu et al., 1995).

The three neighbourhood structures of VNDMR0 and VNDMR1 are described as follows:

1. Neighbour1: all the most expensive edges on each superpath in tree Ti are the candidates of path

replacement. At each step, one chosen edge is deleted, which divides the tree Ti into two sub-trees Ti
1 and

Ti
2. The Dijkstra’s shortest path algorithm is then used to find a new delay-bounded shortest path that

connects the two sub-trees and reduce the tree cost;

2. Neighbour2: this operator operates on all superpaths in tree Ti. At each step, one superpath is

replaced by a cheaper delay-bounded path using the same path replacement strategy in Neighbour1;

Chapter 4 Metaheuristic Approaches for the DCLC Multicast Routing Problem

 80

3. Neighbour3: all superpaths connect with destinations in Ti are the candidate paths to be replaced. At

each step, a superpath is deleted, which divides the tree Ti into a sub-tree Ti' and a destination node rd∈R.

The same path replacement strategy is then used to search for a new delay-bounded shortest path from rd

which reconnects rd to Ti'.

Figure 4. 2 The pseudo-code of the VNDMR Algorithm

In order to investigate the influence of different neighbourhood structures on the performance of the

VNDMR algorithm, another node-based neighbourhood structure is designed in VNDMR2. Both

VNDMR1 and VNDMR2 start from the same initial solution (DBDDSP) but have different neighbourhood

structures. The three neighbourhood structures of VNDMR2 are as follows:

1. Neighbour1: one neighbourhood tree is defined as deleting or adding a non-destination node from the

current multicast tree and creating a minimum spanning tree which spans the remaining nodes by using

the Prim’s spanning tree algorithm. Once a better tree is found, the current tree is updated. These steps

are repeated until no better tree can be found more than 2 iterations;

 2. Neighbour2: the same as Neighbour2 in VNDMR1;

 3. Neighbour3: the same as Neighbour3 in VNDMR1.

4.2.1.3 An Illustrative Example

VNDMR(G = (V, E), s, R ∆, ℓmax, Nℓ, ℓ = 1,..., ℓmax)
{ // s: source node; R: destination set; ∆ ≥ 0 is the delay bound;

// ℓmax = 3 is the number of neighbourhoods structures;
// Nℓ: the ℓ th neighbourhood of the set of neighbourhoods;

Create initial solution T0; // DKSLD or DBDDSP
if T0 = NULL then return FAILED; // a feasible tree does not exist
else
{

Tbest = T0; ℓ = 1;
while ℓ ≤ℓmax do {

select the best neighbour T ', T '∈Nℓ(Tbest);
if(((Cost(T ') < Cost(Tbest)) & (Delay(T ') ≤ ∆)) ||
 ((Cost(T ') == Cost(Tbest)) & (Delay(T ') < Delay(Tbest)))
then { Tbest = T '; ℓ = 1; }
else ℓ++;

end of while loop }
}
return Tbest;

}

Chapter 4 Metaheuristic Approaches for the DCLC Multicast Routing Problem

 81

For the ease of understanding, an example network is presented in Figure 4.3(a), where s = {0} and R = {2,

3, 9}, ∆ = 82 is the delay bound and the values on each link e = (i, j) are the cost and delay of the link, i.e.

cij/dij. The search results by applying BSMA and the VNDMR1 algorithm are shown in Figure 4.3(b) and

Figure 4.3(d), respectively. The initial solution constructed by DBDDSP is shown in Figure 4.3(c).

According the definition of superpath, there are three superpaths in the multicast tree in Figure 4.3(c),

path P(0, 2) = {(0, 8), (8, 2)}, path P(0, 3) = {(0, 7), (7, 3)}, and path P(0, 9) = {(0, 4), (4, 9)}. By using

VNDMR1, P(0, 3) is replaced by path P(9, 3) = {(9, 1), (1, 3)}, generating a new tree in Figure 4.3(d). The

tree cost is reduced from 336 in Figure 4.3(c) to 281 Figure 4.3(d), while the tree delay (Delay(TVNDMR1) =

66) still satisfies the delay constraint ∆ = 82. Comparing the trees generated by BSMA and VNDMR1, it

can be seen that the tree cost found by VNDMR1 (281) is lower than that of BSMA (285). This is due to

the flexibility of the VNDMR1 algorithm which explores the search space defined by different

neighbourhood structures.

c19/d19 = 50/19, c91/d91 = 34/17

 Cost(TBSMA) = 285, Delay(TBSMA) = 78

(a) An example network (b) Search result of BSMA

 Cost(T0) = 336, Delay(T0) = 42

 Cost(TVNSMR) = 281, Delay(TVNSMR) = 66

(c) Initial solution of VNDMR1 (d) Search result of VNDMR1
Figure 4. 3 An example network and solutions obtained by BSMA and VNDMR1

4.2.1.3 Time Complexity of the VNDMR Algorithm

Chapter 4 Metaheuristic Approaches for the DCLC Multicast Routing Problem

 82

Consider a network with n nodes, the proof of the probability of transition from spanning tree si to another

tree sj of the network has been given in (Zhu et al., 1995):

According to Cayley’s Theorem (Cayley, 1989), there are nn-2 possible spanning trees on n nodes.

The number of Steiner trees spanning ns ≤ n is thus bounded by nn-2. Let us consider a Markov chain

of nn-2 states, where each state corresponds to a spanning tree. These states are sorted in a

non-increasing order from left to right with respect to the cost of the Steiner tree. Replace each

state in the sorted list with n copies of itself to get a total of nn-1 states. In the Markov chain,

transition edges from a state si go only to a right state of si. Assume that each possible transition is

an equally likely event. The probability of a transition from si to sj is thus as follows:

1
1
−

=
i

Pij
 (1 ≤ j < i, P11 = 1) (4.1)

The proof of time complexity of VNDMR is based on the method used in (Zhu et al., 1995). Let mi be

the number of transitions needed to go from state si to s1, the expected value E[mi] = log(i) (see Zhu et al.,

1995). Therefore, if the VNSMR algorithm starts from the most expensive state, i.e. i = nn-1, then the

expected number of transitions is O(log(nn-1)) = O(nlog(n)). Thus the expected maximum number of

iterations of the neighbourhood structures in VNSMR is O(nlog(n)). The VNSMR algorithm includes three

neighbourhood structures (N1, N2, N3), thus the time complexity of VNDMR is:

O(nlog(n)(O(N1)+ O(N2)+ O(N3)))

For example, the three neighbourhoods of VNDMR0 and VNDMR1 use the same path replacement

strategy. A path-replacement operation is dominated by the Dijkstra’s shortest path algorithm which takes

O(llog(n)), where l = |E| is the number of links in the network. In the worst case, each neighbourhood

requires replacing at most O(l) superpaths. The time complexity of VNDMR0 and VNDMR1 is thus as

follows:

O(nlog(n)(3×l×llog(n))) = O(l2nlog2(n)) (4.2)

For VNDMR2, the first neighbourhood structure N1, the time consumed by each operation of

constructing the Prim’s spanning tree (Cormen et al., 1997) is O(llog(n)). In the worst case, the maximum

Chapter 4 Metaheuristic Approaches for the DCLC Multicast Routing Problem

 83

number of expected iterations from one spanning tree to another is nlog(n) (Zhu et al., 1995). So the time

complexity of N1 is:

O(N1) = O(nlog(n)×llog(n)) = O(nllog2(n)) (4.3)

The path-replacement operation of both N2, and N3 in VNDMR2 is based on the Dijkstra’s shortest path

algorithm which takes O(llog(n)). Neighbourhood N2, and N3 require replacing at most O(l) superpaths in

the worst case. Therefore, the time complexity of VNDMR2 is:

O(nlog(n)(nllog2(n)+2×l×llog(n))) = O(nl log2(n)(nlog(n)+l)) (4.4)

4.2.2 Experiments and Results

To evaluate the efficiency of the VNDMR algorithms, the multicast routing simulator MRSIM is used to

generate a set of random network topologies. In the simulations, parameters are set as α = 0.25, β = 0.40,

and the average node degree = 4 in MRSIM (see Section 3.3.2 for more details). More detailed information

of all the problem instances tested and some example solutions obtained by the algorithms are publicly

available at http://www.cs.nott.ac.uk/~rxq/MRPresource.html. VNDMR algorithms have been implemented

and integrated in C++ in the simulator. A series of experiments are designed as follows to test the

performance of the proposed VNDMR algorithms. All simulations were run on a Windows XP computer

with PIV 3.4GHZ, 1G RAM.

4.2.2.1 VNDMR with Different Initializations

In the first group of experiments, 20 different network topologies for each size of networks with 20, 50, 100,

200 and 300 nodes are randomly generated. For each network topology, the source node and the destination

nodes are randomly selected. The delay bound in the experiments for each network topology is set to be 2

times the delay of the least delay tree generated by DKSLD (see Section 4.2.1.1) , i.e. ∆ = 2× Delay(TDKSLD).

The performance of VNDMR with two different initialization heuristics, e.g. VNDMR0 with DKSLD and

VNDMR1 with DBDDSP (see Section 4.2.1.1), are investigated. Both variants have the same

Chapter 4 Metaheuristic Approaches for the DCLC Multicast Routing Problem

 84

neighbourhood structures as defined in Section 4.2.1.2. The simulation was run 50 times on each network

topology.

Figure 4. 4 Tree cost and execution time vs. network size (group size = 10)

Figure 4.4 presents the average tree cost and execution time of VNDMR0 and VNDMR1 for the

problems of different network sizes with group size (the number of destinations) of 10. The tree cost of the

initial solutions obtained from DBDDSP and DKSLD are also presented in Figure 4.4(a), where we can see

that the initial solutions generated by DBDDSP are better than those generated by DKSLD and both VNDMR

algorithms employing the three predefined neighbourhoods can further improve the initial solutions.

Affected by different initializations, VNDMR1 (with initial solutions obtained from DBDDSP) performs

better than VNDMR0 (with initial solutions obtained from DKSLD) in terms of both the average tree cost

and computational time.

Table 4. 1 Tree cost vs. group size (network size = 50)

Group size DKSLD VNDMR0 DBDDSP VNDMR1
5 560.5 287.3 330.05 280.75

10 938.6 497.9 583.1 466.5
15 1242.7 682.95 809.1 652.95
25 1666.5 867.7 1077.75 840.25
35 1944.45 1072 1359.95 1055.75
45 2294.35 1235.65 1591.45 1214.75

Figure 4. 5 Execution time vs. group size (network size = 50)

(a) tree cost (b) execution time

Chapter 4 Metaheuristic Approaches for the DCLC Multicast Routing Problem

 85

The above experiments show that the VNDMR algorithms can always improve the initial solutions

when constructing the DCLC multicast trees. The quality of initial solutions affects the performance of the

VNDMR algorithm. It shows that the better initial solution from a more intelligent heuristic leads to better

final results, and also reduces the execution time of the VNDMR algorithm.

4.2.2.2 VNDMR with Different Neighbourhood Structures

In the second group of experiments, VNDMR1 and VNDMR2 are tested on the same random network

topologies generated in Section 4.2.2.1. Both VNDMR1 and VNDMR2 start from the same initial solution

from DBDDSP, whereas they apply different neighbourhood structures described in Section 4.2.1.2.

Table 4. 2 Average tree cost and execution time vs. network size (group size = 10)

VNDMR1 VNDMR2 Network
Size

Initial Solution
(DBDDSP) Cost Time (s) Cost Time (s)

20 513.85 416.25 0.008 407.9 0.053
50 583.1 466.5 0.067 456.85 0.509
100 892.75 667.85 0.924 650.2 4.969
200 1029.15 840.55 16.474 829.55 29.891
300 1084.55 875.05 41.379 851.25 86.365

 The average tree cost and execution time of VNDMR1 and VNDMR2 on 5 different network sizes

with group size of 10 are shown in Table 4.2. VNDMR2 always obtains better average tree cost than

VNDMR1 on these networks of different sizes. It also shows that VNDMR2 spends longer computing time

than VNDMR1.

Table 4.3 presents the average tree cost and execution time of VNDMR1 and VNDMR2 on the same

group of 50-node networks with different group sizes. We can see that VNDMR2 obtains better tree costs

on the networks with small group sizes (5, 10 and 15 nodes), while VNDMR1 performs better than

VNDMR2 when the group size increases (25, 35 and 45 nodes). It means the design of the neighbourhood

structures affects the performance of the VNDMR algorithm. The Neighbour1 of VNDMR2 is based on an

operation on the nodes in the multicast tree. With the increasing group size (the number of destination

nodes) in these 50-node networks, the possible neighbourhood trees of the current tree that can be explored

are decreasing. Since the number of nodes which can be deleted from or added to the current tree is

decreased, the Neighbour1 plays no much role when exploring the solution space. However, the

Chapter 4 Metaheuristic Approaches for the DCLC Multicast Routing Problem

 86

edge-based VNDMR1 still performs well even on the networks with large group sizes. On the other hand,

VNDMR1 spends less computing time than VNDMR2 on the tested problems.

Table 4. 3 Average tree cost and execution time vs. group size (network size = 50)

VNDMR1 VNDMR2 Group
size

Initial Solution
(DBDDSP) Cost Time (s) Cost Time (s)

5 330.05 280.75 0.038 280.15 0.075
10 583.1 466.5 0.067 456.85 0.214
15 809.1 652.95 0.117 643.65 0.373
25 1077.75 840.25 0.141 845.15 0.473
35 1359.95 1055.75 0.187 1063.45 0.583
45 1591.45 1214.75 0.287 1224.95 0.595

4.2.2.3 Comparisons with Existing Algorithms

In the third group of experiments, VNDMR1 is compared with four other existing multicast routing

algorithms in terms of both the solution quality and computational time using the same simulations

designed in Section 4.2.2.1. The four algorithms include three DCLC multicast routing algorithms BSMA,

CDKS and QDMR in the literature, and an algorithm named DKSLC which uses the Dijkstra’s algorithm to

construct the least cost multicast tree without the delay constraint.

(a) tree cost (b) execution time

Figure 4. 6 Tree cost and execution time vs. network size (group size = 10)

Figure 4.6 shows the average tree cost and execution time of these four algorithms compared with the

VNDMR algorithms. It can be clearly seen in Figure 4.6(a) that VNDMR1 outperforms all the other four

algorithms upon tree cost. CDKS and DKSLD have the worst and similar tree cost; BSMA is better than

QDMR but worse on tree cost than VNDMR1. In addition, Figure 4.6(b) shows that VNDMR1 requires

Chapter 4 Metaheuristic Approaches for the DCLC Multicast Routing Problem

 87

less execution time than that of BSMA. The other three algorithm CDKS, QDMR and DKSLC require a

shorter computational time. However, the solution quality is of much lower quality than both BSMA and

VNDMR1.

(a) tree cost (b) execution time

Figure 4. 7 Tree cost and execution time vs. network size (group size = 10% of network size)

Figure 4.7 presents the results of the VNDMR1 algorithm and other existing algorithms in terms of the

tree cost and execution time with different network sizes, where the group sizes is 10% of the overall

network sizes. Again, it can be seen in Figure 4.7(a) that VNDMR1 outperforms all the other four

algorithms upon the solution quality. Figure 4.7(b) shows that VNDMR1 requires less execution time than

BSMA. The time complexity of the VNDMR1 is O(l2nlog2(n)), while BSMA’s time complexity is

O(kn3log(n)) (n is the number of nodes in the network, l is the number of edges, k is the k-th shortest paths

that are considered between the source and a destination).

Ghaboosi and Haghighat (2007) develop a path relinking algorithm which outperforms a number of

existing algorithms, including KPP, BSMA, GA-based algorithms (Wang et al., 2001; Haghighat et al.,

2004), Tabu search based algorithms (Wang et al., 2004; Ghaboosi and Haghighat, 2006; Skorin-Kapov

and Kos, 2003; Youssef et al., 2001) and another path relinking algorithm for the Steiner tree problem

(Bastos and Ribeiro, 2001), where the average tree costs of these algorithms on a set of random networks

have been reported in (Ghaboosi and Haghighat, 2007), as shown in Table 4.4. In order to compare the

proposed VNDMR algorithms with all these algorithms, the simulations are performed as those designed in

(Ghaboosi and Haghighat, 2007) by generating a set of random network graphs which includes three

random topologies for each network size (10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 nodes). The link cost

Chapter 4 Metaheuristic Approaches for the DCLC Multicast Routing Problem

 88

depends on the length of the link, and all the link delays are set to 1. The group size is set to 30% of the

network size in each graph, the delay bounds are set to different values depending on the network sizes (∆

= 7 for network size 10-30, ∆ = 8 for network size 40-60, ∆ = 10 for network size 70-80 and ∆ = 12 for

network size 90-100). This group of random graphs will be used to test the algorithms proposed in the later

sections in the thesis. To encourage scientific comparisons, the set of problem instances are publicly

available at http://www.cs.nott.ac.uk~rxq/MRPresource.html for the benefits of the research community.

Table 4. 4 Average tree costs of the proposed VNDMR1, VNDMR2 and some existing heuristics and algorithms on the

random networks of 10-100 nodes

Algorithms Average Tree Cost

Heuristics
KPP1 (Kompella et al., 1993a)
KPP2 (Kompella et al., 1993b)
BSMA (Zhu et al., 1995)

905.581
911.684
872.681

GA-based
Algorithms

Wang et al. (2001)
Haghighat et al. (2004)

815.969
808.406

TS-based
Algorithms

Skorin-Kapov and Kos (2003)
Youssef et al. (2001)
Wang et al. (2004)
Ghaboosi and Haghighat (2006)

897.875
854.839
869.291
739.095

PR Algorithm Ghaboosi and Haghighat (2007) 691.434

VNS Algorithms
The proposed VNDMR1
The proposed VNDMR2
(Qu et al., 2009)

680.067
672.470

VNDMR2 is extended by initializing it from a greedy randomized initial solution. The randomized

initial solution is generated by randomly choosing a starting destination node and connecting it with the

source by using the Dijkstra’s shortest path algorithm, then repeatedly connecting the unvisited destination

nodes with the sub-tree until all destination nodes have been mounted to the tree. The simulation results are

reported in Table 4.4 and Table 4.5.

Table 4. 5 Average tree cost, standard deviation of the tree cost and execution time of VNDMR1 and VNDMR2 on the

random networks

VNDMR1 VNDMR2 Network
Size Tree

Cost σ
Execution

Time(s)
Tree
Cost σ Execution

Time(s)
10 94.67 0 0.005 94.67 0 0.003
20 282.33 0 0.015 275.33 0 0.032
30 415.67 0 0.036 405.93 17.44 0.17
40 518 0 0.063 513.87 0.28 0.362
50 726.67 0 0.151 713.5 31.27 0.859
60 812.33 0 0.292 790.27 8.97 1.392
70 805.33 0 0.682 803.97 7.01 2.571
80 922.33 0 1.286 923.9 9.44 5.127
90 1182.67 0 3.151 1182.6 9.6 11.705
100 1040.67 0 4.292 1020.67 21.32 15.332

Chapter 4 Metaheuristic Approaches for the DCLC Multicast Routing Problem

 89

Table 4.4 shows that VNDMR2 performs the best in terms of the average tree cost. Note that in the

literature all the other work has reported the average tree cost on all the tested instances and the

comparisons of the average tree costs are thus presented in Table 4.4. Details of the average tree cost,

standard deviation and execution time of VNDMR1 and VNDMR2 on each network size are given in Table

4.5. It can be seen that VNDMR2 produces better solutions on all the tested network sizes. It can be seen

that VNDMR2 spends longer computing time than VNDMR1 to obtain the better results.

Figure 4.8 presents the execution time of the path relinking algorithm, VNDMR1 and VNDMR2. It can

be seen that both VNDMR1 and VNDMR2 can obtain better results in a very short time (less then 5

seconds) which is much less than that of the path relinking algorithm. This indicates that Ghaboosi and

Haghighat’s path relinking algorithm is not practical for solving real-time network routing problems

especially of very large and densely connected networks due to its high time complexity. This group of

experiments show that VNDMR2 outperforms other existing heuristics and algorithms with regard to both

the average tree cost and computational time.

Figure 4. 8 Execution time vs. network size of VNDMR1, VNDMR2 and

Ghaboosi and Haghighat’s Path Relinking

In summary, through the above simulations on instances of different network sizes and different group

sizes, variants of the VNDMR algorithm with different initial solution (VNDMR0, VNDMR1), and with

different neighbourhood structures (VNDMR1, VNDMR2), have been evaluated. Experimental results

show that both the initial solution and the neighbourhood structures will affect the performance of the

VNDMR algorithm. Generally, with the same neighbourhood structures, better initial solution will help

VNDMR to obtain better search results and well designed neighbourhood structures will contribute to

Chapter 4 Metaheuristic Approaches for the DCLC Multicast Routing Problem

 90

better performance as well. Experimental results on a group of random graphs demonstrate that

effectiveness and efficiency of the VNDMR algorithms in comparison with other existing heuristics and

algorithms in terms of both the total tree cost and the execution time.

The research outcomes of the proposed VNDMR algorithms have been reported in (Qu et al., 2009),

and published in proceedings of Learning and Intelligent Optimisation (LION3), Lecture Notes in

Computer Science, 5851. pp. 15-29.

4.3 A Hybrid GRASP Algorithm

GRASP is an efficient metaheuristic for optimisation problems. However, little attention has been given to

GRASP for solving the QoS multicast routing problem. As reviewed in Chapter 3, only one GRASP

algorithm (Skorin-Kapov and Kos, 2006) in the literature has been proposed for the DCLC multicast

routing problem. Based on the previous variable neighbourhood descent search algorithm VNDMR (Qu et

al., 2009), a hybrid GRASP with VNDMR applied in the local search phase is thus investigated.

Furthermore, motivated by the successful applications of the simple yet effective pilot method in the

literature for the Steiner tree problem in Graphs in (Duin and Voß, 1999) and the network design problem

in (Höller et al., 2008), a pilot method is applied as a post optimisation procedure to further enhance the

performance of the proposed algorithm. The aim is to investigate advanced hybrid metaheuristics for

designing more efficient approaches to the DCLC multicast routing problem.

4.3.1 Algorithm Description

GRASP is a multi-start metaheuristic, where each iteration consists of two phases: a construction phase and

a local search phase. The construction phase of GRASP aims to diversify the search by using certain

random methods, while the local search phase in the GRASP intensifies the search by exploring the

neighbourhoods of the current solution. The motivation is to investigate the hybrid GRASP approach,

namely GRASP-VND+pilot, by applying the previous VNDMR algorithm in the local search phase and a

pilot method as the intensification method for the DCLC multicast routing problem.

4.3.1.1 The Construction Phase

Chapter 4 Metaheuristic Approaches for the DCLC Multicast Routing Problem

 91

In the proposed GRASP algorithm, each solution, i.e. a multicast tree, is represented by a binary vector.

Given a multicast routing problem in a network with |V| = n nodes, the binary vector with n bits is defined,

where each bit (from 0 to n-1) in the binary vector represents one node in the network, and takes a value of

1 if the corresponding node is in the multicast tree, 0 otherwise. This simple binary vector has been used for

representing a multicast solution in (Skorin-Kapov and Kos, 2003; 2006). In the construction phase of the

hybrid GRASP algorithm, the similar greedy strategy in (Skorin-Kapov and Kos, 2006) is used to create the

randomized initial solution, a delay-constrained Steiner tree T, in the following three steps. The

pseudo-code of the construction phase is given in Figure 4.9.

Figure 4. 9 The pseudo-code of the construction phase in the hybrid GRASP algorithm

(1) Starting from the source node, i.e. T = {s}, the shortest path which connects s and each

destination is calculated by using the Dijkstra’s shortest path algorithm. This path is denoted as

ConnectPath[ri], for each destination node ri∈R\T. ConnectPath[ri] is set as the least cost path

from s to ri if the delay of the path satisfies the delay bound; otherwise, ConnectPath[ri] is set as

the least delay path from s to ri. ConnectCost[ri] denotes the cost of the path.

(2) The restricted candidate list (RCL) is created by choosing those nodes ri∈R\T, for which

ConnectCost[ri] ≤ α×BestConnectCost, where α ≥ 1 is the parameter to control the size of the

RCL, BestConnectCost = min {ConnectCost[rj], ∀ rj∈R\T }. If α = 1, then the algorithm is

purely greedy. This means the RCL contains only the destination node with the least connect

GreedyRandomSolution(G =(V, E), s, R, ∆, α)
{ // s: source node; R: destination set; ∆ ≥ 0 is the delay bound

// α: parameter to create the RCL (restricted candidate list)
for all ri∈R

Calculate ConnectPath[ri] and ConnectCost[ri];
T = s;
while R⊄T do {

BestConnectCost = min{ConnectCost[ri], ∀ ri∈R\T};
Create RCL of all ri∈R\T where ConnectCost[ri]≤ α×BestConnectCost;
r = Random(RCL, Randseed); //Randomly choose r from RCL
//Randseed∈ (0,1]
T = T∪ConnectPath[r];
Update ConnectPath[rj] and ConnectCost[rj] for all rj∈R\T;

} //end of while loop
return T;

}

Chapter 4 Metaheuristic Approaches for the DCLC Multicast Routing Problem

 92

cost. If α > 1, the RCL includes the nodes with the path cost within the range of

α×BestConnectCost.

(3) A destination node r is randomly chosen from the RCL and ConnectPath[r] is added to the tree

T. ConnectPath[ri] and ConnectCost[ri] of the remaining unconnected destination nodes in R\T

are updated by searching the new shortest path from these destination nodes to the current tree T.

After that, the algorithm will return to step (2). The procedure ends until all the destination nodes

are included in the tree.

In order to construct a high quality starting solution, a pure greedy method is used in the first iteration

i.e. α = 1. In the remaining iterations, α > 1 is set to give more diversity to the construction phase for

exploring the solution space.

4.3.1.2 The Local Search Phase

After a feasible solution is generated in the construction phase, a local search phase is applied based on

VNDMR2 developed in (Qu et al., 2009) to improve the initial solution. VNDMR2 is based on a variable

neighbourhood descent search algorithm and has shown to be effective to solve the DCLC multicast routing

problem. VNDMR2 is thus hybridized in the local search phase. In VNDMR2, three neighbourhood

structures are designed. The first neighbourhood N1 is based on the nodes operation which generates a

neighbouring solution by flipping a node which is not the source or a destination node in the current

solution and then using the Prim’s algorithm to create the minimum spanning tree of the given nodes. This

process repeats until no better spanning tree can be found for 2 iterations. The other two neighbourhoods N2

and N3 operate on the paths by using a path replacement strategy based on the Dijkstra’s shortest path

algorithm to reduce the tree cost of the current solution and at the same time satisfy the delay bound, more

details can be found in Section 4.2.

4.3.1.3 The Application of the Pilot Method

The pilot method may be seen as an intelligent technique to look ahead of possible choices by performing

repetition of heuristics in order to record the best result before getting to the final decision of the options

concerned. In the proposed GRASP-VND+pilot algorithm, a pilot method is designed to further explore

Chapter 4 Metaheuristic Approaches for the DCLC Multicast Routing Problem

 93

better neighbouring solutions after a local optimum has been found by the local search phase. The

framework of the GRASP-VND+pilot algorithm is illustrated in Figure 4.10. The pilot method is used as a

post optimisation procedure, where each pilot includes the following two phases:

1) Shaking process: During the shaking process, a destination node is randomly selected. A set of

back up paths which connects the source and the destination node is then generated for the

chosen destination by using the k-th shortest path algorithm (Eppstein, 1998). The pilot shakes

the current solution by choosing one path at random from the back up path set to replace the

original path from the source to the destination node in the current tree.

2) Pilot search procedure: Each pilot searches better solutions by looking ahead more

neighbouring solutions defined by the pilot heuristic in the pilot search procedure. Different pilot

heuristic can be applied. The proposed pilot heuristic in this work uses the same operation as that

defined in the neighbourhood structure N1 in VNDMR2 which is easy to implement and has

shown to be effective. The pilot search procedure repeats until no further improvement can be

achieved.

Figure 4. 10 The framework of the GRASP-VND+pilot algorithm

GRASP-VND+pilot (G =(V, E), s, R, ∆, Iter, α)
{ // s: source node; R: destination set; ∆ ≥ 0: the delay bound;
// Iter: the number of iterations; α: parameter for creating greedy randomized solution;
// f: the objective function; t: the pilot depth; N: the neighbourhood defined by the pilot method;
if Delay(ri) of the Dijkstra’s least delay path pT(s, ri) > ∆, ∀ri∈R, pT(s, ri)⊆T(s, R);
then return FAILED; // no feasible solution exists
else
{

i = 0;
while i < Iter do {

if i = = 0 // pure greedy solution (α=1) in the first iteration
Tbest = GreedyRandomSolution(G, s, R, ∆, 1); //the construction phase, see Figure 4.9

else // the remaining iterations of GRASP-VND (α >1)
T0= GreedyRandomSolution(G, s, R, ∆, α); //the construction phase, see Figure 4.9

T = VNDMR2(G, s, R, ∆, T0); // the local search phase
// the pilot method in GRASP-VND+pilot
Repeat the following sequence t times:

(a) Shaking.
Generate a neighbouring solution T ' from the neighbourhood N(T) of T

(b) The pilot search procedure.
Explore a new solution T '' of T ' defined by the pilot method

(c) Move or not.
if (f(T '')<f(T ')), set T ' ← T ''.

if (f(T ') < f(Tbest)) then Tbest = T ';
i++;

} //end of while loop
}
return Tbest;

}

Chapter 4 Metaheuristic Approaches for the DCLC Multicast Routing Problem

 94

In a pilot method, a key factor is the pilot depth, which determines the actual search depth of the

method, i.e. the quality of the results and the runtime of the search. In the pilot method, the pilot depth is a

given number of iterations of the pilot heuristic. One main shortcoming of the pilot method is that it is

associated with a higher time complexity. The pilot method with a larger pilot depth may lead to better

solutions; on the other hand, it usually results in longer runtime. As shown in Figure 4.10, when the pilot

depth t = 0, the pilot method is actually not applied in GRASP-VND+pilot. For this special case, the

algorithm is called GRASP-VND, which is the combination of only GRASP and VNDMR2.

4.3.1.4 Time Complexity of the Proposed Algorithms

As described in Section 4.3.1.1, the construction phase in GRASP-VND and GRASP-VND+pilot generates

the initial solution by using the Dijkstra’s shortest path algorithm for |R| destination nodes, so the time

complexity of the construction phase is dominated by the Dijkstra’s shortest path algorithm, which is

O(|R|llog(n)), where n = |V| is the number of nodes and l = |E| is the number of links in the network. For the

proposed GRASP-VND and GRASP-VND+pilot algorithms, the local search phase is based on VNDMR2.

In Section 4.2.1.4, the time complexity of VNDMR2 has been proven to be O(nl log2(n)(nlog(n)+l)). The

time complexity of GRASP-VND with Iter iterations is thus as follows:

O(Iter×(|R|llog(n)+nllog2(n)(nlog(n)+l))) = O(Iter×llog(n)(|R|+n2log2 (n)+nllog(n))) (4.5)

The pilot method in GRASP-VND+pilot repeats the pilot search procedure several times to find better

neighbouring solutions of the incumbent solution after the shaking process. The search procedure is based

on the same operation in the neighbourhood N1 of VNDMR2, so the time complexity of the pilot method is

O(tnllog2(n)), t is the pilot depth. Finally, the time complexity of the GRASP-VND+pilot algorithm can be

drawn as follows:

O(Iter×llog(n)(|R|+n2log2 (n)+nllog(n)+tnlog(n))) (4.6)

Chapter 4 Metaheuristic Approaches for the DCLC Multicast Routing Problem

 95

4.3.2 Experiments and Results

The proposed GRASP-VND+pilot, GRASP-VND and the GRASP-CST algorithm in (Skorin-Kapov and

Kos, 2006) are implememnted. VNDMR2 is extended to a multi-start algorithm by running it for a fixed

number of iterations, named Multi-VND. Each iteration of Multi-VND starts from a greedy random initial

solution, which is generated by randomly choosing a starting destination node and connecting it with the

source by using the Dijkstra’s shortest path algorithm, then repeatedly connecting the unvisited destination

nodes with the sub-tree until all destination nodes have been mounted on the tree.

To determine appropriate settings for the parameters in GRASP-VND+pilot and GRASP-VND

algorithms, a number of initial tests were carried out. The aim was to obtain good quality solutions by using

as less number of iterations as possible to reduce the execution time. Parameter α (see Figure 4.9) should be

properly set to find a balance between diversification and intensification of the search over the search space.

After a set of initial tests, the number of iterations is set as 4, α is set as 5 in both GRASP algorithms. The

pilot depth is a key parameter in GRASP-VND+pilot which affects the quality of solutions and the

computational time, here the pilot depth is set as t = 5. Parameters for GRASP-CST are set as the same as

in (Skorin-Kapov and Kos, 2006), where the number of iterations is 5, α is 5, and the number of iterations

without improvement of the local search procedure is 2. The number of iterations is set to 4 in Multi-VND.

4.3.2.1 Experiments on Benchmark Problems (Steinb) in the OR-library

Firstly, experiments are carried out on the benchmark instances Steinb in the OR-library. Characteristics of

Steinb instances have been given in Section 3.5.4 (see Table 3.3). For the DCLC multicast routing problem,

the delay bound is the key factor which affects the solutions obtained. The smaller the delay bound, the

tighter the constraint is. Three types of different delay bounds are set on the Steinb instances to evaluate the

performance of the proposed algorithm. The values of these delay bounds are described as follows:

• ∆1 = ∞ means the delay bound is set as a very large positive number for each instance in the

experiments. The DCLC multicast routing problem is actually reduced to the unconstrained Steiner tree

problem, since the delays of the links do not introduce any restriction in constructing the Steiner tree. The

Chapter 4 Metaheuristic Approaches for the DCLC Multicast Routing Problem

 96

optimal solutions of this set of unconstrained multicast routing instances, i.e. Steiner tree problems, have

already been obtained in the OR-library, shown in Table 3.3.

• ∆2 = 1.1×Delay(TOPT), where TOPT denotes the multicast tree of the optimal solution for each

unconstrained Steiner tree instance, and Delay(TOPT) denotes the delay of the optimal solution. As the

delay bound is set as greater than the delay of the optimal solution, the optimal solution to the

unconstrained Steiner tree problem is thus the optimal solution to the DCLC multicast routing problem.

• For ∆3 = 0.9×Delay(TOPT), the delay bound is set as smaller than the delay of the optimal solution of each

unconstrained Steiner tree instance, the optimal solution is thus not known to any of the DCLC multicast

routing instance with this tighter delay bound.

Table 4. 6 Performance of GRASP-VND+pilot, GRASP-VND, Multi-VND and GRASP-CST for unconstrained Steiner

tree problems (∆1 = ∞). (The best values are in bold, the values marked with ‘*’ denote the optimal solution)

GRASP-VND+pilot GRASP-VND Multi-VND GRASP-CST
No.

Avg. Best σ Time(s) Avg. Best σ Time(s) Avg. Best σ Time(s) Avg. Best σ Time(s)
B01 82* 82* 0 0.62 82* 82* 0 0.73 82* 82* 0 0.29 82* 82* 0 0.63
B02 83* 83* 0 0.80 83* 83* 0 1.04 83* 83* 0 1.34 83* 83* 0 0.80
B03 138* 138* 0 1.28 138* 138* 0 2.04 138* 138* 0 1.96 138* 138* 0 1.10
B04 59* 59* 0 0.61 59* 59* 0 0.88 59* 59* 0 0.99 59* 59* 0 0.68
B05 61* 61* 0 0.85 61* 61* 0 1.35 61* 61* 0 1.66 61* 61* 0 0.86
B06 122* 122* 0 4.51 123.6 122* 1.17 3.10 124 124 0 3.53 123.1 122* 1.20 1.80
B07 111* 111* 0 1.41 111* 111* 0 2.11 111* 111* 0 2.31 111* 111* 0 1.86
B08 104* 104* 0 3.19 104* 104* 0 3.76 104.6 104* 1.27 4.21 104* 104* 0 2.80
B09 220* 220* 0 5.53 220* 220* 0 9.34 220* 220* 0 8.61 220* 220* 0 4.92
B10 86* 86* 0 2.59 87 86* 2.11 3.36 87 86* 2.11 4.94 86.5 86* 1.58 2.39
B11 88* 88* 0 4.07 88.7 88* 0.95 3.83 89 88* 1.41 7.03 88.1 88* 0.32 2.93
B12 174* 174* 0 10.02 174* 174* 0 15.32 174* 174* 0 14.13 174* 174* 0 6.76
B13 166.4 165* 2.27 45.00 171.1 165* 2.23 11.10 167.4 165* 2.07 11.21 169.7 165* 2.75 6.98
B14 235* 235* 0 11.36 235.5 235* 0.53 11.84 235.9 235* 0.32 31.50 235.4 235* 0.52 8.57
B15 319.6 318* 0.84 58.66 320 320 0 41.99 320 320 0 39.07 321.2 318* 1.40 16.56
B16 127* 127* 0 22.31 127* 127* 0 12.24 127* 127* 0 14.24 128 127* 2.11 6.41
B17 131* 131* 0 13.73 133.7 131* 0.95 14.14 131.3 131* 0.95 15.54 131* 131* 0 10.3
B18 218* 218* 0 28.38 218.2 218* 0.42 39.70 218.2 218* 0.42 33.47 218.4 218* 0.48 19.28

In the first group of experiments, the delay bound is set as ∆1 = ∞. The simulation was run 10 times on

each instance. The average and best tree cost, the standard deviation of the results and the computing time

of GRASP-VNS+pilot, compared with those of GRASP-VND, Multi-VND and GRASP-CST are

illustrated in Table 4.6. Itcan be seen that the GRASP-VND+pilot algorithm gives the best solutions

(marked in bold) on all the instances except one (B13) with respect to the average tree cost, while

GRASP-VND, Multi-VND and GRASP-CST obtain 10 out of 18 best solutions. Both GRASP-VNS+pilot

and GRASP-CST find the optimal solution at least once out of 10 runs for all 18 instances, which is better

Chapter 4 Metaheuristic Approaches for the DCLC Multicast Routing Problem

 97

than GRASP-VND and Multi-VNS which find the optimal solutions on 17 and 16 instances in the 10 runs,

respectively. The GRASP-VND+pilot algorithm with pilot method improves the solutions of GRASP-VND

on 8 out of 18 instances. It should be noticed that the GRASP-VNS+pilot algorithm achieves the best

results by consuming longer computing time than all the other algorithms.

In the second group of experiments, the delay bound is set as ∆2 =1.1×Delay(TOPT). With the tighter

bounded end-to-end delay, similar results are obtained, as shown in Table 4.7. The GRASP-VND+pilot

algorithm still performs the best among these four algorithms in terms of the average tree cost. It obtains

the best solutions for all the 18 instances except one (B13), compared with those of GRASP-VND and

Multi-VND (11 best solutions), and GRASP-CST (8 best solutions). The GRASP-VND+pilot algorithm

improves the quality of solutions of GRASP-VND on 7 instances and even reduces the runtime on 10 out

of 18 instances compared with GRASP-VND. Although GRASP-VND+pilot consumes longer computing

time for some instances, it converges to the optimal solutions faster than the other three algorithms on four

instances (B1, B2, B4 and B7) and leads to better solutions with lower average tree costs than those found

by the other three algorithms in most cases.

Table 4. 7 Performance of GRASP-VND+pilot, GRASP-VND, Multi-VND and GRASP-CST for Steiner tree problems

with ∆2 = 1.1×Delay(TOPT)

GRASP-VND+pilot GRASP-VND Multi-VND GRASP-CST No. Δ
Avg. Best σ Time(s) Avg. Best σ Time(s) Avg. Best σ Time(s) Avg. Best σ Time(s)

B01 145 82* 82* 0 0.37 82* 82* 0 0.51 82* 82* 0 0.29 82* 82* 0 0.54
B02 228 83* 83* 0 0.79 83* 83* 0 1.08 83* 83* 0 1.41 83* 83* 0 0.8
B03 248 138* 138* 0 1.20 138* 138* 0 2.15 138* 138* 0 1.98 138* 138* 0 1.09
B04 173 59* 59* 0 0.59 59* 59* 0 0.83 59* 59* 0 1.02 59* 59* 0 0.64
B05 125 61* 61* 0 0.84 61* 61* 0 1.37 61* 61* 0 1.71 61* 61* 0 0.81
B06 281 122* 122* 0 4.58 123 122* 1.05 3.23 124 124 0 3.58 123 122* 1.05 1.73
B07 212 111* 111* 0 1.43 111* 111* 0 1.93 111* 111* 0 2.37 111* 111* 0 1.83
B08 209 104* 104* 0 3.19 104* 104* 0 4.20 104.9 104* 1.45 3.88 104* 104* 0 2. 8
B09 280 220* 220* 0 5.53 220* 220* 0 9.77 220* 220* 0 8.61 220* 220* 0 4.87
B10 262 86* 86* 0 2.65 86.5 86* 1.58 3.22 86* 86* 0 5.12 87 86* 2.11 2.20
B11 235 88* 88* 0 3.83 88.5 88* 1.08 4.48 88.2 88* 0.63 6.52 88.3 88* 0.67 2.92
B12 225 174* 174* 0 18.44 174* 174* 0 16.75 174* 174* 0 12.25 175 174* 1.67 6.37
B13 190 170.1 165* 2.08 19.96 170.9 165* 2.23 11.27 168.2 165* 1.69 11.98 170.6 165* 2.37 6.67
B14 221 235* 235* 0 22.33 235.2 235* 0.44 12.43 243.6 236 3.10 9.27 235.2 235* 0.41 8.19
B15 308 319.7 318* 0.71 45.98 320 320 0 39.52 320 320 0 38.96 319.8 318* 0.63 17.94
B16 291 127* 127* 0 22.23 127* 127* 0 12.79 127* 127* 0 15.91 130 127* 2.58 6.12
B17 219 131.5 131* 0.53 34.84 133.1 132 1.45 15.78 131.7 131* 1.25 14.75 131.9 131* 0.32 9.64
B18 425 218* 218* 0 57.65 218* 218* 0 42.67 218.1 218* 0.31 34.07 218.1 218* 0.32 19.54

In the third group of experiments, the delay bound ∆3 is set to a smaller value 0.9×Delay(TOPT). Table

4.8 shows that GRASP-VND+pilot obtains the best results on 12 instances upon the average tree cost. This

Chapter 4 Metaheuristic Approaches for the DCLC Multicast Routing Problem

 98

is better than those of GRASP-VND (6 best results), Multi-VND (10 best results) and GRASP-CST (7 best

results). GRASP-VND+pilot, GRASP-VND and GRASP-CST can not find feasible solutions on two

instances (B03 and B07) due to the tighter delay bound. The simple multi-start Multi-VND algorithm has

shown to be more robust than all the other algorithms by finding solutions for instances (B03 and B07),

although it also fails to find a feasible solution for instance B14. GRASP-VND+pilot achieves better results

than GRASP-VND on 7 out of 18 instances, showing again that the pilot method is able to improve the

performance of GRASP-VND. With regards to the average computing time, GRASP-VND+pilot requires

longer runtime than the other algorithms to get the better average tree costs.

Table 4.9 summarizes the average tree cost, standard deviation, and computational time of the four

algorithms on the Steinb instances after the above three groups of experiments. Please note that for the third

test, the average value is for the 15 instances that all the algorithms have obtained the feasible solutions. As

can be seen in the table that although the four algorithms have competitive average performances in the

three tests, GRASP-VND+pilot has the overall best performance among the four algorithms in terms of the

average tree cost, although at the expense of a longer computational time. Besides, GRASP-VND+pilot

algorithm is more stable than the other three algorithms with respect to the average standard deviation.

Table 4. 8 Performance of GRASP-VND+pilot, GRASP-VND, Multi-VND and GRASP-CST for Steiner tree problems

with ∆3 = 0.9×Delay(TOPT). (“\” denotes that no feasible solution was obtained)

GRASP-VND+pilot GRASP-VND Multi-VND GRASP-CST No. Δ
Avg. Best σ Time(s) Avg. Best σ Time(s) Avg. Best σ Time(s) Avg. Best σ Time(s)

B01 118 83 83 0 1.05 83 83 0 0.44 83 83 0 0.25 83 83 0 0.46
B02 187 84 84 0 1.60 84 84 0 0.68 84 84 0 0.69 84 84 0 0.63
B03 203 \ \ \ \ \ \ \ \ 141.7 141 0.48 1.94 \ \ \ \
B04 142 62 62 0 1.70 63.9 62 4.38 0.83 64 64 0 1.19 62.6 62 1.26 0.65
B05 102 62 62 0 1.58 62 62 0 1.23 62 62 0 1.04 64.7 62 0.95 0.54
B06 199 125 125 0 6.66 125 125 0 3.63 125 125 0 3.56 124 124 0 1.58
B07 173 \ \ \ \ \ \ \ \ 112 112 0 1.65 \ \ \ \
B08 171 107 107 0 8.16 107 107 0 4.34 107 107 0 3.42 107 107 0 2.59
B09 229 221 221 0 13.09 221 221 0 10.33 221 221 0 9.34 221 221 0 5.05
B10 215 88.9 88 1.45 6.32 89.8 88 1.55 3.19 88.3 88 0.95 4.60 88.3 88 0.95 2.12
B11 180 89 89 0 9.65 89.5 89 0.85 5.00 89.6 89 1.26 7.06 89.2 89 0.63 3.09
B12 184 179 177 2.83 18.07 178.4 175 2.56 15.38 177.7 177 1.16 13.68 178.5 177 4.24 6.37
B13 139 172 169 2 12.38 173 173 0 8.79 169 169 0 11.32 172 168 2.44 6.62
B14 180 237.4 237 0.89 20.45 237.9 237 1.05 12.41 \ \ \ \ 242.1 237 1.85 6.83
B15 194 322 322 0 38.53 322 322 0 26.17 341 339 3.46 20.62 330.1 328 1.45 15.62
B16 238 131.7 129 0.95 15.71 131.7 129 0.95 8.51 132 132 0 16.15 131.7 129 0.95 5.46
B17 180 134.2 134 0.42 27.39 136.3 134 1.64 11.94 135 134 1.55 11.59 134.8 134 0.42 8.34
B18 348 219 219 0 47.44 219.2 219 0.42 40.11 219.8 219 0.42 36.55 219.6 219 0.52 18.55

Chapter 4 Metaheuristic Approaches for the DCLC Multicast Routing Problem

 99

Table 4. 9 Summary of average results for the three experiments on the Steinb in the OR-library

GRASP-VND+pilot GRASP-VND Multi-VND GRASP-CST
Test

Cost σ Time(s) Cost σ Time(s) Cost σ Time(s) Cost σ Time(s)

1 140.278 0.173 11.941 140.933 0.465 9.881 140.689 0.474 10.891 140.744 0.576 5.313
2 140.517 0.184 13.691 140.789 0.436 10.221 141.094 0.469 9.649 140.939 0.674 5.406
3 138.653 0.510 13.955 139.052 0.823 9.371 139.893 0.587 9.405 139.367 0.921 5.178

4.3.2.2 Experiments on Random Networks

In order to compare the GRASP-VND+pilot and GRASP-VND algorithms with other existing algorithms,

the proposed algorithms are tested on a group of random networks which are the same as those generated in

Section 4.2.2.3. Experiments were run10 times on each random network.

Table 4. 10 Average tree costs of GRASP-VND+pilot, GRASP-VND, Multi-VND, GRASP-CST and some existing

heuristics and algorithms on the random networks with 10-100 nodes

Algorithms Average Tree Cost

Heuristics
KPP1 (Kompella et al., 1993a)
KPP2 (Kompella et al., 1993b)
BSMA (Zhu et al., 1995)

905.581
911.684
872.681

GA-based
Algorithms

Wang et al. (2001)
Haghighat et al. (2004)

815.969
808.406

TS-based
Algorithms

Skorin-Kapov and Kos (2003)
Youssef et al. (2001)
Wang et al. (2004)
Ghaboosi and Haghighat (2006)

897.875
854.839
869.291
739.095

PR Algorithm Ghaboosi and Haghighat (2007) 691.434

VNS Algorithms
VNDMR1 (Qu et al., 2009)
VNDMR2 (Qu et al., 2009)
Multi-VND

680.067
672.470
656.777

GRASP
Algorithms

GRASP-CST (Skorin-Kapov and Kos, 2006)
GRASP-VND algorithm
GRASP-VND+pilot algorithm

669.927
654.520
650.823

Table 4.10 shows that both GRASP-VND+pilot and GRASP-VND obtain better average tree costs than

Multi-VND and GRASP-CST. Details of the average tree cost, standard deviation and execution time of

these three algorithms on each network size are given in Table 4.11, showing that GRASP-VNS+pilot finds

the best solutions on 8 out of 10 different network size instances, while GRASP-VND, Multi-VND and

GRASP-CST obtain the best results on 2, 3 and 2 out of the 10 types of random networks, respectively.

With respect to the average standard deviation σ, GRASP-VNS+pilot has lower σ (7.001) than

GRASP-VND (8.38) and GRASP-CST (7.238), but higher than Multi-VND (6.566). GRASP-VND+pilot

requires the longest average computing time (16.238 seconds) in comparison with GRASP-VND (7.092

seconds), Multi-VNS (7.674 seconds) and GRASP-CST (3.289 seconds) to improve the average tree costs

Chapter 4 Metaheuristic Approaches for the DCLC Multicast Routing Problem

 100

of GRASP-VND on 8 out of the 10 types of random networks. To summarize, the GRASP-VND+pilot

algorithm performs the best compared with other existing algorithms with respect to the average tree cost

as shown in Table 4.10 and Table 4.11. However, it consumes longer average computational time than the

other algorithms as reported in Table 4.11.

Table 4. 11 Average tree cost, standard deviation of the tree cost and execution time of GRASP-VND+pilot,

GRASP-VND, Multi-VND and GRASP-CST on the random networks

GRASP-VND+pilot GRASP-VND Multi-VND GRASP-CST Network
Size Cost σ Time(s) Cost σ Time(s) Cost σ Time(s) Cost σ Time(s)

10 94.67 0 0.019 94.67 0 0.008 94.67 0 0.004 94.67 0 0.009
20 271.13 1.48 0.154 272.07 2.25 0.051 275.33 0 0.062 271.13 1.48 0.048
30 392.33 0 0.613 392.33 0 0.230 396.97 3.95 0.301 394.67 0 0.156
40 513.6 0.35 1.593 515.23 3.90 0.592 513.4 0.21 0.772 526.47 1.79 0.388
50 663.87 6.75 3.416 669.87 19.90 1.348 666.8 3.99 1.924 697.07 3.43 0.815
60 754.81 7.08 6.933 774.07 15.16 2.351 766.07 14.98 2.997 761.13 17.13 1.625
70 780.13 3.94 13.844 782 0 5.603 798.1 4.95 5.764 797.53 1.64 2.648
80 878.9 16.55 31.187 883.67 15.66 13.410 896.37 8.76 10.891 902.67 5.49 5.941
90 1163.77 28.67 52.202 1165.07 22.01 21.669 1154.23 23.37 22.932 1201.93 18.02 10.27
100 995.03 5.22 58.380 996.23 4.91 25.659 1005.83 5.46 31.091 1052 23.4 10.983
Avg. 650.823 7.001 16.834 654.520 8.380 7.092 656.777 6.566 7.674 669.927 7.238 3.289

The outcomes of this research on the hybrid GRASP algorithm have been published in the proceedings

of the 4th Multidisplinary International Scheduling Conference (MISTA2009) (Xu and Qu, 2009).

4.4 A Jumping Particle Swarm Optimisation Algorithm

The population-based PSO (Kennedy and Eberhart, 1995) simulates simplified natural social systems such

as flocks of birds or schools of fish. In PSO, a population (swarm) is made up of simple agents (particles)

and evolves by following very simple rules in a descentralized way. Particles are typically modelled as

entities moving in a multi-dimensional continuous space (search space) and interacting by sharing

information about their positions (solutions) both locally and globally. For each particle i in the swarm at

iteration j, a position (solution) xi,j and a velocity (rate of change) vi,j are updated in the evolution using the

following two equations:

vi,j+1 = c0vi,j + c1r1(bi – xi,j) + c2r2(gj – xi,j) + c3r3(gi,j – xi,j) (4.7)

xi,j+1 = xi,j + vi,j+1 (4.8)

Chapter 4 Metaheuristic Approaches for the DCLC Multicast Routing Problem

 101

Eq. (4.7) handles the velocity update by summing up four components:

1) The first component c0vi,j (inertia) enables the particle to keep the flow of its previous movement,

avoiding abrupt moves and precipitate convergence;

2) The second component c1r1(bi – xi,j) encourages the particle’s self-learning (cognition) ability by

using its best position bi achieved so far as a reference;

3) The third component c2r2(gj – xi,j) is the social factor that guides the particle to the best position gj so

far within the swarm, which keeps memory of the best performance so far of the entire swarm;

4) The fourth component c3r3(gi,j – xi,j) uses the best location in a neighbourhood sub-swarm gi,j. This is

to enhance the exploration capacity of the particles and also to prevent premature convergence within

the swarm.

Each of the four addends in Eq. (4.7) is assigned a weight within C = (c0, c1, c2, c3) to establish the

importance of each component. Each of the coefficients in C is a preset real number in the range [0,1].

Moreover, in order to confer a stochastic behaviour, the latter three components are multiplied by random

numbers R = (r1, r2, r3) drawn from a uniform [0, 1] distribution. Once the new velocity vi,j+1 is calculated

by using Eq. (4.7), Eq. (4.8) adds the new velocity to the current position xi,j so that the particle moves to a

new position.

While the original PSO algorithm was designed for continuous optimisation problems, a variant called

DPSO (Discrete Particle Swarm Optimisation) has been designed to deal with combinatorial optimisation

problems. Since in DPSO, a discrete exploration of search space is more appropriate for combinatorial

optimisation problems. The JPSO (Jumping Particle Swarm Optimisation, Moreno-Pérez et al., 2007)

algorithm is a recently introduced DPSO. One of the main advantages of JPSO is that it retains the

simplicity of the original PSO but works on a discrete search space. This makes it a good option to tackle

complex combinatorial optimisation problems. This motivated the work in this thesis to design a JPSO

algorithm for solving the DCLC multicast routing problem and also the underlying Steiner tree problem.

Up to now, no previous investigation has been carried out on using JPSO to tackle both problems. Most

related papers in the literature have mainly focused on one of them. On the DCLC multicast routing

problem, the JPSO algorithm is compared against the best known results reported in the literature, both on

solution quality and computational time. On the Steiner tree problem, the efficiency and effectiveness of

Chapter 4 Metaheuristic Approaches for the DCLC Multicast Routing Problem

 102

the JPSO algorithm are evaluated by calculating the exact gap to the global optimal solutions known for the

benchmark datasets used. A large number of experiments and simulations demonstrate that the JPSO

algorithm obtains highly competitive results for both the DCLC multicast routing problems and the Steiner

tree problems on some benchmark instances.

4.4.1 Algorithm Description

Without using the velocity to define how the swarm of particles move in the search space, JPSO applies a

simplified attractor-follower scheme to allow a number of elements (particles) to move (jump) from

position to position (solution) in the discrete space. If there is a particle with a good fitness in a certain

region of the space, the other particles in the swarm will follow its position in order to improve themselves.

For a particle i, there are three attractors, the first attractor bi is the best position that particle i has achieved

so far, the second attractor gj is the best position of the swarm so far and the third attractor gi,j is the best

position found by the sub-swarm made up by the neighbours of particle i at iteration j. JPSO defines four

types of moves including the inertial move and other three moves towards the attractors, all of them have a

likelihood cx given by the weight vector where ∑ =

3

0x xC = 1. In the case of the inertial move, a mutation or

neighbourhood move operator can be employed to explore the current position and to prevent premature

convergence. For the three follower-attractor moves, crossover operators are used to just partially imitate

the structure of the attractors by the follower.

At each generation, a random number r uniformly distributed in [0, 1] is generated. This number r

along with the weights cx determines how a particle moves.

− If r ∈ [0, c0), the inertial move will be triggered.

− If r ∈ [c0, c0+c1), the cognitive move, the attractor will be the best positioned particle in its

neighbourhood at the current generation.

− If r ∈ [c0+c1, c0+c1+c2), the social move, the attractor will be the global best position in the

swarm so far.

− If r ∈ [c0+c1+c2, c0+c1+c2+c3 = 1], the local move, the particle will try to move towards its

own best position so far.

Chapter 4 Metaheuristic Approaches for the DCLC Multicast Routing Problem

 103

Once the particle’s position xij has been updated, the JPSO algorithm conducts a local search to

improve the quality of the solution represented by that position.

4.4.1.1 Initialization

predecessor: 4 4 8 0 5 x 3 1 6

node: 0 1 2 3 4 5 6 7 8

Figure 4. 11 An illustrative example of the representation of the multicast tree

with 3 superpaths: (4-0-3-6-8-2), (5-4) and (4-1-7)

In the implementation, the swarm consists of |P| particles. Each particle in the swarm starts with a random

initial position, i.e. a randomized multicast tree, which is generated by starting from the source node and

randomly selecting the next link which connects any on-tree node in the tree until all destination nodes

have been mounted on the tree and non-destination leaves will be pruned from the tree. As defined in the

previous VNDMR algorithm (Qu et al., 2009), the proposed JPSO algorithm uses the same predecessor

array to represent a multicast tree and operates on the superpath in the inertial move to replace it by a new

path. Figure 4.11 presents an illustrative example of the representation of the tree and the superpath.

4.4.1.2 Moves of Particles in the Swarm

As described above, each particle in the swarm has four types of moves depending on where the random

number r falls within the interval [0, 1]. In the proposed JPSO algorithm, these moves are defined as

follows:

Chapter 4 Metaheuristic Approaches for the DCLC Multicast Routing Problem

 104

− If r ∈ [0, c0), the inertial move, the particle moves around its position. A particle in this scenario

will randomly delete a superpath in its current tree. The output of this operation is two sub-trees that

will be reconnected by using a new random path.

− For the three follower-attractor moves, if r ∈ [c0, c0+c1), the best located particle in the

neighbourhood of the current particle (gi,j) acts as the attractor, if r ∈ [c0+c1, c0+c1+c2), the attractor is

the best position achieved by the whole swarm so far (gj), if r ∈ [c0+c1+c2, 1], the attractor is the best

position achieved by the current particle so far (bi). Once the attractor is selected, a path replacement

operator is carried out by copying the cheapest path along the source to one destination from the

attractor to the follower (the current particle’s position). If the copied path is already in the multicast

tree which represents the follower’s position, a random move is applied to the follower particle. The

movements of the particles are implemented by deleting the predecessor of the nodes in the original

path to be replaced in the follower particle and updating the predecessor of the nodes by the new chosen

path.

After each move, a local search algorithm is applied to improve the new particle’s position. Finally, the

particle finishes its jump by updating its best position bi. A new position replaces bi and/or gj if that new

position has smaller tree cost within the delay bound or has smaller tree delay with the same tree cost.

In the local search algorithm implemented here, the neighbourhood structures are defined based on the

nodes of the multicast tree. One neighbour of the current tree is obtained by deleting or adding a

non-destination node and creating a new spanning tree of the remaining nodes by using the Prim’s spanning

tree algorithm (Betsekas and Gallager, 1992). Two variants of local search approaches have been evaluated:

one is a greedy approach which explores all neighbours of the current tree and then selects the best one; the

other approach is a first improvement variant in which the first better neighbour found is selected.

4.4.1.3 The Path Replacement Operator

The path replacement operator used to update a particle’s position with that of an attractor in the three

follower-attractor moves is illustrated as follows. Figure 4.12 shows three trees corresponding to a follower

particle T0, an attractor particle Ta and the new generated position T '. The path replacement is carried out as

follows. The path (5-4-0-3-6-8-2) in the current position T0 is replaced by the path (5-4-1-7-8-2) from the

Chapter 4 Metaheuristic Approaches for the DCLC Multicast Routing Problem

 105

tree corresponding to the attractor Ta. Thus a new tree T ' is generated, which becomes the new position of

the follower particle. The delay bound in this example is ∆ = 82.

Current tree T0 Attractor tree Ta New tree T '

Cost(T0) = 271 Cost(Ta) = 216 Cost(T ') = 230

Delay(T0) = 82 Delay(Ta) = 75 Delay(T ') = 75

Figure 4. 12 An example of the path replacement operator

(“x/y” denotes “cost/delay” of the links in the tree. Shaded nodes are destination nodes)

The pseudo-code below describes the implemented JPSO algorithm. A swarm of |P| particles is created

with random positions. For a number of iterations, each particle (p.n) makes a move as explained above,

either based on its current position (the inertial move) or by copying part of the attractor’s position (the

cognitive, social or local move). Once the particle has jumped to a new position, the local search (greedy or

first improvement) is applied. The particle’s best position (p.b) and the swarm’s best position (g) are

updated. After a predefined number of generations, the best position (g) achieved by the swarm is returned

as the final solution.

JPSO Pseudo-code

JPSOMR(G = (V, E), s, R, ∆, |P|, c0, c1, c2, c3)
{ // s: source node; R: destination set; ∆ ≥ 0: the delay bound;

//|P|: number of particles in the swarm.
// p.n: the new position of the particle
// p.c: the current position of the particle
// p.bn: the best position in the neighbour particles of the current particle
// g: the global best position found by the swarm
// p.b: the best position found by the own particle

Create |P| randomized initial feasible solutions for all particles in the swarm;
for (TotalIterations) do

for each(p in the swarm) do
generate a random number r within the range (0, 1]; // r∈ [0, 1]
case (r) {

Chapter 4 Metaheuristic Approaches for the DCLC Multicast Routing Problem

 106

r is in c0: p.n = RandomMove(p.c); // Inertial move
r is in c1: p.bn = GetBestNeighbourhood(p);

p.n = PathReplacement(p.bn, p.c); // Cognitive move
r is in c2: p.n = PathReplacement(g, p.c); // Social move
r is in c3: p.n = PathReplacement(p.b, p.c); // Local move

}
Greedy or first improvement local search on the current particle p.n;
Calculate the Cost and Delay of the current particle p.n;
if (((Cost(p.n) < Cost(p.b)) && (Delay(p.n) < ∆)) || (Cost(p.n) == Cost(p.b)) &&
(Delay(p.n) < Delay(p.b)))

then p.b = p.n;
if (((Cost(p.n) < Cost(g)) && (Delay(p.n) < ∆)) || (Cost(p.n) == Cost(g)) &&
(Delay(p.n) < Delay(g)))

then g = p.n;
end if

end if
p.c = p.n;

end for
end for
return g;

}
RandomMove(): a procedure that moves the particle to a new position by randomly choosing a superpath in the

current position and replace it by a random new path;
GetBestNeighbourhood(): a procedure that picks the best position among the neighbourhood particles of the

current particle;
PathReplacement(attractor, follower): a function that replaces the path from source to a destination in the

follower by choosing the best path in the attractor.

4.4.2 Experiments and Results

The simulator MRSIM is used to implement and evaluate the proposed JPSO algorithm. JPSO is then

compared with some related algorithms in the literature. Firstly, to determine the proper parameter settings

within JPSO, a number of initial tests have been carried out. Then, the JPSO algorithm on two sets of

benchmark Steiner tree problems (Steinb and Steinc) selected from the OR-library is tested. Details of

Steinb and Steinc instances have been given in Table 3.3 and Table 3.4, respectively, in Section 3.4.4.

Finally, the proposed JPSO is compared with some existing algorithms in the literature on a set of random

networks. These random networks are the same as those generated in the previous experiments for testing

the VNDMR algorithm and the GRASP algorithm. All simulations were run 30 times on a Windows XP

PC with an Intel Core 2 Duo E8500 3.16GHZ processor and 8GB RAM for the small Steinb instances and

20 times on the large Steinc instances.

4.4.2.1 Parameter Tuning within the JPSO

Chapter 4 Metaheuristic Approaches for the DCLC Multicast Routing Problem

 107

First, a series of extensive experiments is conducted to tune the parameters and understand the behaviour of

the JPSO algorithm with respect to the size of the swarm, the cooperation between particles, the effect of

the local search, and the evolution of the swarm.

1) Effect of the Swarm’s Size

In the first group of experiments, the JPSO is evaluated with 6 different swarm sizes (|P| = 1, 2, 5, 10, 20,

and 30) with c0 = c1 = c2 = c3 = 0.25 and a maximum number of iterations equals to 100. No local search is

integrated to have a clear view of an appropriate swarm size. The average tree costs and computational time

are presented in Table 4.12 and Figure 4.13. The performance of JPSO with small particle numbers (1, 2,

and 5) is not stable with large standard deviations. Better and stable solutions are obtained by JPSO with

swarm size of 20 and 30, but with an increased computational time.

Table 4. 12 JPSO with different swarm sizes and no local search (‘OPT’ denotes the optimal solution and values in bold

are the best results obtained)

|P| = 1 |P| = 2 |P| = 5 |P| = 10 |P| = 20 |P| = 30
No. OPT

Cost σ Cost σ Cost σ Cost σ Cost σ Cost σ

B01 82 96.1 18.633 86.3 6.473 82 0 82 0 82 0 82 0

B02 83 117.9 20.331 97.6 8.829 92.4 5.696 91.2 3.751 90 0 90 0

B03 138 174.6 11.972 164.5 9.192 161.6 6.465 158.5 0.707 153.2 6.017 154.3 4.041

B04 59 99.9 18.291 88.8 6.161 84. 9 3.621 81.6 4.453 77 3.625 74.7 4.31

B05 61 86.3 17.296 76.2 10.028 67.1 3.086 66.5 3 64.8 1.251 64 0.816

B06 122 183.1 27.416 157.4 6.841 151.8 5.973 146.8 3.488 145.3 4.619 143.3 4.424

B07 111 144.6 24.859 136.9 14.855 115.3 4.031 119.4 3.745 113.8 1.5 112.8 1.5

B08 104 147.5 26.818 124.2 12.667 123.6 11.908 113.4 3.779 112.8 2.152 113.5 2.258

B09 220 253.6 18.155 243.2 11.586 232.2 2.049 233.5 1.975 231 1.732 230 0

B10 86 162.8 32.034 135.3 22.949 138 16.294 123.6 4.333 122.5 0.837 122.5 1.225

B11 88 177.1 36.022 154 17.247 147.9 10.548 140 3.286 137.5 1.732 133. 9 3.887

B12 174 280.3 35.972 251.7 28.7 233.6 12.986 229.2 7.374 224.2 3.189 226.3 2.363

B13 165 223.7 25.027 206.8 20.359 183.4 8.385 179.6 5.505 176.4 7.537 173.4 2.608

B14 235 286.4 9.064 281 8.897 275.1 5.216 271.8 5.268 268.3 4.414 265.4 7.468

B15 318 372.9 16.72 364.9 14.024 353.6 3.13 352.2 2.041 349.8 2.95 348. 7 3.786

B16 127 225.5 45.604 185.6 26.957 180.6 19.034 162 0 160.8 2.858 162 0

B17 131 243.4 67.341 192 65.776 152.4 14.775 143 2.236 143 0.707 143 0

B18 218 344.9 57.356 308.6 42.863 272. 3 3.055 272.6 3.503 269 0 268.3 1.155

Statistically, the paired t-test value of the difference between JPSO with |P| = 10 and |P| = 20 is 6.02

which is greater than 3.97 for p= 0.001 in the T-table, showing JPSO with |P| = 20 is significantly better

Chapter 4 Metaheuristic Approaches for the DCLC Multicast Routing Problem

 108

than that of with |P| = 10. The same is done for JPSO with |P| = 20 and |P| = 30, and a value of 2 is obtained,

which is smaller than 2.11 for p = 0.05 in the T-table, showing JPSO with |P| = 20 and |P| = 30 has no

significant difference. While the computational time of JPSO with |P| = 20 is much less than that of |P| = 30,

|P| = 20 is therefore a good swarm size here for JPSO. More particles may be helpful for obtaining good

results; however, a too large swarm actually hinders the algorithm’s performance sometimes.

0

5

10

15

20

25

30

35

B01 B02 B03 B04 B05 B06 B07 B08 B09 B10 B11 B12 B13 B14 B15 B16 B17 B18
B Instances

C
om

pu
tin

g
tim

e
(S

ec
)

|P| = 1

|P| = 2
|P| = 5

|P| = 10
|P| = 20

|P| = 30

Figure 4. 13 Computational time of JPSO with different swarm sizes

without local search on small Steinb instances

2) Effect of Cooperation between Particles

A key feature of JPSO is that during the search, particles in the swarm cooperate by sharing information

about better positions in order to explore the search space effectively. The second set of experiments was

conducted to find out if this is actually happening in JPSO. Recall that the values in the weight vector C =

(c0, c1, c2, c3) determine the extent of a particle’s movement towards the position based on its own

behaviour or that of the other particles in the swarm. For example, setting C = (1, 0, 0, 0) means that the

particles do not cooperate as they make their next move based only on their own current positions. This is

equivalent to having a multi-start approach because each particle carries out its very own search by inertial

movements followed by the local search. When c0, c1, c2, and c3 take values different from zero, particles

cooperate by using both inertial and attractor movements in a true JPSO process.

The number of particles is set as |P| = 20, with two different weight vectors (c0 = 1, c1 = c2 = c3 = 0) and

(c0 = c1 = c2 = c3 = 0.25), and compared JPSO with or without local search strategies (greedy and first

Chapter 4 Metaheuristic Approaches for the DCLC Multicast Routing Problem

 109

improvement) described in Section 4.4.1.2. The average tree costs from the computational experiments on

the 18 instances in the OR-library are given in Table 4.13.

Table 4. 13 JPSO using different settings of cooperation between particles and local search (‘OPT’ denotes the optimal

solution and values in bold report the best results for each instance, each of the four columns reports results from a

combination of cooperation (cx = 0.25) or no cooperation (c0 = 1) with the greedy or first improvement (non-greedy) local

search)

Average Tree Cost Average Tree Cost
|P| = 20

c0 = 1 cx = 0.25
|P| = 20

c0 = 1 cx = 0.25

No. OPT
Non-

Greedy
Greedy

Non-
Greedy

Greedy No. OPT
Non-

Greedy
Greedy

Non-
Greedy

Greedy

B01 82 82 82 82 82 B10 86 86 86 86 86
B02 83 87.5 85 88 85.5 B11 88 88.2 88 88 88
B03 138 138 138 138 138 B12 174 174 174 174 174
B04 59 59 59 59 59 B13 165 169 165 174 165
B05 61 61 61 61.4 61 B14 235 236 235.9 235.8 235.2
B06 122 122 122.4 122 122 B15 318 321.8 320.8 321 319.7
B07 111 111 111 111 111 B16 127 135.1 127 129 127
B08 104 104.8 104 104 104 B17 131 134 131.1 131.2 131.2
B09 220 220 220 220 220 B18 218 218 218 218 218

It is obvious that JPSO with the two local search strategies achieves much better results than that of

JPSO without local search procedure (These results thus are not presented in Table 4.13). We can see that

the JPSO with cooperation and the greedy local search has the overall best performance compared with the

JPSO with other settings. For the small instances (B01 to B12), there is practically no significant difference

between the performances of the JPSO with different settings. However, for the large instances (B13 to

B17), cooperation helps the JPSO to achieve better results than its multi-start variant (c0 = 1, c1 = c2 = c3 =

0). Within the results of the JPSO (cx = 0.25), there is a subtle difference in the performance on instances

B14 and B15 depending on the type of local search. The results demonstrate that both the local search and

cooperation between particles play important roles within JPSO, i.e. multi-start of the local search does not

perform as well as JPSO with the same local search, especially for larger instances; JPSO with local search

outperforms that of without local search.

Figures 4.14 and 4.15 show the computational time spent by variants of JPSO algorithms using

different parameter settings of cooperation and local search on the small and large problem instances,

respectively. In both figures, variances between different runs are small. Figure 4.14 shows that with the

Chapter 4 Metaheuristic Approaches for the DCLC Multicast Routing Problem

 110

exception of instance B02, the four settings spend comparable computational time. However, it is intriguing

that on instance B02, only cooperation between particles and greedy local search helps the algorithm to

reduce the excessive execution time. A detailed examination into the JPSO performance with other settings

shows the reason is the search was trapped in good local optima, so JPSO had to continue to evolve until

the global optimal solution was obtained.

0

5

10

15

20

25

30

B01 B02 B03 B04 B05 B06 B07 B08 B09 B10 B11 B12

B Instances

C
om

pu
tin

g
Ti

m
e

(S
ec

)

Non-Greedy C0 = 1

Greedy C0 = 1
NonGreedy Cx=0.25
Greedy Cx=0.25

Figure 4. 14 Computational time of variants of JPSO on small instances

0

100

200

300

400

500

600

700

800

900

B13 B14 B15 B16 B17 B18
B Instances

C
om

pu
tin

g
Ti

m
e

(S
ec

)

Non-Greedy C0 = 1

Greedy C0 = 1
NonGreedy Cx=0.25

Greedy Cx=0.25

Figure 4. 15 Computational time of variants of JPSO on large instances

Results with respect to computational time are less clear on the large instances in Figure 4.15. It can be

seen that the best results achieved with respect to the average tree cost (reported in Table 4.13 on the large

instances) do no imply that more computational effort is required by the cooperation between particles, as

two exceptions can be found on instances B13 and B17. Note however, that when no cooperation is

allowed, JPSO with the greedy local search seems to be slower than that of JPSO with the first

improvement local search for the large instances.

Chapter 4 Metaheuristic Approaches for the DCLC Multicast Routing Problem

 111

3) Evolution of the Swarm

In this set of experiments, the evolution of the swarm across iterations on problem instances of different

sizes is investigated. The evolution of the best particle in the swarm is compared with respect to the

different settings of the JPSO on three instances: one of network size 75 (instance steinb12, Figure 4.16),

one of network size 100 (instance steinb16, Figure 4.17) and one of network size 500 (instance steinc01,

Figure 4.18).

Figure 4.16 shows that instance steinb12 is relatively easy no matter the settings in the algorithm,

although the optimum is found faster with greedy local search. On the medium size instance (steinb16),

Figure 4.17 shows that although the JPSO reaches the optimum with different settings, the variant with

cooperation and greedy local search is the fastest while the variant with no cooperation and greedy local

search is the slowest. For the large instance (steinc01), Figure 4.18 shows that JPSO with cooperation and

greedy local search is the first one that converges to the optimum, in this case the slowest is JPSO with

cooperation and non-greedy local search. We can see that particularly in the large instance, greedy local

search is beneficial both for the variants with and without cooperation.

168

170

172

174

176

178

180

182

184

1 2 3 4 5 6 7
Iterations

Tr
ee

 C
os

t

Non-Greedy C0=1
Greedy C0=1
Non-Greedy Cx=0.25

Greedy Cx=0.25
Optimum

Figure 4. 16 Evolution across iterations of JPSO with |P| = 5, different settings of cooperation and local search

on a Steiner tree problem of small size (network size = 75, instance steinb12)

Instance steinb12 (Figure 4.16) seems to be an easy problem so the local search does much of the work

and the cooperative nature of the JPSO does less. However, when the first improvement local search is used,

there is a slower convergence without the cooperation. Instance steinb16 (Figure 4.17) is harder to solve

and it is clear that cooperation within the swarm helps to converge to the optimum. Instance steinc01

(Figure 4.18) is even harder and then greedy local search is clearly beneficial. From the three figures, we

Chapter 4 Metaheuristic Approaches for the DCLC Multicast Routing Problem

 112

can see that the local search will greatly affect the performance of the JPSO algorithm. No matter what

cooperation between particles in the swarm is applied, the JPSO algorithm with greedy local search will

converge faster than the JPSO with non-greedy local search. On the other hand, the JPSO algorithm with cx

= 0.25 obtains the optimal solution faster than the JPSO algorithm with c0 = 1 and c1 = c2 = c3 = 0 in Figure

4.17. It means that if given more possibilities of moving towards the better positions (cx = 0.25), the JPSO

algorithm performs better than that with just random moves (c0 = 1, c1 = c2 = c3 = 0) in the swarm. It means

the particles cooperation is also important to the performance of the JPSO algorithm.

115

120

125

130

135

140

145

150

155

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 20 30 40 50 58 59

Iterations

Tr
ee

 C
os

t

Non-Greedy C0=1

Greedy C0=1

Non-Greedy Cx=0.25

Greedy Cx=0.25

Optimum

Figure 4. 17 Evolution across iterations of JPSO with |P| = 20, different settings of cooperation and local search

on a Steiner tree problem of medium size (network size = 100, instance steinb16)

75

80

85

90

95

100

105

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 20 30 40 50 60 66 67

Iterations

Tr
ee

 C
os

t

Non-Greedy C0=1

Greedy C0=1

Non-Greedy Cx=0.25

Greedy Cx=0.25

Optimum

Figure 4. 18 Evolution across iterations of JPSO with |P| = 20, different settings of cooperation and local search

on a Steiner tree problem of large size (network size = 500, instance steinc01)

4.4.2.2 Experimental Results on the Steiner Tree Problems

Chapter 4 Metaheuristic Approaches for the DCLC Multicast Routing Problem

 113

After tuning the parameters and studying the behaviour of the proposed JPSO in the previous subsections,

extensive experiments have been conducted to compare the overall performance of the proposed JPSO to

other recent algorithms in the literature on the Steiner tree problems. The parameters are set as (c0 = c1 = c2

= c3 = 0.25), |P| = 20 and the greedy local search is used. The number of iterations is 100 for Steinb

instances and 10 for larger and harder Steinc instances. 10 independent runs have been executed for each

algorithm on each instance.The JPSO is firstly compared with the GRASP-CST algorithm by

Skorin-Kapov and Kos (2006) on the Steinb instances. To obtain comparable results,GRASP-CST has been

re-implemented with the same parameters as that in Skorin-Kapov and Kos (2006), i.e. the number of

iterations is 5, α is 5, and the number of iterations without improvement of the local search procedure is

2.

Table 4.14 shows the average and best tree costs, and the average computational time on the Steinb

instances. The proposed JPSO algorithm performs better than GRASP-CST on 7 out of the 18 instances,

while GRASP-CST obtains slightly better average tree costs than those obtained by JPSO on 2 instances

(B02 and B17). It should be noticed that the JPSO achieves better results by consuming more computing

time in most cases.

Table 4. 14 Comparison between JPSO and GRASP-CST approaches on Steinb problems (Values in the columns (‘OPT’)

and in bold report the optimal solutions for each instance)

JPSO GRASP-CST JPSO GRASP-CST
No. OPT

Mean Best Time(s) Mean Best Time(s)
No. OPT

Mean Best Time(s) Mean Best Time(s)

B01 82 82 82 0.002 82 82 0.086 B10 86 86 86 1.469 86 86 2.394

B02 83 86.5 83 1.802 83 83 0.797 B11 88 88 88 1.141 88.2 88 0.646

B03 138 138 138 0.048 138 138 0.136 B12 174 174 174 0.8 174 174 1.255

B04 59 59 59 0.063 59 59 0.067 B13 165 165 165 93.421 171.4 165 2.099

B05 61 61 61 0.815 61 61 0.108 B14 235 235.2 235 239.922 235.4 235 1.816

B06 122 122 122 0.618 124.2 122 0.496 B15 318 319.7 318 320.513 321.7 320 5.178

B07 111 111 111 0.213 111 111 0.183 B16 127 127 127 10.503 129.3 127 1.611

B08 104 104 104 0.697 104 104 0.424 B17 131 131.2 131 159.33 131 131 1.799

B09 220 220 220 0.199 220 220 0.641 B18 218 218 218 1.136 218.3 218 4.502

The performance of JPSO and GRASP-CST are then tested within a fixed maximum computing time

(60 seconds), the stopping criterion is either the algorithm finds the optimal solution or within the given 60

seconds. Table 4.15 shows the average tree cost and the average running time when the algorithms found

Chapter 4 Metaheuristic Approaches for the DCLC Multicast Routing Problem

 114

the solutions. In the fixed maximum 60 seconds, GRASP-CST performs slightly better than the JPSO

algorithm on the small Steinb instances. However, the JPSO algorithm spends shorter computing time to

find the optimal solutions on 8 out of 18 instances compared with GRASP-CST.

Table 4. 15 Comparison between JPSO and GRASP-CST within the fixed computing time on Steinb problems (‘OPT’

denotes the optimal solution for each instance, bold number means better tree cost or shorter computing time)

JPSO GRASP-CST JPSO GRASP-CST
No. OPT

Cost Time(s) Cost Time(s)
No. OPT

Cost Time(s) Cost Time(s)

B01 82 82 0.029 82 0.086 B10 86 86 1.771 86 0.442

B02 83 85.5 2.935 83 0.101 B11 88 88 0.964 88 0.811

B03 138 138 0.045 138 0.136 B12 174 174 1.073 174 1.257

B04 59 59 0.066 59 0.067 B13 165 167.4 43.432 165 15.163

B05 61 61 0.086 61 0.108 B14 235 235.6 41.803 235 2.557

B06 122 122 0.824 122 1.201 B15 318 319.8 43.946 318.4 27.484

B07 111 111 0.31 111 0.183 B16 127 127 11.525 127 2.557

B08 104 104 0.538 104 0.431 B17 131 131.7 49.862 131 1.81

B09 220 220 0.214 220 0.644 B18 218 218 1.056 218 7.945

Table 4. 16 Comparison between JPSO, GRASP-CST and DPSO-STP approaches on Steinc instances (‘OPT’ denotes the

optimal solution for each instance, bold number means better tree cost)

JPSO GRASP-CST DPSO-STP
No. OPT

Mean Best Worst Mean Best Worst Mean Best Worst

C01 85 86 85 88 85 85 85 85 85 85

C02 144 149.1 146 152 144 144 144 144 144 144

C03 754 760.5 759 762 760.9 760 761 754.4 754 758

C04 1079 1083.8 1080 1085 1098.5 1087 1102 1079.2 1079 1080

C05 1579 1579 1579 1579 1587 1587 1587 1579 1579 1579

C06 55 55 55 55 55 55 55 55 55 55

C07 102 102.7 102 103 102 102 102 102 102 102

C08 509 509.7 509 510 517.4 517 518 509.9 509 512

C09 707 710.7 709 712 714.4 713 715 709.1 708 711

C10 1093 1093.8 1093 1094 1095.8 1093 1097 1094.5 1093 1098

C11 32 32.3 32 33 32.6 32 33 32.1 32 33

C12 46 46 46 46 46.4 46 47 46 46 46

C13 258 258.5 258 259 262.4 260 264 260.5 259 263

C14 323 323.9 323 324 327.8 325 331 324.5 324 326

C15 556 556 556 556 556.3 556 559 556.7 556 558

C16 11 12 12 12 11.4 11 12 11.4 11 12

C17 18 18.2 18 19 18.8 18 19 18.4 18 19

C18 113 115.7 115 116 118 116 119 116 115 119
C19 146 148 148 148 151.4 151 152 147.4 146 149
C20 267 267.1 267 268 269.4 268 271 267 267 267

Chapter 4 Metaheuristic Approaches for the DCLC Multicast Routing Problem

 115

The JPSO algorithm is further compared against GRASP-CST and another recent discrete particle

swarm optimisation algorithm, DPSO-STP by Zhong et al. (2008), on the larger and harder Steinc instances.

The mean, best and worst tree costs found by the three algorithms are presented in Table 4.16. Results

show that on 12 of the 20 Steinc instances, JPSO is capable of finding the optimal solutions at least once.

Although the DPSO-STP algorithm obtains the best average tree cost on 13 out of 20 problems, the JPSO

approach produces smaller tree cost than DPSO-STP on 7 out of 20 problems (C08, C10, C13, C14, C15,

C17, and C18). Both JPSO and DPSO-STP outperformed GRASP-CST on obtaining lower tree costs, since

GRASP-CST only finds the best result on 5 out of 20 problems.

4.4.2.3 Experiments for the DCLC Multicast Problem on Random Networks

In this group of experiments, the proposed JPSO algorithm is compared with several other algorithms from

the literature on a set of random graphs for the DCLC multicast routing problem. This set of random

network graphs is the same as that designed in Ghaboosi and Haghighat (2007); Qu et al. (2009) and Xu

and Qu (2009). The simulations were run 10 times on each random network. The average tree cost on all

the random networks are shown in Table 4.17 and the average tree cost and standard deviation of the JPSO

algorithm on each network size are presented in Table 4.18.

Table 4. 17 Average tree costs of JPSO and some existing heuristics and algorithms on the random networks of 10-100

nodes

Algorithms Average Tree Cost

Heuristics
KPP1 (Kompella et al., 1993a)
KPP2 (Kompella et al., 1993b)
BSMA (Zhu et al., 1995)

905.581
911.684
872.681

GA-based
Algorithms

Wang et al. (2001)
Haghighat et al. (2004)

815.969
808.406

TS-based
Algorithms

Skorin-Kapov and Kos (2003)
Youssef et al. (2001)
Wang et al. (2004)
Ghaboosi and Haghighat (2006)

897.875
854.839
869.291
739.095

PR Algorithm Ghaboosi and Haghighat (2007) 691.434

VNS Algorithms
VNDMR1 (Qu et al. 2009)
VNDMR2 (Qu et al. 2009)
Multi-VND

680.067
672.470
656.777

GRASP
Algorithms

GRASP-CST (Skorin-Kapov and Kos 2006)
GRASP-VND algorithm
GRASP-VND+pilot algorithm

669.927
654.520
650.823

JPSO Algorithm The proposed JPSO algorithm 662.100

Chapter 4 Metaheuristic Approaches for the DCLC Multicast Routing Problem

 116

It can be seen from Table 4.17 that, except the hybrid GRASP algorithms (GRASP-VND and

GRASP-VND+pilot) proposed in the previous work, JPSO produces the better average tree cost than other

algorithms tested in this experiment. The GRASP-CST and VNDMR2 approaches are the closest

competitors. To make a closer comparison between the three best performing approaches, Table 4.18 gives

details of the average tree cost and standard deviation obtained for each of the different network size

instances. The tree costs highlighted in bold clearly show that JPSO has a better overall performance. JPSO

achieves the smaller average tree costs of the instances on 4 out of 10 network sizes compared with the

other two algorithms. JPSO finds the same average tree cost as that of the other two algorithms on the

instances of 2 different network sizes. VNDMR2 still shows good performance as it achieves the best

average tree cost on instances of 4 network sizes.

Table 4. 18 Average tree cost and standard deviation of JPSO on 10 network sizes compared with VNDMR and

GRASP-CST

VNDMR2 GRASP-CST JPSO Network
Size Tree

Cost
Time
(sec) σ Tree

Cost
Time
(sec) σ Tree

Cost
Time
(sec) σ

10 94.67 0.003 0 94.67 0.009 0 94.67 0.244 0

20 275.33 0.032 0 270.67 0.032 0 270.67 0.125 0

30 405.93 0.17 17.44 394.67 0.17 0 395.67 0.64 4.041

40 513.87 0.362 0.28 526.47 0.362 1.789 526 5.052 3.834

50 713.5 0.859 31.27 697.07 0.859 3.429 687.33 18.817 1.095

60 790.27 1.392 8.97 761.13 1.392 17.129 748.67 6.464 0

70 803.97 2.571 7.01 797.53 2.571 1.644 785.67 11.11 0

80 923.9 5.127 9.44 902.67 5.127 5.489 889.67 19.068 0.577

90 1182.6 11.705 9.6 1201.93 11.705 18.019 1194 30.049 1.378

100 1020.67 15.332 21.32 1052 15.332 23.404 1028.67 71.798 2.466

As noted earlier in this section, to the best of my knowledge, this is the first study of a JPSO algorithm

on both the Steiner tree and DCLC multicast routing problems. A set of extensive experimental

comparisons have been investigated on a large number of benchmark Steiner tree problems from the OR-

library and a range of multicast routing problems with different characteristics. In both problem scenarios,

experimental results demonstrate the superior performance of the JPSO algorithm over a number of

state-of-the-art approaches. It shows that swarm optimisation is a successful approach to tackle the DCLC

multicast routing problem and the underlying Steiner tree problem.

Chapter 4 Metaheuristic Approaches for the DCLC Multicast Routing Problem

 117

The research outcomes of the JPSO algorithm have been reported in a paper which is now under review

at the Journal of Heuristics.

4.5 A Scatter Search with Path-relinking Algorithm

This section investigates the first hybrid Scatter Search and Path Relinking metaheuristic, hereafter named

SSPR, for the DCLC multicast routing problem. Although the SS metaheuristic has been successfully

applied to provide promising solutions for combinatorial optimisation problems in the literature, as far as I

am concerned, no research has been carried out by applying it for solving the QoS multicast routing

problem. SS is a very flexible metaheuristic, where each component can be designed in alternative ways

with regard to the problems being concerned. The basic SS consists of five components:

a) A Diversification Generator is used to create a large set of diverse solutions Pop. Based on the

initial population Pop, an initial reference set (RefSet) with b distinct solutions is built as the starting

point of the procedure (where b is usually a small value, e.g., no more than 20). Typically, the size of

Pop (Psize) is 10 times the size of Refset, i.e. Psize = 10×b. The solutions in RefSet are ordered

according to their objective function value, where the best solution is the first one in the set.

b) A Subset Generation Method operates on the reference set to generate a set of subset (SubSets)

of RefSet as the basis to create combined solutions. One common SubSets generation method is to

construct all pairs of solutions in RefSet, i.e. the size of each subset is 2. The cardinality of SubSets is

therefore given by (b2-b)/2 corresponding to the initial RefSet of b solutions.

c) A Solution Combination Method is designed to produce new combined solutions based on the

given subset of solutions from SubSets. The combination method is similar to the crossover operator in

genetic algorithms except that it should be able to combine more than two solutions.

d) An Improvement Method is applied to enhance a solution by exploring neighbourhoods of the

current solution in order to generate new better solutions.

e) A Reference Set Update Method aims to maintain the reference set consisting of the b best

solutions obtained in the previous search procedure. Different criteria may be defined to add solutions

to RefSet and delete solutions from RefSet.

Chapter 4 Metaheuristic Approaches for the DCLC Multicast Routing Problem

 118

As suggested in (Glover et al., 2000), a path relinking procedure is applied as the combination method

in the SSPR algorithm. PR is an evolutionary method which combines elements of pairs of solutions by

starting from one of these solutions, called an initiating solution, and generating a trajectory in the

neighbourhood space which connects to another solution, called the guiding solution. The main goal of PR

is to incorporate attributes of the pairs of solutions and record a series of moves leading from the initiating

solution to the guiding solution. To further intensify the search towards better solutions, two improvement

strategies: tabu search and variable neighbourhood search, are explored in the hybrid SSPR algorithm. The

details of the proposed SSPR algorithm are described in the following subsection.

4.5.1 Algorithm Description

In the SSPR algorithm, the Diversification Generator is a pure random generator to create a set of initial

solutions (Pop), each solution represents a multicast tree generated by starting from the source node and

randomly selecting the next node which connects the tree until all the destination nodes have been mounted

on the tree. As in the previous GRASP algorithm, the binary array with |V| = n bits is used to represent a

solution. Each bit (from 0 to n - 1) represents one node in the network, and takes a value of 1 if the

corresponding node is in the multicast tree, 0 otherwise. A reference set (RefSet) with diverse solutions is

selected from the initial solution set Pop. The solutions in RefSet are ordered according to their objective

function value, where the best solution is the first one in the set. The Subset Generation Method in SSPR

generate a set of subset (SubSets) selected from RefSet, where the SubSets include all pairs of solutions in

RefSet. A path relinking procedure is then designed as the solution combination method to operate on each

pair of solutions in SubSets. After a new solution is generated by the path relinking, two local search

heuristics, a tabu search and a variable neighbourhood search algorithm, are applied as the improvement

methods to further explore better neighbouring solutions of the newly generated solution. Finally, the

RefSet is updated by adding new better solutions in it and deleting worse solutions from it. The stopping

criterion in SSPR is either within a number of iterations or a given amount of time. The pseudo-code of the

proposed SSPR is presented in Figure 4.19.

Chapter 4 Metaheuristic Approaches for the DCLC Multicast Routing Problem

 119

Figure 4. 19 The pseudo-code of the SSPR algorithm

4.5.1.1 The Path Relinking Method

The path relinking method in the proposed SSPR algorithm is described as follows. During the PR

procedure, the difference bits between the initiating solution and the guiding solution will be recorded by

comparing the correspoding bits of the two solutions’s multicast tree binary arrays. At each step, starting

from the initiating solution, the PR will change one different bit in the initiating solution array to the

corresponding bit in the guiding solution array. Then for each of these generated array, a modified Prim’s

spanning tree algorithm is applied to generate a new tree by the given nodes in the array while concerning

the end-to-end delay bound from the source node to every destination node. This procedure repeats until the

SSPR(G =(V, E), s, R, ∆, Psize, b)
{ // s: source node; R: destination set; ∆ ≥ 0 is the delay bound; Psize: the size of the initial population (Pop);

// b: the size of the reference set (RefSet);
if for the Dijkstra’s least delay multicast tree T, d(pT(s, rd)) > ∆,∀rd∈R;
then return FAILED; // no feasible solution exists
else
 // a) Diversification Generator
 Pop = ø.

repeat
Create a solution x by Diversification Generator;
If x∉Pop then Pop=Pop∪x ; else Discard x ;

 until (|Pop| = Psize);
 repeat
 Build RefSet = { x1, …, xb} with b diverse solutions in Pop.

Order the solutions in RefSet according to their objective function value in increasing order, i.e. x1 is the
best solution with the smallest cost and xb is the worst.
NewSolutions = True;
while (NewSolutions)

 // b) Subset Generation Method
 Generate SubSets; // SubSets consists of all pairs of solutions in RefSet.

// Each pair includes at least one new solution.
 NewSolutions = False;
 while (SubSets ≠ ø) do
 Select the next subset in SubSets. //The size of subset is 2.
 // c) Solution Combination Method
 Apply the path relinking method to combine the solutions of the selected subset to obtain a

new solution x. //See Section 4.5.1.1.
 // d) Improvement Method
 Improve the generated new solution x. //Apply the local search heuristic, see Section 4.5.1.2.
 // e) Reference Set Update Method
 If (x is not in RefSet and f(x) < f(xb)) then // f is the objective function.
 xb = x; Reorder RefSet; NewSolutions = True;
 end if
 Delete the subset from SubSets.
 end while
end while

until (the stopping criterion) // a fixed number of iterations or a given amount of execution time.
}

Chapter 4 Metaheuristic Approaches for the DCLC Multicast Routing Problem

 120

guiding solution is finally reached, i.e. the initiating solution array becomes the same as the guiding

solution array. All the solutions generated during the process are recorded, from which the best solution

generated is obtained as the result of the PR procedure.

Figure 4. 20 An example of the PR process on the random network shown in Figure 3.1

An illustrative example of the PR method in the proposed SSPR method is shown in Figure 4.20. As

described above, the binary array is used to present a solution. It can be seen that a better new solution (tree

cost = 230) is generated compared with the initiating solution (tree cost = 319) and the guiding solution

(tree cost = 299) during the PR process. Here the delay bound ∆ = 100.

4.5.1.2 The Improvement Methods

The improvement method in scatter search is an important intensification strategy to further transfer the

incumbent solution into one or more enhanced solutions. In order to test the effect of improvement method,

two variants of SSPR algorithms are designed, namely SSPR-TS and SSPR-VND, where two improvement

methods, a TS heuristic (Skorin-Kapov and Kos, 2003) and the previous VND multicast routing algorithm

(Qu et al., 2009), respectively, are applied within the SSPR algorithm.

The TS heuristic uses the same solution representation as that in the path relinking method described

above. The initial solution of the TS heuristic is the best solution generated by the PR procedure.

Neighbouring solutions include all the solutions whose binary arrays are exactly one bit different from the

current solution. In other words, the neighbouring solutions are all those solutions generated by adding or

Chapter 4 Metaheuristic Approaches for the DCLC Multicast Routing Problem

 121

removing exactly one node excluding the source node or the destination nodes in the current multicast tree.

The Prim’s spanning tree algorithm is then applied to generate a new delay-constrained spanning tree of the

given nodes. The best new neighbouring solution becomes the current solution in the next iteration. The

process stops after a desired number of iterations without improvements; here the number is set to 2. In the

TS heuristic, the tabu list is repeatedly updated by the corresponding bit of the last performed move. The

size of tabu list is set to one which is enough to prevent the algorithm from visiting the solutions of the

moves just came from.

The VND algorithm in SSPR-VND is based on the previous VNDMR2 employing three neighbourhood

structures, one is a node-based neighbourhood by flipping nodes in the network to generate new

neighbouring solutions and the other two are based on a path replacement strategy by iteratively replacing

high cost paths in the tree by new better paths satisfying the delay bound to reduce the tree cost. Detailed

description about the VNDMR2 can be found in Section 4.2.1.2.

4.5.2 Experiments and Results

In order to evaluate the performance of the proposed SSPR algorithm, a large number of simulations have

been conducted on the benchmark Steinb instances and a set of random networks, which are the same

simulation data used in the previous work for testing algorithms. Details of Steinb instances can be found in

Section 3.4.4, and the characteristics of the random networks have been described in Section 4.2.2.3. All

simulations were run on a Windows XP computer with PIV 3.4GHZ, 1G RAM.

4.5.2.1 Experiments on Steinb Instances in the OR-library

1) The Influence of Population Sizes within the SSPR Algorithm

To properly set the parameters in the SSPR algorithms, a number of tests were carried out. In the first group

of experiments, the performance of the SSPR algorithms with different population sizes (Psize) and

reference set sizes (b = Psize/10) is evaluated. The iteration number is set as 4 in all the SSPR algorithms.

To clearly observe the influence of the population size, the improvement method is not applied in this set of

experiments. On each instance, the simulation was run 10 times for each variant of the algorithm. Table

Chapter 4 Metaheuristic Approaches for the DCLC Multicast Routing Problem

 122

4.19 and Figure 4.21 present the average tree cost, standard deviation (σ) and computational time of the

SSPR algorithms on the 18 Steinb instances with different population sizes. Here the delay bound ∆1 = ∞.

Table 4. 19 Comparison of different population size (Psize) within the SSPR algorithm (best results are in bold)

Psize = 20 Psize = 30 Psize =40 Psize = 50 Psize = 60
No.

Mean σ Mean σ Mean σ Mean σ Mean σ
B01 82 0 82 0 82 0.00 82 0 82 0.00
B02 89.3 0.95 89 0 88.7 0.95 87.8 2.53 88.5 0.97
B03 138.4 1.26 138 0 138 0.00 138 0 138 0.00
B04 67.6 3.37 67.8 3.82 64.3 1.95 64.2 2.30 64.9 1.85
B05 62.7 0.03 61.9 0.88 61.7 0.67 61.5 0.71 61 0.00
B06 133.4 6.64 131.4 4.62 127.4 2.50 125.7 1.42 125.7 1.34
B07 113.4 2.84 113.8 3.16 112 0.47 112.1 0.32 112.2 0.42
B08 107.7 3.09 105.7 1.25 106 2.05 105.4 0.97 106 1.33
B09 221 0 220.5 0.53 220.6 0.52 220.3 0.48 220.2 0.42
B10 100.4 4.40 98.7 5.68 95.7 1.42 97 3.40 95.7 0.67
B11 108.6 3.06 103.1 3.38 105.5 1.84 99.8 6.16 97 6.53
B12 183.2 1.48 180.9 2.56 180.2 1.87 178.8 1.81 179.2 3.01
B13 184 4.69 179.7 5.83 175.4 4.03 174.9 4.15 174.3 4.27
B14 254.2 8.07 250.8 5.07 249.3 6.27 245.9 2.64 246.7 3.43
B15 328.3 2.0 326.6 3.31 325.9 2.18 324.2 2.53 324.9 1.37
B16 150 0 148.7 4.11 146.7 4.79 140.5 5.17 140.6 6.96
B17 139.1 0.32 139.6 0.97 137.5 2.68 137.5 2.32 135.5 1.96
B18 222.8 1.14 222.4 0.97 222.4 1.35 221.2 1.03 221.2 0.92

Results in Table 4.19 indicate that SSPR with Psize = 40, 50 and 60 outperforms other variants of the

algorithm. The paired t-test value between the average tree costs on the 18 instances with Psize = 40 and 50

is then calculated. The result 2.56 is larger than the value 2.11 with p = 0.05, meaning their difference is

statistically significant. While the t-test value between the average tree costs from SSPR with Psize = 50

and Psize = 60 is only 0.772, difference between these two variants can be seen as not significant.

0

1

2

3

4

5

6

B01 B02 B03 B04 B05 B06 B07 B08 B09 B10 B11 B12 B13 B14 B15 B16 B17 B18

Steinb Instances

E
xc

ut
io

n
T

im
e

(S
ec

)

Psize = 20
Psize = 30
Psize = 40
Psize = 50
Psize = 60

Figure 4. 21 The computational time of the SSPR algorithm

with different population size (Psize) on Steinb instances

Chapter 4 Metaheuristic Approaches for the DCLC Multicast Routing Problem

 123

From Figure 4.21, we can see that with the increasing population size, the execution time of the SSPR

algorithm increases. In particular, the computing time of the SSPR algorithm with Psize= 50 is less than

that of the SSPR algorithm with Psize = 60, their performance is similar with respect to the average tree

cost on each instance. Thus the most appropriate population size Psize of the proposed SSPR algorithm is

50 for the DCLC multicast routing problem. The same population size is set as 50 in the later experiments.

2) Comparisons on Steinb Instances with Different Delay Bounds

In the second group of experiments, the performance of SSPR-VND and SSPR-TS are compared with other

two algorithms GRASP-VND and Multi-VND in the previous work (Xu and Qu, 2009) on the Steinb

instances with three different delay bounds, ∆1 = ∞, ∆2 =1.1×Delay(TOPT) and ∆3 = 0.9×Delay(TOPT) (see

Section 4.3.2.1), respectively. Firstly, the delay bound is set as ∆1 = ∞, where ∞ denotes a large enough

value so that the solutions obtained are actually the solutions to the minimum Steiner tree problem without

the delay constraint. For a fair comparison, the same running time (60 seconds) is set for the four

algorithms in each run and all algorithms were run 10 times on each instance.

Table 4. 20 Experimental results for minimum Steiner tree problem (∆1 = ∞) (the best results are in bold, the values

marked with ‘*’ denote the optimal solution)

SSPR-VND SSPR-TS GRASP-VND Multi-VND No.
Avg. Best σ Avg. Best σ Avg. Best σ Avg. Best σ

B01 82* 82 0 82* 82 0 82* 82 0 82* 82 0
B02 83* 83 0 85 83 2.58 83* 83 0 83* 83 0
B03 138* 138 0 138* 138 0 138* 138 0 138* 138 0
B04 59* 59 0 59* 59 0 59* 59 0 59* 59 0
B05 61* 61 0 61* 61 0 61* 61 0 61* 61 0
B06 122* 122 0 122* 122 0 122* 122 0 123.6 122 0.84
B07 111* 111 0 111* 111 0 111* 111 0 111* 111 0
B08 104* 104 0 104* 104 0 104* 104 0 104* 104 0
B09 220* 220 0 220* 220 0 220* 220 0 220* 220 0
B10 86* 86 0 86* 86 0 86* 86 0 86* 86 0
B11 88* 88 0 88* 88 0 88* 88 0 88* 88 0
B12 174* 174 0 174* 174 0 174* 174 0 174* 174 0
B13 167.4 165 2.07 167.6 165 2.67 166.3 165 2.11 165* 165 0
B14 235.5 235 0.53 235.9 235 0.32 235* 235 0 235.6 235 0.52
B15 318* 318 0 319.4 318 0.97 319.4 318 0.97 320 320 0
B16 127* 127 0 131.8 127 2.3 127* 127 0 127* 127 0
B17 131* 131 0 131* 131 0 131* 131 0 131* 131 0
B18 218* 218 0 218.1 218 0.32 218* 218 0 218* 218 0

The average, best and standard deviation of the two variants of SSPR algorithms, along with

GRASP-VND and Multi-VND on the Steinb instances are illustrated in Table 4.20. The values marked

with ‘*’ indicate the cost of the optimal solution. In Table 4.20, we can see that both SSPR-VND and

Chapter 4 Metaheuristic Approaches for the DCLC Multicast Routing Problem

 124

GRASP-VND have similar performance, obtaining 16 best solutions out of 18 instances in terms of the

average tree cost and both are better than SSPR-TS which finds 13 best solutions and Multi-VND which

finds 15 best solutions. In addition, the results obtained by SSPR-VND are more stable than those of

SSPR-TS since the SSPR-VND has smaller average standard deviation (0.144) compared with that of

SSPR-TS (0.509). The experiment results also show that SSPR-VND outperforms SSPR-TS, mainly due to

the better improvement method VND within the same SSPR metaheuristic.

In the second set of experiments, the delay bound is set as ∆2 =1.1×Delay(TOPT). With the slightly

tighter bounded end-to-end delay compared with the delay bound ∆1 = ∞ in the previous experiments, the

SSPR-VND algorithm still outperforms the SSPR-TS algorithm in terms of both average tree costs and the

standard deviation in Table 4.21. SSPR-VND has similar overall performance to those of GRASP-VND

and Multi-VND, which find 15, 16 and 14 out of 18 best results in terms of average tree cost, respectively.

Table 4. 21 Experimental results for the DCLC multicast routing algorithm with ∆2 =1.1×Delay(TOPT) (Values in the

second column (‘∆’) are delay bounds, the best results are in bold, the values marked with ‘*’ denote the optimal

solution)

SSPR-VND SSPR-TS GRASP-VND Multi-VND No. ∆
Avg. Best σ Avg. Best σ Avg. Best σ Avg. Best σ

B01 145 82* 82 0 82* 82 0 82* 82 0 82* 82 0
B02 228 83* 83 0 85.7 83 2.55 83* 83 0 83* 83 0
B03 248 138* 138 0 138* 138 0 138* 138 0 138* 138 0
B04 173 59* 59 0 59* 59 0 59* 59 0 59* 59 0
B05 125 61* 61 0 61* 61 0 61* 61 0 61* 61 0
B06 281 122* 122 0 122* 122 0 122* 122 0 123.8 122 0.63
B07 212 111* 111 0 111* 111 0 111* 111 0 111* 111 0
B08 209 104* 104 0 104* 104 0 104* 104 0 104* 104 0
B09 280 220* 220 0 220* 220 0 220* 220 0 220* 220 0
B10 262 86* 86 0 86* 86 0 86* 86 0 86* 86 0
B11 235 88* 88 0 88* 88 0 88* 88 0 88* 88 0
B12 225 174* 174 0 174* 174 0 174* 174 0 174* 174 0
B13 190 167.4 165 2.07 169.3 165 1.77 166.8 165 2.35 166.6 165 2.07
B14 221 236.2 235 3.31 257.8 244 11.92 235* 235 0 243.2 236 3.79
B15 308 318.2 318 0.63 318.9 318 1.05 319.2 318 1.03 319.8 318 0.63
B16 291 127* 127 0 134 130 1.76 127* 127 0 127* 127 0
B17 219 131.3 131 0.95 131* 131 0 131* 131 0 131* 131 0
B18 425 218* 218 0 218.1 218 0.33 218* 218 0 218.1 218 0.32

In the third group of experiments, the delay bound ∆3 is set to a smaller value 0.9×Delay(TOPT). The

optimal solutions are thus not known to any of the cases. Due to the more strict delay constraints, we can

see that no feasible solutions are obtained for some instances as presented in Table 4.22. The table again

shows that SSPR-VND outperforms SSPR-TS with respect to the average tree costs on 11 instances. It is

Chapter 4 Metaheuristic Approaches for the DCLC Multicast Routing Problem

 125

also observed that SSPR-VND is more stable than SSPR-TS comparing the average standard deviation on

the instances. For this set of experiments, SSPR-VND performs better than GRASP-VND and Multi-VND

when comparing the number of best average tree costs found by each algorithm which are 14, 11 and 10

out of 18 instances, respectively. It demonstrates that the SSPR-VND is more flexible in solving the

problems of different delay bounds.

Table 4. 22 Experimental results for the DCLC multicast routing algorithm with ∆3 = 0.9× Delay(TOPT) (Values in the

second column (‘∆’) are delay bounds, the best results are in bold)

SSPR-VND SSPR-TS GRASP-VND Multi-VND No. ∆
Mean Best σ Mean Best σ Mean Best σ Mean Best σ

B01 118 83 83 0 83 83 0 83 83 0 83 83 0
B02 187 84 84 0 89.2 86 1.69 84 84 0 84 84 0
B03 203 141 141 0 142 142 0 / / / 141 141 0
B04 142 62 62 0 64.5 63 0.71 62 62 0 64 64 0
B05 102 62 62 0 62.3 62 0.48 62 62 0 62 62 0
B06 199 125 125 0 125 125 0 124.9 124 0.33 125 125 0
B07 173 112 112 0 113 112 2.83 / / / 112 112 0
B08 171 107 107 0 107 107 0 107 107 0 107 107 0
B09 229 221 221 0 221 221 0 221 221 0 221 221 0
B10 215 87.9 87 0.32 88 88 0 88 88 0 88 88 0
B11 180 89 89 0 89 89 0 89 89 0 89 89 0
B12 184 177 177 0 177.5 177 1.58 176.6 175 0.89 177 177 0
B13 139 169 169 0 169.8 169 1.03 171.8 168 2.5 169 169 0
B14 180 / / / 244 237 6.38 237 237 0 / / /
B15 194 326.1 320 4.86 338.6 329 4.85 327.1 326 1.55 328.7 326 0.95
B16 238 130.5 129 1.58 133.8 129 1.99 130.5 129 1.58 132 132 0
B17 180 134 134 0 / / / 134.3 134 0.48 134 134 0
B18 348 219 219 0 219.1 219 0.32 219.2 219 0.42 219.4 219 0.52

4.5.2.2 Experiments for the DCLC Multicast Routing Problem on Random

Networks

Furthermore, in order to compare the SSPR algorithms with other existing heuristics and algorithms in the

literature, a group of experiments were carried out on a set of random networks which are the same as the

simulation data in the previous work. The simulation results are reported in Table 4.23 and Table 4.24.

In Table 4.23, we can see that SSPR-VND has the best overall performance on the random networks

with respect to the average tree cost in comparison with other heuristics and algorithms shown in the table.

SSPR-VND outperforms SSPR-TS in terms of the average tree cost, showing that the better improvement

method improves the performance of the SSPR metaheuristic.

Chapter 4 Metaheuristic Approaches for the DCLC Multicast Routing Problem

 126

Table 4.24 presents more details of the average tree cost and standard deviation of these four algorithms

on each network size. It can be seen that SSPR-VND outperforms other three algorithms by obtaining 7

best results out of the 10 different network size problems. GRASP-VND only finds 4 best average tree

costs, showing that the SSPR metaheuristic is more effective than the GRASP metaheuristic for the DCLC

multicast routing problem when the same local search method is applied. The average standard deviation of

SSPR-VND for the 10 network sizes is 4.8, which is better than SSPR-TS (11.39). It demonstrates again

that SSPR-VND gives more stable and better quality solutions than SSPR-TS on all the tested random

networks.

Table 4. 23 Average tree costs of SSPR-TS, SSPR-VND and some existing heuristics and algorithms on the random

networks of 10-100 nodes

Algorithms Average Tree Cost

Heuristics
KPP1 (Kompella et al., 1993a)
KPP2 (Kompella et al., 1993b)
BSMA (Zhu et al., 1995)

905.581
911.684
872.681

GA-based
Algorithms

Wang et al. (2001)
Haghighat et al. (2004)

815.969
808.406

TS-based
Algorithms

Skorin-Kapov and Kos (2003)
Youssef et al. (2001)
Wang et al. (2004)
Ghaboosi and Haghighat (2006)

897.875
854.839
869.291
739.095

PR Algorithm Ghaboosi and Haghighat (2007) 691.434

VNS Algorithms
VNDMR1 (Qu et al., 2009)
VNDMR2 (Qu et al., 2009)
Multi-VND

680.067
672.470
656.777

GRASP
Algorithms

GRASP-CST (Skorin-Kapov and Kos, 2006)
GRASP-VND algorithm
GRASP-VND+pilot algorithm

669.927
654.520
650.823

PSO Algorithm JPSO algorithm 662.100

SS Algorithms The proposed SSPR-TS
The proposed SSPR-VND

679.690
644.840

Table 4. 24 Average tree cost and standard deviation of the SSPR algorithms compared with GRASP-VND and

Multi-VND on the random networks

SSPR-VND SSPR-TS GRASP-VND Multi-VND Network
Size Cost σ Time(s) Cost σ Time(s) Cost σ Time(s) Cost σ Time(s)

10 94.67 0.00 0.039 97.93 2.25 0.017 94.67 0 0.008 94.67 0 0.008

20 272.53 2.41 0.314 274.4 1.97 0.141 272.07 2.25 0.085 275.33 0 0.089
30 393.5 3.57 1.453 414.1 14.96 0.577 392.33 0 0.353 395.27 3.95 0.461

40 513.33 0.00 3.522 533.43 3.22 1.291 512.8 1.55 0.857 513.33 0 1.238

50 660.83 0.53 9.575 707.43 8.27 2.727 662.33 1.94 2.109 665.07 3.92 3.027
60 748.07 7.03 13.637 759.07 17.92 5.271 757.33 13.48 3.894 757.37 14.01 4.894

70 779.5 5.97 29.608 811.2 5.57 9.08 780.83 2.96 9.029 796.2 4.48 9.268

80 863.33 5.93 66.356 935.33 22.65 15.791 868.87 7.73 19.421 896.2 4.48 16.365

90 1132.77 19.35 116.419 1215.17 21.07 31.595 1155.57 19.02 32.621 1136.23 11.17 38.76

100 989.87 3.19 177.454 1048.83 16.03 47.218 995.23 4.23 41.681 1002.9 4.4 53.256

Avg. 644.84 4.8 41.837 679.690 11.39 11.371 649.203 5.316 11.006 653.257 4.641 12.737

Chapter 4 Metaheuristic Approaches for the DCLC Multicast Routing Problem

 127

The above simulations on small and medium sized problems from SteinLib in OR-library and a group

of random networks demonstrate that SSPR-VND with variable neighbourhood search outperforms

SSPR-TS with tabu search in terms of average tree costs. This indicates that the improvement method will

greatly affect the performance of the proposed SSPR metaheuristic, and better local search can contribute

to better results. The SSPR-VND algorithm has the best performance in terms of the average tree cost for

the DCLC multicast routing problem in comparison with some existing algorithms and heuristics.

The results of the SSPR-VND algorithm have been pulished by the journal of Applied Intelligence on

line (DOI:10.1007/s10489-101-0256-x).

4.6 Summary

This chapter investigates four new metaheuristic approaches for the DCLC multicast routing problem,

including the VNS algorithms, a JPSO algorithm, a hybrid GRASP algorithm and a combination of SS with

PR algorithm. Extensive experiments on a set of benchmark instances in the OR-library and a group of

random networks have been carried out to evaluate the performance of each approach and compare the

proposed algorithms with other existing heuristics and algorithms. All of these proposed metaheuristic

algorithms outperform other existing algorithms in the literature on a number of benchmark instances and

have shown to be competitive for tackling the DCLC multicast routing problem. The main characteristic of

the proposed VNS approach is that of designing three simple yet effective neighbourhood structures, which

enables a flexible exploration over the search space of the complex DCLC multicast routing problem. A

large amount of experimental results demonstrate that the proposed VNS approach is effective and efficient

for solving the problem. The cooperative nature of JPSO is an important factor to its success for both the

Steiner tree problem and the DCLC multicast routing problem. Although the proposed JPSO offers a very

robust approach, one shortcoming of the JPSO is its relatively high computing time among the four new

approaches especially for large networks. The hybrid GRASP approach combined with VNS local search

and the post-processing pilot method has shown to produce high quality solutions for the DCLC multicast

routing problem efficiently. The combination of SS with PR by applying a variable neighbourhood search

algorithm as the improvement method achieves the best performance in terms of average tree cost on a set

of random networks for the DCLC multicast routing problem. The research in this chapter demonstrates

Chapter 4 Metaheuristic Approaches for the DCLC Multicast Routing Problem

 128

that these four new metaheuristic approaches are competitive and effective solutions for solving the DCLC

multicast routing problem.

Chapter 5 Fitness Landscape Analysis for the DCLC Multicast Routing Problem

 129

CHAPTER 5. Fitness Landscape Analysis for the DCLC

Multicast Routing Problem

5.1 Introduction

This chapter presents the first fitness landscape analysis on the DCLC multicast routing problem. Although

QoS multicast routing problems have attracted many research attentions over the past two decades, few

researches have been conducted to analyse the underlying landscape features. Before properly choosing a

specific heuristic or metaheuristic for a particular optimisation problem, the theoretical landscape analysis

of the problem is very useful for observing the behaviour of search algorithms and thus can help predicting

their performance. Due to the lack of the theoretical foundations of the landscape analysis on the DCLC

multicast routing problem, the first analysis of the fitness landscapes on the problem is performed in this

thesis. As reviewed in Section 3.4.3.4, to the best of my knowledge, there are only three related work

(Zahrani et al., 2006; 2007; and 2008) on the landscape analysis for the QoS multicast routing problem. In

these papers, the same authors analysed the landscapes on a different type of multicast routing problem,

namely the group multicast routing problem, by using a simulated annealing procedure with a logarithmic

cooling schedule to estimate the depth of the deepest local minima in the landscape. The aim in this chapter

is to give a better understanding of landscape properties for the DCLC multicast routing problem within the

single multicast request scenario. This may provide some theoretical basis for more advanced search

algorithms on various related applications of multicast routing problems in the future by predicting the

performance and improving the design of metaheuristics.

5.2 Fitness Landscape Analysis Methods

The concept of fitness landscapes (Wright, 1932) introduced to investigate the behaviour of biological

evolutionary optimisation algorithms has shown to be very useful in the evolutionary theory. The fitness

landscape analysis is an ideal tool for predicting the performance of combinatorial optimisation algorithms

Chapter 5 Fitness Landscape Analysis for the DCLC Multicast Routing Problem

 130

by measuring the problem’s landscape and understanding the behaviour of algorithms. Based on a solution

representation, and an objective function, the landscape of the problem can be defined where the set of

solutions in the search space are represented by points of different height to reflect their fitness (objective

function value) in the multi-dimensional hyper-space. A heuristic algorithm can be seen as a search process

to navigate through the landscape in order to find the highest peak (or the lowest point) for the

maximisation (or minimisation) problem.

A fitness landscape of a problem instance for a given combinatorial optimisation problem can be

defined as L(X, f, d), where X represents a set of points (solutions) in the landscape, f: X →ℜ is an objective

function which assigns a real-valued fitness to each of the points in X, and d is a distance metric which

defines the spatial structure of the landscape. A fitness landscape can thus be interpreted as a graph GL = (V,

E) with a set of vertices V = X and a set of links E = {(x, y)∈ X×X | d(x, y) = dmin}, where dmin denotes the

minimum distance between two points in the search space. Another property of the landscape is its

diameter diamGL which is defined as the maximum distance between two points in the search space.

For a search problem, the set of possible solutions may be encoded by using binary strings X = {0, 1}n

of a fixed length n. This encoding generates a hyper-space GL of dimension n, where n is normally the size

of the problem. For a binary coded search problem, the distance measure d can be defined by using the

Hamming distance between bit strings. The minimum distance dmin between two solutions is 1 (one bit with

a different value), and the maximum distance diamGL, i.e. the diameter of the landscape, is n. Statistic

methods have been employed to measure the fitness landscape properties such as the fitness distance

correlation and auto-correlation analysis. These two methods are commonly used as the landscape analysis

techniques in the literature, and will be used in this work to conduct the fitness landscape analysis of the

DCLC multicast routing problems in the following subsections.

5.1.1 Fitness Distance Correlation (FDC) Analysis

The fitness distance correlation (FDC) coefficient proposed by Jones and Forrest (1995) is the most

commonly used method to estimate the global feature of the fitness landscape. It has been widely used as a

measure to predict the problem difficulty for genetic algorithms. Given a set of points {x1, x2, …, xm} and

their fitness values, the FDC coefficient ρ is defined as follows:

Chapter 5 Fitness Landscape Analysis for the DCLC Multicast Routing Problem

 131

where Cov(·, ·) denotes the covariance of two random variables, σ(·) denotes the standard deviation and dopt

represents the distance between a sample point and the global optimum or best-known solution in the

search space. The sample points can be arbitrary points or local optimal points within the search space. The

FDC coefficient determines how close the fitness values of a set of sample points and their dopt to the

optimum are correlated by examining the statistic correlation between the fitness and the distance. For a

maximisation problem, if the fitness of sample solutions in a search increases when the search moves

towards the optimum (the distance becomes smaller), then the search is expected to be easy, and properly

guided by the correlation along a “path” to the optimum via solutions with increasing fitness. A value of ρ

=－1.0 (or ρ = 1.0) for a maximisation (or minimisation) problem indicates a perfect correlation between

the fitness and the distance to the optimum, and thus predicts an easy problem. On the contrary, a value of ρ

= 0 means that no correlation exist between the fitness and the distance to the optimum, and thus the

underlying problem is hard to solve. As classified in (Jones and Forrest, 1995), a value of ρ ≤－0.15 (or ρ ≥

0.15) for maximisation (or minimisation) problems indicates an easy problem.

Fitness distance analysis has been conducted for various combinatorial optimisation problems, for

example the TSP problem (Boese, 1995), the flow-shop scheduling problem (Reeves, 1998), the graph

matching problem (Stadler, 1992), the graph

bipartitioning problem (Merz and Freisleben, 1998), and the timetabling problem (Ochoa et al., 2009).

A summary of landscape metrics and related issues on evolutionary algorithms can be found in (Kallel et

al., 2001).

5.1.2 Auto-correlation Analysis

An important property of a landscape is its ruggedness, which significantly influences the performance of

search heuristics. Generally, the more rugged a landscape is, the harder the problem can be solved by

heuristic search algorithms. To measure the ruggedness of a fitness landscape, Weinberger (1990) suggests

a statistical method to analyse the correlation structure of a fitness landscape based on the auto-correlation

ρ(f, dopt) =
)()(
),(

opt

opt

df
dfCov

σσ

(5.1)

Chapter 5 Fitness Landscape Analysis for the DCLC Multicast Routing Problem

 132

method. The idea is to generate a series of random walks of sufficiently large number of steps and calculate

the correlation of neighbouring points in the random walk in the search space. The fitness of each solution

encountered during the random walk is recorded to obtain a time series of fitness values. The

auto-correlation of the time series obtained from the random walk of W steps in the search space, denoted

by ρi, can be empirically estimated by r(i):

where f is the mean fitness of the W points visited, and i is the time lag or distance between two points

along the random walk. Based on this auto-correlation function, the correlation length l can be defined as

follows (Stadler, 1995):

where r(1) ≠ 0 is defined according to Eq. (5.2). The correlation length l directly reflects the ruggedness of

a landscape, the smaller value for l indicates a more rugged landscape. A landscape is said to be smooth if

there is high correlation between neighbouring points. The correlation length l is typically related to the

size of the problem instance (Stadler, 1995), so the relative correlation length in relation to the landscape

diameter diamGL = n (here n is the size of the problem instance) is often reported by calculating n / l. The

auto-correlation analysis has been carried out in the literature for measuring the landscapes of different

problems (Weinberger, 1990; Manderick et al., 1991; Hordijk, 1996; and Ochoa et al., 2009).

5.3 Experimental Study

The landscape analysis is performed on three heuristic methods and two neighbourhood operators based on

the fitness distance correlation analysis and the auto-correlation analysis for the DCLC multicast routing

problem. The testing problems have been generated based on a set of small and medium sized Steiner tree

problems Steinb from SteinLib in the OR-library. The characteristics and optimal solutions of the 18 Steinb

instances have been presented in Table 3.3 in Chapter 3.

r(i) =
∑

∑
=

−

= +

−

−−
W

t t

iW

t itt

ff

ffff

1

1

)(

))((
 (5.2)

l =
|))1(ln(|

1
r

− (5.3)

Chapter 5 Fitness Landscape Analysis for the DCLC Multicast Routing Problem

 133

5.3.1 Experimental Results of FDC Analysis

To analyse the landscape of the DCLC multicast routing problem, the fitness distance correlation analysis

on the Steinb instances is firstly conducted. For FDC analysis, the optimal solution of the given instance

needs to be known in advance. For problems where the optimal solution is not known, in the literature the

best-known solution is usually used as an estimation of the optimum in many studies. x* in this study

denotes the optimal solution or the best-known solution on the search space.

In this study, a binary vector has been used to present the solution (the multicast tree) for a multicast

routing problem. Given a multicast routing problem in a network G = (V, E) with |V| nodes, the binary

vector with the ordered |V| bits is defined to represent a multicast tree, where each bit (from 0 to |V| – 1)

corresponds to one node in the network. Each bit in the vector takes a value of 1 if the corresponding node

is in the multicast tree, 0 otherwise. This simple binary vector has been widely used and shown to be easy

yet effective for representing a multicast solution in the literature (Skorin-Kapov and Kos, 2003;

Skorin-Kapov and Kos, 2006; and Xu and Qu, 2009). Based on the solution representation of binary vector,

the Hamming distance has been used to calculate the distance between solutions. The minimum distance

dmin between two solutions is 1. As the source and all destination nodes should be included in a multicast

tree, the value of their corresponding bits in the binary vector (of a feasible solution) should always be 1.

The maximum distance diamGL between two solutions is therefore |V| – |R| – 1, where the |R| is the number

of destination nodes in the multicast group.

5.3.1.1 FDC Analysis on Steinb Instances with Different Delay Bounds

In order to have a set of solutions with even distribution of distances to the optimal solution, a fixed

number (10 in the current experiments) of feasible solutions have been randomly generated for each

distance i away from x*, i = 1, …, |V| – |R| – 1. This set of random solutions is thereafter used as the starting

points of the local search heuristic method to generate a set of local optima. As the local search starting

from some random solutions may lead to the same local optimum, up to 10×(|V| – |R| – 1) number of local

optima may be generated by the local search heuristic.

Chapter 5 Fitness Landscape Analysis for the DCLC Multicast Routing Problem

 134

Different local search heuristic methods may be applied to generate different sets of local optima. In the

FDC analysis, a simple local search heuristic, namely LS, is implemented to produce the local optima in the

search space. Based on the binary vector solution representation defined above, the LS heuristic searches

for the local optima in the search space by using a node-based neighbourhood in a non-deterministic

procedure. At each step of the search, the node-based neighbourhood operator flips a randomly selected bit

(excluding the bits of the source node and the destination nodes) in the binary vector of the current solution.

The modified Prim’s spanning tree algorithm is then used to create a new minimum spanning tree based on

the newly produced set of nodes in the binary vector, i.e. after a node has been removed or a new node has

been added to the binary vector. The new solution that is better than the best solution found so far with

respect to the tree cost will be accepted as the new current best solution during the search. This procedure is

repeated until all possible bits have been flipped and the best solution found during the procedure is

accepted as the local optimum. Within the |V| bit representation of a multicast tree in the network G = (V,

E), the bits corresponding to the source node and |R| destination nodes can not be flipped, so the number of

possible neighbouring solutions of the current multicast tree is bounded by |V| – |R| – 1. The similar

node-based neighbourhood operator has also been applied in (Skorin-Kapov and Kos, 2003; Skorin-Kapov

and Kos, 2006; Xu and Qu, 2009). Details of the LS heuristic are shown in Figure 5.1.

Figure 5. 1 Pseudo-code of the local search heuristic LS for producing the local optima

LS(G = (V, E), s, R, ∆, T0)
{ // s: the source node; R: the destination nodes set, i.e. the multicast group; ∆ ≥ 0: the delay bound;

// T0: the random initial solution, represented by a binary vector corresponding to n nodes, n =|V|;
Tbest = T0;
k =1; kmax= n - |R| - 1;
Mark all bits as unvisited in T0;
while k ≤ kmax do {

Randomly select an unvisited bit x in T0; // s and nodes in R are excluded
Flip the value of bit x to generate a new binary vector Tx;
Generate a minimum spanning tree T ' of the given nodes in Tx by using the Prim’s algorithm;
if(((Cost(T ') < Cost(Tbest)) and (Delay(T ') ≤ ∆)) or

 ((Cost(T ') == Cost(Tbest)) and (Delay(T ') < Delay(Tbest)))
then Tbest = T ';
mark bit x as visited;
k++;

end of while loop }
return Tbest;

}

Chapter 5 Fitness Landscape Analysis for the DCLC Multicast Routing Problem

 135

For the DCLC multicast routing problem, the delay bound plays a key role in obtaining feasible solutions

in search algorithms. The smaller the delay bound is, the tighter the problem is constrained. To observe the

effect of delay bounds on the fitness landscape of the DCLC multicast routing problem, the fitness distance

analysis on the Steinb instances with three different delay bounds have been carried out, namely ∆1 = ∞, ∆2 =

1.1×Delay(TOPT), and ∆3 = 0.9×Delay(TOPT), as described in Section 4.3.2.1.

For FDC analysis, it is known that higher values of correlation ρ indicate that the fitness and the distance

to the optimum are correlated and thus the problem presents to be easier for search algorithms. As suggested

in (Jones and Forrest, 1995), problem difficulty has been classified based on FDC coefficients, where a value

of ρ ≥ 0.15 for minimisation problems indicates a straightforward problem and should be easy for search

algorithms. For a value of ρ ≤－0.15, the distance to the optimum increases with decreasing fitness, indicating

that the problem being concerned is deceptive and misleading. For problems with－0.15 < ρ < 0.15, the

landscape presents no correlation, thus indicates that the problem being concerned can be classified as difficult

to solve.

Table 5. 1 Fitness distance correlation on the Steinb instances with different delay bounds (‘OPT’ denotes the cost of the

optimal solution for each unconstrained Steiner tree instance, ∆: the value of delay bound for the corresponding problem

instance)

∆1 = ∞ ∆2 = 1.1×Delay(TOPT) ∆3 = 0.9×Delay(TOPT) No. OPT cost σ ρ ∆ cost σ ρ ∆ cost σ ρ
B01 82 82.25 0.44 -0.23 145 82.1 0.4 0.89 118 84 3 0.6
B02 83 86.6 4.89 0.71 228 85.23 3.34 0.51 187 88.45 3.54 0.4
B03 138 139.48 2.54 -0.05 248 139.56 2.62 -0.03 203 144.54 3.54 -0.2
B04 59 65.20 6.17 0.54 173 70.67 11.04 0.56 142 72.19 10.17 0.52
B05 61 62.52 2.39 0.27 125 65.86 5.73 0.54 102 67.57 7.92 0.3
B06 122 125.03 2.47 0.19 281 125.86 3.35 0.4 199 133.62 10.81 0.23
B07 111 112.03 2.89 0.73 212 112.03 3.09 0.79 173 113.28 2.73 0.47
B08 104 104.86 2.04 0.56 209 105.68 6.16 0.69 171 113.28 10.14 0.27
B09 220 220.66 1.80 0.14 280 220.18 0.39 0 229 225 3.87 -0.14
B10 86 91.08 5.63 0.44 262 91.08 5.65 0.46 215 92.32 6.41 0.24
B11 88 96.5 3.61 0.48 235 96.5 9.74 0.43 180 104.52 15.36 0.48
B12 174 190.21 2.25 0.32 225 190.21 27.13 0.3 184 205.87 37.74 0.43
B13 165 165.91 3.99 0.83 190 165.91 2.16 0.6 139 169.11 0.46 -0.21
B14 235 236.08 2.21 0.17 221 236.08 3.19 0.81 180 241.43 1.81 0.09
B15 318 318.63 1.06 -0.06 308 318.63 1.35 0.72 194 339.33 9.87 -0.32
B16 127 132.53 7.46 0.44 291 132.53 6.61 0.44 238 137 7.88 0.32
B17 131 137.44 4.96 0.5 219 137.44 6.69 0.35 180 145.25 16.94 0.2
B18 218 219.57 2.53 0.12 425 219.57 1.88 0.21 348 221.67 3.28 0.25
Avg 140.11 143.70 3.30 0.34 237.61 144.17 5.58 0.48 187.89 149.91 8.64 0.22

Table 5.1 presents the average, the standard deviation, denoted by σ, of the multicast tree cost, and the

fitness distance coefficient ρ for each instance. Based on the classification described above, in the table, for

Chapter 5 Fitness Landscape Analysis for the DCLC Multicast Routing Problem

 136

the DCLC multicast routing problem with ∆1 = ∞, four instances (B03, B09, B15 and B18) show to be

difficult. One instance B01 presents to be a misleading problem, and others are relatively easy to solve, i.e. the

fitness and distance to the optimum are correlated. For the DCLC multicast problem with a slightly tighter

delay bound ∆2=1.1×Delay(TOPT), two instances B03 and B09 remain to be difficult problems, while other

instances turn to be relatively easier (where ρ ≥ 0.15). For the DCLC multicast problem with the tightest delay

bound ∆3=0.9×Delay(TOPT), two instances B09 and B14 are difficult problems, three instances B03, B13 and

B15 are misleading, while the others are easy instances.

From the experimental results, we can see that the fitness landscape for the DCLC multicast routing

problem is instance dependant with different level of difficulties for search algorithms. In addition, different

delay bounds will affect the landscapes of the same network topology. Note that even only two instances

remain to be difficult for problem with delay bound ∆2, it might not be easy for search algorithms to find

better solutions for the other instances with ρ ≥ 0.15, as the delay bound restricts the search within the search

space with disconnected areas. It means that the introduction of the delay bound ∆2 results in different

distribution of solutions in the search space. This can be seen in Table 5.1, that for some instances, the cost of

the best multicast tree obtained by LS for the DCLC multicast routing problem with tighter delay bounds is

higher than that of the problem of the same topology with no delay bound. Generally, the smaller the delay

bounds, the tighter the constraints to the problem. This is shown by the worst average tree cost 149.91 over

the 18 instances obtained for problem with delay bound ∆3, compared 144.17 for the delay bound ∆2 and

143.7 for the delay bound ∆1.

In addition to the values of the FDC coefficient, a fitness distance scatter plot can provide more

insightful information of the landscape. Figure 5.2 presents some example scatter plots of fitness and

distance for two instances with different delay bounds. The fitness distance scatter plots for the two

instances clearly demonstrate the changes of the fitness distance landscape on problem instances with

different delay bounds. For instance B02, the correlation between the cost and the distance decreases from

0.71 for ∆1, to 0.51 for ∆2 and 0.4 for ∆3. It means for instance B02, the tighter the delay bound, the lower

the ρ value, thus the higher level of difficulty. For instance B12, although positive correlations with a ρ

value larger than 0.15 have been obtained, all scatter plots show that a large number of local optima exist in

the landscapes. Especially, for B12 with delay bounds ∆2 and ∆3, we can see many shallow valleys near the

Chapter 5 Fitness Landscape Analysis for the DCLC Multicast Routing Problem

 137

optimum, showing that many local optima are crowed near the optimum or best-known solution. This

makes the search to be easily trapped in local optima.

Steinb2, FDC local optima

80

85

90

95

100

105

110

0 5 10 15 20 25 30 35 40

Hamming Distance

C
os
t

Steinb12, FDC local optima

172

174

176

178

180

182

184

186

0 5 10 15 20 25 30 35 40

Hamming Distance
C
os
t

(a) fitness-distance scatter plots of local optima on two instances with ∆1 = ∞.

Steinb2, FDC local optima

80

85

90

95

100

105

0 5 10 15 20 25 30 35

Hamming Distance

C
o
st

Steinb12, FDC local optima

170

190

210

230

250

270

290

310

330

0 50 100 150 200 250

Hamming Distance

Co
st

(b) fitness-distance scatter plots of local optima on two instances with ∆2 = 1.1×Delay(TOPT).

Steinb2, FDC local optima

82

84

86

88

90

92

94

96

98

0 5 10 15 20 25 30 35

Hamming Distance

C
o
s
t

Steinb12, FDC local optima

170

190

210

230

250

270

290

310

330

350

0 5 10 15 20 25 30 35 40

Hamming Distance

Co
st

(c) fitness-distance scatter plots of local optima on two instances with ∆3 = 0.9×Delay(TOPT).

Figure 5. 2 Fitness-distance scatter plots on selected instances with different delay bounds

5.3.1.2 Impact of Different Local Search Methods on the FDC analysis

Based on the above basic analysis on fitness distance correlation, the fitness landscape of different local

search methods on the DCLC multicast routing problem is then analysed. To observe the impact of

Chapter 5 Fitness Landscape Analysis for the DCLC Multicast Routing Problem

 138

different local search methods on the FDC landscape, three other local search heuristics, namely BSMA

(Zhu et al., 1995), TS-CST (Skorin-Kapov and Kos, 2006) and VNDMR2 (Qu et al., 2009) in the literature,

are applied for the DCLC multicast routing problem. The brief description of the three local search

algorithms is given as follows:

1) The BSMA heuristic

As reviewed in Section 3.4.3, BSMA is a well known deterministic algorithm for the DCLC multicast

routing problem developed in the mid 1990s. In BSMA, a delay-bounded path switching operator has been

devised to replace a superedge (see the definition in Section 3.4.3) in the multicast tree by a new alternative

path, hopefully resulting in a new delay-bounded tree with lower tree cost. At each step, one chosen

superedge is removed, leading to two sub-trees. The Dijkstra’s shortest path algorithm is then consecutively

called to find a new delay-bounded shortest path that connects the two sub-trees and reduce the tree cost. The

BSMA heuristic refines the tree iteratively to reduce costs until the tree cost cannot be further reduced.

2) The TS-CST algorithm

The TS-CST algorithm is developed based on a tabu search metaheuristic, where a binary vector solution

representation has been used (and adapted in this study here, see Section 5.3.1 above). Similar to the

presentation in this study, a solution (a multicast tree) in TS-CST is represented by a binary string

consisting of |V \ ({s}∪R)| bits. Each bit corresponds to a node in V \ ({s}∪R). Nodes whose

corresponding bits have a value of zero in the binary set represent the Steiner nodes in the given multicast

solution tree. Nodes with their corresponding bits value set to 1 mean that they are not included in the

multicast solution. Neighbourhood of a solution includes all the solutions which are exactly one bit

different in the binary set from the chosen solution. In other words, the neighbouring solutions are all those

multicast trees generated by adding or removing exactly one node in V \ ({s}∪R). The Prim’s algorithm is

applied to generate a new delay-constrained minimum spanning tree of the given set of nodes. The best

new neighbouring solution is chosen as the current solution in the next iteration, i.e. a move in the TS-CST

algorithm. In order to prevent the algorithm from oscillating between neighbouring solutions in TS-CST, a

tabu list of length one is repeatedly updated to remember the corresponding bit of the last performed move.

The process stops after a pre-defined number of iterations without improvements, set to 2 in TS-CST.

Chapter 5 Fitness Landscape Analysis for the DCLC Multicast Routing Problem

 139

3) The VNDMR2 algorithm

VNDMR2 is a variable neighbourhood descent search algorithm developed in the previous work (see

Section 4.2.1.2) for the DCLC multicast routing problem. Three neighbourhoods, one is node-based and the

other two are link-based neighbourhoods, have been designed concerning the structure of the multicast tree.

The node-based neighbourhood is similar to the neighbourhood designed in TS-CST. A neighbouring tree

defined in the node-based neighbourhood is obtained by removing or adding a Steiner node from or to the

current multicast tree, and creating a minimum spanning tree which spans the nodes by using the Prim’s

algorithm. Once a better multicast tree is found, the current solution is updated. This procedure is repeated

until no improvement can be achieved for more than 3 iterations. The two link-based neighbourhoods are

designed based on a path replacement operator which is similar to the path switching operator in BSMA.

The path replacing operator replaces a superpath (also called superedge in BSMA) by a new

delay-bounded path with a lower cost by using the k-shortest path algorithm. Both of the two link-based

neighbourhoods iteratively refine the multicast tree to lower costs until no better tree can be found. The three

neighbourhoods have been designed to reduce the tree cost while satisfying the delay bound constraint in the

problem.

The FDC analysis of the landscape from different local search methods for four instances (B02, B10,

B12, and B18) of different sizes and delay bounds is presented in Table 5.2. The average tree cost, the

standard deviation σ of the tree costs and the FDC coefficient ρ obtained by the four local search methods

on these four instances are given in the table.

Table 5. 2 Fitness distance correlation analysis of the landscape from four local search methods on four instances of

different sizes and delay bounds (The bold number denotes the best result)

LS BSMA TS-CST VNDMR2 ∆ No.
cost σ ρ cost σ ρ cost σ ρ cost σ ρ

B02 86.6 4.89 0.71 85.86 4.23 0.69 87.32 6.6 0.69 83.14 0.4 0.71
B10 91.13 5.63 0.44 93.83 6.39 0.65 88.65 4.25 0.47 86.89 1.73 0.71
B12 175.91 2.25 0.32 186.22 5.67 0.09 174.13 0.73 0.2 174.01 0.1 0.09

∆1

B18 219.77 2.53 0.12 244.31 8.17 0.17 218.26 0.57 0.52 218.53 0.71 0.49
B02 85.23 3.34 0.51 85.4 3.39 0.54 85.73 5.23 0.54 83.19 0.85 0.54
B10 91.08 5.65 0.46 94.16 6.57 0.64 88.52 4.13 0.61 86.49 1.28 0.36
B12 190.21 27.13 0.3 187.44 6.18 0.17 174.02 0.15 0.28 175.83 2.3 0.27

∆2

B18 219.57 1.88 0.21 242.38 7.67 0.04 218.29 0.67 0.54 218.3 0.66 0.52
B02 88.45 3.54 0.4 86.12 3.62 0.54 86.52 4.28 0.66 83.52 1.86 0.61
B10 92.32 6.41 0.24 92.99 4.76 0.32 88.77 4.17 0.65 86.74 1.83 0.5
B12 205.87 37.74 0.43 186.93 5.35 0.08 174.24 0.94 0.37 177.67 0.94 -0.38

∆3

B18 221.67 3.28 0.25 243.7 7.27 0.18 218.18 0.42 0.48 218.27 0.56 0.47

Chapter 5 Fitness Landscape Analysis for the DCLC Multicast Routing Problem

 140

Different local search methods applied in the fitness landscape analysis result in different ρ values as

shown in Table 5.2. VNDMR2 has the best overall performance by finding the best average tree costs on 7

out of 12 cases. It means VNDMR2 is more effective to guide the search to better solutions compared with

the other three local search methods. VNDMR2 is also highly stable with respect to the standard deviation

σ on 10 out of 12 instances. The average σ over the 12 instances of VNDMR2 is the smallest (1.10) among

the four local search algorithms, compared with 8.69 for LS, 5.77 for BSMA, and 2.68 for TS-CST.

In most of the cases, local search with higher ρ values indicates to be suitable for solving the problem,

because a good correlation between fitness and distance can be found. However, some exceptions can be

seen such as for instance B12, landscape of VNDMR2 has a lower ρ value than that of TS-CST, probably

due to that the landscape near the global optimum is more rugged with many local optima, as shown in

Figure 5.2. For the simple local search method LS, although it can obtain a higher ρ on some instances,

most of the solutions found by LS have lower quality with higher fitness values compared with the other

three algorithms.

5.3.2 Experimental Results of Auto-correlation Analysis

Another important measure of landscape characteristic is its ruggedness. To analyse the ruggedness of the

landscape of the DCLC multicast routing problem, the auto-correlation analysis is performed on the same

benchmark Steinb instances. A random walk of W = 1000 steps has been conducted on each instance. The

random walk starts from a random multicast tree. The random multicast tree is generated by starting from

the source node and randomly selecting the next connected node until a destination node is added. This

procedure repeats until all destination nodes have been added in the tree. Different neighbourhood

operators may be applied to perform the auto-correlation analysis for the DCLC multicast routing problem.

Firstly, a pure random one-flip neighbourhood operator is designed.

5.3.2.1 Auto-correlation Analysis based on the Random One-flip Neighbourhood

Based on the binary vector representation, the one-flip neighbourhood is defined as randomly flipping a

Steiner node in the binary vector of the current solution and then generating a random tree with the given

nodes set, i.e. nodes represented by a value of 1 at the corresponding bit in the binary vector. The random

Chapter 5 Fitness Landscape Analysis for the DCLC Multicast Routing Problem

 141

tree is generated by using the similar procedure described above to generate the starting point of the

random walk. The difference is that only the nodes included in the binary vector can be selected. This

procedure repeats until a feasible tree that satisfies the delay constraint is generated. The random walk is

conducted by using the one-flip neighbourhood.

Table 5.3 presents the experimental results of the auto-correlation analysis by using the pure random

one-flip neighbourhood to generate random walks on the Steinb instances with the same three different

delay bounds as used in the FDC analysis. Both the correlation length l, calculated according to Eq. 5.3,

and the correlation length in relation to the diameter of the landscape n /l, here n = diamGL, have been

calculated.

Table 5. 3 The auto-correlation analysis on the Steinb instances with different delay bounds (|V| is the network size; |R| is

the multicast group size; the landscape diameter n = diamGL = |V| – |R| – 1)

∆1 ∆2 ∆3 No. |V| |R| n
l n / l l n / l l n / l

B01 50 9 40 0.61 16.39 0.61 16.39 3.58 11.17
B02 50 13 36 0.35 102.86 0.19 189.47 0.63 57.14
B03 50 25 24 0.26 92.31 0.21 95.24 0.18 133.33
B04 50 9 40 0.54 74.07 0.57 70.18 0.57 70.18
B05 50 13 36 0.26 138.46 0.43 83.72 0.88 40.91
B06 50 25 24 0.4 60 0.46 52.17 0.4 60
B07 75 13 61 0.22 277.27 0.22 277.27 0.32 190.63
B08 75 19 55 0.34 161.76 0.36 152.78 0.56 98.21
B09 75 38 36 0.31 116.13 0.21 171.43 0.33 109.09
B10 75 13 61 0.44 138.64 0.41 148.78 0.42 145.24
B11 75 19 55 0.37 148.65 0.28 196.43 0.35 157.14
B12 75 38 36 0.34 105.88 0.33 109.09 0.28 128.57
B13 100 17 82 0.41 200 1.46 56.16 0.33 248.48
B14 100 25 74 0.36 205.56 0.41 180.49 0.46 160.87
B15 100 50 49 0.27 181.48 0.4 122.5 0.45 108.89
B16 100 17 82 0.46 178.26 0.27 303.7 0.37 221.62
B17 100 25 74 0.41 180.49 0.29 255.17 0.31 238.71
B18 100 50 49 0.26 188.46 0.29 168.97 0.27 181.48

The ruggedness of a fitness landscape is determined by the correlation of two neighbouring points in the

search space. The higher the correlation length l (or the lower the correlation length to the diameter of the

landscape n /l), the smoother the landscape and thus the easier the search of an algorithm based on the

underlying neighbourhood. From Table 5.3, we can see that although the correlation length is also problem

instance dependent, the landscape of all the instances with different delay bounds are highly rugged with

small l (most values of l are less than 1). For ∆1 = ∞, the problem is reduced to the unconstrained Steiner

tree problem, the smoothest landscape corresponds to instance B01 which has a highest correlation length l

Chapter 5 Fitness Landscape Analysis for the DCLC Multicast Routing Problem

 142

as expected by a lowest n / l. Some instances such as B03, B05, B07, B15 and B18 have relatively lower

correlation lengths which indicate rugged landscapes for these instances. For ∆2 = 1.1×Delay(TOPT),

instances B01, B06, B13 have smooth landscapes as reflected by relatively high correlation lengths. The

landscapes of instances B02, B03, B07, B09, B11, B16, B17 and B18 are more rugged due to the relatively

lower correlation lengths with higher n / l. The correlation lengths obtained for ∆3 = 0.9×Delay(TOPT) show

different landscapes of the instances. Instance B01 is the smoothest landscape which has the highest

correlation length, while instance B03 is the instance with the lowest correlation length which shows the

ruggedness of the landscape for B03. Experimental results in the table show that the delay bounds will

affect the ruggedness of landscapes on problem instances as varied correlation lengths are obtained from

the same neighbourhood operator.

To visually observe the landscape structure of the DCLC multicast routing problem, the neighbours to

the optimum or best-known solution of the Steinb instances are ploted by using the same one-flip operator

in the random walk. Figure 5.3 shows the example plots of the cost of all these one-flip neighbours to the

optimal solution or the best-known solution in the search space. Infeasible neighbours are not shown and an

empty space appears at the corresponding positions. The plots in Figure 5.3 again illustrate that the

ruggedness of landscapes is highly dependent on the specific instances. It is obvious that the landscape of

B12 with different delay bounds is more rugged than that of B02, as small changes in the solution make a

huge difference in the cost of the solutions for B12. The landscape of B02 is smoother than B12 as most of

the one-flip neighbours have the same cost located in a plateau.

Steinb2, 1-flip neighbors of the optimal solution

83

84

85

86

87

88

89

90

91

0 10 20 30 40 50

Enumeration

C
os

t

Steinb12, 1-flip neighbors of the optimal solution

185

190

195

200

205

210

215

220

0 10 20 30 40 50 60 70

Enumeration

C
os

t

(a) Costs of one-flip neighbours to the optimal solution for ∆1 = ∞.

Chapter 5 Fitness Landscape Analysis for the DCLC Multicast Routing Problem

 143

Steinb2, 1-flip neighbors of best-known

83

84

85

86

87

88

89

90

91

0 10 20 30 40 50

Enumeration

C
os

t

Steinb12, 1-flip neighbors of best known

185

190

195

200

205

210

215

0 10 20 30 40 50 60 70

Enumeration

C
os

t

(b) Costs of one-flip neighbours to the optimal solution for ∆2 = 1.1×Delay(TOPT).

Steinb2, 1-flip neighbors of best-known

83

84

85

86

87

88

89

90

91

0 10 20 30 40 50

Enumeration

C
os

t

Steinb12, 1-flip neighbors of best-known

185

190

195

200

205

210

215

220

225

0 10 20 30 40 50 60 70

Enumeration

C
o
s
t

(c) Costs of one-flip neighbours to the best-known solution for ∆3= 0.9×Delay(TOPT).

Figure 5. 3 Scatter plots of costs of the one-flip neighbours to the optimum or best solution on two instances

5.3.2.2 Impact of Different Neighbourhood Operators on the Auto-correlation

Analysis

The correlation length as a measure of landscape ruggedness can be used to compare different

neighbourhoods employed in local search algorithms designed for the DCLC multicast routing problem.

The higher the correlation, the smoother the landscape defined, and the more effective the local search. In

addition to the pure random neighbourhood designed above, the auto-correlation analysis is carried out to

evaluate two more neighbourhood operators, a node-based neighbourhood and a link-based neighbourhood

for the DCLC multicast routing problem, both neighbourhood operators have been used in the previous

VNDMR2 algorithm.

1) The Link-based Neighbourhood Operator

Chapter 5 Fitness Landscape Analysis for the DCLC Multicast Routing Problem

 144

The link-based neighbourhood operates on links in the network. It replaces a randomly selected superpath

in the current tree with a feasible alternative path (which satisfies the delay bound), generated by using the

k-shortest algorithm.

2) The Node-based Neighbourhood Operator

The node-based neighbourhood operates on nodes in the network. At each step, it randomly flips a Steiner

node in the binary vector of the current tree and uses the Prim’s algorithm to generate a minimum spanning

tree on the given nodes in the binary vector. This operator repeats until a new feasible tree is generated.

Table 5. 4 The auto-correlation analysis of three neighbourhood operators on four instances in Steinb with different delay

bounds (|V| is the network size; |R| is the multicast group size; the landscape diameter n = diamGL = |V| – |R| – 1. pure:

the pure random one-flip operator; link: the link based operator; node: the node based operator)

∆1 ∆2 ∆3 No. |V| |R| n Metrics
pure link node pure link node pure link node

l 0.35 1.19 2.02 0.19 1.06 1.65 0.63 1.31 3.7 B02 50 13 36 n / l 102.86 30.25 17.82 189.47 33.96 21.82 57.14 27.48 9.73
l 0.44 1.66 2.53 0.41 1.54 2.16 0.42 1.71 1.57 B10 75 13 61 n / l 138.64 36.75 24.11 148.78 39.61 28.24 145.24 35.67 38.85
l 0.34 1.98 0.52 0.33 2.04 0.54 0.28 1.88 0.81 B12 75 38 36 n / l 105.88 18.18 69.23 109.09 17.65 66.67 128.57 19.15 44.44
l 0.26 2.91 0.62 0.29 2.73 0.6 0.27 2.74 1.1 B18 100 50 49 n / l 188.46 16.84 79.03 168.97 17.95 81.67 181.48 17.88 44.55

For a fair comparison, the same maximum number of iterations maxiter (here maxiter = 5) has been set

for the three different neighbourhood operators when searching the neighbouring solutions. The

autocorrelation analysis has been carried out based on these neighbourhoods for solving four instances

(B02, B10, B12, and B18) of different sizes from Steinb. Table 5.4 presents the results of the correlation

length l and the correlation length in relation to the diameter of the landscape n / l obtained by the three

neighbourhood operators for the four instances with different delay bounds.

As shown in Table 5.4, the link-based neighbourhood and node-based neighbourhood increase the

smoothness of the landscape. Longer correlation lengths have been obtained by using these two

neighbourhood operators designed with regard to network structures compared with the pure random

neighbourhood. This means that both the link-based and node-based neighbourhoods are more effective

than the pure random neighbourhood in the local search algorithms for the DCLC multicast routing

problem. For two instances (B02 and B10) with three different delay bounds, the node-based

neighbourhood found the smoothest landscapes as reflected by the longest l and lowest n / l in the table.

Chapter 5 Fitness Landscape Analysis for the DCLC Multicast Routing Problem

 145

While for the other two instances (B12 and B18), the landscapes defined by the link-based neighbourhood

operator are smoother than that of node-based neighbourhood operator. This demonstrates that effective

local search algorithms can be defined based on different neighbourhoods for solving DCLC multicast

routing problems with different characteristics. This is consistent with the better performance observed in

the previous work on the variable neighbourhood descent search algorithm VNDMR2 for the DCLC

multicast routing problem (Qu et al., 2009). VNDMR2 obtained better solutions compared with existing

heuristics and algorithms employing single neighbourhood operator.

5.4 Summary

In this chapter, to measure the landscape features of the DCLC multicast routing problem, two of the most

commonly used landscape analysis techniques, the fitness distance correlation analysis and the

auto-correlation analysis, have been applied to the problem for the first time. Extensive experiments on a

set of problem instances generated based on the benchmark Steiner tree problems in the OR-library reveal

that the landscape of the DCLC multicast routing problem is highly instance dependent with different

landscape characteristics can be observed. The delay constraint has shown a great influence on the

underlying landscape features of the problem. In addition, the impact of different local search methods on

the analysis of fitness distance landscape is investigated and the effectiveness of different neighbourhood

operators in the auto-correlation analysis is compared for solving the problem of different sizes and delay

bounds. According to the analysis, both the node-based neighbourhood and the link-based neighbourhood

operators are effective and suitable for solving the DCLC multicast routing problem. The fitness landscape

analysis techniques discussed in this paper have shown to be useful for analyzing the underlying properties

of the DCLC multicast routing problem and predicting the effectiveness of local search algorithms and

neighbourhood operators on the problem.

Chapter 6 Metaheuristic Approaches for the Multi-objective Multicast Routing Problem

 146

CHAPTER 6. Metaheuristic Approaches for the Multi-objective

Multicast Routing Problem

6.1 Introduction

A range of inter-dependent and different conflicting QoS objectives and constraints (e.g. the cost, delay,

bandwidth, link utilisation, delay variation, packet lost ratio and hop count) exist in real world

applications. As a result, the QoS multicast routing problem can be more appropriately considered within

the multi-objective optimisation context with multiple objectives to be optimised simultaneously. In

recent research, some multi-objective multicast routing algorithms have emerged to tackle these complex

QoS multicast routing problems with more realistic features. With the recent development in

metaheuristics, some advanced algorithms have been proposed for solving a variety of multi-objective

optimisation problems in the literature. In this chapter, two novel metaheuristic approaches are

investigated for solving the multi-objective multicast routing problem defined in Chapter 3.

6.2 An Evolutionary Multi-objective Simulated Annealing

Algorithm with Variable Neighbourhoods

This section presents the investigation of an evolutionary multi-objective simulated annealing algorithm

with variable neighbourhoods to solve the multi-objective multicast routing problems in

telecommunications. The hybrid algorithm aims at a more flexible and adaptive exploration over the

search space by using features of the variable neighbourhood search to find more non-dominated

solutions in the Pareto front.

SA, one of the mostly studied metaheuristics, has the ability of escaping from local optima, which

makes it a very effective metaheuristic when exploring the search space of complex combinatorial

optimisation problems. As reviewed in Chaper 2, various multi-objective algorithms based on simulated

annealing have been investigated by researchers for combinatorial optimisation problems. Although several

Chapter 6 Metaheuristic Approaches for the Multi-objective Multicast Routing Problem

 147

SA-based algorithms have been proposed for the single objective QoS multicast routing problems in the

literature (e.g. Wang and Jiang, 2004; Zhang et al., 2005; and Zhang et al., 2009), to my knowledge, no

research has been carried out by using multi-objective simulated annealing approach for solving the

multi-objective multicast routing problem. In a recent work (Li and Landa-Silva, 2008), a variant of

SA-based algorithm named Evolutionary Multi-Objective Simulated Annealing (EMOSA) has been

designed and tested on a set of benchmark TSP instances. A two-phase strategy in the EMOSA algorithm

which tunes search directions and the competition between similar solutions have shown to be effective in

comparison with other multi-objective simulated annealing algorithms. Based on their work, in this section,

the first EMOSA algorithm is developed to solve the multi-objective multicast routing problem. In addition,

due to the specific features of the multicast tree, which are quite different from those of TSP problems,

different neighbourhood structures have been designed with respect to different objectives to improve the

proposed algorithm. Thus, EMOSA is further extended by employing variable neighbourhoods with respect

to different objectives, namely VEMOSA (variable neighbourhood based EMOSA), where four objectives

are optimised simultaneously without a priori restriction, aiming to minimise (1) the cost of the multicast

tree (Eq. (3.3)), (2) the maximal end-to-end delay (Eq. (3.4)), (3) the maximal link utilisation (Eq. (3.5)), (4)

the average delay (Eq. (3.6)), and subject to a link capacity constraint (Eq. (3.8)). Compared with the

traditional metaheuristics with single neighbourhood structure, the proposed VEMOSA algorithm is able to

optimise different objectives simultaneously, contributing to advanced multi-objective search algorithms

for a wider range of optimisation problems with different features in the future.

6.2.1 Algorithm Description

The EMOSA algorithm developed by Li and Landa-Silva (2008) has shown to be effective for solving the

TSP problem. In the EMOSA algorithm, a population of solutions evolves by using strategies of the

cooling schedule in the simulated annealing algorithm. The main features of EMOSA are described as

follows:

1) The Weighted Scalarising Function in the EMOSA Algorithm

Chapter 6 Metaheuristic Approaches for the Multi-objective Multicast Routing Problem

 148

As mentioned in Chapter 2, one general technique in multi-objective optimisation is to combine different

objectives into a single composite function. In EMOSA, a weighted scalarising function is used to evaluate

the fitness of solutions. A Pareto-optimal solution x* is obtained if it is the unique global minimum of the

following scalar optimisation problem:

Minimise g(ws) (x, λ) = ∑ =

m

i i1
λ fi(x) s.t. x∈X

(6.1)

where g(ws)(x, λ) is called the weighted scalarising function of solution x, λ is a weight vector, λi∈[0, 1], i =

1, …, m and ∑ =

m

i i1
λ = 1, i.e. the weights are uniformly assigned to m objectives, each λi is associated with

one objective function fi(x), and X denotes the decision space of the set of feasible regions of the solution

space.

2) The Acceptance Criterion in the EMOSA Algorithm

In EMOSA, the acceptance decision of a new solution has to take into account all objectives in the problem.

The acceptance probability in the standard SA has been modified by using the weighted scalarising

function g(ws)(x, λ) defined in (Eq. (6.1)). Given an incumbent solution x and its neighbourhood N(x), the

probability of x moving to its neighbour x'∈N(x) is thus defined as follows:

P(x, x', λ, T) =
⎪⎩

⎪
⎨
⎧

Δ−
T

xxg

e
)',,(

1
λ

otherwise

0),',(if <Δ λxxg
 (6.2)

where T > 0 is the current temperature, ∆g(x, x', λ) = g(ws)(x', λ)－g(ws)(x, λ) is the difference of the weighted

scalarising function values between x and x' defined by Eq. (6.1).

3) The Competition between Similar Members in the Current Population

The competition between similar members of the current population in EMOSA is managed by comparing

their weighted scalarising function values (see Eq. (6.1)). During the evolution of EMOSA, a neighbouring

solution x' replaces similar solutions in the current population if it is better than its similar solutions with

respect to the weighted scalarising function. The similarity between solutions is measured by the Euclidean

distance between the weight vectors of two solutions.

Chapter 6 Metaheuristic Approaches for the Multi-objective Multicast Routing Problem

 149

4) Two-phase Strategy in the EMOSA Algorithm

In addition to defining a starting temperature, a final temperature, and a temperature decrement in the

cooling schedule, in EMOSA, a threshold temperature TPc is also defined within a two-phase strategy for

tuning the weight vectors. The two-phase strategy uses both fixed (the first phase, T ≥ TPc) and adaptive

(the second phase, T < TPc) search directions during the search in order to explore the multi-objective space

more effectively. In the first phase, all weight vectors remain unchanged. In the second phase, the weight

vectors are adaptively changed according to the closeness of solutions to their non-dominated neighbour in

the population.

Based on the EMOSA algorithm described above, the EMOSA algorithm is firstly applied for solving

the multi-objective multicast routing problem. Furthermore, a new algorithm called VEMOSA is proposed,

which is an extension of the EMOSA algorithm by designing variable neighbourhoods for the multiple

objectives in the problem.

6.2.1.1 The Overall Procedure of VEMOSA

The VEMOSA algorithm starts with an initial population of random solutions T1, …, Tpop. Each solution Ti

is a multicast tree which is generated by starting from the source node and randomly connecting the next

node until all destination nodes are mounted on the tree. A random weight vector λi is assigned to each

solution Ti. An external non-dominated solution set is maintained to store non-dominated solutions during

the evolution.

During the evolution, for each multicast tree Ti in the population, a neighbouring tree T ' is generated by

using a randomly chosen neighbourhood structure Nℓ, where ℓ∈{1, ..., ℓmax} is a set of pre-defined

neighbourhood structures and each neighbourhood concerns one objective. The non-dominated solution set

is updated if T ' is not dominated by the current tree Ti. The neighbouring tree is accepted as the current tree

with a probability P(Ti, T ', λi, TP) based on the current temperature TP and the weight vector λi, defined by

the adopted acceptance criterion in SA, see Eq. (6.2). Note that in VEMOSA, if the number of

neighbourhood structures ℓmax = 1 then it becomes the EMOSA algorithm with one neighbourhood

structure.

Chapter 6 Metaheuristic Approaches for the Multi-objective Multicast Routing Problem

 150

Figure 6. 1 The framework of the VEMOSA algorithm

In VEMOSA, the competition between the similar members of current population is adopted, where

each newly generated neighbouring tree replaces its closest member in the current population if it is better

with respect to the weighted scalarising function in Eq. (6.1). To maintain a population of diverse solutions,

the two-phase strategy is used to adaptively tune the search direction at the later stage of the evolution.

When the current temperature is decreased to below a given threshold, the weight vectors of each solution

are adaptively adjusted to tune the search directions near the Pareto front. The VEMOSA algorithm stops

either when the temperature drops to the final temperature or after a given period of time. The framework

of the proposed VEMOSA algorithm is presented in Figure 6.1.

6.2.1.2 The Variable Neighbourhood Structures in VEMOSA

VEMOSA (m, ℓmax, TPmax, TPmin, TPc)
{ // m: number of objectives; ℓmax : the number of neighbourhood structures;
 // TPmax / TPmin: starting / final temperatures; TPc: threshold temperature for tuning weight vectors;

// CS: current solution set; NDS: the set of non-dominated solutions
Initialization:
Create the initial population CS by randomly generating T1, …, Tpop multicast trees; // pop: population size
Produce pop distinct random weight vectors λ1, …, λpop, each vector with uniform spread;
Form the external non-dominated solution set NDS by non-dominated solutions in CS;
Set the current temperature TP = TPmax;
while TP ≥ TPmin do {

foreach Ti
 ∈CS do {

lm = 0;
while lm < LM do { // LM: number of local search moves between two consecutive temperatures

Generate a neighbour T '∈Nℓ (Ti) by a random ℓ∈{1, ..., ℓmax}, set lm = lm + 1;
if Ti does not dominate T ' then

Update the external NDS;
Replace the current solution Ti by T ' with the probability P(Ti, T ', λi, TP); // see formula 6.2
// competition between similar members, see section 6.2.1
Find the closest solution Tj ∈CS (Tj ≠ Ti) of Ti;
if g(T ', λj) < g(Tj, λj) then

 Tj = T '; //replace the closest solution in CS
end of while loop }

}
TP = TP – α; // α: temperature decrement
// search direction adaptation: tune the search direction by adjusting the weight vectors, see section 6.2.1
if TP < TPc then
foreach Ti

 ∈CS do {
Find the closest non-dominated solution T of Ti from CS
foreach obj∈{1, …, m} do {

if fobj(T) < fobj(Ti) then λi
obj = μ λi

obj; // μ: the constant for tuning the search direction
else λi

obj = λi
obj / μ; }

}
Normalise λi by setting λi

obj = λi
obj /∑ =

m

p
i
p1

λ , obj = 1, …, m;

end of while loop }
return the non-dominated solution set NDS;

}

Chapter 6 Metaheuristic Approaches for the Multi-objective Multicast Routing Problem

 151

Compared with other single neighbourhood based metaheuristics, VNS is more flexible and effective due to

its ability of escaping from local optima by traversing among different areas of the search space defined by

different neighbourhood structures. In multi-objective optimisation, little research attention has been given

on applying VNS to solve multi-objective optimisation problems (e.g. Liu et al., 2006; Adibi and Zandieh,

2010).

For solving multi-objective problems, two important research issues concerned are the diversification

and intensification of the search for Pareto optimal solutions. In the current literature, almost all MOSA

algorithms use only one neighbourhood structure. In this research, the effectiveness of the appropriately

defined neighbourhood structures for different objectives is investigated on the multi-objective multicast

routing problem. The motivation is that traditional algorithms with a single neighbourhood structure are not

able to equally intensify different objectives simultaneously. Some of the Pareto optimal solutions for a

particular objective thus may be missed in the search space of complex multi-objective problems. The

EMOSA algorithm is integrated with a set of neighbourhood structures during the search process. Two

variants of EMOSA algorithms have been developed based on Li and Landa-Silva’s EMOSA algorithm,

namely 1) EMOSA with a single neighbourhood structure; and 2) VEMOSA with a set of variable

neighbourhood structures. Both algorithms represent new approaches for solving the multi-objective

multicast routing problem in the literature.

In VEMOSA, two types of perturbation operators have been devised as the transition mechanism to

generate neighbouring solutions.

- The Path-switching Operator. This type of neighbourhood operator operates on paths in the multicast

tree. A backup-path-set of k-best paths for each objective is constructed from the source node s to each

destination with respect to each objective by using the k-shortest path algorithm (Eppstein, 1998). For m

objectives, there are maximum m×k paths in the backup-path-set for each destination (where m = 4 as

mentioned at the beginning of Section 6.2. and formulated in chapter 3, k = 25), see Figure 6.3 for an

example. Note that k is the maximum number of shortest paths from the source to each destination since

some destinations may have less than 25 shortest paths. In the algorithms, the same k-best paths in

terms of delay are kept for two delay related objectives (2) and (4), i.e. objectives defined by (Eq. (3.4))

and (Eq. (3.6)). To generate a neighbouring tree, a destination node is randomly chosen and the path

Chapter 6 Metaheuristic Approaches for the Multi-objective Multicast Routing Problem

 152

from the source to the destination in the current tree is replaced by a random path in the backup-path-set

of the chosen destination.

- The Node-switching Operator. This neighbourhood operator operates on nodes in the multicast tree. A

neighbouring tree is generated by deleting a random node (excluding the source and destination nodes)

in the current tree. A minimum spanning tree is then generated by using the Prim’s algorithm (Betsekas

and Gallager, 1992) with the remaining nodes in the tree. The Prim’s algorithm is a well known

algorithm in graph theory that finds a tree which spans a subset of links and all the nodes in a graph,

where the total weight of all the links in the tree is minimised.

In EMOSA with a single neighbourhood, the neighbourhood structure is based on the path-switching

operator. In VEMOSA, besides the neighbourhood structure defined in EMOSA, four additional

neighbourhood structures based on both the path-switching and the node-switching operators are devised

for each objective. By employing different neighbourhood structures specifically target at different

objectives, VEMOSA is expected to make intensified search while optimising each objective

simultaneously.

(a) An example of random initial solution

C(T) = 10.8, DM(T) = 87, α(T) = 0.6, DA(T) = 48.8
(b) An example of an optimal solution

 C(T) = 7.4, DM(T) = 36, α(T) = 0.6, DA(T) = 22.2

Figure 6. 2 Two example solutions (multicast trees) for the NSF network

Figure 6. 3 An example of the backup-path-set by using the path-switching operator on the NSF network

ID Paths
1 5-6-1-0
2 5-4-2-0
3 5-6-9-11-10-3-0
4 5-6-1-3-0
5 5-4-10-3-0

 (a) least cost paths

ID Paths
1 5-4-10-3-0
2 5-6-1-0
3 5-4-2-0
4 5-4-10-11-9-6-1-0
5 5-4-10-3-1-0

(c) least utilised paths

ID Paths
1 5-4-2-0
2 5-6-1-0
3 5-4-10-3-0
4 5-4-2-7-8-9-6-1-0
5 5-6-9-8-7-2-0

(b) least delay paths

Chapter 6 Metaheuristic Approaches for the Multi-objective Multicast Routing Problem

 153

For the ease of understanding, a random multicast tree and an example of optimal solution are presented

in Figure 6.2(a) and Figure 6.2(b) of the benchmark NSF network as shown in Figure 3.2 in Section 3.5.4.

To generate a neighbouring tree, a set of backup-paths of destination ri = 0 is shown in Figure 6.3, i.e. the k

least cost paths for objective (1), the k least delay paths for objectives (2) and (4), and the k least utilised

paths for objective (3). Only 5 paths are listed for each objective in Figure 6.3.

6.2.1.3 Adaptation Strategies in VEMOSA

To diversify the search and avoid getting trapped in local optima, two adaptation strategies are adopted to

tune the search directions in VEMOSA. One strategy is the competition between similar members in the

current population, another one is the two-phase strategy for tuning weight vectors, both strategies have

shown to help improving the performance of the EMOSA algorithm in (Li and Landa-Silva, 2008) for the

TSP problem.

- The first strategy concerns the competition between the closest solutions in the current population. After

a neighbouring solution T ' of Ti is generated, the closest solution Tj measured by the Euclidean distance

between two weight vectors in the current population is selected. VEMOSA will replace Tj by T ' if Tj is

worse than T ' by comparing their weighted scalarising function values, i.e. g(T ', λj) < g(Tj, λj). The

competition is an intensification strategy which improves the quality of solutions in the current

population.

- The second strategy adaptively tunes weight vectors according to the closest non-dominated

neighbouring solution in the current population after the current temperature is below a given threshold.

This is similar to that is used in EMOSA (Li and Landa-Silva, 2008), aiming to tune the directions of

the search when it is getting closer to the Pareto front at the later stage of the evolution. The second

strategy is designed to diversify the search directions along the Pareto front.

6.2.2 Experiments and Results

In order to visually observe the impact of neighbourhood structures and adaptation strategies within the

EMOSA and VEMOSA algorithms, firstly, the proposed algorithms are evaluated upon two random

networks with two objectives. Secondly, based on the observations obtained, the algorithms are compared

Chapter 6 Metaheuristic Approaches for the Multi-objective Multicast Routing Problem

 154

with the existing approaches in the literature on two multi-objective multicast routing benchmark problems,

namely the NSF network in Figure 3.2 and the NTT network in Figure 3.3. Finally, the effectiveness and

efficiency of the proposed algorithms are compared upon a set of random networks of different sizes with

respect to four objectives. The random networks in the simulation of this thesis are generated by the

multicast routing simulator MRSIM. To generate random network topologies, the parameters are set as α =

0.25 and ß = 0.40 in MRSIM. In the random networks, the average node degree is set as 4. For each link,

the link capacity zij is set as 1.5Mbps, the delay dij is generated as the propagation delay depending on the

length of the link, the cost cij is assigned a random value between (0,100] which represents the bandwidth

consumption of the link, and the current traffic tij is randomly loaded with around 50% of its total link

capacity. To encourage scientific comparisons, the detailed information of all the problem instances and the

experimental results has been provided at http://www.cs.nott.ac.uk~rxq/MRPresource.html.

The parameter settings for all the algorithms are given in Table 6.1. They were determined after a set of

extensive tests. It is well known that simulated annealing with a higher starting temperature may lead to

better results; however, it normally consumes much longer computational time. The purpose here is to find

the balance between the quality of solutions and the running time. For fair comparisons, the same

parameter settings are kept for both the VEMOSA and EMOSA algorithms on all the instances tested in

this chapter. All simulations were run on a Windows XP computer with PIV 3.4GHZ, 1G RAM.

Table 6. 1 Parameter settings in EMOSA and VMOSA algorithms

Algorithm parameters Settings
population size 50
starting, final temperature and temperature decrement 100, 5 and 5
number of iterations between two consecutive temperatures 25
temperature threshold for tuning weight vectors 50
constant μ in the adaptation strategy for tuning the search direction 1.05

6.2.2.1 Variable Neighbourhoods and Adaptation Strategies in VEMOSA

In this set of experiments, VEMOSA and EMOSA are compared to identify the impact of different

neighbourhood structures on the performance of the proposed multi-objective algorithms. In addition, the

effects of adaptation strategies are tested in variants of these algorithms. To visually compare the Pareto

optimal front generated by these algorithms, only two objectives, namely the cost and delay as defined in

Chapter 6 Metaheuristic Approaches for the Multi-objective Multicast Routing Problem

 155

Section 6.2, are therefore considered on two random networks of |V| =50 and |V| =100 with different group

sizes, i.e. the number of destination nodes |R| = 20%×|V| and |R| = 30%×|V|. The computational time of each

algorithm for each run is set to 160 seconds. If within the given computational time the temperature drops

to the final temperature, the algorithms will reheat the current temperature to the initial temperature and

start again. Four variants of the algorithms using the following notations have been implemented:

- VEMOSA1 and VEMOSA2: VEMOSA with and without adaptation

- EMOSA1 and EMOSA2: EMOSA with and without adaptation

The union of non-dominated solutions found by each algorithm after 20 runs for the random network of

size |V| =50 with different group sizes are shown in Figure 6.4. It can be clearly seen that both VEMOSA

algorithms with five neighbourhood structures find much better non-dominated solutions in almost all cases

than the two EMOSA algorithms with single neighbourhood structure. This is due to that the variable

neighbourhood structures in VEMOSA effectively deal with different objectives simultaneously. Within

both VEMOSA and EMOSA, the adaptation strategies do not seem to make significant contributions,

shown by the similar performance with interweaving Pareto fronts for this small network of 50 nodes.

 (a) Cost vs. Delay (|V| = 50, |R| = 10) (b) Cost vs. Delay (|V| = 50, |R| = 15)

Figure 6. 4 The non-dominated solutions found by variants of algorithms

for the problems of |V| =50 with different group sizes in 160 seconds

Similarly, in Figure 6.5, the union of non-dominated solutions found by 20 runs of the four algorithms

shows that VEMOSA performs better than EMOSA with a much larger scale on the larger network of 100

nodes and different group sizes. It becomes clearer that variable neighbourhoods can really contribute to a

better performance of VEMOSA on larger networks. It is interesting to see that with single neighbourhood

structure, the adaptation strategies in EMOSA1 significantly improve the algorithm performance compared

Chapter 6 Metaheuristic Approaches for the Multi-objective Multicast Routing Problem

 156

against EMOSA2. However, both VEMOSA algorithms with variable neighbourhood structures have

similar performances. This shows that the adaptation strategies have less impact on VEMOSA, where

variable neighbourhoods can effectively tune search directions towards diverse Pareto optimal solutions of

different objectives. The proposed VEMOSA algorithm outperforms EMOSA even without adaptation

strategies which carefully concern the diversities and directions of the search.

 (a) Cost vs. Delay (|V| = 100, |R| = 20) (b) Cost vs. Delay (|V| = 100, |R| = 30)

Figure 6. 5 The non-dominated solutions found by variants of algorithms

for problems of |V| =100 with different group sizes in 160 seconds

6.2.2.2 The VEMOSA and EMOSA Algorithms on Benchmark Instances

1) Comparison on the NSF Network

For the NSF benchmark problem in Figure 3.2, an optimal Pareto Front (PF) that consists of 16 solutions

for the problem with four objectives defined in Section 6.2 have been found by an exhaustive search in

(Crichigno and Baran, 2004b). The same four variants of VEMOSA and EMOSA algorithms in Section

6.2.2.1 are tested on the NSF network with the four objectives. Table 6.2 presents the results of each

algorithm within 100 runs, compared against those of MOEA (Crichigno and Baran, 2004a) and the

improved MOEA (Crichigno and Baran, 2004b) in the literature.

For this small NSF problem, the proposed VEMOSA and EMOSA algorithms perform better than the

two MOEA approaches in the literature. Within all algorithms, both VEMOSA algorithms perform the best,

i.e. always find all 16 Pareto optimal solutions in all 100 runs. This, together with the above observations in

Section 6.2.2.1, supports the conclusion that VEMOSA are more effective than EMOSA and MOEA

algorithms with only one neighbourhood structure. It is not surprising to see that the VEMOSA algorithms

Chapter 6 Metaheuristic Approaches for the Multi-objective Multicast Routing Problem

 157

spend longer computational time to obtain better results compared with the EMOSA algorithms when using

the same parameter settings.

Table 6. 2 The maximum, minimum and average number of non-dominated solutions found by different algorithms for

the NSF network in Figure 6.2(a) and the computational time of each algorithm (|NDS|: the number of non-dominated

solutions; % in PF: the lowest percentage of non-dominated solutions belonging to PF, i.e. Min{|NDS|}/|PF|, here |PF| =

16)

Algorithms
Max
|NDS|

Min
|NDS|

Average
|NDS|

% in
PF

Computational
time (sec)

VEMOSA1 16 16 16 100% 12.719

VEMOSA2 16 16 16 100% 12.528

EMOSA1 16 15 15.98 93.8% 5.346

EMOSA2 16 14 15 87.5% 5.426

MOEA (Crichigno and Baran, 2004a) 16 10 12.72 62.5% /

MOEA (Crichigno and Baran, 2004b) 16 12 13.54 75% /

2) Comparison on the NTT network

The proposed four algorithms are tested on the NTT network in Figure 3.3 with different multicast groups,

shown in Table 6.3. Similar to (Diego and Baran, 2005), the traffic tij for each link in the NTT network is

randomly loaded with around 50% of its total link capacity in the experiments. However, due to the lack of

the same experiment data as that in (Diego and Baran, 2005), this thesis only reports and analyses the

experimental results of the proposed four algorithms in this work.

Table 6. 3 Two different multicast groups within the NTT network in Figure 3.3

Group Source Destination Set R |R|
group1 (small) 5 {0,1,8,10,22,32,38,43,53} 9

group2 (large) 4
{0,1,3,5,6,9,10,11,12,17,19,21,
22,23,25,33,34,37,41,44,46,47,52,54}

24

To obtain an approximation of the Pareto optimal solution set, denoted by YPF, the following six-step

procedure in (Diego and Baran, 2005) is also used here to generate YPF:

1) Each algorithm is run 10 times.

2) For each algorithm, 10 sets of non-dominated solutions Y1, Y2, …, Y10 are obtained, one from each
run.

3) For each algorithm, the aggregate population YT is obtained, where YT =∪
10

1=i
iY .

Chapter 6 Metaheuristic Approaches for the Multi-objective Multicast Routing Problem

 158

4) Dominated solutions are deleted from YT to obtain the non-dominated solution set for each algorithm,
denoted by Yalg. In the present work, alg represents an algorithm, i.e. YVEMOSA1, YVEMOSA2, YEMOSA1,
YEMOSA2.

5) A set of solutions Y ' from all algorithms is obtained, i.e. ∪
4

1
lg'

=

=
i

iaYY

6) Non-dominated solutions in Y ' are selected as an approximation of the true Pareto optimal solution
set, named YPF.

Table 6. 4 The total number of non-dominated solutions for each multicast group of the NTT network with two different

multicast groups shown in Table 6.3

Computational Time 160 seconds 320 seconds
Multicast Group group1 group2 group1 group2

| YPF | 6 9 6 11

Table 6.4 presents the total number non-dominated solutions in YPF obtained by the four variants of

EMOSA and VMOSA algorithms for the NTT network by using the above six-step procedure. Results are

obtained for the NTT network with two different multicast groups by using 160 seconds and 320 seconds,

respectively. The proposed four algorithms are compared with regard to the obtained YPF on the NTT

network. Results are presented in Table 6.5 and Table 6.6 for NTT with small and large multicast group,

respectively.

Table 6. 5 Four variants of algorithms for solving the NTT network with small multicast group 1 (The best results are in

bold)

Time = 160 seconds Time = 320 seconds

Algorithms Average
Solutions

in YPF

Average
Dominated
Solutions

Average
Total

Solutions

%
Solutions

in YPF

Average
Solutions

in YPF

Average
Dominated
Solutions

Average
Total

Solutions

%
Solutions

in YPF
VEMOSA1 3.8 8.2 12 63.3% 4 6 10 66.7%
VEMOSA2 3.8 8.6 12.4 63.3% 4 5 9 66.7%

EMOSA1 2.2 12.8 15 36.7% 2.8 13.2 16 46.7%
EMOSA2 3.4 10 14.4 56.7% 3 9 12 50%

It can be seen in Table 6.5 that the VEMOSA algorithms find more non-dominated solutions in YPF than

that of EMOSA for each run. It is interesting to see that EMOSA2 outperforms EMOSA1, meaning that the

adaptation strategies of tuning search directions does not help to improve the algorithm performance for the

small multicast group instance by diversifying the search directions. VEMOSA1 and VEMOSA2 have

similar performance, again showing that the adaptation of search directions does not make significant

contribution to the VEMOSA algorithms.

Chapter 6 Metaheuristic Approaches for the Multi-objective Multicast Routing Problem

 159

Table 6. 6 Four variants of algorithms for solving the NTT network in Figure 6.4 with large multicast group 2 (The best

results are in bold)

Time = 160 seconds Time = 320 seconds

Algorithms Average
Solutions

in YPF

Average
Dominated
Solutions

Average
Total

Solutions

%
Solutions

in YPF

Average
Solutions

in YPF

Average
Dominated
Solutions

Average
Total

Solutions

%
Solutions

in YPF
VEMOSA1 2 8 10 22.2% 1 10.2 11.2 9.1%
VEMOSA2 1.8 8.2 10 20% 1.8 7.4 9.2 16.4%
EMOSA1 0.6 15.4 16 6.7% 1 21.8 22.8 9.1%
EMOSA2 0 27.8 27.8 0 0 17 17 0

Results in Table 6.6 show that for the NTT network with large multicast group, VEMOSA algorithms

outperform EMOSA algorithms, demonstrating that variable neighbourhoods help the algorithms to find

more non-dominated solutions. EMOSA1 with the adaptation strategy obtains more solutions in YPF than

that of EMOSA2, which does not find a single solution in YPF. Compared with the results in Table 6.5, this

indicates that for the large multicast group instance, the adaptation strategies improve the algorithm

performance. However, if given longer computational time, even without adaptation strategies, VEMOSA2

finds more non-dominated solutions than that of VEMOSA1, showing that the adaptation strategies have

less impact to the performance of VEMOSA algorithms.

3) Comparison on Random Networks

Finally, the four algorithms are tested on random networks of network size |V| = 50 and |V| = 100 with

different group sizes of |R| = 20%×|V| and |R| = 30%×|V| and concerning all four objectives defined in

section 6.2. Table 6.7 presents the total number of non-dominated solutions obtained by the four algorithms

on the random networks by using the six-step procedure defined above.

Table 6. 7 The total number non-dominated solutions of YPF on the random networks of four objectives

Network Size |V| = 50 |V| = 100
Group Size |R| = 10 |R| = 15 |R| = 20 |R| = 30

| YPF | 96 164 46 46

Table 6.8 and Table 6.9 present the results of the four variant algorithms on the two random networks

with different group sizes in the given 360 seconds. Average results from 10 runs for each problem show

that both VEMOSA algorithms significantly outperform the EMOSA algorithms in finding more

non-dominated solutions in YPF obtained in Table 6.7. The scope of differences again is much larger for

larger problems, demonstrating the effectiveness of the VEMOSA algorithms for larger instances. It can be

Chapter 6 Metaheuristic Approaches for the Multi-objective Multicast Routing Problem

 160

seen that the two VEMOSA algorithms have similar performances with regard to the average number of

non-dominated solutions found, i.e. % solutions in YPF for problems of different group sizes. The

adaptation strategies have small impact on the performance of both VEMOSA and EMOSA algorithms.

Table 6. 8 Comparison of different algorithms on random network of |V| = 50 with different group sizes (Computational

time = 360 seconds, the best results are in bold)

|R| = 10 |R| = 15

Algorithms Average
Solutions

in YPF

Average
Dominated
Solutions

Average
Total

Solutions

%
Solutions

in YPF

Average
Solutions

in YPF

Average
Dominated
Solutions

Average
Total

Solutions

%
Solutions

in YPF
VEMOSA1 17.4 19.8 37.2 18.1% 28 94.2 122.2 17.1%
VEMOSA2 17.8 21.8 39.6 18.5% 23 92.2 115.2 14%
EMOSA1 8.4 97.8 106.2 8.8% 0.8 96.6 97.4 0.5%
EMOSA2 4 79.6 83.6 4.2% 8.6 37.8 46.4 5.2%

Table 6. 9 Comparison of different algorithms on random network of |V| = 100 with different group sizes (Computational

time = 360 seconds, the best results are in bold)

|R| = 20 |R| = 30

Algorithms Average
Solutions

in YPF

Average
Dominated
Solutions

Average
Total

Solutions

%
Solutions

in YPF

Average
Solutions

in YPF

Average
Dominated
Solutions

Average
Total

Solutions

%
Solutions

in YPF
VEMOSA1 4.8 26.4 31.2 10.4% 3.4 15.6 17 7.4%

VEMOSA2 4.6 26.4 31 10% 6.8 11 34 14.8%

EMOSA1 0.4 40.2 40.6 0.9% 0 19 19 0

EMOSA2 0 51.4 51.4 0 0 27 27 0

To summarize, the extensive experimental results on a range of different multi-objective multicast

routing instances with different features demonstrate the efficiency and effectiveness of the proposed

evolutionary simulated annealing algorithms based on variable neighbourhoods. Variable neighbourhood

structures which are specifically designed for different objectives significantly improve the performance of

the proposed algorithms, especially for problems of larger network size. The VEMOSA algorithms work

very well even without the adaptation strategies, which have shown to be important in the EMOSA

algorithms for both the multi-objective multicast routing problem in the experiments and the TSP instances

in (Li and Landa-Silva, 2008).

The research outcomes of these variants of VEMOSA algorithms have been published in the special

issue on Heuristic Optimisation in the Journal of the Operational Research Society (Xu and Qu, 2011).

Chapter 6 Metaheuristic Approaches for the Multi-objective Multicast Routing Problem

 161

6.3 A Simulated Annealing based Genetic Local Search

Algorithm

As reviewed in Chapter 2, in recent multi-objective optimisation research, some SA algorithms (Czyzak

and Jaszkiewicz, 1998; Li and Landa-Silva, 2008) and genetic local search (GLS) algorithms (Ishibuchi

and Murata, 1998; Jaszkiewicz, 2002) have been investigated for different multi-objective optimisation

problems. These algorithms have shown to be very effective when exploring the search space of complex

multi-objective optimisation problems, especially when equipped with mechanisms designed with regard to

problem features.

To the best of my knowledge, there is no investigation on applying GLS algorithms to multi-objective

multicast routing problems. The only two recent relevant algorithmsare applied to single objective

multicast routing problems in the literature. In (Zahrani et al., 2008), a GLS utilises a logarithmic simulated

annealing in a pre-processing step to analyse the landscape of a single objective multicast routing problem

subject to multiple constraints in a group multicast scenario. Another hybrid genetic simulated annealing

algorithm is proposed in (Zhang et al., 2009) for the least-cost multicast routing problem with the

bandwidth, delay and delay jitter constraints. The hybrid algorithm combines the strengths of both SA and

GA. On the one hand, SA has the character of escaping from local optimum by intelligently accepting

worse solutions so that it can avoid the premature convergence of GA. On the other hand, the population

based GA can help the algorithm to converge fast. Their simulation results demonstrate the efficiency of

the hybrid algorithm. In the previous section, the VEMOSA algorithm, an evolutionary multi-objective

simulated annealing algorithm with variable neighbourhoods, is proposed to solve the multi-objective

multicast routing problem. The strategies based on SA have shown to be effective in driving a population

of solutions towards the Pareto front of the problem with four objectives. However, together with the

variable neighbourhood structures specially designed for the multiple objectives, the SA strategies have

less impact on the performance of the algorithm.

In this work, motivated by the efficiency of both the SA strategies and GLS, the first multi-objective

simulated annealing based genetic local search (MOSAGLS) algorithm is developed to solve the

multi-objective multicast routing problem. MOSAGLS evolves by using SA-based strategies within the

Chapter 6 Metaheuristic Approaches for the Multi-objective Multicast Routing Problem

 162

genetic evolutionary process to generate non-dominated solutions while simultaneously minimising five

objectives, including (1) the cost, (2) the maximal end-to-end delay, (3) the maximal link utilisation, (4) the

average delay, and (5) the delay variation of the multicast tree, see the definition of these five objectives in

Section 3.5.2. A new SA-based adaptive mutation probability is used to improve the efficiency of the

evolutionary process. The similar SA-based adaptation strategies of competition between the closest

members and adaptively tuning search directions in (Li and Landa-Silva, 2008) have been adopted in

MOSAGLS. The impact of the SA strategies and the local search heuristic in the genetic evolution has also

been investigated within this new hybrid algorithm.

6.3.1 Algorithm Description

In MOSAGLS, the initial population consists of randomly generated multicast trees. During the evolution

process, parent solutions are chosen to produce child trees by using the defined crossover and mutation

operators. A local search heuristic is then applied to the generated child tree to produce a new improved

tree. An external non-dominated solution set NDS is maintained to record the non-dominated solutions

obtained during the evolution. MOSAGLS stops after a certain computational time, or the temperature of

the SA drops to the final temperature. The NDS is output as the final results at the end of the algorithm. The

pseudo-code of the hybrid MOSAGLS is presented in Figure 6.6.

The SA-based strategies in the proposed MOSAGLS are used to adaptively set the mutation rate, to

guide and tune the search directions and to make decision on solution acceptance. The temperature of SA is

controlled by the cooling schedule throughout generations. After the crossover operation, the mutation is

carried out based on an adaptive probability according to both the current temperature and the fitness of the

offspring and current population. Each solution in the population is associated with a random weight vector.

This vector, together with the temperature, takes part in the solution acceptance and the tuning of search

directions. The newly generated trees replace the selected parent based on a probability calculated using the

weight vector and the current temperature. When the temperature is decreased to below a threshold, the

weight vector is modified to tune the search directions.

Chapter 6 Metaheuristic Approaches for the Multi-objective Multicast Routing Problem

 163

Figure 6. 6 The pseudo-code of the MOSAGLS algorithm

6.3.1.1 The Representation of the Multicast Tree

In the proposed MOSAGLS algorithm, the same encoding method in Zhang et al. (2009) is used, where

each chromosome adopts the multicast tree structure. A multicast tree is represented by an ordered set of |R|

paths from the source node s to each destination rd∈R, |R| is the group size. That is, each chromosome

contains |R| genes {g1, g2, …, g|R|}, where each gd represents a path between the source node s and the d-th

destination node rd, d = 1, … |R|. This representation can be easily adapted in genetic operations and avoid

illegal chromosome in the initialization. Given the benchmark NSF network in Figure 3.2, an example

multicast tree and its representation in MOSAGLS are shown in Figure 6.7.

MOSAGLS ((G = (V, E), s, R, m, tmax, tmin, tc, tstep)
{ // G: network topology; s: source node; R: destination set; m: number of objectives;

// tmax/tmin: starting/final temperatures; tc: temperature threshold for tuning the weight vector;
// tstep: temperature decrement;
Generate the random initial population Pop with T1, …, T|Pop| multicast trees;
For T1, …, T|Pop|, produce |Pop| distinct random weight vectors λ1,…, λ|Pop|, each weight vector with uniform spread;
Form non-dominated solution set NDS from Pop;
Calculate the fitness by using formula (6.5) for all the solutions in NDS and Pop;
do {

Current temperature t = tmax;
while t ≥ tmin do {

Randomly select a pair of parent solutions Ti and Tj from Pop;
Crossover operation over parents Ti and Tj;
Mutation with adaptive probability pm to the solution from crossover; // SA strategy
Generate T ' by applying the local search to the solution after mutation; // See Section 6.3.1.3
if T ' is not equal to parents Ti or Tj then

if T ' is not in the Pop then
Select a parent Tc from Ti or Tj with higher probability by comparing P(Ti, T ', λi, t) and P(Tj, T ', λj, t);
Replace the selected parent Tc by T ' with the probability P(Tc, T ', λc, t); // SA strategy

//compete with the closest member in Pop, SA strategy
Find the closest solution Tk ∈Pop of T ';
if (g(ws)(T ', λk) < g(ws)(Tk, λk)) then

Tk = T ' // replace the closest member Tk in Pop;
Update NDS;
Re-calculate the fitness for all solutions in NDS and Pop;
t = t - tstep // temperature decrement
//Adaptively tune the weight vectors, SA strategy
if (t < tc) then TuningSearchDirections(t) // See Figure 6.11

} end of while loop
} while stopping condition is not met
return NDS;

}

Chapter 6 Metaheuristic Approaches for the Multi-objective Multicast Routing Problem

 164

The Solution Encoding
Gene Path

g1 5-4-2-0
g2 5-4
g3 5-4-10-11-9
g4 5-4-10
g5 5-4-10-12-13

(a) A multicast tree, s = 5, R={0, 4, 9,10,13} (b) The solution representation

Figure 6. 7 An example multicast tree and its representation on the NSF network

6.3.1.2 The Genetic Algorithm in MOSAGLS

In the evolutionary process of the proposed MOSAGLS, the initial population consists of a fixed number of

multicast trees. They are generated by starting from the source node and randomly selecting the next

connected node until all destination nodes have been mounted on the tree. In each generation, crossover

and mutation operations are carried out on two randomly selected parents from the current population. A

local search is used to further explore better neighbouring solutions of the generated tree. A non-dominated

set (NDS) of selected multicast trees are stored during the evolution. It is maintained by storing the newly

generated tree if it is not dominated by any tree in the current NDS, and removing the trees which are

dominated by the generated tree.

1) The Strength Pareto based Evaluation

The SPEA (Strength Pareto Evaluation Algorithm) in (Zitzler and Thiele, 1999) is adopted in the genetic

algorithm in MOSAGLS to calculate the fitness of individuals. It is used to maintain and update NDS as

well as used in the selection, crossover and mutation operations. The value of the five objectives (1)-(5)

mentioned in Section 6.3 is calculated for each individual. Based on the values of the five objectives, the

fitness of each individual is evaluated by using the SPEA scheme as follows:

- For each non-dominated solution Ti∈NDS, a strength qi∈[0,1] is calculated. It is the proportion of the

number of Tj to the number of population, where Ti dominates or is equal to Tj in the population Pop, i.e.

denoted by Ti � Tj:

qi = jijj TTPopTT �∧∈| ·|Pop|-1 (6.3)

Chapter 6 Metaheuristic Approaches for the Multi-objective Multicast Routing Problem

 165

- For each individual Tj in the population, the strength qj∈[1, 1+|NDS|] is computed by summing the

strength of all non-dominated solutions Ti∈NDS, where Ti �Tj, plus one:

∑
∈

+=
jii TTNDST

ij qq
�,

1 (6.4)

- Finally, the fitness of each individual Tj in the population is calculated as the inverse of its strength qj:

F(Tj) = (1 + ∑
∈ jii TTNDST

iq
�,

)-1 (6.5)

The strength Pareto based evaluation in the proposed algorithm is similar to that is used in MOEA

algorithms in (Crichigno and Baran, 2004a; 2004b). This work focuses on the investigation of genetic local

search with simulated annealing strategies, so the simple and effective SPEA method in the literature is

chosen. In addition, for fair comparisons, the same SPEA method is applied to evaluate the performance of

the proposed hybrid algorithm against the MOEA algorithms in the experiments in the late section.

2) The Selection Method

A binary tournament selection method is employed, which is also used in the MOEA algorithm in

(Crichigno and Baran, 2004a), to select parents. Each time two individuals from the population are

randomly selected. The individual with a higher fitness value defined by the strength Pareto based

evaluation in Eq. (6.5) wins the tournament and is selected as a parent. Two parents are chosen by applying

the tournament selection twice.

3) The Crossover Operation

A two-point crossover operator, with a crossover rate of 1, is applied to each selected pair of parents. Based

on the representation of an ordered set of paths, the paths between two randomly generated points in one

parent are selected and replaced by the corresponding paths in another parent. Note that some selected

paths may share the same links with some remaining paths. Such links will not be removed to ensure the

tree is connected. To avoid loops in generating the new multicast tree, the selected path will be replaced by

mounting the new path from the destination node until it connects to an on-tree node.

Chapter 6 Metaheuristic Approaches for the Multi-objective Multicast Routing Problem

 166

(a) Parent 1: C(T) = 11.2, DM(T) = 60, α(T) = 0.67, DA(T) = 38.4, DV(T) = 53

(b) Parent 2: C(T) = 9.2, DM(T) = 75, α(T) = 0.73, DA(T) = 49, DV(T) = 68

(c) New offspring tree after crossover: C(T) = 11.4, DM(T) = 55, α(T) = 0.6, DA(T) = 33.4, DV(T) = 48

Figure 6. 8 An example of the two-point crossover operation

An example of the crossover operation is shown in Figure 6.8, where path g3 = (5-4-10-12-8-7-13-9)

between the selected two crossover points in parent 1 shown in Figure 6.8(a) is replaced by the new path

(5-6-1-0-3-10-11-9) of g3 in parent 2 shown in Figure 6.8(b). To avoid loops in the generated multicast tree,

the new path (5-6-1-0-3-10-11-9) is mounted to the tree by starting from the destination node 9, and adding

only the path 9-11-10 until it connects to the on-tree node 10. A new tree is then generated as shown in

Figure 6.8(c).

The simple representation of multicast trees facilitates an easy implementation of crossover operations.

By mounting the selected path(s) in parent 2 from the destination node, the newly generated offspring is

guaranteed to be feasible. Note that while replacing g3 in parent 1, the links along the path

5-4-10-12-8-7-13 still remain in the multicast tree as they also appear in g5 in the original tree of parent 1.

Chapter 6 Metaheuristic Approaches for the Multi-objective Multicast Routing Problem

 167

In multicast trees, some paths share common links, especially those near the root of the tree, i.e. links near

the source node appear multiple times in the solution representation. This is due to the nature of the

multicast tree that all paths should pass a subset of the d links from the source node. The multiple

appearances of some (partial) paths in the tree are adaptively selected through the evolution process of

MOSAGLS if they present to be good attributes in the individuals.

4) The Mutation Operation

For a selected individual, the mutation operation randomly replaces a path by using an alternative path

stored in a routing table, which is the same as that was devised in (Crichigno and Baran, 2004a). The

routing table for the destination rd∈R consists of k least cost (for objective (1)), k least delay (for objective

(2) (4) (5)) and k least used paths (for objective (3)) by using the k-shortest path algorithm (Eppstein, 1998).

As objectives (2), (4) and (5) (see Section 6.3) are all related to the delay, they share the same k least delay

paths in the routing table. A new randomly selected path in the routing table then replaces the original path

from the source to the destination rd for gene gd.

An illustration of the mutation operation is shown in Figure 6.9 for the offspring generated in Figure

6.8(c). Figure 6.9(a) shows the routing table of destination r1 = 0, listing 5 paths for each objective, i.e. k =

5 in this example. If a random path (5-4-10-11-9-6-1-0) is selected from the routing table, a new solution is

generated in Figure 6.9(b) by replacing the original path (5-4-10-3-1-0) of g1 in Figure 6.8(c).

ID Least cost paths ID Least delay paths ID Least used path
1 5-6-1-0 1 5-4-2-0 1 5-4-10-3-0
2 5-4-2-0 2 5-6-1-0 2 5-6-1-0
3 5-6-9-11-10-3-0 3 5-4-10-3-0 3 5-4-2-0
4 5-6-1-3-0 4 5-4-2-7-8-9-6-1-0 4 5-4-10-11-9-6-1-0
5 5-4-10-3-0 5 5-6-9-8-7-2-0 5 5-4-10-3-1-0

(a) Routing table of destination node r1 = 0 for the multicast tree in Figure 6.8(c)

Solution
Gene Path
g1 5-4-10-11-9-6-1-0
g2 5-4
g3 5-4-10-11-9
g4 5-4-10
g5 5-4-10-12-8-7-13

(b) Multicast tree after mutation: C(T) = 11.4, DM(T) = 71, α(T) = 0.6, DA(T) = 36.6, DV(T) = 64
Figure 6. 9 An example of the mutation operation

Chapter 6 Metaheuristic Approaches for the Multi-objective Multicast Routing Problem

 168

6.3.1.3 The Local Search in MOSAGLS

Instead of reproducing the offspring directly to the next generation, a local search is applied to further

enhance the offspring, simulating the maturing phenomenon in the nature. The local search is based on the

Prim’s minimum spanning tree algorithm (Betsekas and Gallager, 1992) which finds a tree with the

minimal total weights of the links spanning a subset of nodes in the graph. To apply the local search, each

offspring solution (a multicast tree) is firstly represented by a binary array of |V| = n bits, each representing

to a node in the network G = (V, E). Each bit is assigned 1 if the corresponding node is in the multicast tree;

0 otherwise. This representation has been widely used in the literature and shows to be effective for local

search and genetic operations for multicast routing problems (Skorin-Kapov and Kos, 2003; 2006). The

same representation is used in the previous work (Xu and Qu, 2009) as well.

In MOSAGLS, the local search operates on the initial tree, i.e. the offspring multicast tree generated by

the mutation operation, and repeatedly flips a bit in the initial tree to create a new spanning tree until a new

better tree is found or a maximum number of nodes have been flipped. According to the definition of Pareto

dominance, a new better tree means it dominates the initial tree by comparing the value of each objective

one by one. After the local search is applied to the above solution in Figure 6.9(b), a new solution is shown

in Figure 6.10.

C(T) = 8.8, DM(T) = 53, α(T) = 0.6, DA(T) = 27, DV(T) = 46

Solution

Gene Path
g1 5-6-9-11-10-3-0
g2 5-4
g3 5-6-9
g4 5-6-9-11-10
g5 5-6-9-8-12-13

Figure 6. 10 An example solution after the local search on the solution in Figure 6.9(b)

6.3.1.4 Simulated Annealing Strategies in MOSAGLS

Chapter 6 Metaheuristic Approaches for the Multi-objective Multicast Routing Problem

 169

In MOSAGLS, SA strategies have been adopted to 1) set the adaptive mutation rate, 2) to make decision of

the acceptance of the new offspring in the genetic local search, and 3) to tune the search directions at the

later stage of the evolution.

1) SA based Adaptive Mutation Probability

In the proposed MOSAGLS algorithm, mutation is carried out with an adaptive probability by using both

the evolutionary information and SA strategy. The adaptive probability pm is based on not only the current

temperature but also the difference between the fitness of the new offspring and the average fitness of the

current population, as shown in formula (6.6). The mutation operation is always applied to an offspring if it

is better than the average of the current population. For a worse new offspring, the mutation probability pm

is calculated as follows:

pm =
⎩
⎨
⎧

−− tFF newavge /)(

1

avgnew

avgnew

FF
FF

≤

>
 (6.6)

where the average fitness of the current population Favg and the fitness of the new offspring Fnew are calculated

by using the SPEA scheme defined in Eq. (6.5); t: the current temperature.

On the one hand, better offspring near the Pareto front will be given higher chance to be evolved by the

mutation operation, making the evolution more effective by investing computational time on more

promising offspring. On the other hand, the mutation rate is higher if the current temperature t is higher.

This means at the early stage of the evolution, worse offspring still has the chance to be mutated, giving the

whole population the chance to explore more areas of the search space. At the later stage when the mutation

rate decreases to a small value along with the temperature decrement, worse solutions are rarely evolved to

encourage the convergence of the algorithm.

2) Simulated Annealing based Acceptance Probability

Based on the physical process of SA, the SA metaheuristic accepts a non-improved state/solution with a

probability depending on the temperature in the cooling schedule at that time. As a result, it is able to

escape from local optima by intelligently visiting worse solutions and thus effectively explore the search

space of complex multi-objective optimisation problems. To assist the decision making of accepting a new

generated offspring, the weighted scalarising function in Eq. (6.1) of a convex combination of different

Chapter 6 Metaheuristic Approaches for the Multi-objective Multicast Routing Problem

 170

objectives is used in the SA strategy. As defined in Eq. (6.1), the weighted scalarising function of solution x

is: g(ws)(x, λ) =∑ =

m

i i1
λ fi(x), where λ is a weight vector, λi ∈[0,1], i = 1, …, m, m is the number of objectives

and ∑ =

m

i i1
λ = 1; each λi is associated with one objective function fi(x).

In MOSAGLS, the probability of a new solution x' to replace a solution x is calculated based on the

formula defined in Eq. (6.2): if Δg(x, x', λ) < 0, P(x, x', λ, t) = 1; otherwise, P(x, x', λ, t) = txxge /)',,(λΔ− ,

where Δg(x, x', λ) = g(ws)(x', λ) - g(ws)(x, λ); t > 0 is the current temperature.

In the initialization of the MOSAGLS algorithm, a normalised weight vector λi is randomly generated

for each solution Ti. At each generation, a new solution T ' is generated after the local search upon the

offspring produced from the chosen pair of parent solutions Ti and Tj by the GA operations. If T ' is

different from Ti and Tj and is not in current population Pop, then one parent Tc of lower quality is replaced

by the newly generated tree T ' with the probability calculated by P(Tc, T ', λc, t), where Tc is the parent with

a higher probability by comparing P(Ti, T ', λi, t) and P(Tj, T ', λj, t).

3) Simulated Annealing based Competition and Search Direction Tuning

Two SA based adaption strategies, i.e. the competition between similar members and the two-phase search

directions tuning, have shown to be effective for solving the TSP instances (Li and Landa-Silva, 2008).

They are designed to diversify the search directions at the later stage and avoid solutions being trapped in

local optima during the evolutionary process. In the proposed MOSAGLS, two similar adaptation strategies

have been adopted as follows:

- The first strategy is defined concerning the competition between close solutions in the current

population. Euclidean distance, which is widely used in the multi-objective literature, has been used in

MOSAGLS to measure the distance of two solutions in the objective space. After a new solution T' is

generated, the closest solution Tk measured by the Euclidean distance in the current population is chosen

as a neighbour of T '. MOSAGLS then replaces Tk with T ' if Tk is worse than T ' by comparing their

weighted scalarising function values, i.e. if g(ws)(T ', λk) < g(ws)(Tk, λk).

- The second strategy is to adaptively tune the weight vectors according to the closest non-dominated

neighbouring solution in the current population when the current temperature is below a threshold. It aims

Chapter 6 Metaheuristic Approaches for the Multi-objective Multicast Routing Problem

 171

to tune the search direction when the search is getting closer to the Pareto front at the later stage of the

evolution. The pseudo-code of the search direction tuning is presented in Figure 6.11.

Figure 6. 11 The pseudo-code of search directions tuning based on the SA strategy

The two adaptive strategies aim to avoid solutions being trapped in local optima and adaptively tune the

search directions towards diverse solutions in the Pareto front when the temperature is below a threshold.

Both strategies have also been investigated in the SA based multi-objective algorithm in (Xu and Qu, 2010),

but shown to be less effective when variable neighbourhood structures are used in the algorithm for the

multi-objective multicast routing problem. In the present work, they are hybridised with the new genetic

local search for solving the problem.

6.3.2 Experiments and Results

A large number of simulations have been carried out to test the propsoed algorithms on both the benchmark

and random networks with different objectives. Two variants of algorithms have been implemented and

evaluated in the following subsections:

1) MOSAGA, the proposed algorithm without local search, and

2) MOSAGLS, the proposed algorithm with local search

Firstly, different components of the proposed algorithms on a set of random networks with two objectives

(1) and (2), i.e. the cost and delay, are evaluated. Based on the observations obtained, the proposed

algorithms are then compared with two evolutionary algorithms MOEA1 (Crichigno and Baran, 2004a) and

MOEA2 (Crichigno and Baran, 2004b) in the literature on two benchmark networks with different number

of objectives. Finally, the experimental results demonstrate the effectiveness and efficiency of the proposed

TuningSearchDirections (t)
{ // t: current temperature; μ: the constant for tuning the search direction

foreach Ti∈P do {
Find the closest non-dominated solution Ti' of Ti in the current population by
using the Euclidean distance between two solutions;
foreach obj∈{1, …, m} do // m: number of objectives
{

if fobj(Ti') < fobj(Ti) then λi
obj =μλi

obj;
else λi

obj = λi
obj /μ;

} end of foreach
Normalise λi by setting λi

obj = λi
obj /∑ =

m

p
i
p1

λ }

}

Chapter 6 Metaheuristic Approaches for the Multi-objective Multicast Routing Problem

 172

algorithms upon a set of random networks with all the five objectives given in Section 6.3. The random

networks are generated in the same manner as described in Section 6.2.2. All simulations were run on a

Windows XP computer with PIV 3.4GHZ and 1G RAM by using the multicast routing simulator MRSIM.

6.3.2.1 Parameter Settings

All parameter settings were determined after a set of tests to find the balance between the quality of

solutions and the running time. For example, to obtain a proper range of values for the population size and

the starting temperature, a set of initial tests were carried on the NSF network shown in Figure 3.2 to

compare the performance of MOSAGA with different parameter settings. The optimal Pareto Front (PF) of

NSF benchmark problem that composes of 16 solutions has been found by an exhaustive search method in

(Crichigno and Baran, 2004b), where four objectives (1), (2), (3) and (4) descried in section 6.3 have been

considered in the algorithm. In this group of tests, the same four objectives are considered in MOSAGA.

Table 6.10 presents the maximum, minimum and average number of non-dominated solutions found by

MOSAGA with different parameter settings in 50 runs. The running time is set to 60 seconds for each run.

The setting of population size |Pop| = 50 and the starting temperature tmax = 50 provides the best solutions is

thus selected in the proposed algorithms.

Table 6. 10 Comparison of MOSAGA with different parameter settings for solving the NSF network (|NDS|: the number

of non-dominated solutions; Running time = 60 seconds in each run)

|Pop| tmax
Max
|NDS|

Min
|NDS|

Average
|NDS|

50 50 16 16 16
50 100 16 13 14
100 50 16 12 15
100 100 16 13 14

In MOSAGA, the population size is set to 50, the number of generations is set to 500, and the crossover

rate is set to 1. These are also kept the same as those in MOEA1 and MOEA2 for a fair comparison. Instead

of using a fixed mutation rate 0.3 in MOEA1 and MOEA2, an adaptive mutation rate is employed in

MOSAGA, see the description in Section 6.3.1.4. Based on these initial tests, k = 25 is set to generate the

routing table of alternative paths in the mutation operation. In the SA process of MOSAGA, the parameters

are set as follows: the initial temperature tmax = 50, the final temperature tmin = 5, the temperature decrement

Chapter 6 Metaheuristic Approaches for the Multi-objective Multicast Routing Problem

 173

tstep = 5, and the temperature threshold tc = 25. These parameter settings are set as the same as those in (Li

and Landa-Silva, 2008). For the simplicity and fair comparisons, the same parameter settings are kept for

MOSAGA and MOSAGLS on all the tested instances in the experiments unless otherwise stated.

6.3.2.2 Comparisons on Random Networks

In order to visually analyse the impact of the SA strategies, the adaptive mutation and the local search on

the performance of the proposed algorithms, a series of experiments has been carried out on random

networks with two objectives including the cost and delay. Four random networks have been generated

with different network sizes (|V| =50 and |V| =100) and group sizes (number of destination nodes |R| =

20%×|V| and |R| = 30%×|V|).

1) The Impact of the SA Strategies

The first group of experiments is designed to identify the impact of the SA strategies in the proposed

algorithm. For a fair comparison, MOSAGA without the local search is firstly compared with other two

evolutionary algorithms, MOEA1 and MOEA2, by using the same parameter settings as mentioned in the

above section. The non-dominated solutions found by the three algorithms after 50 runs are shown in

Figure 6.12, with their average computing time in Table 6.11.

The experimental results clearly show that the MOSAGA algorithm obtains a set of better

non-dominated solutions compared with those from the two MOEA algorithms on 3 out of 4 problems, i.e.

Figure 6.12(a), (c) and (d). For the problem in Figure 6.12(b), MOSAGA is able to find better

non-dominated solutions except those three solutions found by MOEA2. However, for all other three

problems, MOEA2 performs the worst. With regard to the computing time, MOSAGA requires the least

computing time. This demonstrates that the SA strategies in MOSAGA can guide the search direction of

genetic algorithm to find better solutions in less computing time in comparison with the MOEA algorithms.

Chapter 6 Metaheuristic Approaches for the Multi-objective Multicast Routing Problem

 174

(a) Cost vs. Delay (|V| = 50, |R| = 10) (b) Cost vs. Delay (|V| = 50, |R| = 15)

(c) Cost vs. Delay (|V| = 100, |R| = 20) (d) Cost vs. Delay (|V| = 100, |R| = 30)

Figure 6. 12 The non-dominated solutions found by MOSAGA, MOEA1 and MOEA2

on random networks with two objectives in 50 runs

Table 6. 11 Average computing time of MOSAGA, MOEA1 and MOEA2 on the random networks

Computing time (sec) Network
size

Group
size MOSAGA MOEA1 MOEA2

50 10 7.068 25.211 25.544

50 15 6.208 34.901 36.703

100 20 13.342 88.411 96.489

100 30 18.338 126.517 132.015

2) The Impact of the Adaptive Mutation

In the second group of experiments, the effect of the adaptive mutation rate is tested by comparing it with

four fixed mutation rates, i.e. Pm = 0.3, 0.6, 0.9, and 1 in MOSAGA. The non-dominated solutions found by

MOSAGA with different mutation rates after 50 runs are shown in Figure 6.13. In general, MOSAGA with

the adaptive mutation rate has the best overall performance among all the other variants with fixed

Chapter 6 Metaheuristic Approaches for the Multi-objective Multicast Routing Problem

 175

mutation rates, although the Pareto fronts found by variants of the algorithm interweave at certain part for

some networks, i.e. Figure 6.13(b) and 6.13(d). With fixed mutation rates, MOSAGA occasionally finds

several better non-dominated solutions, but fails to obtain the majority of solutions at the Pareto front found

by MOSAGA with the adaptive mutation rate for all four networks. The adaptive mutation rate based on

both the temperature and the quality of the new solution and the current population makes the search more

effective.

(a) Cost vs. Delay (|V| = 50, |R| = 10) (b) Cost vs. Delay (|V| = 50, |R| = 15)

(c) Cost vs. Delay (|V| = 100, |R| = 20) (d) Cost vs. Delay (|V| = 100, |R| = 30)

 Figure 6. 13 The non-dominated solutions found by MOSAGA with different mutation rates

on random networks with two objectives in 50 runs

3) The Impact of the Local Search

In the third group of experiments, the MOSAGA and MOSAGLS algorithms are compared to show the

effect of the local search in the proposed algorithms. The local search in MOSAGLS stops after a number

of nodes (set as 10 here) have been flipped or a better tree has been found.

Chapter 6 Metaheuristic Approaches for the Multi-objective Multicast Routing Problem

 176

(a) Cost vs. Delay (|V| = 50, |R| = 10) (b) Cost vs. Delay (|V| = 50, |R| = 15)

(c) Cost vs. Delay (|V| = 100, |R| = 20) (d) Cost vs. Delay (|V| = 100, |R| = 30)
Figure 6. 14 The non-dominated solutions found by MOSAGLS and MOSAGA

on random networks with two objectives in 50 runs

The non-dominated solutions found by MOSAGA and MOSAGLS for the four random networks in 50

runs are shown in Figure 6.14, clearly showing the improvement made by the local search in MOSAGLS.

For the small network in Figure 6.14(a), MOSAGLS found four non-dominated solutions, while MOSAGA

found only 2 non-dominated solutions. For the same networks with larger group size and for networks of

large size, it is obvious that MOSAGLA dominates MOSAGA by finding much better non-dominated

solutions. This demonstrates the efficiency of the local search on the performance of the proposed

MOSAGLS algorithm.

Table 6.12 presents the average computing time of MOSAGA and MOSAGLS on the four random

networks, showing (not surprisingly) that MOSAGLS finds better solutions at the expenses of longer

computing time compared with the MOSAGA algorithm.

Chapter 6 Metaheuristic Approaches for the Multi-objective Multicast Routing Problem

 177

Table 6. 12 Average computing time of MOSAGA and MOSAGLS on the random networks

Computing time (sec) Network
size

Group
size MOSAGA MOSAGLS

50 10 0.573 4.076

50 15 0.684 5.331

100 20 1.62 22.198

100 30 1.616 36.274

6.3.2.3 Comparisons on Benchmark and Random Problems

1) Results on the NSF Network with Four Objectives

Based on the above observations, the performance of MOSAGLS and MOSAGA are compared on the

benchmark NSF network (see Figure 3.2 in Chapter 3) with the experimental results of MOEA algorithms.

As mentioned in Section 6.3.2.1, the optimal Pareto front of 16 solutions for the NSF problem has been

found in (Crichigno and Baran, 2004b), concerning four objectives (1), (2), (3) and (4). The same four

objectives are thus considered in this group of experiments. The adaptive mutation rate has been applied in

MOSAGLS and MOSAGA. Table 6.13 presents the maximum, minimum and average number of

non-dominated solutions and the lowest percentage of non-dominated solutions found by each algorithm

belonging to PF in 50 runs. The same parameter settings are kept in the four algorithms as mentioned in

Section 6.3.2.1, and the same generation number for each run is 500.

Table 6. 13 Number of non-dominated solutions found by different algorithms on the NSF network with four objectives

(|NDS|: the number of non-dominated solutions; % in PF: the lowest percentage of non-dominated solutions belonging to

PF, i.e. Min{|NDS|}/|PF|, here |PF| = 16)

Algorithms Max
|NDS|

Min
|NDS|

Average
|NDS|

% in
PF

MOSAGLS 16 16 16 100%

MOSAGA 16 16 16 100%

MOEA1 16 14 15 87.5%

MOEA2 16 10 15 62.5%

For this small NSF problem, the proposed MOSAGLS and MOSAGA algorithms outperform the two

MOEA algorithms, i.e. always find all 16 solutions in the optimal Pareto front in 50 runs. This, together

with the above observations, indicates that SA based MOSAGA and MOSAGLS with adaptive mutation

Chapter 6 Metaheuristic Approaches for the Multi-objective Multicast Routing Problem

 178

rate are more effective than the two conventional MOEA algorithms for the multi-objective multicast

routing problem.

2) Results on the NTT Network with Five Objectives

MOSAGLS, MOEA1, and MOEA2 are compared on the NTT network in Figure 3.3 (see Section 3.5.4)

with respect to all the five objectives defined in Section 6.3. Two different multicast groups have been

tested, as shown in Table 6.3. As the optimal Pareto front for the NTT network with all the five objectives

is not known, a six-step procedure devised in (Diego and Baran, 2005) is used to obtain an approximation

of the Pareto front for each problem. The six-step procedure has been used in the previous work (Xu and

Qu, 2011) and is presented as follows:

1) Each of the algorithms tested is run 10 times. Here, three algorithms have been tested, i.e. MOSAGLS,

MOEA1, and MOEA2.

2) For each algorithm, 10 sets of non-dominated solutions Y1, Y1, …, Y10 are obtained, one from each run.

3) For each algorithm, an aggregate population YT is obtained, i.e. YT = ∪
10

1=i
iY .

4) The dominated solutions are removed from YT to obtain the non-dominated solution set for each

algorithm, denoted by Yalg, i.e. YMOSAGLS, YMOEA1, and YMOEA2.

5) A set of solutions Y ' is obtained by combining all Yalg, i.e. Y ' = ∪
3

1
lg

=i
iaY .

6) The non-dominated solutions in Y ' are selected to form an approximation of the true optimal Pareto

solution set, called YPF.

Table 6.14 presents the total number non-dominated solutions in YPF obtained by the three algorithms

on the two NTT instances by using the six-step procedure. For a fair and comprehensive comparison, all

algorithms tested have been given the same computational time, i.e. 160 seconds and 320 seconds,

respectively, for each run.

Table 6. 14 The total number of non-dominated solutions in YPF calculated by using the six-step procedure for the two

instances of the NTT network with respect to all five objectives

Running Time 160 seconds 320 seconds
Multicast Group group1 group2 group1 group2

| YPF | 44 16 42 17

Chapter 6 Metaheuristic Approaches for the Multi-objective Multicast Routing Problem

 179

Based on this approximation of the optimal Pareto solution set YPF, MOSAGLS, MOEA1 and MOEA2

are compared on the NTT benchmark problem with two different group sizes and five objectives. Each

algorithm was run 10 times on each instance. To have an insight of the quality of solutions obtained by

each algorithm with regard to YPF, the following notations are used:

- ∈YPF: the average number of solutions that are in YPF found by each algorithm in each run;

- YPF; : the average number of solutions found by each algorithm that are dominated by YPF in each run;

- |Y |: the average number of solutions found by each algorithm in each run, i.e. ∑
=

10

1
||

i
iY /10;

- %YPF: the average percentage of solutions in YPF found by each algorithm in each run, i.e. ∈YPF / |YPF |.

Table 6. 15 Results of different algorithms for solving the NTT network with small multicast group 1

Running Time = 160 seconds
Algorithms

∈YPF YPF; |Y | % YPF Coverage YMOSAGLS YMOEA1 YMOEA2

MOSAGLS 4.1 14.6 18.7 9.32% YMOSAGLS \ 0.57 0.8

MOEA1 1.4 25.7 27.1 3.18% YMOEA1 0.33 \ 0.32

MOEA2 1.8 14.1 15.9 4.09% YMOEA2 0.56 0.5 \

Running Time = 320 seconds
Algorithms

∈YPF YPF; |Y | % YPF Coverage YMOSAGLS YMOEA1 YMOEA2

MOSAGLS 5 17.1 22.1 12.9% YMOSAGLS \ 0.57 0.82

MOEA1 4.8 18.6 23.4 11.4% YMOEA1 0.71 \ 0.96

MOEA2 1.9 13 14.9 4.75% YMOEA2 0.57 0.49 \

Table 6. 16 Results of different algorithms for solving the NTT network with large multicast group 2

Running Time = 160 seconds
Algorithms

∈YPF YPF; |Y | % YPF Coverage YMOSAGLS YMOEA1 YMOEA2

MOSAGLS 7.3 11.2 18.5 45.63% YMOSAGLS \ 1 1

MOEA1 0 17.8 17.8 0 YMOEA1 0 \ 0.64

MOEA2 0 10.9 10.9 0 YMOEA2 0 0 \

Running Time = 320 seconds
Algorithms

∈YPF YPF; |Y | % YPF Coverage YMOSAGLS YMOEA1 YMOEA2

MOSAGLS 6.8 13.5 20.3 40% YMOSAGLS \ 0.95 1

MOEA1 0.1 16 16.1 0.59% YMOEA1 0.06 \ 1

MOEA2 0 12.1 12.1 0 YMOEA2 0 0 \

Table 6.15 and 6.16 present the results obtained for the two instances of the NTT network. Both tables

show that MOSAGLS found more non-dominated solutions ∈YPF than that of MOEA algorithms in each

run. To evaluate the approximation to the Pareto front, a measurement of calculating the coverage (Zitzler

Chapter 6 Metaheuristic Approaches for the Multi-objective Multicast Routing Problem

 180

and Thiele, 1999) between the non-dominated solution set obtained by each algorithm is applied. Both

tables show that the non-dominated solutions found by MOSAGLS cover the majority of the

non-dominated solutions found by two MOEA algorithms. This becomes more obvious for the NTT

network with large group size, where MOSAGLS obtains almost all non-dominated solutions, and the

MOEA algorithms find just one or even no solution that belongs to YPF.

3) Results on Random Networks with Five Objectives

Finally, the effectiveness and efficiency of MOSAGLS upon a set of random networks of different

characteristics with respect to all five objectives are tested in comparison with MOEA1 and MOEA2. 10

random graphs for each network size of |V| = 50 and |V| = 100, and with different group sizes (|R| =

20%×|V| and |R| = 30%×|V|) are generated. Therefore, there are 4 types of network and 40 random networks

in total.

For a fair comparison, the same running time, i.e. 320 seconds, is set for all algorithms in each run.

Table 6.17 presents the average number of non-dominated solutions | PFY | obtained from 10 runs by the

three algorithms on the 10 random networks for each network type with different characteristics by using

the six-step procedure described above.

Table 6. 17 The average number of non-dominated solutions on each type of random network

Network Size |V| = 50 |V| = 100
Group Size |R| = 10 |R| = 15 |R| = 20 |R| = 30

| PFY | 264.4 196.2 91.4 105.2

Table 6.18 and Table 6.19 present average quality of solutions found by the three algorithms from 10

runs with respect to the non-dominated solutions YPF obtained in each run on the 10 random graphs for each

network type. Both tables show that MOSAGLS significantly outperforms the two MOEA algorithms by

finding more non-dominated solutions in YPF. The non-dominated solution set obtained by MOSAGLS

covers most of the non-dominated solutions found by MOEA1 and MOEA2 on average. This again

demonstrates the effectiveness of the proposed MOSAGLS algorithm on the random networks with all five

objectives concerned.

Chapter 6 Metaheuristic Approaches for the Multi-objective Multicast Routing Problem

 181

Table 6. 18 Comparison of different algorithms on random networks of |V| = 50 with different group sizes.

(Computational time for each run is 320 seconds)

Group Size |R| = 10
Algorithms

∈YPF YPF; |Y | % YPF Coverage YMOSAGLS YMOEA1 YMOEA2

MOSAGLS 37.72 66.08 103.8 14.69% YMOSAGLS \ 0.64 0.82

MOEA1 6.48 110.46 116.94 2.91% YMOEA1 0.01 \ 0.55

MOEA2 2.76 94.84 97.6 1.16% YMOEA2 0.01 0.19 \

Group Size |R| = 15
Algorithms

∈YPF YPF; |Y | % YPF Coverage YMOSAGLS YMOEA1 YMOEA2
MOSAGLS 30.3 61.9 92.2 15.91% YMOSAGLS \ 0.7 0.84

MOEA1 3.26 95.7 98.96 1.67% YMOEA1 0.04 \ 0.76

MOEA2 1.38 85.76 87.14 0.54% YMOEA2 0.02 0.14 \

Table 6. 19 Comparison of different algorithms on random networks of |V| = 100 with different group sizes

(Computational time for each run is 320 seconds)

Group Size |R| = 20
Algorithms

∈YPF YPF; |Y | % YPF Coverage YMOSAGLS YMOEA1 YMOEA2
MOSAGLS 2.15 16.36 18.51 2.9% YMOSAGLS \ 0.9 0.97

MOEA1 0.05 17.60 17.66 0.05% YMOEA1 0.004 \ 0.71

MOEA2 0.004 14.72 14.72 0.004% YMOEA2 0.008 0.13 \

Group Size |R| = 30
Algorithms

∈YPF YPF; |Y | % YPF Coverage YMOSAGLS YMOEA1 YMOEA2
MOSAGLS 0.928 4.146 5.074 0.93% YMOSAGLS \ 0.9 1

MOEA1 0.13 5.62 5.75 0.08% YMOEA1 0.002 \ 0.7

MOEA2 0 4.59 4.59 0 YMOEA2 0 0.17 \

To summarize, the large amount of experiments on a range of multi-objective multicast routing

problems with different features demonstrate the efficiency and effectiveness of our proposed MOSAGLS.

The simulated annealing strategies in MOSAGA have shown not only to significantly improve the solution

quality, but also to reduce the computing time required by the algorithm for the multi-objective multicast

routing problem compared with conventional multi-objective evolutionary algorithms. The adaptive

mutation contributes a better performance than that of fixed mutation rates. The local search further

improves the performance of MOSAGLS. Experiments on both the benchmark problems and random

networks demonstrate that the proposed MOSAGLS has the best performance among variants of algorithms,

showing that MOSAGLS is able to obtain high quality solutions for the multi-objective multicast routing

problem.

Chapter 6 Metaheuristic Approaches for the Multi-objective Multicast Routing Problem

 182

The investigations of the MOSAGLS algorithm have been reported in a paper which is now under the

second review at the European Journal of Operational Research.

6.4 Summary

This chapter presents two novel hybrid metaheuristic approaches for the multi-objective multicast routing

problem in telecommunications. The first approach is a hybrid evolutionary multi-objective simulated

annealing (EMOSA) algorithm and its hybridization with variable neighbourhoods (VEMOSA) for solving

the problem. Instead of employing a single neighbourhood structure, a number of neighbourhood structures

are designed to deal with each specific objective during the evolution in the complex search space of the

multi-objective problem. By comparing the VEMOSA with EMOSA algorithm and some standard

multi-objective evolutionary algorithms in the literature, the efficiency and effectiveness of the VEMOSA

algorithms are demonstrated via a set of extensive experiments for solving both the benchmark and random

multi-objective multicast routing instances. The second approach is a simulated annealing based

multi-objective genetic local search (MOSAGLS) for solving multi-objective multicast routing problems.

Integrated with simulated annealing strategies, the hybrid multi-objective genetic local search algorithm is

able to efficiently search towards the Pareto front and diversify the population with regard to the multiple

objectives in the problem. A large amount of extensive simulations has been performed to evaluate the

proposed MOSAGLS on both benchmarks and two sets of random networks with different objectives and

different features. It demonstrates that the simulated annealing based adaptive mutation, the simulated

annealing strategies of competition and the two-phase search direction tuning significantly improve the

efficiency and effectiveness of the proposed algorithm compared against another two conventional MOEA

algorithms in the literature with respect to both the solution quality and computing time for the

multi-objective multicast routing problem. Compared with the simulated annealing based multi-objective

genetic algorithm MOSAGA without local search, the local search in MOSAGLS further intensifies the

search by exploring more promising neighbouring solutions but at a larger computational expense. Both

proposed hybrid metaheuristic algorithms have shown to be ideal approaches for solving the

multi-objective multicast routing problem, and are flexible to be extended to solve other multi-objective

optimisation problems.

Chapter 7 Conclusions and Future Work

 183

CHAPTER 7. Conclusions and Future Work

7.1 Summary of the Thesis

The work in this thesis investigates the important QoS multicast routing problem emerging from the

increasing developments of multimedia applications in computer communication networks. With the

development of computer networks, many real-world applications, such as video/audio conferencing,

distance education, E-commerce and distributed games, etc., have emerged, which require the networks to

support multicast routing. Multicast routing is a key communication technique to send information from the

source to a set of destinations simultaneously. The underlying mathematic model of the problem is the

Steiner tree problem in graphs which is a well-known NP-complete problem. Multicast routing problems

with various QoS constraints have been proven to be NP-complete optimisation problems and thus attracted

significant research attention for almost two decays in the literature. To solve the challenging QoS

multicast routing problem, the optimisation techniques -- metaheuristics are used in this thesis.

Metaheuristics are a family of high level frameworks of search strategies which are very useful and

effective for tackling a wide range of complex combinatorial optimisation problems in the area of

operational research.

The research in the thesis focuses on designing efficient and effective metaheuristic approaches for

solving two QoS multicast routing problems, the DCLC multicast routing problem and the multi-objective

multicast routing problem. In Chapter 4, four new metaheuristic algorithms, including variants of variable

neighborhood descent search (VNDMR), a jumping particle swarm optimisation algorithm (JPSO), a

hybrid GRASP algorithm, and a scatter search with path relinking algorithm (SSPR), have been proposed

and investigated for the DCLC multicast routing problem. Intensive experimental results show that these

proposed metaheuristic algorithms outperform other existing algorithms in the literature and are promising

approaches for the problem. The three simple yet effective neighbourhood structures designed in VNDMR

can effectively explore the search space of the complex DCLC multicast routing problem, thus VNDMR is

capable of obtaining good search results in a short of time. The cooperative nature of particles in JPSO is

the main characteristic for its success on both the Steiner tree problem and the DCLC multicast routing

Chapter 7 Conclusions and Future Work

 184

problem. The proposed JPSO has shown to be very robust. However, the shortcoming of JPSO is its

relatively high computing time among the four metaheuristic approaches proposed in the thesis. The hybrid

GRASP approach combined with VNDMR in the local search phase and the post-processing pilot method

offers high quality solutions for the DCLC multicast routing problem efficiently. The SSPR algorithm

which combines the scatter search and path relinking with a variable neighbourhood search algorithm as the

improvement method has so far the best performance in terms of average tree cost on a set of random

networks for the DCLC multicast routing problem.

In order to investigate the underlying landscape features of the DCLC multicast routing problem, the

first landscape analysis of the DCLC multicast routing problem has been conducted in Chapter 5. Two

landscape analysis techniques, the fitness distance correlation analysis and the auto-correlation analysis,

have been used to analyze the landscapes of the problem on a set of problem instances generated based on

the benchmark Steiner tree problems in the OR-library. The analysis reveals that the landscape of the

DCLC multicast routing problem is highly instance dependent where different landscape characteristics can

be observed. The delay constraint has shown a great influence on the underlying landscape features of the

problem. The analysis of fitness distance landscape has been used to evaluate the performance of different

local search methods for the DCLC multicast routing problem. In addition, the auto-correlation analysis has

been used to compare the effectiveness of different neighbourhood operators for solving the problem of

different sizes and delay bounds. According to the analysis, both the node-based neighbourhood and the

link-based neighbourhood operators are effective and suitable for solving the DCLC multicast routing

problem. The fitness landscape analysis techniques applied in this thesis have shown to be useful for

analyzing the underlying properties of the DCLC multicast routing problem and predicting the

effectiveness of local search algorithms and neighbourhood operators on the problem. The analysis aims to

provide a case study of theoretically predicting the performance of metaheuristics, thus more advanced

search algorithms on various related applications of multicast routing problems may be proposed in the

future.

Two novel hybrid metaheuristic approaches, an evolutionary multi-objective simulated annealing

algorithm with variable neighborhoods and a simulated annealing based genetic local search algorithm,

have been proposed in Chapter 6 for the more complex multi-objective multicast routing problem. A large

Chapter 7 Conclusions and Future Work

 185

amount of experiments demonstrate the effectiveness and efficiency of both algorithms by obtaining more

and better non-dominated Pareto optimal solutions for the problem in comparison with some traditional

multi-objective genetic algorithms.

The main contributions of the research in the thesis are summarized in the following subsections.

7.1.1 Contributions on the DCLC Multicast Routing Problem

For the widely studied DCLC (delay-constrained least-cost) multicast routing problem, four new

metaheuristic approaches have been designed and investigated:

– The thesis, for the first time, applies the VNS metaheuristic to the problem. Variants of variable

neighbourhood descent search (a basic VNS) algorithms have been designed.

– The thesis, for the first time, proposes a jumping particle swarm optimisation algorithm for the

problem.

– A new hybrid GRASP approach for the problem has been developed, where a VNS algorithm is

applied in the local search phase and a pilot method is introduced as the post enhancement

procedure.

– The thesis, for the first time, investigates a hybrid scatter search and path relinking metaheuristic

for the problem.

– By using the multicast routing simulator MRSIM, intensive experiments have been carried out

to evaluate the performance of these proposed metaheuristic approaches for the problem.

Experimental results show that these proposed new metaheuristic approaches are competitive

solutions to the problem and outperform other existing algorithms in the literature.

– The fitness landscape analysis on the problem has been conducted for the first time. Two fitness

landscape methods, the fitness distance correlation analysis and the autocorrelation analysis,

have been used on some benchmark instances to investigate the landscape characteristics of the

problem.

Chapter 7 Conclusions and Future Work

 186

7.1.2 Contributions on the Multi-objective Multicast Routing Problem

For the more complicated multi-objective multicast routing problem, two novel hybrid metaheuristic

approaches have been investigated:

– A hybrid evolutionary multi-objective simulated annealing algorithm with variable

neighbourhoods has been proposed for the first time for solving the problem. Compared with

single neighbourhood based algorithm, the variable neighbourhoods specially designed for

multiple objectives are capable of greatly improving the performance of the hybrid algorithm.

– A simulated annealing based multi-objective genetic local search has been investigated for

solving the problem. The simulated annealing strategies in the hybrid multi-objective genetic

local search algorithm have shown to efficiently search towards the Pareto front and diversify the

population with regard to the multiple objectives in the problem.

– A large amount of experiments have been designed to evaluate the effectiveness and efficiency

of the two algorithms in comparison to some traditional evolutionary algorithms in the literature.

7.1.3 List of Presentations

– Ying Xu, Variable neighbourhood descent search for the delay-constrained least-cost multicast

routing problem. The Learning and Intelligent Optimisation (LION 3), Trento, Italy, Jan. 14-18,

2009.

– Ying Xu, Particle Swarm Optimisation for the Steiner Tree problem in Graphs and the

Delay-constrained multicast routing problem. Student Conference in Operational Research,

Lancaster University, UK, Mar. 27-29, 2009.

– Ying Xu, A GRASP approach for the Delay-constrained Multicast routing problem. The 4th

Multidisplinary International Scheduling Conference (MISTA2009), Dublin, Ireland, Aug. 10-13,

2009

Chapter 7 Conclusions and Future Work

 187

7.1.4 List of Publications

1. Qu R., Xu Y., Kendall G. 2009. A Variable Neighbourhood Descent Search Algorithm for

Delay-Constrained Least-Cost Multicast Routing. In: Stützle T. (Ed.), Proceedings of Learning

and Intelligent Optimisation (LION3), Lecture Notes in Computer Science, 5851. pp. 15-29. The

contribution of this paper is shown in Chapter 4.

2. Xu Y., Qu R. 2009. A GRASP Approach for the Delay-constrained Multicast routing problem. In:

Proceedings of the 4th Multidisplinary International Scheduling Conference (MISTA4). Dublin,

Ireland. The contribution of this paper is shown in Chapter 4.

3. Xu Y., Qu R. 2011. Solving Multi-objective Multicast Routing Problems by Evolutionary

Multi-objective Simulated Annealing Algorithms with Variable Neighbourhoods. Journal of the

Operational Research Society. 62, 313-325. This journal paper contributes to Chapter 6.

4. Qu R., Xu Y. A Simulated Annealing based Genetic Local Search Algorithm for Multi-objective

Multicast Routing Problems. Under the second review at the European Journal of Operational

Research, May 2010. The contribution of this work is shown in Chapter 6.

5. Qu R., Xu Y., Castro-Gutiérrez J., Landa-Silva D. Particle Swarm Optimisation for the Steiner

Tree problem in Graphs and Delay-Constrained Multicast Routing Problems. Under review at the

Journal of Heuristics, May 2010. The contribution of this paper is shown in Chapter 4.

6. Xu Y., Qu R. 2010. A Hybrid Scatter Search Meta-heuristic for Delay-constrained Multicast

Routing Problems. Applied Intelligence. DOI: 10.1007/s10489-010-0256-x. The contribution of

this paper is shown in Chapter 4.

7. Xu Y., Qu R. Fitness Landscape Analysis for the Delay-constrained Multicast Routing Problem.

Under review at Computer &Communications, October 2010. The contribution of this paper is

shown in Chapter 5.

7.2 Future Work

Several interesting research directions are worthy of further investigation in the future work. It will be

interesting to extend these proposed single-objective metaheuristic approaches in Chapter 4 for the DCLC

Chapter 7 Conclusions and Future Work

 188

multicast routing problem to solve diverse QoS multicast routing problems with other various QoS

constraints (e.g. the bandwidth, delay-variation, node degrees, and packet loss ratio) in real world

multimedia applications. The investigation of metaheuristics for other challenging QoS multicast routing

problems will also be interesting. For example, in this thesis, all proposed algorithms are for the static case

where the states of the network are known and without change. In reality, networks are mostly dynamic

with many nodes leaving and joining in the multicast group at various times. This leads to the more

complicated dynamic multicast routing. The current proposed algorithms in this thesis only consider a

single multicast session. However, multiple multicast requests may occur simultaneously in the network to

share the limited network resources. This creates another interesting network optimisation problem, the

multicast routing packing problem, to schedule the multiple multicast trees in the network so that the

utilisation of network resources is minimised.

The fitness landscape analysis techniques discussed in Chapter 5 have shown to be useful for measuring

the underlying characteristics of the DCLC multicast routing problem and predicting the performance of

search algorithms and different neighbour operators. The fitness landscape analysis methods used in this

thesis can be used to analyse the DCLC multicast routing problem of larger size or other QoS multicast

routing problems with additional real life constraints to motivate the development of advanced

metaheuristic algorithms. In addition, more advanced landscape analysis techniques can be conducted on

both the DCLC multicast routing problem with larger set of instances and various other QoS multicast

routing problems.

The proposed two new hybrid metaheuristic algorithms (VEMOSA and MOSAGLS) in Chapter 6 have

shown to be promising approaches for solving the multi-objective multicast routing problem. Another

interesting research direction would be to extend the two proposed hybrid multi-objective multicast routing

approaches for solving the multi-objective multicast routing with more objectives besides the 5 objectives

considered in this thesis. These hybridised metaheuristics can also be adapted and investigated for other

multi-objective optimisation problems in the area of operational research.

Another interesting direction would be extending these proposed metaheuristic approaches for solving

various multicast routing problems in different types of networks, such as the multicast support for mobile

computing in wireless networks, and the multicast routing in optical networks. Due to the new features

Chapter 7 Conclusions and Future Work

 189

included in the scenario of different networks, variety of multicast routing problems can be defined with

respect to diverse objectives and constraints. The proposed metaheuristic approaches can be adapted and

investigated for these different multicast routing problems.

Furthermore, the performance of the proposed metaheuristic approaches may be further improved by

hybridising them with some exact methods, such as linear programming, branch-and-bound, and dynamic

programming, etc. Metaheuristics are ideal choices for solving combinatorial optimisation problems since

metaheuristics are flexible and effective to explore a large search space within a short time while exact

methods can explore a specific small area exhaustively. Combination of the strengths of both

metaheuristics and exact methods may lead to better quality solutions for the QoS multicast routing

problem as well as other combinatorial optimisation problems.

 190

References

Aarts E.H.L., Ten Eikelder H.M.M. 2002. Simulated annealing. In Pardalos P.M., Resende M.G.C. (Eds.),

Handbook of Applied Optimisation. Oxford: Oxford University Press, pp. 209-220.

Adibi M.A., Zandieh M., Amiri M. 2010. Multi-objective scheduling of dynamic job shop using variable

neighbourhood search. Expert Systems with Applications. 37(1): 282-287.

Amiri A., Pirkul H. 1997. Routing and capacity assignment in backbone communication networks.

Computers & Operations Research. 24(3): 275-287.

Ballardie A., Crowcroft J., Francis P. 1993. Core Based Trees (CBT) - an architecture for scalable

interdomain multicast routing. In: Proceedings of ACM Sigcomm’93, pp.85-95. ACM SIGCOMM.

Balram S., Nazish H., Shweta J. 2010. Orthogonal simulated annealing for multiobjective optimization.

Computers & Chemical Engineering. 34(10): 1618-1631.

Barahona F., Ladanyi L. 2006. Branch and cut based on the volume algorithm: Steiner trees in graphs and

Max-Cut. RAIRO Operations Research. 40, 53-73.

Bastos M.P., Ribeiro C.C. 2001. Reactive tabu search with path relinking for the Steiner tree problem in

graphs. In Ribeiro C.C., Hansen P. (Eds.), Essays and Surveys in Metaheuristics. Kluwer Academic

Publishers, pp. 39-58.

Bauer F., Varma A. 1995. Degree-constrained multicasting in point-to-point networks. In: proceedings of

IEEE INFOCOM, Boston. pp. 369-376.

Beasley J.E. 1990. OR-Library: distributing test problems by electronic mail. Journal of the Operational

Research Society. 41(11): 1069-1072. http://people.brunel.ac.uk/~mastjjb/jeb/orlib/ steininfo.html.

Beausoleil R.P. 2006. MOSS: Multiobjective scatter search applied to non-linear multiple criteria

optimisation. European Journal of Operational Research. 169(2): 426-449.

Bertsekas D., Gallager R. 1992. Data Networks. Second Edition. Prentice Hall.

Binato S., Hery W.J., Loewenstern D.M., Resende M.G.C. 2001. A greedy randomized adaptive search

procedure for job shop scheduling. In Hansen P., Ribeiro C. C. (Eds), Essays and surveys on

metaheuristics. Kluwer Academic Publishers, pp. 59-79.

 191

Black D., Carlson M., Davies E., Wang Z., Weiss W. 1998. An architecture for differentiated services. RFC:

2475.

Blum C., Blesa Aguilera M.J., Roli A., Sampels M. 2008. Hybrid metaheuristics: an emerging approach to

optimisation. Springer.

Blum C., Roli A. 2003. Metaheuristics in combinatorial optimisation: overview and conceptual

comparison. ACM Computing Surveys. 35(3): 268-308.

Boese K. 1995. Cost versus distance in the traveling salesman problem. Tech. Rep. TR-950018, UCLA CS

Department.

Bouleimen K., Lecocq H. 2003. A new efficient simulated annealing algorithm for the resource-constrained

project scheduling problem and its references multiple mode version. European Journal of Operational

Research. 149, 268-281.

Braden R., Zhang L., Berson S., Herzog S., Jamin S. 1997. Resource reservation protocol (RSVP)-version

1 functional specification. RFC 2205.

Buriol L.S., Resende M.G.C., Ribeiro C.C., Thorup M. 2005. A hybrid genetic algorithm for the weight

setting problem in OSPF/IS-IS routing. Networks. 46, 36-56.

Burke E.K., Curtois T.E., Post G., Qu R., Veltman B. 2008. A hybrid heuristic ordering and variable

neighbourhood search for the nurse rostering problem. European Journal of Operational Research.

188(2): 330-341.

Burke E.K., Curtois T., Qu R., Vanden Berghe G. 2010. A scatter search for the nurse rostering problem.

Journal of Operational Research Society. 61: 1667-1679.

Canuto S.A., Resende M.G.C., Ribeiro C.C. 2001. Local search with perturbations for the prize-collecting

Steiner tree problem in graphs. Networks. 38, 50-58.

Casner S., Deering S. 1992. First IETF Internet audiocast. ACM Computer Communications Review. 22(3):

92-107.

Castro-Gutiérrez J.P., Landa-Silva D., Moreno-Pérez J.A. 2009. Exploring feasible and infeasible regions

in the vehicle routing problem with time windows using a multi-objective particle swarm optimisation

approach. In Melian B., Moreno-Perez J.A., Moreno-Vega J.M., Pelta D., Krasnogor N. (Eds.), Studies

in Computational Intelligence. 236, 103-114.

 192

Cayley A. 1989. A theorem on trees. Journal of Math. 23, 376-378.

Chen S., Günlük O., Yener B. 1998. Optimal packing of group multicastings. In: Proceedings IEEE

INFOCOM’98. pp. 980-987.

Chen S., Nahrstedt K. 1998. An overview of quality-of-service routing for the next generation high-speed

networks: problems and solutions. IEEE Network. 12(6):64-79.

Chen S., Nahrstedt K., Shavitt Y. 2000. A QoS-aware multicast routing protocol. IEEE Journal on Selected

Areas in Communications. 18(12):2580-2592.

Chen S., Shavitt Y. 2004. A scalable distributed QoS multicast routing protocol. In: IEEE International

Conference on Communications. pp. 1161-1165.

Coello C.A.C., Van Veldhuizen D.A., Lamont G.B. 2002. Evolutionary Algorithms for Solving

Multi-Objective Problems. Kluwer Academic Publishers.

Consoli S., Moreno-Perez J.A., Darby-Dowman K., Mladenović N. 2008. Discrete particle swarm

optimisation for the minimum labelling Steiner tree problem. In Krasnogor N., Nicosia G., Pavone M.,

Pelta D. (Eds), Nature Inspired Cooperative Strategies for Optimisation, 129 of Studies in

Computational Intelligence, pp. 313-322, Springer-Verlag.

Cook W.J., Cunningham W.H., Pulleyblank W.R., Schrijver A. 1998. Combinatorial Optimisation. Wiley,

New York.

Cormen T.H., Leiserson C.E., Revest R.L. 1997. Introduction to algorithms. MIT Press, Cambridge.

Corne D.W., Knowles J.D. 2000. The Pareto envelop-based selection algorithm for multiobjective

optimisation. In: Proceedings of sixth international conference on parallel problem solving from Nature,

pp. 839-848, Springer, Berlin.

Costa A.M., Cordeau, J.-F., Laporte G. 2006. Exact and approximate algorithms for a class of Steiner tree

problems arising in network design and lot sizing. 4th US-European Workshop on Logistics and Supply

Chain Management, Hamburg.

Crichigno J., Baran B. 2004a. Multiobjective multicast routing algorithm. In: Lecture Notes in Computer

Science, 3124. pp. 1029-1034.

 193

Crichigno J., Baran B. 2004b. Multiobjective multicast routing algorithm for traffic engineering. In:

Proceedings of the 13th International Conference on Computer Communications and Networks, pp.

301-306.

Cui X., Lin C., Wei Y. 2003. A Multiobjective Model for QoS Multicast Routing Based on Genetic

Algorithm. In: Proceedings of International Conference on Computer Networks and Mobile Computing

(ICCNMC'03), pp. 49-53.

Cung V.D., Mautor T., Michelon P., Tavares A. 1997. A scatter search based approach for the quadratic

assignment problem. In: Proceedings of IEEE International Conference on Evolutionary Computation.

pp. 165-169.

Czyzak P., Jaszkiewicz A. 1998. Pareto simulated annealing - a metaheuristic technique for multiobjective

combinatorial optimisation. Journal of Multi-Criteria Decision Analysis. 7, 34-37.

Deb K., Agrawal S., Pratap A., Meyarivan T. 2000. A fast elitist non-dominated sorting genetic algorithm

for multi-objective optimisation: NSGA-II. In: Proceedings of the Parallel Problem Solving from

Nature VI Conference, Paris, France, pp. 849-858.

Deb K. 2001. Multiobjective optimisation using evolutionary algorithms. Wiley-Interscience Series in

Systems and Optimisation. John Wiley & Sons, Chichester.

Deb K. 2005. Multi-objective optimisation. In Burke E.K., Kendall G. (Eds), Search Methodologies:

Introductory Tutorials in Optimisation and Decision Support Methodologies. Springer. pp. 273-316.

Deering S.E. 1989. Host extensions for IP multicasting. RFC 1112.

Deering S. et al. 1996. The PIM architecture for wide-area multicast routing. IEEE/ACM Transaction on

Networking. 4, 153-162.

Diot C., Dabbous W., Crowcroft J. 1997. Multipoint communication: a survey of protocols, functions, and

mechanisms. IEEE Journal on Selected Areas in Communications. 15(3): 277-290.

Doerner K., Gutjahr W.J., Hartl R.F., Strauss C., Stummer C. 2001. Ant conony optimisation in

multiobjective portofolio selection. In: Proceedings of the 4th Metaheuristics International Conference.

Porto, Portugal, pp. 243-248.

Donoso Y., Fabregat R., Marzo J.L. 2004a. Multiobjective optimisation algorithm for multicast routing

with traffic engineering. IEEE 3rd International Conference on Networking (ICN’2004).

 194

Donoso Y., Fabregat R., Marzo J.L. 2004b. Multi-Objective optimisation model and heuristic algorithm for

multipath routing of static and dynamic multicast group. III Workshop on MPLS Networks. Girona,

Spain.

Dorigo M. 1992. Optimisation, Learning, and Natural Algorithms. PhD Thesis. Politecnico di Milano, Italy.

Dorigo M., Di Caro G. 1999. The ant colony optimisation meta-heuristic. In: Corne D., Dorigo M., Glover

F. (Eds.), New Ideas in Optimisation. London: McGraw-Hill. pp.11-32.

Dorigo M., Stützle T. 2002. The ant colony optimisation metaheuristic: algorithms, applications, and

advances. In Glover F., Kochenberger G. (Eds.), Handbook of Metaheuristics, volume 57 of

International Series in Operations Research & Management Science. Kluwer Academic Publishers, pp.

251-285.

Drias H., Khabzaoui M. 2001. Scatter search with random walk strategy for SAT and MAX-W-SAT

problems. Lecture Notes in Computer Science, 2070. pp. 35-44.

Duin C.W., Voß S. 1997. Efficient path and vertex exchange in Steiner tree algorithms. Networks. 29,

89-105.

Duin C.W., Voß S. 1999. The pilot method: a strategy for heuristic repetition with application to the Steiner

problem in graphs. Networks. 34, 181-191.

Ehrgott M., Gandibleux X. 2000. A survey and annotated bibliography of multiobjective combinatorial

optimisation. OR Spektrum. 22(4): 425-460.

Eppstein D. 1998. Finding the k shortest paths. SIAM Journal on Computing. 28(2): 652-673.

Fabregat R., Donoso Y., Solano F., Marzo J.L. 2004. Multitree routing for multicast flows: a genetic

algorithm approach. 7th Catalan Conference on Artificial Intelligence.

Fabregat R., Donoso Y., Baran B., Solano F., Marzo J.L. 2005. Multi-objective optimisation scheme for

multicast flows: a survey, a model and a MOEA solution. In: Proceedings of the 3rd international

IFIP/ACM Latin American Conference on Networking (LANC’05), New York, pp. 73-86.

Faloutsos M., Banerjea A., Pankaj R. 1998. QoSMIC: Quality of Service sensitive Multicast Internet

protocol. In: Proceedings of the ACM SIGCOMM’98. pp. 144-153.

Feo T.A., Resende M.G.C. 1995. Greedy randomized adaptive search procedures. Journal of Global

Optimisation. 6, 109-133.

 195

Festa P., Resende M.G.C. 2009a. An annotated bibliography of GRASP, part I: algorithms. International

Transactions in Operational Research. 16, 1-24.

Festa P., Resende M.G.C. 2009b. An annotated bibliography of GRASP, part II: applications. International

Transactions in Operational Research. 16, 131-172.

Floyd R.W. 1962. Algorithm 97: Shortest paths. Communications of the ACM. 5, 345.

Fraser A. S. 1957. Simulation of genetic systems by automatic digital computers. I. Introduction. Australian

Journal of Biological Sciences. 10, 484-491.

Gambardella L.M., Taillard E., Agazzi G. 1999. MACS-VRPTW: A Multiple Ant Colony System for

Vehicle Routing Problems with Time Windows. In: Corne D., Dorigo M., Glover F. (Eds.), New Ideas

in Optimisation. London: McGraw-Hill, pp.63-76.

Gambardella L.M., Dorigo M. 2000. Ant colony system hybridized with a new local search for the

sequential ordering problem. INFORMS Journal on Computing. 12(3): 237-255.

Gandibleux X., Mezdaoui N., Fréville A. 1997. A tabu search procedure to solve multiobjective

combinatorial optimisation problems. Lecture Notes in Economics and Mathematical Systems, 455. pp.

291-300, Springer.

Gandibleux X., Sevaux M., Sörensen K., T'kindt V. 2004. Metaheuristics for Multiobjective Optimisation.

Lecture Notes in Economics and Mathematical Systems, 535. Springer.

Garey M.R., Graham R.L., Johnson D.S. 1977. The complexity of computing Steiner minimal trees. SIAM

Journal on Applied Mathematics. 32, 835-859.

Garey M.R., Johnson D.S. 1979. Computers and Intractability: A Guide to the Theory of NP-Completeness.

W.H. Freeman and Company, New York.

Gaspero L.D., Schaerf A. 2001. Tabu search techniques for examination timetabling. Letcure Notes in

Computer Science, 2079. pp. 104-117.

Gaspero L.D., Schaerf A. 2007. A composite-neighborhood tabu search approach to the traveling

tournament problem. Journal of Heuristics. 13(2):189-207.

Gendreau M. 2002. Recent Advances in Tabu Search. In: Ribeiro C.C., Hansen P. (Eds.), Essays and

Surveys in Metaheuristics. Kluwer Academic Publishers, pp.369-377.

 196

Gendreau M., Hertz A., Laporte G. 1994. A tabu search heuristic for the vehicle routing problem.

Management Science. 40, 1276-1290.

Gendreau M., Potvin J.-Y. 2005. Metaheuristics in combinatorial optimisation. Annals of Operations

Research. 140, 189-213.

Ghaboosi N., Haghighat A.T. 2006. A tabu search based algorithm for multicast routing with QoS

constraints. In: Proceedings of the 9th International Conference on Information Technology, pp. 33-39.

Ghaboosi N., Haghighat A.T. 2007. A path relinking approach for delay-constrained least-cost multicast

routing problem. In: Proceedings of the 19th IEEE International Conference on Tools with Artificial

Intelligence, pp. 383-390.

Glover F. 1986. Future paths for integer programming and links to artificial intelligence. Computers and

Operations Research. 13, 533-549.

Glover F. 1997. Tabu search and adaptive memory programming – advances, applications and challenges.

In Barr R.S., Helgason R.V., Kennington J.L. (Eds.), Advances in Metaheuristics, optimisation and

Stochastic Modeling Technologies, pp. 1-75. Kluwer Academic Publishers.

Glover F. 1998. A template for scatter search and path relinking. In Hao J.K., Lutton E., Ronald E.,

Schoenauer M., Snyers D. (Eds.), Lecture Notes in Computer Science, 1363. pp. 13-54, Springer.

Glover F., Laguna M. 2002. Tabu search. In: Pardalos P.M., Resende M.G.C. (Eds.), Handbook of Applied

Optimisation. Oxford University Press, pp. 194-208.

Glover F., Kochenberger G.A. 2003. Handbook of Meta-heuristics. Kluwer Academic Publishers.

Glover F., Laguna M., Martí R. 2000. Fundamentals of scatter search and path relinking. Control and

Cybernetics. 29(3): 653-684.

Glover F., Laguna M., Martí R. 2003. Scatter search and path relinking: advances and applications. In

Glover F., Kochenberger G.A. (Eds.), Handbook of Metaheuristics. pp. 1-35. Kluwer Academic

Publishers.

Goldberg D.E. 1989. Genetic Algorithms in Search, Optimisation and Machine Learning. Addison-Wesley.

Greistorfer P. 2003. A tabu scatter search metaheuristic for the arc routing problem. Computers and

Industrial Engineering. 44(2): 249-266.

 197

Gruber M., Raidl G.R. 2005. Variable neighbourhood search for the bounded diameter minimum spanning

tree problem. In: Hansen P., Mladenović N., Pérez J.A.M., Batista B.M., Moreno-Vega J.M. (Eds.),

Proceedings of the 18th Mini Euro Conference on Variable Neighbourhood Search, Tenerife, Spain.

Guo L., Matta I. 1999. QDMR: An efficient QoS dependent multicast routing algorithm. In: Proceedings of

the 5th IEEE Real Time Technology and Applications Symposium, pp. 213-222.

Haberman B.K., Rouskas G.N. 1997. Cost, delay, and delay variation conscious multicast routing.

Technique Report, TR-97-03, North Carolina State University.

Haghighat A.T., Faez K., Dehghan M., Mowlaei A., Ghahremani Y. 2004. GA-based heuristic algorithms

for bandwidth-delay-constrained least-cost multicast routing. Computer Communications Journal.

27(1): 111-127.

Haidine A., Lehnert R. 2008. Multi-case multi-objective simulated annealing (MC-MOSA): new approach

for adapt simulated annealing to multi-objective optimisation. International Journal of Information

Technology. 4(3): 206-214.

Hamdan M., El-Hawary M.E. 2004. Multicast routing with delay and delay variation constraints using

genetic algorithm. Canadian Conference on Electrical and Computer Engineering, pp. 2363-2366.

Hamiez J.P., Hao J.K. 2002. Scatter search for graph coloring. Lecture Notes in Computer Science, 2310.

pp. 168-179.

Hansen P., Mladenovi´c N. 2003. Variable Neighbourhood Search. In Glover F., Kochenberger G.A.

(Eds.), Handbook of Metaheuristics. pp. 145-184. Kluwer Academic Publishers.

Hart W.E., Krasnogor N., Smith J.E. 2003. Recent Advances in Memetic Algorithms and Related Search

Technologies. Springer.

Hart W.E., Krasnogor N., Smith J.E. 2004. Recent advances in memetic algorithms, volume 166 of Studies

in Fuzziness and Soft Computing. Springer.

Henderson D., Jacobson S.H., Johnson A.W. 2003. The theory and practice of simulated annealing. In

Glover F., Kochenberger G.A. (Eds.), Handbook of Metaheuristics. pp. 287-319. Kluwer Academic

Publishers.

Holland J.H. 1975. Adaptation in natural and artificial systems. Ann Arbor: University of Michigan Press.

Holland J.H. 1992. Genetic algorithms. Scientific American. 267(1): 66-72.

 198

Höller H., Melián B., Voß S. 2008. Applying the pilot method to improve VNS and GRASP metaheuristics

for the design of SDH/WDM networks. European Journal of Operational Research. 191(3): 691-704.

Hordijk W. 1996. A measure of landscapes. Evolutionary Computation. 4(4): 335-360.

Horn J., Nafpliotis N., Goldberg D.E. 1994. A niched Pareto genetic algorithm for multiobjective

optimisation. In: Proceedings of the first IEEE conference on evolutionary computation, IEEE world

congress on computational intelligence. pp. 82-87. Piscataway: IEEE Service Center.

Huang J., Liu Y. 2010. MOEAQ: a QoS-aware multicast routing algorithm for MANET. Expert Systems

with Applications. 37(2010): 1391-1399.

Huang L., Han H., Hou J. 2007. Multicast routing based on the ant system. Applied Mathematical Sciences.

1(57): 2827-2838.

Hwang F.K., Richards D.S. 1992. Steiner tree problems. Networks. 22(1): 55-89.

Ishibuchi H., Murata T. 1998. A multi-objective genetic local search algorithm and its application to

flowshop scheduling. IEEE Transactions on Systems, Man, and Cybernetics-Part C: Applications and

Reviews. 28(3): 392-403.

Jari K., Teemu N., Olli B., Michel G. 2007. An efficient variable neighbourhood search heuristic for very

large scale vehicle routing problems. Computers and Operations Research. 34(9): 2743-2757.

Jaszkiewicz A. 2002. Genetic local search for multi-objective combinatorial optimisation. European

Journal of Operational Research. 137(1): 50-71.

Jensen M.T. 2003. Reducing the run-time complexity of multiobjective EAs: the NSGA-II and other

algorithms. IEEE Trans Evolutionary Computation. 7(5): 503-515.

Jia X. 1998. A distributed algorithm of delay-bounded multicast routing for multimedia applications in

wide area networks. IEEE/ACM Transactions on Networking. 6(6): 828-837.

Jiang X. 1992. Routing broadband multicast streams. Computer Communications. 15(1): 45-51.

Jones D.F., Mirrazavi S.K., Tamiz M. 2002. Multiobjective metaheuristics: an overview of the current state

of the art. European Journal of Operational Research. 137(1): 1-9.

Jones T., Forrest S. 1995. Fitness distance correlation as a measure of problem difficulty for genetic

algorithms. In: Eshelman L.J. (Ed.) Proceedings of the 6th International Conference on Genetic

Algorithms, pp. 184-192. Morgan Kaufmann, San Francisco, CA.

 199

Kallel L., Naudts B., Reeves C.R. 2001. Properties of Fitness Functions and Search Landscapes. In Kallel

L., Naudts B., Rogers A. (Eds.), Theoretical Aspects of Evolutionary Computing, pp. 175-206.

Springer.

Kennedy J., Eberhart R.C. 1995. Particle swarm optimisation. Proceedings of IEEE International Conference

on Neural Networks, IV, pp. 1942-1948. IEEE Service Center, Piscataway, NJ.

Kennedy J., Eberhart R.C. 1997. A discrete binary version of the particle swarm algorithm. In: Proceedings

of the World Multiconference on Systemics, Cybernetics and Informatics, pp. 4104-4109. IEEE Service

Center, Piscataway, NJ.

Kennedy J., Eberhart R.C., Shi Y. 2001. Swarm intelligence. Morgan Kaufmann, San Francisco, CA.

Kirkpatrick S., Gelatt C.D., Vecchi M.P. 1983. Optimisation by simulated annealing, Science. 220(4598):

671-680.

Koch T., Martin A. 1998. Solving Steiner tree problems in graphs to optimality. Networks. 32, 207-232.

Kompella V.P., Pasquale J.C., Polyzos G.C. 1993a. Multicast routing for multimedia communication.

IEEE/ACM Transactions on Networking. 1(3): 286-292.

Kompella V.P., Pasquale J.C., Polyzos G.C. 1993b. Two distributed algorithms for the constrained Steiner

tree problem. In: Proceedings of the Second International Conference on Computer Communications

and Networking, pp.343-349.

Konak A., David W.C., Alice E.S. 2006. Multi-objective optimisation using genetic algorithms: A tutorial.

Reliability Engineering and System Safety. 91(9): 992-1007.

Kou L., Markowsky G., Berman L. 1981. A fast algorithm for Steiner tree. Acta Informatica. 15(2):

141-145.

Krasnogor N. Smith J.E. 2005. A tutorial for competent memetic algorithms: model, taxonomy and design

issues. IEEE Transactions on Evolutionary Computation, 9(5):474- 488.

Kruskal J. 1956. On the shortest spanning subtree of a graph and the travelling salesman problems. In:

Proceedings of the American Mathematical Society. 7(1): 48-50.

Kulturel-konak S., Smith A.E., Norman B.A. 2006. Multi-objective tabu search using a multinomial

probability mass function. European Journal of Operational Research. 169(3): 918-931.

 200

Laguna M. 2002. ScatterSearch. In: Pardalos P.M., Resende M.G.C. (Eds.), Handbook of Applied

Optimisation. Oxford University Press, pp.183-193.

Laguna M., Martí R. 1999. GRASP and path relinking for 2-layer straight line crossing minimisation.

INFORMS Journal on Computing. 11(1): 44-52.

Landa-Silva J.D, Burke E.K, Petrovic S. 2004. An introduction to multiobjective metaheuristics for

scheduling and timetabling. In: Xavier Gandibleux, Marc Sevaux, Kenneth Sorensen, Vincent T'kindt

(Eds). Metaheuristic for Multiobjective Optimisation. Lecture Notes in Economics and Mathematical

Systems, 535. pp. 91-129. Springer.

Li C, Cao C, Li Y, Yu Y. 2007. Hybrid of genetic algorithm and particle swarm optimisation for multicast

QoS routing. IEEE International Conference on Control and Automation. IEEE Xplore Press,

Guangzhou, China. pp. 2355-2359.

Li H, Landa-Silva D. 2008. Evolutionary multi-objective simulated annealing with adaptive and

competitive search direction. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation

(CEC 2008), IEEE Press: Hong Kong. pp. 3310-3317.

Lian Z., Gu X., Jiao B. 2006. A similar particle swarm optimisation algorithm for permutation flow shop

scheduling to minimise makespan. Applied Mathematics and Computation. 175(1): 773-785.

Liu D.S., Tan K.C., Huang S.Y., Goh C.K., Ho W.K. 2008. On solving multiobjective bin packing

problems using evolutionary particle swarm optimization. European Journal of Operational Research.

190(2): 357-382.

Liu H., Abraham A., Choi O., Moon S.H. 2006. Variable neighbourhood particle swarm optimisation for

multi-objective flexible job-shop scheduling problems. Lecture Notes in Computer Science, 4247. pp.

197-204. Springer.

Liu J. 1999. The impact of neighbourhood size on the process of simulated annealing: computational

experiments on the flowshop scheduling problem. Computers & Industrial Engineering. 37, 285-288.

Liu T.K., Chen C.H., Jyh-Horng Chou J.H. 2010. Optimization of short-haul aircraft schedule recovery

problems using a hybrid multiobjective genetic algorithm. Expert Systems with Applications. 37(3):

2307-2315.

 201

Lu G., Liu Z. 2000. Multicast routing based on ant-algorithm with delay and delay variation constraints. In:

Proceedings of the 2000 IEEE Asia-Pacific Conference. pp. 243-246.

Ma Q., Steenkiste P. 1997. Quality-of-service routing for traffic with performance guarantees. In:

Proceedings of IFIP Fifth International Workshop on Quality of Service. pp. 115-126.

Maenhout B., Vanhoucke M. 2006. New computational results for the nurse scheduling problem: a scatter

search algorithm. Lecture notes in Computer Science, 3906. pp. 159 -170. Springer.

Manderick B., de Weger M., Spiessens P. 1991. The genetic algorithm and the structure of the fitness

landscape. In: Proceedings of the 4th International Conference on Genetic Algorithms, pp. 143-150.

Maniezzo V., Carbonaro A. 2002. Ant colony optimisation: an overview. In: Ribeiro C.C., Hansen P.

(Eds.), Essays and surveys in Metaheuristics. pp. 21-44. Kluwer Academic Publishers.

Martins F., Costa C.A.V. 2010. Multiobjective optimization with economic and environmental objective

functions using modified simulated annealing. Computer Aided Chemical Engineering. 28, 919-924.

Martins S.L., Ribeiro C.C., Rosseti I. 2004. Applications and parallel implementations of metaheuristics in

network design and routing. Lecture Notes in Computer Science, 3285. pp. 205-213.

Martins S.L., Resende M.G.C., Ribeiro C.C., Pardalos P. 2000. A parallel GRASP for the Steiner tree

problemin in graphs using a hybrid local search strategy. Journal of Global Optimisation. 17, 267-283.

Masip-Bruin X., Yannuzzi M., Domingo-Pascual J., Fonte A., Curado M., Monteiro E., Kuipers F., Van

Mieghem P., Avallone S., Ventre G., Aranda-Gutierrez P., Hollick M., Steinmetz R., Iannone L.,

Salamatian K. 2006. Research challenges in QoS routing. Computer Communications. 29(5): 563-581.

Mendoza J.E., Castanier B., Guéret C., Medaglia A.L., Velasco N. 2010. A memetic algorithm for the

multi-compartment vehicle routing problem with stochastic demands. Computers & Operations

Research. 37(11): 1886-1898.

Merkle D., Middendorf M., Schmeck H. 2002. Ant colony optimisation for resource-constrained project

scheduling. IEEE Transactions on Evolutionary Computation. 6(4): 333-346.

Merz P., Freisleben B. 1998. Memetic algorithms and the fitness landscape of the graph bi-partitioning

problem, In: Proceedings of the 5th International Conference on Parallel Problem Solving from Nature -

PPSN V. Lecture notes in Computer Science, 1498. pp. 765-774. Springer.

Miettinen K. 1999. Nonlinear Multiobjective Optimisation. Kluwer Academic Publishers.

 202

Miller B.L., Shaw M.J. 1996. Genetic algorithms with dynamic niche sharing for multimodal function

optimisation. In: Proceedings of the third International Conference on Evolutionary Computation. pp.

786-791.

Minoux M. 1989. Network synthesis and optimum network design problems: models, solution methods and

applications. Networks. 19(3): 313-360.

Mladenović N., Hansen P. 1997. Variable neighbourhood search. Computers and Operations Research. 24,

1097-1100.

Moreno-Pérez J.A., Castro-Gutiérrez J.P., Martinez-Garcia F.J., Melián B., Moreno-Vega J.M., Ramos J.

2007. Discrete particle swarm optimisation for the p-median problem. In: Proceedings of the 7th

Metaheuristics International Conference, Montreal, Canada.

Moscato P., Cotta C. 2003. A gentle introduction to memetic algorithms. In: Glover F., Kochenberger G.A.

(Eds.), Handbook of Metaheuristics, pp. 105-144. Kluwer Academic Publishers.

Moy J. 1994. MOSPF: analysis and experience. RFC 1585.

Murata T., Ishibuchi H. 1995. MOGA: multi-objective genetic algorithms. In: Proceedings of the 1995

IEEE international conference on evolutionary computation. pp. 289-294.

Noronha C., Tobagi F. 1994. Optimum routing of multicast streams. In: Proceedings of the 13th IEEE

Networking for Global Communications (INFOCOM'94). pp. 865-873.

Ochoa G., Qu R., Burke E.K. 2009. Analyzing the landscape of a graph based hyper-heuristic for

timetabling problems, In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary

Computation (GECCO'09). pp. 341-348.

Oliveira C.A.S., Pardalos P.M. 2005. A survey of combinatorial optimisation problems in multicast routing.

Computers and Operations Research. 32(8): 1953-1981.

Onwubolu G.C., Clerc M. 2004. Optimal path for automated drilling operations by a new heuristic

approach using particle swarm optimisation. International Journal of Production Research. 42(3)

473-491.

Osman, I. H. Kelly, J. P., 1996. Meta-heuristics: Theory and Applications. Kluwer Academic Publishers.

Papadimitriou C. H., Steiglitz K. 1982. Combinatorial Optimisation - Algorithms and Complexity. Dover

Publications.

 203

Pasquale J.C., Polyzos G.C., Xylomenos G. 1998. The multimedia multicasting problem. ACM Multidedia

Systems. 6(1): 43-59.

Paul P., Raghavan S.V. 2002a. Survey of QoS routing. In: Proceedings of the 15th international Conference

on Computer communication. pp. 50-75.

Paul P., Raghavan S.V. 2002b. Surveys of multicast routing algorithms and protocols. In: Proceedings of

the 15th international Conference on Computer communication. pp. 902-926.

Prais M., Ribeiro C.C. 2000. Reactive GRASP: An application to a matrix decomposition problem in

TDMA traffic assignment. INFORMS Journal on Computing. 12(3): 164-176.

Prim R.C. 1957. Shortest connection networks and some generalizations. Bell System Technical Journal.

36, 1389-1401.

Pinto D., Baran B. 2005. Solving Multiobjective Multicast Routing Problem with a new Ant Colony

Optimisation Approach. In: Proceedings of the 3rd international IFIP/ACM Latin American conference

on Networking. pp. 11-19.

Qu R., Xu Y., Kendall G. 2009. A variable neighbourhood descent search algorithm for delay-constrained

least-cost multicast routing. In: Stützle T. (Ed.), Proceedings of Learning and Intelligent Optimisation

(LION3), Lecture Notes in Computer Science, 5851. pp. 15-29. Springer.

Queiroz M., Jr C.H. 2003. A heuristic for the continuous capacity and flow assignment. European Journal

of Operational Research. 146(3): 444-459.

Rai S.C., Misra B.B., Nayak A. K., Mall R. Pradhan S.K. 2010. A Multi-Objective QoS optimization with

fuzzy based parameter setting for real time Multicasting. International Journal of Communications,

Network and System Sciences. 3, 530-539.

Randaccio L.S., Atzori L. 2006. A genetic algorithm based approach for group multicast routing. Journal of

Networks. 1(4): 1-9.

Reeves C.R. 1996. Modern heuristic techniques. In: Rayward-Smith V.J., Osman H., Reeves C.R., Smith

G.D. Modern Heuristic Search Methods. Wiley, Chichester. pp. 1-25.

Reeves C.R. 1998. Landscapes, operators and heuristic search. Annals of Operations Research. 86,

473-490.

 204

Reeves C.R. 2003. Genetic algorithms. In: Glover F., Kochenberger G. (Eds.). Handbook of

Metaheuristics. pp.55-82. Kluwer Academic Publishers.

Resende M.G.C., Sousa J.P. 2004. Metaheuristics: Computer Decision Making. Kluwer Academic

Publishers.

Resende M.G.C., Ribeiro C.C. 1997. A GRASP for graph planarization. Networks. 29, 173-189.

Resende M.G.C., Ribeiro C.C. 2005. GRASP with path-relinking: recent advances and applications. In

Ibaraki T., Nonobe K., Yagiura M. (Eds.), Metaheuristics: Progress as Real Problem Solvers, pp. 29-63.

Springer.

Ribeiro C.C., Souza M.C. 2000. Tabu search for the Steiner problem in graphs. Networks. 36(2): 138-146.

Ribeiro C.C., Uchoa E., Werneck R.F. 2002. A hybrid GRASP with perturbations for the Steiner problems

in graphs. INFORMS Journal of Computing. 14(3): 228-246.

Ribeiro C.C.C., Martins S.L., Rosseti I.C.M. 2007. Metaheuristics for optimisation problems in computer

communications. Computer Communications. 30(4): 656-669.

Roy A, Banerjee N, Das S.K. 2002. An efficient multi-objective QoS-routing algorithm for wireless

multicasting. In: Proceedings of IEEE 55th Vehicular Technology Conference. pp. 1160-1164.

Roy A., Das S.K. 2004. QM2RP: a QoS-based mobile multicast routing protocol using multi-objective

genetic algorithm. Wireless Networks. 10(3): 271-286.

Salama H.F., Reeves D.S, Viniotis Y. 1997. Evaluation of multicast routing algorithms for real-time

communication on high-speed networks. IEEE Journal on Selected Areas in Communications. 15(3):

332-345.

Sarker R., Liang K.H., Newton C. 2002. A new multiobjective evolutionary algorithm. European Journal of

Operational Research. 140(1): 12-23.

Schaffer J.D. 1985. Multiple objective optimisation with vector evaluated genetic algorithms. In:

Proceedings of the International Conference on Genetic Algorithm and their Applications. pp. 93-100.

Serafini P. 1992. Simulated annealing for multiobjective optimisation problems. In: Proceedings of the

Tenth International Conference on Multiple Criteria Decision Making. pp. 87-96.

Sha D.Y., Hsu C.-Y. 2006. A hybrid particle swarm optimisation for job shop scheduling problem.

Computers and Industrial Engineering. 51(4): 791-808.

 205

Shaikh A., Shin K.G. 1997. Destination-driven routing for low-cost multicast. IEEE Journal on Selected

Areas in Communication. 15(3): 373-381.

Shen J., Xu F., Zheng P. 2005. A tabu search algorithm for the routing and capacity assignment problem in

computer networks. Computers and Operations Research. 32(11): 2785-2800.

Skorin-Kapov J. 1990. Tabu search applied to the quadratic assignment problem. ORSA Journal on

Computing. 2(1): 33-45.

Skorin-Kapov N., Kos M. 2003. The application of Steiner trees to delay constrained multicast routing: a

tabu search approach. In: Proceedings of the Seventh International Conference on

Teleconmmunications. pp. 443-448.

Skorin-Kapov N., Kos M. 2006. A GRASP heuristic for the delay-constrained multicast routing problem.

Telecommunication Systems. 32(1): 55-69.

Souza M.C., Duhamel C., Ribeiro C.C. 2003. GRASP with path-relinking heuristic for the capacitated

minimum spanning tree problem using a memory-based local search strategy. In Resende M.G.C,

Souza J.P. (Eds), Metaheuristics: Computer Decision Making. Kluwer Academic Publishers. pp.

627-658.

Srinivas N., Deb K. 1994. Multiobjective optimisation using nondominated sorting in genetic algorithms.

Evolutionary Computation. 2(3): 221-248.

Sriram R., Manimaran G., Siva Ram Murthy C. 1999. A rearrangeable algorithm for the construction of

delay-constrained dynamic multicast trees. In: Proceedings of the Eighteenth Annual Joint Conference

of the IEEE Computer and Communications Societies (IEEE INFOCOM '99). pp. 1073-1080.

Stadler P.F. 1992. Correlation in landscapes of combinatorial optimisation problems. Europhysics Letters.

20(6):479-482.

Stadler P.F. 1995. Towards a Theory of Landscapes. In: Lopez-Pena, R., Capovilla R., Garcia-Pelayo R.,

Waelbroeck H., Zertuche F. (Eds.), Complex Systems and Binary Networks, Lecture Notes in Physics,

461. pp. 77-163. Springer.

Striegel A., Manimaran G. 2002. A survey of QoS multicasting issues. IEEE Communications Magazine.

40(6): 82-87.

 206

Stützle T., Dorigo M. 1999. ACO algorithms for the travelling salesman problem. In Miettinen K., Makela

M., Neittaanmaki P., Periaux J. (Eds.), Evolutionary Algorithms in Engineering and Computer Science.

John Wiley and Sons.

Suman B, Kumar P. 2006. A survey of simulated annealing as a tool for single and multiobjective

optimisation. Journal of Operational Research Society. 57(10): 1143-1160.

Sun J., Liu J., Xu W. 2006. QPSO-based QoS multicast routing algorithm. Lecture Notes in Computer

Science, 4247. pp. 261-268. Springer.

Sun Q., Langendoerfer H. 1995. Efficient multicast routing for delay-sensitive applications. In: Proceedings

of the Second Workshop on Protocols for Multimedia Systems. pp. 452-458.

Sun Q., Langendoerfer H. 1998. An efficient delay-constrained multicast routing algorithm. Journal of

High-Speed Networks. 7(1): 43-55.

Sun Q., Langendoerfer H. 1999. A distributed delay-constrained dynamic multicast routing algorithm.

Telecommunication Systems. 11, 47-58.

Takahashi H., Matsuyama A. 1980. An approximate solution for the Steiner tree problem in graphs.

Mathematica Japonica. 24(6): 537-577.

Tasgetiren M.F., Liang Y.C., Sevkli M., Gencyilmaz G. 2007. A particle swarm optimisation algorithm for

makespan and total flowtime minimisation in the permutation flow shop sequencing problem. European

Journal of Operational Research. 177(3): 1930-1947.

Thompson J. M., Dowsland K.A. 1998. A robust simulated annealing based examination timetabling

system. Computers and Operations Research. 25, 637-648.

Thaler D., Estrin D., Meyer D. 1998. Border gateway multicast protocol (BGMP): protocol Specification.

RFC 2362.

Tran H.T., Harris R.J. 2003. Genetic algorithm approach to rearrangement of QoS multicast tree. In:

Proceedings of the 3rd ATcrc Telecommunications & Networking Conference and Workshop.

Ulungu E.L, Teghem J. 1994. Multiobjective combinatorial optimisation problems: a survey. Journal of

Multi-Criteria Decision Analysis. 3, 83-104.

 207

Ulungu E.L., Teghem J., Fortemps P.H., Tuyttens D. 1999. MOSA method: A tool for solving

multiobjective combinatorial optimisation problems. Journal of Multi-Criteria Decision Analysis. 8(4):

221-236.

Voß S. 1992. Steiner’s Problem in Graphs: Heuristic Methods. Discrete Applied Mathematics. 40(1):

45-72.

Voß S., Martello S., Osman I. H. 1999. Meta-heuristics: advances and trends in local search paradigms for

optimisation. Kluwer Academic Publishers.

Waitzman D., Partridge C., Deering S. 1988. Distance vector multicast routing protocol. RFC 1075.

Wang C.F., Liang C.T., Jan R.H. 2002. Heuristic algorithms for packing of multiple-group multicasting.

Computers and Operations Research. 29(7): 905-924.

Wang H., Fang J., Wang H., Sun Y.M. 2004. TSDLMRA: an efficient multicast routing algorithm based on

tabu search. Journal of Network and Computer Applications. 27, 77-90.

Wang J., Wang X., Huang M. 2005. A hybrid intelligent QoS multicast routing algorithm in NGI. In:

Proceedings of the Sixth International Conference on Parallel and Distributed Computing Applications

and Technologies. pp. 723-727.

Wang J.Q., Qin J., Kang L.S. 2006. A new QoS mutlicast routing model and its immune optimisation

algorithm. In: Ma J., Jin H., Yang L.T., Tsai J.J.-P. (Eds.), Ubiquitous Intelligence and Computing,

Lecture Notes in Computer Science, 4159. pp. 369-378.

Wang Q.B., Hou J. 2000. Multicast routing and its QoS extension: problems, algorithms, and protocols.

IEEE Network. 14(1): 422-436.

Wang X.L., Jiang Z. 2004. QoS multicast routing based on simulated annealing algorithm. In: Proceedings

SPIE on Network Architectures, Management, and Applications. pp. 511-516.

Wang Z., Crowcroft J. 1996. Quality of service routing for supporting multimedia applications. IEEE

Journal on Selected Areas in Communications. 14(7): 1228-1234.

Wang Z., Shi B., Zhao E. 2001. Bandwidth-delay-constrained least-cost multicast routing based on

heuristic genetic algorithm. Computer Communications. 24, 685-692.

Waxman B.M. 1988. Routing of multipoint connections. IEEE Journal on Selected Areas in

Communications. 6(9): 1617-622.

 208

Wei W., Feng Y., Tan J., Li Z. 2009. Product platform two-stage quality optimization design based on

multiobjective genetic algorithm. Computers & Mathematics with Applications. 57(11-12): 1929-1937.

Weinberger E. 1990. Correlated and uncorrelated fitness landscapes and how to tell the difference.

Biological Cybernetics. 63(5): 325-336.

Widyono R. 1994. The design and evaluation of routing algorithms for realtime channels. International

Computer Science Institute, U.C. Berkeley. Technical Report, ICSI TR-94-024.

Wright S. 1932. The roles of the mutation, inbreeding, crossbreeding, and selection in evolution. In:

Proceddings of the Sixth Congress on Genetics. 1, 355-366.

Xiao X., Ni L.M. 1999. Internet QoS: a big picture. IEEE Network. 13, 8-18.

Xu Y., Qu R. 2009. A GRASP approach for the delay-constrained multicast routing problem. In:

Proceedings of the 4th Multidisplinary International Scheduling Conference (MISTA4). Dublin,

Ireland.

Xu Y., Qu R. 2011. Solving multi-objective multicast routing problems by evolutionary multi-objective

simulated annealing algorithms with variable neighbourhoods. Journal of the Operational Research

Society. 62, 313-325.

Yang C.B., Wen U.P. 2005. Applying tabu search to backup path planning for multicast networks.

Computers and Operations Research. 32(11): 2875-2889.

Yen G.G., Lu H. 2003. Dynamic multiobjective evolutionary algorithm: adaptive cell-based rank and

density estimation. IEEE Transactions on Evolutionary Computation. 7(3):253-274.

Yeo C.K., Lee B.S., Er M.H. 2004. A survey of application level multicast techniques. Computer

Communications. 27(15): 1547-1568.

Youssef H., Sait S.M., Adiche H. 2001. Evolutionary algorithms, simulated annealing and tabu search: a

comparative study. Engineering Applications of Artificial Intelligence. 14(2): 167-181.

Youssef H., Al-Mulhem A., Sait S.M., Tahir M.A. 2002. QoS-driven multicast tree generation using tabu

search, Computer Communications. 25, 1140-1149.

Zachariasen M. 1999. Local search for the Steiner tree problem in the Euclidean plane. European Journal of

Operational Research. 119(2): 282-300.

 209

Zahrani M.S., Loomes M.J., Malcolm J.A., Albrecht A.A. 2006. Landscape analysis for multicast routing.

Computer & Communications. 30(1): 101-116.

Zahrani M.S., Loomes M.J., Malcolm J.A. 2007. LSA-based Landscape Analysis for Multicast Routing. In:

Proceedings of the Twenty-Sixth SGAI International Conference on Innovative Techniques and

Applications of Artificial Intelligence (AI-2006). pp. 187-200. Springer.

Zahrani M.S., Loomes M.J., Malcolm J.A., Dayem Ullah A.Z.M., Steinhöfel K., Albrecht A.A. 2008.

Genetic local search for multicast routing with pre-processing by logarithmic simulated annealing.

Computers and Operations Research. 35(6): 2049-2070.

Zhang B., Krunz M.M., Chen C. 2001. A fast delay-constrained multicast routing algorithm. In:

Proceedings of IEEE International Conference on Communications. 9, 2676-2680.

Zhang H., Li H., Tam C.M. 2006. Permutation-based particle swarm optimisation for resource-constrained

project scheduling. Journal of Computing in Civil Engineering. 20(2): 141-149.

Zhang K., Wang H., Liu F.Y. 2005. Distributed multicast routing for delay variation-bounded Steiner tree

using simulated annealing. Computer Communications. 28, 1356-1370.

Zhang L., Cai L., Li M., Wang F. 2009. A method for least-cost QoS multicast routing based on genetic

simulated annealing algorithm. Computer Communications. 32(1): 105-110.

Zhang Q., Li H. 2007. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE

Trans. on Evolutionary Computation. 11(6): 712-731.

Zhong W.L., Huang J., Zhang J. 2008. A novel particle swarm optimisation for the Steiner tree problem in

graphs. IEEE World Congress on Evolutionary Computation. pp. 2460-2467.

Zhu Q., Parsa M., Garcia-Luna-Aceves J. J. 1995. A source-based algorithm for delay-constrained

minimum-cost multicasting, In: Proceedings of the Fourteenth Annual Joint Conference of the IEEE

Computer and Communications Societies (IEEE INFOCOM’95). pp. 377-385.

Zitzler E., Thiele L. 1999. Multiobjective evolutionary algorithms: a comparative case study and the

strength Pareto approach. IEEE Transactions on Evolutionary Computation. 3(4): 257-271.

