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ABSTRACT

Isosurface Rendering of Adaptive Resolution Data

by Robert S Laramee
University of New Hampshire, December, 2000

We present an algorithm for isosurface volume rendering of adaptive resolution (AR)
volume data in order to minimize the time taken for computation and the space needed
for storage. Unnecessary computation is avoided by skipping over large sets of volume
data deemed uninteresting. Memory space is saved by leaving the uninteresting vox-
els out of our octree data structure used to traverse the volume data. Our isosurface
generation algorithm modifies the Marching Cubes Algorithm in order to handle in-
consistencies that can arise between cells of different resolutions.



CHAPTER 1

OVERVIEW

Data analysis in the scientific community often deals with three dimensional data which
we call volume data (see section 2.1 Applications on page 3. Volume data is usually
sampled or generated at regular intervals as shown in Figure 1.1. Efficient handling
of the volume data is critical especially since it tends to come in very large sets. One
way of analyzing the volume is to investigate isosurface(s): surfaces of constant scalar
value. We use an algorithm called marching cubes [15] to compute these surfaces.

The marching cubes algorithm, conceptually, is a filter, taking as input a volume data
set and outputting surfaces of constant scalar value. From an implementation stand-
point, it does so by introducing a cube topology onto the volume data and processing
one cube at a time. Previous research has shown that 30% to 70% of the rendering
time is spent processing empty cubes [26]. Hence a standard optimization technique
uses an octree [27] to store the volume data. Each cube is stored as a leaf node and each
internal node stores the minimum and maximum data values of all its children. The
octree is traversed, examining each node to see if it contains a portion of the surface
within the encompassed volume.

The standard octree representation can be converted to a multiresolution (MR) [27]
representation by also storing common vertex values in the internal nodes. Such an
MR representation can be used to produce isosurfaces at different resolutions by simply
truncating or culling the octree at a particular level.

Instead of storing a full multiresolution octree representation of the volume data set
(described in section 2.3), it is often desirable to create an adaptive resolution (AR) rep-

Figure 1.1: Volume data with a regular, rectilinear sampling.



resentation of the data. Conceptually, the AR representation stores higher resolution
data in subsections of the volume deemed interesting, while the uninteresting higher
resolution data is discarded leaving only a lower resolution representation in those ar-
eas. From an implementation standpoint, this amounts to chopping off branches of the
octree at different levels, thus saving time spent traversing the tree, time spent pro-
cessing cube data, and storage space. However, the volume now contains neighboring
cubes of different sizes. If the basic marching cubes algorithm is applied to this data, we
get several problems including: inconsistent interpolation between cube vertices, miss-
ing triangle vertices, and isosurface discontinuities. Consequently, neighboring cubes
at different resolutions can no longer be treated independently. These problems are
outlined in section(s) 4.2 Inconsistent Interpolation on page 13, 4.3 Missing Vertices
on page 14, and 4.4 Discontinuities on 15, respectively. We present an adaptation of
the marching cubes algorithm with added methodology in order to handle these new
complexities. Sections 5 (page 19) and 6 (page 22) describe the algorithm and its im-
plementation. Section 7 (page 31) presents some preliminary results and evaluation
of the algorithm. Finally, section 8.3 (page 53) presents some conclusions along with
ideas for future work.



CHAPTER 2

BACKGROUND

One operation we perform on volume data sets is isosurface computation — finding
surfaces inside the volume data of constant scalar value. For example, a person’s skin
would map to an isosurface in medical image volume data. Another isosurface in the
same volume data may identify a person’s bone structure.

The volume data is a set of three dimensional data points usually with regularly spaced
sampling points. Also, the sampling is usually from a continuous phenomena. From
the regular sampling points we can introduce a conceptual division of the volume into
rectilinear volume data elements or vozels. The sample point values may be viewed as
either the center or corner of a voxel. We treat the sample point values as corners.

2.1 Applications
Applications of isosurface generation from volume data include [20, 21]:
e solid modeling
e computer-aided design/computer-aided manufacturing (CAD/CAM)
e robotics and computer vision
e medical imaging & medicine [16, 25]
e computational fluid dynamics (CFD) [4, 8]

e molecular dynamics [11, 13, 17]

2.2 Isosurface Rendering

The marching cubes algorithm was first presented by Lorensen and Cline [15] as a high
resolution three dimensional surface construction algorithm. Given a three dimensional
grid with scalar values defined at each intersection in the grid, a scalar (isovalue)
value is chosen that corresponds to the isosurfaces generated. Figure 2.1 shows the 2
dimensional analogy to isosurfaces.
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Figure 2.1: Contouring a two dimensional grid with a contour line of value five [21]

2.2.1 Computing a Surface with the Marching Cubes Algorithm

The marching cubes algorithm is very popular because of its simplicity of implemen-
tation. It is able to examine a large volume data set, one cube at a time, and output a
surface. An important facet of the algorithm is that each cube is treated independently.
As a result, there is a large reduction in complexity. Another advantage results when
processing large volume data sets. Only small subsets of the data are required to be in
memory at the same time for processing.

2.2.2 Basic Algorithm

The marching cubes (MC) algorithm identifies and constructs a boundary or surface
of constant scalar value within a volume data set. In the MC algorithm:

e Each cell is treated independently.

e It is assumed that a surface can only pass through a cell in a finite number of
ways.

e A case table is used to enumerate all possible topological states of a cell.

e A vertex is considered to be inside a surface if its scalar value is greater than the
surface value.

e Once the proper case is computed, the location of the surface cell edge intersection
is calculated using interpolation

The algorithm ends when all cells have been visited

2.2.3 A Cell’s Topological States

The marching cubes algorithm is tractable because it assumes that the surface can
only pass through each cube in simple ways. For example, if two adjacent vertices are

4



case 12 case 13 case 14

Figure 2.2: The 256 possible topological cube cases reduces to 15 by symmetry. Labeled
vertices are greater than the isosuface value.

pP7 P6
P4 ) vertex value above isovalue
P3 P2
PO P1
00010111 Index Into Case Table
PO P1 P2 P3 P4 P5 P6 P7

Figure 2.3: Generating an index into the case table: Vertices whose value is greater
than the isosurface value are recorded in the index.

on the same side of the surface we assume that the surface does not pass through the
adjoining edge at all. With these assumptions the surface can only pass through a cube
in a finite number of ways. For a cube with eight vertices, the surface can pass through
a cube in 256 (28) ways. But symmetry reduces the number of unique cases to the 15
shown in Figure 2.2. Thus, when the algorithm finds a cube containing the surface,
it determines which topological case the cube falls into by associating a boolean value
with each vertex. The boolean value is set to true if the vertex value is greater than
the isosurface value, false otherwise. The 8 boolean values are converted to an 8-bit
index into a case table of the 256 possible topological cases as shown in Figure 2.3.
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Figure 2.4: There are six unique marching cubes ambiguous cases.

Figure 2.5: A 2D example of an ambiguous isocontour. Two vertex values above
the isovalue can generate two different interpretations. The correct choice for the
ambiguous cell depends on the nature of the surface in the adjoining cells, but we
would like to preserve the independent cube processing model.

2.2.4 Surface Ambiguity

One problem with the marching cubes algorithm is surface ambiguity. Surface ambigu-
ity arises when adjacent edge points are in different states, but diagonal vertices are in
the same state. The 2D analogue this problem is illustrated in Figure 2.5. In 3D we need
to extend the original fifteen marching cubes cases with the additional complementary
cases shown in Figure 2.4. Correct selection between ambiguous choices insures that
surface continuity is preserved, thus preventing accidental holes from appearing in the
surface [21]. Other solutions include face patching, introducing tetrahedra, function
dependent triangulation [12], and refinements described by Wilhelms and Van Gelder
[27, 26, 18].

2.2.5 Marching Cubes Data Structures, the Octree

The octree is a hierarchical data structure well suited for the six-sided voxel struc-
ture of volume data. This is because octrees are based on the decomposition of space
[27, 19, 20]. Conceptually, the root refers to the entire volume and from the root, the
subvolume is divided into eight volumes recursively until we reach a level where each
sample data point corresponds to a voxel vertex. See Figure B.1 in Appendix B for the
octree representation of the volume data in Figure 1.1.

Octrees have the advantage that summary data can be used to prevent unneeded traver-



sal of uninteresting volumes. We use summary data such as the maximum and mini-
mum values of data with each internal node’s subvolume in the octree to avoid extra
computation. However, the octree itself requires more memory than storing only the
data.

2.2.6 Multiresolution Volume Data

One way of handling large volume data sets is to build a mulitresolution (MR) rep-
resentation of the volume. We construct a data set that, in addition to the original
highest resolution data, represents one or more levels of the volume that are coarser
in resolution. The coarser resolutions are easier to handle in terms of processing time
and memory storage. Often the average desktop computer does not have the resources
necessary to process large volume data sets at the most detailed resolution. We may be
able to render an isosurface in interactive time by running computations on a smaller
data set of coarser resolution than on the original. However, we still are interested in
preserving the original data in the case that it, or more likely a subset of the original
data, becomes more interesting or needs more thorough investigation. We can extend
this idea with the notion of an adaptive resolution (AR) representation. Conceptually,
an AR representation is a volume data set with varying resolution. Some portions
(subvolumes) of the volume are represented with high resolution while others are rep-
resented on a coarser level. We often find cases in which a particular subvolume is the
focus of a scientist’s observation or research.

2.3 Multiresolution Representation

The first stage of application development involves the generation of a multiresolution
representation (MR) of the volume data set. If we begin with a 1283 data set, we can
build up to eight levels of resolution. Level 0 is our finest level of resolution containing
a 1283 representation of the data. The next coarser level of resolution, 643, may be
computed in a variety of ways. The simplest approach is to simply discard every
other sample point. Since each cube contains eight vertices, eight level 0 cubes are
represented by one cube at level one. Level 7 is the coarsest level of resolution for a
1283. Conceptually, level 7 is a cube containing the entire volume of the data set. In
implementation, level 7 is the root node of the octree data structure used to store the
volume data.



CHAPTER 3

RELATED WORK

Past research has focused on mulitresolution algorithms for isosurface rendering. This
is because previous research has shown that 30% to 70% of the time spent in rendering
is spent processing empty cubes [26]. In some instances, the isosurface has been reduced
by 55% [22]. Unlike other octree algorithms [27], we address the use of octrees where
certain regions of the volume data can be classified or pruned from the octree a priori.
Reseach published by Engel, Wetermann, and Ertl [3] also utilizes a multiresolution
data set, however their goal is to reduce the number of triangles generated by the
standard MC algorithm, hence, compromising accuracy.

3.1 Static MR Representation

Past research deals with an MR representation which acts as the foundation for the rest
of the rendering algorithm. Research published by Cox and Ellsworth [1, 2] observes
that the amount of data generated by a visualization algorithm is relatively small com-
pared to the total amount of data. This implies that sparse traversal methods can be
created that reduce the amount of data needed to be accessed [14].

The entire octree is constructed and then traversed adaptively. In other words, the data
is not adaptive but the traversal is. The isosurface value is examined inside blocks and
the different resolutions are accessed adaptively. Isosurface traversal begins at the
coarsest level of resolution. Whenever the isosurface value falls within the minimum-
maximum boundary of a block of volume data, the next higher level of resolution in
that block is traversed. If the isosurface value falls within the minimum-maximum
boundary of one of those higher resolution blocks, then again, the next higher level of
resolution in the corresponding block is traversed. This procedure is applied recursively
as long as the isosurface value is found within the bounds of the volume data or until
the lowest level resolution block is reached. Given an isosurface value, if it’s not within
the minimum-maximum boundary of a block, then entire branches of the tree data
structure are skipped. Again, this is an MR representation with an AR traversal.

One advantage of this algorithm is that neighboring cubes used to generate the isosur-
face are always at the same resolution. When the isosurface passes from one cube to
its neighbor, the neighbor is at the same level in the octree. This is a consequence of
having a full MR representation to start with. However, the full MR representation
also has disadvantages. In particular, the full MR representation takes up more storage
space and requires more computation than an AR representation. It is often the case,



that a full MR representation is not needed due to volume data redundancy and areas
in the volume that are simply not the focus for a scientist.

3.2 Adaptive Marching Cubes

R. Shu, C. Zhou, and M. Kankanhalli [22] were successful in speeding up the march-
ing cubes algorithm with their version of an adaptive marching cubes (AMC). Their
goal was to bring the MC algorithm to interactive time. They reduced the number of
triangles by up to 55 percent by adapting the size of triangles to fit the shape of the
isosurface. Similar to prior research, theirs uses a static uniform resolution representa-
tion with a dynamic MR traversal.

Their research differs from our approach in that their volume data is stored using a
single level resolution representation with an MR traversal. And they resolve discon-
tinuities in the isosurface differently then we do. Cracks may appear between two
different neighboring cubes at different levels of subdivision (resolution). In what they
called the “crack problem” [22], discontinuities in the surface are patched with polygons
the same shape as those of the cracks. The cracks are abstracted into 22 basic config-
urations of different sizes, a solution that requires O(n?) of working memory space for
an n X n X n volume data set.

The basic notion behind the AMC strategy is to adjust the shape of an isosurface based
on its curvature. This research starts off with the assumption that the volumetric data
set size is Ny x Ny x N, in size where Ny, Ny, N, are all powers of 2 (i.e. N, = 2t
Ny = 20, N, = 2’“). The data set is then partitioned into cubes of equal size of 2™
where m < min(i, j, k) (the details of how this is done are not presented in the paper).
Then they choose an isosurface value and perform the basic MC algorithm. From this
uniform resolution representation of the surface, they produce an MR representation of
the surface based on the amount of curvature (or smoothness) within the cubes. This
is done by partitioning the cubes at the original resolution into smaller and smaller
cubes in a recursive fashion. The subdivision ends when either:

1. all the surfaces contained by the cubes are flat enough to fit into one of the MC
cases or

2. the length of a subcube’s side is unit length (finest resolution)

Figure 3.1 shows a 2D example of the AMC strategy. The curve PQR is to be ap-
proximated by a set of straight lines. By looking at the left half of the diagram, we
can see that a uniform resolution approximation of the curve uses seven straight lines.
However, when AMC is used, the same curve is approximated by three lines. The key
is found by looking at the normals. Normals ng and ng are not too different from
each other. Thus, we can approximate the surface between these two points with a
straight line. However, normals ng and ng are too different from each other, so the
square encompassing the Q)S portion of the curve is subdivided and two lines are used
to approximate the curve.



~+— unit length

! "o

Figure 3.1: An example of AMC strategy in two dimensions
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CHAPTER 4

ISOSURFACE RENDERING
OF ADAPTIVE RESOLUTION
DATA

Our approach uses an AR representation and an AR traversal algorithm. We render a
static AR representation. Any value from the dataset may be chosen to generate an
isosurface. Whether that choice happens to coincide with a slowly changing region of
volume data or highly changing region is irrelevant in our case.

4.1 Adaptive Resolution Representation

An example AR data set is shown in Figure 4.1. Conceptually, this involves combining
cubes whose vertex values are within a specified delta range. The adaptive resolution
representation is decided by the change in values in a local area. We store a finer res-
olution representation in areas of rapidly changing sample data points, whereas areas
with little change are stored with a coarser resolution representation. In other words,
we can define a scalar value that represents an amount of change, §, in the volume
data set. When examining a volume cube, if the cube’s vertices do not encompass a
change greater than or equal to chosen threshold value d, its volume is represented by a
larger cube (of coarser resolution). From an implementation standpoint, this requires
a depth-first tree traversal (DFS) of our octree data structure. Each node of the octree
includes a cube. If the difference between the maximum and minimum vertex scalar
values is less than the threshold value, all of the octree node’s children are pruned
from the tree (Figure 4.2). With this adaptive representation of the volume data, we
minimize data which we may find to be uninteresting. In this fashion, we save both
memory space resulting from a reduction in the amount of data stored and computa-
tion time during the rendering phase because many cubes have been eliminated from
the data set. Figures 4.1 and 4.2 show an AR data set along with its corresponding
octree representation. In this example, there are three levels of resolution. Each level
of the octree stores a different level of resolution —the lower down the tree, the higher
the resolution.

Since we are rendering an adaptive representation of the volume data, complications

arise from the adjacency of blocks at different levels of resolution. The elegance of
the conventional marching cubes algorithm is that each cube is treated independently.
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Figure 4.1: An example of an AR data set with numbered octants. Octant 3 is not
shown (left, down, back)

root node

level 1

level zero

Figure 4.2: An octree data structure representing the sample AR data shown in Figure
4.1
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root node

level 1

Figure 4.3: An incomplete AR representation of AR data shown in Figure 4.4

|
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Figure 4.4: An example of an incomplete AR data set

This elegance is lost when we render adjacent blocks at different levels of resolution.
We must introduce additional methodology into the marching cubes algorithm in order
to overcome these complications. The following sections describe this in further detail.

Figure 4.2 shows a complete AR representation — an octree whose internal nodes all
have 8 children. However, not all AR representation are necessarily regular. Figure 4.4
shows an incomplete AR representation —- an octree whose internal nodes may have
less than 8 children. Our algorithm assumes a complete AR data set, however, we can
produce a complete AR from an incomplete AR. One way our AR rendering algorithm
can handle this is by subdividing the coarser level cube(s) until we have a uniform res-
olution within the subvolume. This requires interpolation between the known vertices
in order to recompute the missing nodes in the incomplete AR representation.

4.2 Inconsistent Interpolation

The standard algorithm for computing the intersection of a surface with a cube edge is
to compute the linear interpolation between the endpoints of the edge. In a conventional
volume data set, all cells are the same resolution, hence all shared edges have the same

13
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o intersection point calculated by lower resolution voxel
e intersection point calculated by higher resolution voxel

Figure 4.5: A special case of two cubes calculating different intersection points illus-
trating inconsistent interpolation

vertex values and thus neighboring cells interpolate to the same position. However,
in our data set, two neighboring voxels at different resolutions may compute different
linear interpolations as shown in Figure 4.5. This ambiguity is easy to resolve. We
always use the interpolated point of the higher resolution voxel. We process the cubes
in a regular fashion, even though they are different sizes, in order to avoid excessive
traversal of our data structure.

In order to identify an instance of inconsistent interpolation, each octree node inspects
the neighboring nodes that share the edge on which an edge intersection occurs. We
use a case table to identify the appropriate neighbors to inspect and another case table
to identify shared edges. See Appendix E on page 67 for the full details of the case
table(s).

As soon as an instance of inconsistent interpolation is identified, the finer resolution
node adds the edge intersection it computed onto a fine edge intersection list maintained
by the coarser node as shown in Figure 4.9. The coarser node is then added to a 27¢
pass list of nodes whose triangle generation is postponed until we have performed the
MC algorithm for all of the nodes. Processing of the 2"¢ pass list is described in
section 4.5 (page 16). We introduce another data structure to our octree nodes in
order to address the problems created by adjacent cubes of differing resolution. Each
octree node includes a cube as a member. Also, each node includes a list of triangles
computed by the MC algorithm. The array of triangles points to an array of vertices,
we call the intersection list, that may be updated at a later time, during traversal of
neighboring coarser resolution voxels on the 2"¢ pass list that share this edge.

4.3 Missing Vertices

Sometimes a coarser resolution cube identifies no intersection point along an edge,
but intersections are found by two neighboring higher resolution cubes. Figure 4.6
illustrates this case. When the first finer resolution cube calculates an intersection
point, it may search the coarser resolution cube’s edge vertez list. However, there is no
coarse vertex along the same edge. In this case the vertices of coarse resolution cube are
on the same side of the isosurface. The second finer resolution cube may go through
the same process, resulting in a missing vertex. To address this, both the first and
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Figure 4.6: An intersection points is calculated by both higher resolution cubes, but
not by their lower resolution neighbor illustrating a missing vertex

second finer resolution cubes create a new entry in the coarser resolution neighbor’s
fine edge vertex list shown in Figure 4.9. The coarser resolution cube is added to a
second pass list of octree nodes. All of the octree nodes on the second pass list are
processed after the entire octree has been processed. If a coarser resolution node on the
second pass list discovers that it has two vertices on the same edge of its edge vertex
list, it is subdivided.

4.4 TIsosurface Discontinuities

Because we are dealing with adaptive resolution data, we have, in some instances,
a larger, unsubdivided volume with a triangle, next to a smaller, neighboring cube
with another triangle sharing a vertex with the larger triangle. This can introduce
discontinuities in the isosurface.

Looking at Figure 4.7a, we may generate a lower resolution triangle entirely in the
larger voxel. Then we generate the triangles in the neighboring higher resolution voxel
(entirely in the smaller cube). Another possible configuration is shown in Figure 4.7b.
In both cases the these two triangles introduce a surface discontinuity. The key to
identifying this problem is recognizing that one (or more) triangle vertices are on the
face, not an edge, of the larger voxel. The difference between the two cases is that
the first one has 2 cube vertices above the isovalue on the edge of its coarser neighbor,
while the second case has, in addition an additional cube vertex (above the isovalue)
on the face of its coarser neighbor. In both cases, there are triangle facial vertices i.e.,
triangle vertices on the face of a coarser neighbor. See Appendix E for the figure(s)
and table(s) used to identify facial vertex intersections.

We add the triangle facial vertices onto the coarser octree node’s facial vertex list as
shown in Figure 4.9. We then add the coarser node on to the second pass list of
octree nodes. When a coarser node in the second pass list discovers that it has triangle
facial vertices it is subdivided. We subdivide by interpolating between the known cube
vertex values at the coarser resolution as shown in Figure 4.8. In the case of the cube
vertices that a shared with finer resolution neighbors, we use the the finer resolution
cube vertices rather than interpolating. See Figure F.1 for the specifics used to identify
shared cube vertices used for subdivision.
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Figure 4.7: Two triangles generated at different resolutions that introduce isosurface
discontinuity (a) the higher resolution cube has 2 cube vertices above the isovalue on
the edge of its coarser neighbor (b) the higher resolution cube has 3 cube vertices above
the isovalue on the edge and face of its coarser neighbor

O @ P @
. S

Figure 4.8: The process of subdividing a cube using interpolation. The arrows indicate
direction of interpolation. The process can be broken down into two stages: a) shows
the first round of interpolation calculations and resulting vertices b) shows the second
set of interpolation calculations and resulting vertices

4.5 The 2™ Pass List

The 27¢ pass list, as shown in Figure 4.9, is not processed until the entire AR octree
has been traversed. The algorithm for processing the 2"¢ pass list is as follows:

FOR EACH octree node in 2"¢ pass list
IF facial vertex list is nonempty
THEN subdivide
ELSE IF there are 2 fine edge vertices on same edge
THEN subdivide
ELSE IF there is 1 coarse & 1 fine vertex on same edge
THEN replace coarser vertex with fine vertex
END FOR EACH octree node

The 2™ pass list is dynamic. More octree nodes may be added to the end of the list
if another discontinuity of the type we have classified is discovered. This may be the
result of subdividing an octree node on the list.
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2nd Pass Octree Node List
—o—o—o—o fineedgeintersection list

— o—o facial intersection list

octree
nodes
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—0
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Figure 4.9: The 2"¢ pass list of octree nodes. Each octree node has a list of finer edge
intersections and facial intersections computed by their finer resolution neighbor(s).

4.6 VisAD

Our test environment for implementation is based on VisAD (“Visualization for Algo-
rithm Development”) [9]. We chose VisAD for its rendering capabilities and feature

set.

4.6.1 VisAD Features

The important features of VisAD include:

1.

It is implemented in 100% Java, taking advantage of Java’s platform indepen-
dence and network capabilities to support data sharing and real-time collabora-
tion among geographically distributed users.

Support for distributed computing is integrated into the VisAD library utilizing
Java RMI (remote method invocation) distributed objects.

. It is based on a mathematical data model that can be adapted to virtually any

numerical data and provides transparent access to data independent of storage
format and location.

It provides a display model that supports 3-D rendering, multiple data views,
direct manipulation, collaboration, and virtual reality by utilizing Java 3DTM
and Java 2DTM . One of the goals in our proposal was to incorporate Java 3D”M
into our existing application.

. It supports two distinct communities: developers who create domain-specific sys-

tems based on VisAD, and users of those domain-specific systems. VisAD sup-
ports a wide variety of user interfaces, ranging from simple data browser applets
to complex applications that allow groups of scientists to collaboratively develop
data analysis algorithms. [9]

4.6.2 Porting Issues

VisAD’s data model incorporates the use of Field objects and Set objects. Fields ap-
proximate a function by interpolating values in a finite subset of the functions own
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domain [7, 9]. A Field object contains a Set object that stores the sampled data.
A Set object’s responsibilities also include a coordinate system and data units. The
Set class has many subclasses one of which is the Gridded3DSet. The Gridded3DSet
has a rectangular topology but not necessarily a rectangular geometry. It is the Grid-
ded3DSet that contains isosurface generating methods. We extended the Gridded3DSet
class with our own Gridded3DMRSet class. Our Gridded3DMRSet class over-rides the
makeIsosurface() method and adds support for MR processing and visualization. It
was also necessary to modify a VisAD display component, the DisplayImplJ3D and the
user interface component, ContourWidget.
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CHAPTER 5

ALGORITHM OVERVIEW

5.1 Cube Processing

The input to our isosurface rendering application is cube data. The cube data is either
an MR or AR representation of the volume in which we search for an isosurface(s). The
demands of volume data are very high. Therefore, we have taken steps a posteriori to
reduce processing time, storage space, and paging while we populate the octree with
the given data.

In order to reduce paging we need to control access to each cube. Rather than force all
input into a certain ordering, we implemented a tool to re-order the cells in an octree.
The goal is to minimize the paging that occurs when the cubes are processed.

We build the octree by adding one cube at a time from the input file. If the entire
octree does not fit in memory, paging will occur to access different nodes. Each time
the operating system accesses secondary storage we incur a relatively large cost in
processing time. If the cube data is read in an unordered fashion and ends up in
locations that are scattered throughout the octree, excessive paging may result and
hence processing time increases. This is based on the presumption that nodes that
are topologically close to each other in the octree should be close to each other in
memory. Therefore, we partition and sort the cubes as a preprocessing measure before
we populate the octree.

5.2 Cube Partitioning

The cube partitioning utility reads any resolution level of cube data, either MR or AR,
and places the cubes into one of their eight respective octants or subvolumes. Figure
5.1 shows the ordering. Any cube at any level in the volume is a member of one of
these octants. Within each octant we sort the subcubes using either the coordinate or
octant-based sorting techniques described in sections 5.3 and 5.4.

In addition to more efficient access to storage, this ordering is useful for testing our
AR processing on AR data. With this utility it is easy to combine different data at
different levels of resolution in a very deterministic fashion. For example, let’s say we
have a uniform data set consisting of 643 cubes partitioned into its eight octants. We
can easily replace the octant 0 data at the 643 level with the corresponding coarser
octant 0 data at the 323 level. This turns the uniform 643 data into an AR data set in
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Figure 5.1: A cube volume is partitioned into eight octants

a very predictable fashion. In this way we know exactly where the boundary is between
different levels of resolution in the data set. It is precisely this boundary that is of most
interest to us when resolving discontinuities in the AR isosurface.

5.3 Coordinate-Based Sort

We implemented coordinate-based sorting in order to reduce paging while populating
the octree. The cubes are sorted in x, y, z order based on the coordinate of their 0%
vertex. Now, cubes that are topologically close to each other in the octree are also
close to each other in memory. This resulted in a significant reduction in the amount
of paging.

5.4 Octant-Based Sort

Octant-based sorting is another utility we wrote in order to further reduce paging while
populating the octree. The cubes are sorted by octant starting with octant 0 based on
the subvolume they belong to with respect to their parent. This is an improvement
over coordinate-based sorting because two cubes with the same parent in octants 0 and
4 regpectively, while close to each other in the octree, may be rather far from each other
in memory because they are in different layers (z axis) in Cartesian coordinate space.
The result of octant-based sorting is that the cubes are added to the octree in precisely
the same order as if performing a BFS traversal of the octree. This also resulted in a
further reduction in the amount of paging.

5.5 ASCII to Binary Conversion

We also have a preprocessing utility program that converts cube data from ASCII file
format to binary file format. Storing the cubes in binary format reduces reading time
significantly. If we read the cubes in ASCII format, a considerable amount of conversion
computation is performed. In particular, the cube’s state is parsed and set including
the cube’s level of resolution, minimum and maximum scalar values, and the z, y, and
z coordinates and scalar values of each of its eight vertices. Also error checking is
performed on every number that is read. The error checking includes performing a test
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to verify that the number is in the proper range. When we read the cubes in binary
format, none of this computation is performed. The cube’s state is already set and no
error checking is performed. This amounts to considerable savings in processing time.
Cube objects stored in binary format are read much faster than those read in ASCII
format. Reading 643 cubes of data in binary format takes our application an average
of 441 seconds. Reading 64 cubes of data in ASCII format takes an average of 2,290
seconds i.e. at least 5 times longer.

21



CHAPTER 6

ALGORITHM
IMPLEMENTATION

We use an octree data structure to store the volume data (see section 1). The imple-
mentation of the octree raised performance cost issues with respect to processing time
and storage space. Specifically, performance costs are at a premium when rendering
volume data at resolution levels 643 and higher. These issues resulted in modifications
to our initial naive implementation of the octree and its associated data structures.

6.1 Basic Algorithm
The basic algorithm for isosurface rendering is:
o read the volume data

store the volume data in the octree

traverse the octree, applying the Marching Cubes algorithm; recording cubes that
need to be revisited because of potential discontinuities

process the recorded cubes

output the resulting polygons

6.1.1 Octree Population

The finest resolution cubes are stored as leaf nodes in the octree, while the coarser
resolution cubes are stored as internal nodes. As cubes (described in section 5.5 on
page 20) are read from the file, we start at the root node of the octree, classify the
cube into one of the root node’s octants, 0 — 7, pass the cube to the node representing
the computed octant, and recurse down the tree until the cube’s resolution is one level
finer than its parent octree node’s resolution level. This octree node classifies the cube
into one of its own octants, and stores the cube data as a data member for one of its
child nodes, 0 — 7.

The algorithm we use for adding cube data to the octree does not assume coarser res-
olution data will be read in before finer resolution data. Therefore, if a finer resolution
cube is read in before one or more of its parents, we create the internal parent nodes
on an as-needed basis, without their cube data. Then, if one of those internal node’s
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Table 6.1: The lookup table used in order for two octree nodes to find their common
ancestor. (L = LEFT, R = RIGHT, D = DOWN, U = UP, B = BACK, F = FRONT)

cube data is read in, the internal node’s cube data member is merely updated with the
new cube read from secondary storage.

6.1.2 Neighbor Finding Technique

One way in which we modified the marching cubes algorithm is with the addition of
neighbor finding techniques. This is because, unlike in the standard Marching Cubes,
AR cube data cannot be treated independently. Each octree node inspects its neigh-
bors for inconsistencies and discontinuities in the isosurface (see sections 4.2, 4.3, and
4.4). We used H. Samet’s neighbor finding techniques [19].

Samet presents a neighbor finding algorithm through the use of two basic cube func-
tions: the adjacent () and reflect() methods. The adjacent () method is responsi-
ble for finding the first common ancestor of the two neighboring nodes and the reflect ()
method is responsible for picking out the actual neighboring node amongst all of the
common ancestor’s children. In this case, we are referring to face neighbors —- neigh-
boring cubes that share one (of eight) face. This is to be distinguished from edge
neighbors — neighboring cubes that share one (of twelve) edges.

The adjacent () method finds a common ancestor by taking advantage of each cube’s
(and hence octree node) octant position. Each cube must be in one of its parent cube’s
octants 0 — 7. The adjacent () method returns true if a cube in octant O is adjacent
to the face F' of the cube’s containing parent cube. For example, the left face of a cube
in octant 0 is adjacent to its parent’s left face. Table 6.1 shows the results of all the
cases.

The reflect () method is what actually returns the neighboring cube. It also utilizes
each cube’s octant position. The reflect() method returns the face neighbor of the
given cube in direction D. For example, the cube to the left of a cube in octant 0 is in
octant 1. Table 6.2 below shows the results of all the cases.
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OCTANT |L|R|D|U | B |F
0 11113 (3|44
1 010(2|12]|5 |5
2 313 |1|1]6]|6
3 21210077
4 5|15 7|71010
5 41416 |6 1|1
6 TIT7T15 522
7 6164|433

Table 6.2: The lookup table used in order for one octree node to find its neighbor. (L
= LEFT, R = RIGHT, D = DOWN, U = UP, B = BACK, F = FRONT)

common ancestor ————

adjacent(right) = false

adjacent(right) = true

reflect(4, right) =5

reflect(5, right) =4

Figure 6.1: a) the result of two calls to the adjacent method and b) the result of two
calls to the reflect method yields a right neighbor

The adjacent () and reflect () methods work together because the adjacent () method
outputs a path of nodes from the calling octree node to a common ancestor and the
reflect () method recurses back down that path reflecting each node identified by
adjacent (). Figure 6.1 illustrates one example of the neighbor finding technique. In
Figure 6.1a) the cube at the finest resolution asks for its neighbor to the right. Two calls
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Figure 6.2: These are the data structures used to correct inconsistencies in an isosurface.
Each octree node has a pointer to a cube and its associated polygons. Each polygon
vertex is an index into a vertex list.
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to adjacent () return their common ancestor (Figure 6.1a), and two calls to reflect ()
return the right neighbor (Figure 6.1b).

6.1.3 Storing Polygons With Octree Nodes

One of our goals is the implementation of a data structure to store the vertices of
polygons that require updating by their higher resolution neighbors. Each node in the
octree contains a cube, and a list of polygons. The list of polygons contains the triangles
generated by the Marching Cubes algorithm. Each triangle has, in turn, three indices
into a vertex list. The vertex list contains all unique triangle vertices. The individual
triangle lists and the vertex list are precisely the data structures we need in order for
higher resolution nodes to update their coarser resolution neighbors. If a node inspects
it neighbors and finds an isosurface discontinuity or an inconsistency, it may access and
update its neighbor’s triangle vertices through these data structures (see Figure 6.2).
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Figure 6.3: a) an octree node with 9 pointers and b) an octree node with 3 pointers
The latter uses 24 fewer bytes of memory.

6.2 Memory Considerations

Conserving memory was of primary importance when rendering 642 or higher resolution
volumes. We found ourselves running out of memory and looked for ways to conserve
memory throughout the implementation of our data structures. We took measures in
order to 1) reduce memory 2) reduce paging and 3) reduce computation. A reduction
in memory was often in direct contrast with a reduction in computation.

6.2.1 An Octree Node With Three Pointers

Our original implementation of the octree and its nodes used 9 pointers per node: 1)
pointer to the parent node and 2) 8 pointers to child nodes. We replaced this with an
octree that contains 3 pointers: 1) a pointer to its parent, 2) a pointer to its 0/ child,
and 3) a pointer to its next sibling. This change is illustrated in Figure 6.3.

In Java, each pointer uses 4 bytes of memory. So this change represents a savings of
24 bytes per octree node. At 643 we use 262,144 nodes for a total savings of approxi-
mately 6.3 megabytes of memory. At 1282 we use 2,097,152 nodes for a total savings of
approximately 50.3 megabytes of memory. This comes at the expense of computation
since we have to traverse 7 sibling nodes in order to reach child number 7 of any octree
node. Overall, however, the reduction of paging costs far outweighs the additional
computation costs.

6.2.2 The Vertex Hierarchy

We also conserve memory by distinguishing between different types of vertices. We
take advantage of the fact that a cube vertex does not need as much storage space as a
triangle vertex. The resulting implementation is the vertex hierarchy shown in Figure
6.4. The vertex hierarchy consists of an abstract Vertex Class, a Cube Vertex class, a
Triangle Vertex Class, and the IsoXvertex, IsoYvertex, and IsoZvertex classes. These
are described in detail in the sections that follow.
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Figure 6.4: The vertex hierarchy: we save memory by distinguishing between vertices.

6.2.3 The CubeVertex Object

The most distinguishing property of a cube vertex is that each of the z, y, and 2
coordinate values needs only k bits for a 2F x 2% x 2% volume. This is because our
original sampled data is a regular gridded, rectilinear set of points in 3D space. A
natural choice for storing such values is an integer. However, an integer in Java requires
4 bytes of memory. Since we only need 2¥ unique values, we can use a Java byte instead
of an int for k < 8. This represents a difference of 3 bytes per coordinate value. At 643
we use 6,201,456 cube coordinate values (3 for each cube vertex) for a total difference of
approximately 18.8 megabytes of memory. At kK = 8 we use 50,331,648 cube coordinate
values for a total difference of approximately 150.9 megabytes of memory.

6.2.4 The IsoXvertex, IsoYvertex, and IsoZvertex Objects

The IsoXvertex, IsoYvertex, and IsoZvertex are vertices that make up each triangle.
They are named as such because they are what ultimately define the isosurface itself,
i.e., the output of the Marching Cubes algorithm. The key to conserving memory with
these vertices is recognizing that each interpolated Triangle Vertex in the MC algorithm
lies on an edge of its containing cube. Therefore, two of the z, y and z coordinate values
are the same as the two Cube Vertex objects from which the new Triangle Vertex is
interpolated. Only one of the z, y, or z coordinate values is interpolated and hence
has a new value. For example, an interpolated Triangle Vertex on edge 0 (between
Cube Vertex 0 and Cube Vertex 1) is interpolated along the z axis and hence has an
interpolated z coordinate value. We use the same y and z coordinate values as Cube
Vertex 0 and Cube Vertex 1. This new Triangle Vertex is what we call an IsoXvertez —
- a vertex whose = coordinate value is interpolated. It has the unique property that its
z coordinate value is stored as a Java short and its y and z coordinate values are each
stored as a Java byte. A natural choice for saving 3 triangle coordinate values might
be using 3 Java float values requiring 12 bytes total. However, taking advantage of
edge values requires storing only 4 bytes — a difference of 8 bytes. At 1283 resolution,
a typical isosurface may contain approximately 80,000 unique Triangle Vertex objects
(see Table 7.5). This represents a difference of about 640 kilobytes.

27



6.2.5 Internal Nodes versus Leaf Nodes

There is an opportunity to save memory by distinguishing between internal octree
nodes and leaf nodes. Internal octree nodes contain:

1. a pointer to their parent node

2. a pointer to their sibling node

3. a pointer to their 0** child

4. a cube

5. a list of polygons

6. their child number

7. minimum and maximum vertex values

Leaf nodes however, do not need to store all of this information. Leaf nodes don’t need
to store minimum and maximum (1 float is 4 bytes) vertex values nor a pointer (4
bytes) to their 0** child. The minimum and maximum vertex values may simply be
computed. This represents a savings of 12 bytes for each leaf node. At 643 there may
be up to 262,144 leaf nodes for a potential savings of approximately 3.1 megabytes.
At 1283 there may be up to 2,087,152 leaf nodes for a potential savings of about 25.2
megabytes.

6.3 Processing Considerations

We also tried different approaches to save processing time. We recognize that building
cubes, building octree nodes, and building the octree all take a certain amount of
processing time. We tried to save processing by using Java serialization.

Cube serialization [10] represents a considerable savings in processing time. This is
described in detail in section 5.5 ASCII to Binary Conversion (page 20). Cubes stored
in binary format are processed at least twice as fast as those read in ASCII format.

On the other hand, Octree Node serialization actually represents a performance hit in
terms of processing time. If we serialize the octree nodes, reading them takes longer
than if we just serialize the cubes. The only state information we save is the cube
and minimum and maximum vertex values. The pointers to an octree node’s parent,
sibling, and 0** child as well as the list of polygons are only computed in the octree. We
can conclude from this, that simply allocating a new Octree Node object with a Cube
object takes less time than the file I/O incurred by reading the Octree Node object
from secondary storage.

The same holds true for the entire octree. Although by serializing the entire octree,

we do save a lot of state information (see section 6.2.5 —- Internal Nodes And Leaf
Nodes on page 28 for a full list), it still takes longer to read the octree from secondary

28



storage than to build the octree from just Cube objects. From this we can infer that, on
average, it takes less time to place a cube in an octree than the file I/O time incurred
from reading the Octree Node object (with all of its state information) from secondary
storage.

6.4 Paging During Octree Construction

One of the problems we ran into while implementing the octree was excessive paging.
The more nodes that are added to the octree, the more paging there is. Some of the
ideas we use to minimize excessive paging are bottom-up octree population, rendering
the octree by octant, and increasing virtual memory and heap size.

6.4.1 Top-Down Versus Bottom-Up Octree Population

It used to be the case that after approximately 200,000 nodes were added to the octree,
the process would gradually slow down to a virtual halt due to thrashing. We speculated
that this was due to the top-down recursion that took place every time an octree node
was added to the octree. This process is described in detail in section 6.1.1 (Octree
Population). Specifically, with top-down population, an octree node starts at the root
node and traverses, in most cases, all the way down the tree until it finds its proper
position.

Accessing the root node and several coarser resolution octree levels every time a node
is added is not necessary. We replaced the top-down recursive method with a bottom-
up approach. We added an Octree Node pointer array to the octree. FEach entry in
the array stores a pointer to a unique octree node and the array can be resized to
store an arbitrary number of resolution levels. Whenever a node is added to an Octree
containing an Octree Node array, the index of its parent node in the array is computed.
If the parent node has already been added, the new Octree Node is immediately placed
in the Octree and its own position in the Octree Node array is computed. If a pointer
to the parent node is not found in the octree node array, a parent node (minus the
cube data) is created and placed in the octree node array. This procedure recurses up
the Octree until an existing parent node is found. Then the new Octree Node is set
as one of the newly created parent’s children and again its own position in the Octree
Node array is computed.

Using this method we do not have to recurse down the entire Octree every time a
node is added. Furthermore, we save processing time by taking advantage of the fact
that the nodes being read in are already in sorted order as described in section 5.3
and 5.4 (Coordinate and Octant-Based Sort on page 5.4). The Octree Node array
saves processing time and time due to paging at the expense of more memory. A
disadvantage to this approach comes because the minimum and maximum octree node
data values may have to recurse up the octree in order that the internal nodes have the
proper values. The performance improvement of a bottom-up approach is still greater
than the disadvantage due to bottom-up recursion of minimum and maximum scalar
values.
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6.4.2 Increasing Memory Size, Heap Size

Another factor we experimented with was the Java Virtual Machine (JVM) heap size.
The JVM has the option of setting an initial heap size and maximum heap size at run
time. The JVM runs out of memory if we do not set a maximum heap size of 256
megabytes. It turns out that the larger we set the initial heap size, the slower the
application runs. If the initial heap size is set too large (e.g. 128 megabytes), the JVM
starts paging before the program even starts.

After all of our memory reduction techniques, we were able to render an isosurface at
643 within a reasonable amount of time and with a reasonable amount of paging. For
1283 we increased the size of our memory from 128 megabytes to 256 megabytes. The
likelihood of us being able to store, simultaneously, an entire octree at 1283 resolution
with 256 megabytes is small.

6.4.3 Java Garbage Collection

As described in section 8.2.1 on page 52 (Rendering By Octant), our application grinds
to a virtual halt from thrashing even if we read the volume data in from eight separate
files, each of which contains one octant’s worth of the same data. This leads us to
believe that even though an entire octant’s worth of data is not being used by our
algorithm, it is not being released from memory as we would expect. This in turn
leads us to believe that it is the Java garbage collector that is ultimately responsible
for this. We speculate that the garbage collector, when looking for more memory to
free, references every octree node preventing it from being swapped out of memory,
or causing excessive unnecessary paging. We would like to test out our hypothesis by
turning off the garbage collector or running it only at fixed times that we may schedule.
However, the current version of the classic JVM for Linux does not support turning off
the garbage collector.
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CHAPTER 7

EVALUATION

7.1 Platform Specifications

Our evaluation experiments were run on a Dell PC with a 450 MHz pentium micropro-
cessor and 256 Mbytes of RAM running Red Hat Linux 6.1. We use Sun Microsystem’s
Java 1.2/2.0 and VisAD which utilizes Java 3D. The isosurface generation algorithm
is an Adaptive Marching Cubes derived from The Visualization Toolkit by Schroeder,
Martin, and Lorensen [21], The display algorithm uses VisAD [9].

7.2 The Data Sets

One of our test data sets is a 113 x 256 x 256 slice CAT scan of a cadaver head taken
on a General Electric CAT Scanner and provided courtesy of North Carolina Memorial
Hospital and Siemens Medical Systems, Inc., Iselin, NJ. It is volume data. We generated
two coarser resolutions of the data, 1282 and 643 for testing purposes.

Figure 7.1 shows a 643 resolution rendering of the medical image data with an isovalue
of 0.185 (out of a normalized range of 0.000 to 1.000). We used an AR representation
to render the image. The AR threshold ¢ is the difference between the minimum and
maximum scalar vertex values of a node’s cube and all of its children. A ¢ value of
10% results in all octree nodes whose scalar vertex values vary by less than 10% being
trimmed from the original MR representation. By setting the AR threshold, §, to 10%
we were able to trim the octree data structure to about 47,000 cubes. The resulting
isosurface consists of approximately 44,000 triangles encompassed by approximately
22,000 cubes of volume data.

Figure 7.2 shows a 1282 resolution rendering of the medical image data with an isovalue
of 0.185. By setting d to 10% we were able to trim the octree data structure to about
292,000 cubes. The resulting isosurface consists of 199,000 triangles encompassed by
99,000 cubes of volume data.

Our secondary test data set is that of a lobster from the visualization laboratory at
the State University of New York (SUNY), Stonybrook and Advanced Visual Systems
(AVS) Inc in Waltham, MA (http://www.avs.com). The original data set was 128 x
128 x 64. We expanded this to a shape of a uniform cube at resolutions 1283 and 643
by padding the original data set with 64 layers in the z dimension. See section 7.3.3 on
page 36 for pictures of the lobster data set.
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File Data Set Data Format Level Representation

Figure 7.1: This is an AR isosurface with resolution 643, isovalue = 0.185, and 6§ = 10%.

File Data Set Data Format Level Representation

Figure 7.2: This is an isosurface with resolution 1282 , isovalue = 0.185, and 6§ = 10%.
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Evaluation of Time: Time To Read
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Figure 7.3: This plot shows ¢ (%) vs time to read (seconds)

7.3 Evaluation Strategy

We have a few different strategies for evaluating our performance. We make compar-
isons based on time, storage space, and image complexity.

7.3.1 Evaluation of Time

Our primary focus is the evaluation of the AR algorithm, i.e., the isosurface rendering of
an AR representation. As our most fundamental evaluation, we compare this algorithm
with a full MR representation algorithm, i.e. a representation with uniform resolution.
A full MR representation stored as an octree still has the advantage that entire branches
are culled by storing maximum-minimum data values with the internal tree nodes.

Table 7.1 (Evaluation of Time) and Figures 7.3 and Figure 7.4 compare the run time of
our algorithm to that of a full MR data representation algorithm. There is a significant
improvement in time when using an AR representation of the volume data. We can
see that even at § = 1% we cut our reading time by over one half and our processing
time is reduced by approximately 15%-20%. Time savings increase as § increases. At
0 = 10%, our time to read the data is reduced by a factor of about 5, and our processing
time is reduced by about 20%-25%. This is our most interesting § value because we
obtain our biggest savings in time and preserve image quality at the same time. See
section 7.3.3 (Evaluation of Accuracy). Using a full, uniform, MR representation takes
approximately 5 times longer than the time to use an AR representation for a complete,
single read and render cycle. We can also see from the table that 84% of the total time
is spent reading the data of an AR representation while 95% of the total time is spent
just reading the data of a full, uniform, MR representation.
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octree 1) isovalue | time to | time to
read process

(sec) (sec)

res 643

MR 0.185 403.3 30.7

0.378 30.3

0.408 36.0

AR 1% 0.185 238.7 18.9

0.378 21.5

0.408 19.6

2% 0.185 215.5 18.6

0.378 20.1

0.408 19.8

5% 0.185 174.6 16.6

0.378 16.1

0.408 15.8

10% 0.185 121.9 16.3

0.378 17.8

0.408 16.7

15% | 0.185 102.9 14.8

0.378 17.7

0.408 17.1

20% | 0.185 88.0 15.7

0.378 19.3

0.408 17.8

25% | 0.185 82.3 16.2

0.378 21.5

0.408 19.3

res 1283

AR 10% | 0.185 803.7 730.8

0.378 940.2

0.408 755.8

15% | 0.185 623.6 259.2

0.378 337.2

0.408 256.1

Table 7.1: This table compares the run time of our algorithm verses the run time of an
adaptive traversal of a full, uniform MR octree on the cadaver head data set. The 4"
column is the average time(s) taken to read the data. The 5* column is the average
time(s) to process the data.
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octree 1) time to | time to
read process
(sec) (sec)
res 643
MR 361.0 6.0
AR 1% 44.0 5.9
2% 39.3 6.5
5% 33.1 6.2
10% 30.1 6.1
15% 30.1 6.0
20% 28.3 6.6
25% 27.3 6.3

Table 7.2: This table compares the run time of our algorithm verses the run time of an
adaptive traversal of a full, uniform MR octree on the lobster data set with an isovalue
of 0.051 (out of a normalized range of 0.000 - 1.000). The 3"¢ column is the average
time(s) taken to read the data. The 4" column is the average time(s) to process the

data.

Evaluation of Time: Average Time To Process
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octree 6 | storage cubes

space read
(MB)
res 643
MR 34.08 262,144

AR | 1% | 21.56 | 165,800
2% | 19.87 | 152,316
5% | 16.14 | 124,128
10% | 11.24 | 86,480
15% | 9.59 73,728
20% | 8.45 64,952
25% | 17.68 58.721

res 1283
MR 272.63 | 2,097,152
AR 10% | 51.37 481,640

15% | 41.62 393,888

Table 7.3: This table compares the storage requirements for an AR octree verses a full,
uniform MR octree for the cadaver head data set.

7.3.2 Evaluation of Space

Storage requirements are presented in Table 7.3. The storage requirements are consis-
tent with the processing times presented in Table 7.1. At § = 1% we already cut our
storage requirements by over one half as well as the number of cubes. And at § = 10%
we obtain our greatest savings in storage space while at the same time preserving image
quality. We reduce our storage requirements by a factor of just over 5 at § = 10%.
Again, this is indicative of the time spent reading each representation shown in Table
7.1.

7.3.3 Evaluation of Accuracy

Our evaluation of accuracy and quality is based on image quality and data accuracy.
Image quality is a subjective evaluation. We compare pictures of the same volume data
rendered as both a full MR representation versus a series of AR representations. Tables
7.5 and 7.7 quantify the differences between a full MR representation versus this series
of AR representations.

We expect to see no differences between the images of our full MR rendering and AR
renderings at § = 1%, § = 2%, and d = 5% with an isovalue of 0.185. This is because
at § = 1%, § = 2%, and § = 5% there are no discontinuities caused by AR data. This
is shown in the 2"? pass column of Table 7.7. At § = 10% (Figure 7.8) the differences
in images are not discernible even though we do incur some discontinuities caused by
AR data. However, at 6 = 15% (Figure 7.9) there are discernible differences. There
are differences near the top of the ear, and differences in image quality where the back
of the head meets the resting surface. And finally at § = 20% and § = 25% (Figures
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octree d | storage | cubes

space read
(MB)
res 64°
MR 34.08 | 262,144

AR | 1% | 4.22 | 32,456
2% | 3.68 | 28,336
5% | 3.12 | 24,144
10% | 2.84 | 21,880
15% | 2.77 | 21,304
20% | 2.69 | 20,709
25% | 2.62 | 20,152

Table 7.4: This table compares the storage requirements for an AR octree verses a full,
uniform MR octree for the lobster data set.

Evaluation of Space
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Figure 7.5: This plot shows ¢ (%) vs storage space (in Mb).
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7.10 and 7.11) we lose our image quality beyond an acceptable level.

Also, we expect to see no differences between the images of our full MR rendering and
AR renderings at 6 = 1% and § = 2% with an isovalue of 0.378. This is because at
0 = 1% and 6 = 2%, there are no discontinuities caused by AR data. This is recorded
in Table 7.7. At 6 = 5% and § = 10% (Figures 7.13 and 7.14) the differences in images
are hardly discernible even though we do incur some discontinuities caused by AR data.
At 6 = 10% we can see some differences in the image in the neck area and the bottom,
rear of the skull. Finding differences at § = 5% is much more challenging however. At
d = 20% (Figure 7.16) and greater, the differences in image quality become obvious.
See Appendix G (Images) for more images. The isosurface value 0.408 is very similar
in appearance to that of 0.378 however it contains significantly fewer discontinuities
caused by AR data. See Table 7.7 for those results.

File Data Set Data Format Level Representation File Data Set Data Format Level Representation

Figure 7.6: This is an MR isosurface with ~ Figure 7.7: This is an AR isosurface with
resolution 642 and isovalue 0.185. resolution 642, isovalue 0.185, and 6 = 5%.
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File Data 5et Data Format Level Representation File Data Set Data Format Level Representation

Figure 7.8: This is an AR isosurface with Figure 7.9: This is an AR isosurface with
resolution 642, isovalue 0.185, and § = resolution 643, isovalue 0.185, and § =
10%. 15%.

File Data 5et Data Format Level Representation File Data Set Data Format Level Representation

Figure 7.10: This is an AR isosurface Figure 7.11: This is an AR isosurface
with resolution 643, isovalue 0.185, and with resolution 642, isovalue 0.185, and
0 = 20%. 0 = 25%.
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File Data Set Data Format Level Representation File Data Set Data Farmat Level Representation

Figure 7.12: This is an AR isosurface with ~ Figure 7.13: This is an AR isosurface with
resolution 642 and isovalue 0.378. resolution 642, isovalue 0.378, and 6 = 5%.

File Data Set Data Farmat Level Representation File Data Set Data Farmat Level Representation

Figure 7.14: This is an AR isosurface Figure 7.15: This is an AR isosurface
with resolution 643, isovalue 0.378, and with resolution 643, isovalue 0.378, and
d =10%. d = 15%.
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File Data Set Data Farmat Level Representation File Data Set Data Farmat Level Representation

Figure 7.16: This is an AR isosurface Figure 7.17: This is an AR isosurface
with resolution 643, isovalue 0.378, and with resolution 642, isovalue 0.378, and
0 = 20%. 0 = 25%.
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) isoval | cubes polys unique dup

643

MR
0.185 | 22,240 | 44,856 | 21,451 | 113,117
0.378 | 23,332 | 49,160 | 23,184 | 124,296
0.408 | 22,368 | 47,652 | 22,486 | 120,470

AR

1% | 0.185 same same same same
0.378 same same same same
0.408 same same same same

2% | 0.185 | same same same same
0.378 same same same same
0.408 same same same same

5% | 0.185 same same same same
0.378 | same 49,149 | 23,255 | 124,192
0.408 same same same same

10% | 0.185 | same | 44,859 | 21,523 | 113,054
0.378 | 23,315 | 49,114 | 23,648 | 123,694
0.408 | 22,340 | 47,611 | 22,604 | 120,229
15% | 0.185 | 22,009 | 44,517 | 21,769
0.378 [ 23,340 | 49,157 | 24,151 | 123,320
0.408 [ 22,279 | 47,505 | 22,913 | 119,602
20% | 0.185 | 20,281 | 41,436 | 20,580 | 103,728
0.378 | 23,422 | 49,345 | 24,941 | 123,094
0.408 | 22,203 | 47,275 | 23,499 | 118,326
25% | 0.185 | 10,287 | 39,450 | 20,103 | 98,247
0.378 | 23,210 | 48,308 | 25,271 | 121,153
0.408 | 21,929 | 46,550 | 23,761 | 115,889

1283
AR
10% | 0.185 | 105,945 | 214,768 | 98,897 | 545,407
0.378 | 105,101 | 213,845 | 99,691 | 541,844
0.408 | 101,718 | 208,258 | 94,746 | 530,028
15% | 0.185 | 100,757 | 203,980 | 96,500 | 515,440
0.378 | 104,823 | 213,152 | 102,407 | 537,049
0.408 | 100,817 | 206,020 | 96,437 | 521,623

Table 7.5: This table compares for each isosurface: (1) the number of cubes surrounding
the surface, (2) the total number of triangles making up the isosurface, (3) the number
of unique triangle vertices, and (4) the number of duplicate vertices in the isosurface
for the cadaver head data set. (same refers to the MR data set)
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) cubes | polys | unique | dup

643
MR,
9,710 | 20,476 | 9,628 | 51,800

AR
1% | same | same | same | same
2% | same | same | same | same
5% | same | same | same | same
10% | 9,443 | 20,147 | 9,615 | 50,826
15% | 9,438 | 20,143 | 9,750 | 50,679
20% | 9,405 | 20,123 | 9,982 | 50,477
925% | 9,418 | 20,165 | 10,004 | 50,491

Table 7.6: This table compares for an isosurface of value 0.051: (1) the number of cubes
surrounding the surface, (2) the total number of triangles making up the isosurface,
(3) the number of unique triangle vertices, and (4) the number of duplicate vertices in
the isosurface, for the lobster data set.

Perhaps a more important factor in determining accuracy, is measured by comparing
the original data with interpolated data values. In effect, this measure of accuracy
only measures how linear the original data set is, not how well our algorithm performs.
Data error comparison can be done using a standard error measure such as root mean
squared error (RMSE). The root mean squared error is the square root of the average
squared error. The RMSE can be described as the average size of errors.

This process evaluates how well a trilinear approximation fits a given data set. If the
RMSE is computed and saved for each internal node, the user could define an error
threshold which could be used to dynamically determine whether to interpolate or to
use the original data.

7.3.4 Evaluation of Image Complexity

Evaluation of image complexity is a tertiary priority for us since our primary focus is on
the innovation of the AR algorithm and not necessarily peak performance. However, we
attempt to evaluate complexity on a preliminary level keeping in mind that performance
optimizations may be considered in more detail in future work. To evaluate complexity,
we keep statistics about direct ambiguity detection:

e How often does an occurrence of inconsistent interpolation happen?
e How often are there missing vertices?
e How often do facial intersections occur?
Table 7.7 shows one instance of these statistics. These numbers give us an indication

of how often discontinuities occur for the isosurfaces shown in section 7.3.3. We gain
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isovalue | 274 sub- edge | miss- | face

pass | divides ing
res 643
0 =1%
0.185 0 0 0 0 0
0.378 0 0 0 0 0
0.408 0 0 0 0 0
0 =2%
0.185 0 0 0 0 0
0.378 0 0 0 0 0
0.408 0 0 0 0 0
d=5%
0.185 0 0 0 0 0
0.378 31 8 81 6 16
0.408 0 0 0 0
§=10%
0.185 26 15 104 25 89

0.378 158 80 468 50 181
0.408 57 23 143 12 52
§=15%
0.185 219 187 778 127 492
0.378 278 180 957 123 249
0.408 167 97 530 64 249
§ = 20%
0.185 371 264 1,237 | 129 621
0.378 433 323 1,737 | 233 | 1,009
0.408 330 232 1,295 | 187 738
§=25%
0.185 494 350 1,724 | 183 847
0.378 542 443 2,283 | 321 | 1,447
0.408 447 351 1,897 | 300 | 1,140
res 1283
6 = 10%
0.185 213 182 816 106 538
0.378 1,492 937 4,901 | 406 | 2,406
0.408 683 327 2,102 | 192 929
§=15%
0.185 1,352 | 1,145 | 5,111 | 822 | 3,118
0.378 2,430 | 1,792 | 8,458 | 710 | 4,989
0.408 1,735 | 1,152 | 6,060 | 519 | 3,236

Table 7.7: This table records (for the isosurface shown in Figure 7.8): (1) the ¢ threshold
for each AR representation (2) the isosurface value (3) the total number of cubes that
required a second pass (4) the total number of coarser cubes that were subdivided (5)
the total number of edge vertices found on 2"¢ pass cubes (6) the number of missing
vertex cases (7) the total number of facial vertices found on 2"? pass cubes
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1) and sub- | edge | miss- | face

pass | divides ing
res 643
1% 0 0 0 0 0
2% 0 0 0 0 0
5% 0 0 0 0 0

10% 62 36 142 25 76
15% 100 61 280 44 142
20% 137 80 142 52 197
25% 162 101 480 63 271

Table 7.8: This table records for the lobster data set at isovalue = 0.051 (1) the ¢
threshold for each AR representation (2) the total number of cubes that required a
second pass (3) the total number of coarser cubes that were subdivided (4) the total
number of edge vertices found on 2"¢ pass cubes (5) the number of missing vertex cases
(6) the total number of facial vertices found on 2" pass cubes

considerable savings in time and space from an AR data representation of our test data
set with no instances of discontinuities caused by AR data for § = 1% and § = 2% (for
the given isosurfaces). Discontinuities don’t start until § reaches around 5%. We can
intuit this by reasoning that we are very unlikely to choose an isosurface that passes
through a cube with only 1% or 2% difference in its sample points. Furthermore, we
cannot find an isosurface in cubes with 8 equal scalar vertex values (a § = 0%).

Occurrences of discontinuities is clearly a function of both ¢ and the isosurface value
chosen. The coarser the data representation, the more likely we are to encounter
AR data for a given isosurface. Also, for a constant § the number of discontinuities
varies with isovalue. It is interesting to note that there is a significant reduction in the
number of discontinuities for an isovalue of 0.408 when compared to 0.378 even thought
the surfaces are similar in appearance (see Appendix G).

45



CHAPTER 8

CONCLUSIONS AND FUTURE
WORK

Our research has shown that direct isosurface rendering of an AR volume data set can
lead to more efficient rendering with minimal loss to image quality. We can extend this
research in several directions including:

e improvements to the rendering algorithm
e handling a wider range of MR data representations

e rendering larger data sets

8.1 Algorithm Improvement

Improvements to the algorithm can be made in the following areas:
e more special case handling as an alternative to subdivision
e limiting cell subdivision
e error visualization

e alternative subdivision policies

8.1.1 Special Case Handling

Currently we only handle shared triangle edge vertices before subdividing. It is possible
to identify other cases in which we can infer feasible surfaces within a coarse cube
without subdividing.

Figure 4.7 on page 16 shows that the coarser and finer resolution cubes have a face
in common. We may be able to develop a scheme to classify isosurface discontinuities
based on the shared cube vertices that make up this face. We can see from looking at
Figure 8.1 since there are 5 cube vertices on the common face of neighboring MR, voxels
there are 2° different possible combinations of shared vertex values. This reduces to the
16 cases as shown by symmetry. We may be able to classify these cases by number(s)
of cube edge intersections and number(s) of cube facial intersections in order to help
us come up with another partial solution to the surface discontinuity problem. This
approach could lead to a more efficient alternative to subdividing the volume in special
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Figure 8.1: There are 16 different combinations of shared vertices on the common face
of neighboring MR cubes.

cases, especially for incomplete AR volumes. We also may look into the research
describe in section 3.2 Adaptive Marching Cubes (page 9) for inspiration on how to
classify discontinuities. R. Shu, C. Zhou, and M. Kankanhalli [22] classified “cracks”
into 22 basic categories. There may be a correspondence between the cracks described in
their research and the discontinuities described in section 4.4 Isosurface Discontinuities
on page 15.

8.1.2 Limiting Cell Subdivision

Another performance improvement might also be gained by reducing the ripple effect
of cube subdivision. The ripple effect occurs when a second cube requires subdivision
as a consequence of subdividing another cube. Table 8.1 shows instances where we may
encounter such a ripple effect. The 37¢ pass column identifies how many nodes were
added to the 2"¢ pass list while processing the 2nd™® pass list. In other words, when
we are processing cubes on the 2"¢ pass list, we are subdividing a subset of the cubes.
And this may result in a neighboring cube needing another pass in order to examine
its facial triangle vertex or edge triangle vertex lists.

We can see the first instance of where the number of nodes needing processing increases
as a result of processing the 2" pass list at § = 10%. Although we certainly cannot
conclude that this is, in fact, going to start a chain reaction, our goal is to shorten the

length of the 2"¢ pass list, not lengthen it.

It would be useful to explore heuristics for limiting the ripple effect of subdivision based
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resolution 1) isovalue | 2m4 grd

pass | pass

643 1% | 0.185 0 0
0.378
0.408
2% | 0.185
0.378
0.408
5% | 0.185
0.378 3
0.408 0 0
10% | 0.185 16 125
0.378 158 99
0.408 57 18
15% | 0.185 | 219 | 812
0.378 | 278 | 450
0.408 167 | 170
20% | 0.185 | 371 | 1,934
0.378 | 433 | 1,562
0.408 | 330 | 907
25% | 0.185 | 494 | 2,357
0.378 | 542 | 2,584
0.408 | 447 | 1,828
res 128% | 10% | 0.185 213 | 1,201
0.378 | 1,492 | 3,488
0.408 | 683 | 792
15% | 0.185 | 1,352 | 7,056
0.378 | 2,430 | 9,668
0.408 | 1,735 | 5,374
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Table 8.1: This table records: (1) the § threshold for each AR representation of the
cadaver head (2) the isosurface value (3) the total number of cubes that required a
second pass (4) the total number of cubes that required a processing as a result of
processing the second pass list
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resolution 1) ond | 3rd

pass | pass
643 1% 0 0
2% 0 0
5% 0 0

10% | 62 40
15% | 106 | 95
20% | 137 | 154
25% | 162 | 282

Table 8.2: This table records: (1) the § threshold for each AR representation of the
lobster (2) the total number of cubes that required a second pass (3) the total number
of cubes that required a processing as a result of processing the second pass list all at
an isovalue of 0.51.

finer resolution cubes coarser resolution cube -subdivided finer resolution cubes

facial vertex

i

© shared vertex

® interpolated vertex

Figure 8.2: The coarser cube in the middle, when subdivided, updates its shared ver-
tices with its finer resolution neighboring vertices’ scalar values. However, this may
present a problem for the shared vertices abutting the right side of the volume.

on a measure of likely error. As shown in Figure 4.8 on page 16, we subdivide a coarser
resolution cube whenever a finer neighboring cube interpolates a vertex on the face of
the coarser resolution cube. This situation is shown in Figure 8.2. An interpolated
vertex was generated on the left face of the coarser resolution cube. Therefore we
subdivide the coarser volume and in doing so, we update all nine of the shared vertices
on the left side with the scalar values of its finer resolution neighbor. However, this
may present a problem for the shared vertices abutting any other side of the volume
if they are at different a resolution. In this example, this occurs on the right side. To
correct this problem, we must also update any other shared vertex values if they are
shared with finer resolution vertices. The advantage of this solution is an increase in
accuracy. The drawback is the added computation.

This is related to section 8.1.1. The less frequent the subdivision (or more frequent the
special case handling) the less likely we are to encounter a chain subdivision reaction.
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File Data Set Data Format Level Representation

Figure 8.3: This is an AR isosurface with resolution 64% with holes indicating areas
with high error.

8.1.3 Error Visualization

One prospective feature that could be added to the display algorithm is error visualiza-
tion. Instead of generating coarser resolution triangles with no distinction with respect
to the amount of error associated with each vertex, we could visually highlight a high
error. In other words, areas in a surface with an error measure higher than a threshold
defined by the user would be left out of the display. We could do this using a coloring
policy as a function of error. The result may look something like that of Figure 8.3 in
which we can see the appearance of holes.

8.1.4 Alternate Cell Subdivision Policies

Cell subdivision processing enhancements could be explored. For generating our higher
resolution volume data at run time we have the following options, each of with we can
evaluate on the basis of time:

e using interpolation to approximate higher resolution data and caching the newly
generated blocks

e retrieving the necessary original data from secondary storage
e retrieving the necessary original data from over a network

Caching newly generated blocks may be a faster alternative to subdividing the cube
more than once as in the case of generating more than one isosurface with the same
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Figure 8.4: Three different ways of generating the next coarser level of data in an
MR representation: a) selective removal of vertices b) a weighted average c) selective
removal of vertices with a weighted average

AR data set. Retrieving the necessary original data from secondary storage or over a
network would serve as a useful comparison of the accuracy versus processing speed
trade-off.

8.2 Alternative MR Data Generation

We are interested in minimizing the amount of error caused by generating coarser
resolution representations of volume data sets. Computing a coarser resolution repre-
sentation of a data set using a wavelet transformation minimizes error, however, the
topological relationship between levels is not obvious.

Given one level of resolution in an MR hierarchy, there is more than one way to gener-
ate the next coarser level. The different computations are shown in Figure 8.4. First,
we can simply remove vertices selectively, perhaps in an alternating fashion as shown
in 8.4a. This would result in a regular data set analogous to the one shown in Figure
8.6. Second, we can compute a weighted average both geometrically and topologically.
A new vertex’s position and scalar value are a weighted average of the surrounding
eight vertices defining a cube as in 8.4b. However, this method presents complexities
from a geometric standpoint. The analogous 2D complexity is illustrated in Figure
8.5. It is not clear how levels computed this way are related topologically. Coarser
level vertices do not share the same geometric position as their corresponding higher
resolution vertices.

However, a third way of averaging uses a weighted average for only scalar values and
preserves the geometric position of coarser level vertices. Conceptually, this is selective
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Figure 8.5: Three different levels of an MR hierarchy computed using a geometric
averaging create topological complexity

removal of vertices as in Figure 8.4d. We can eliminate all vertices in a cube’s sub-
volume and leave only the remaining corners. This has the advantage that the corner
vertices of all cubes sharing the same corner vertex have the same geometric position,
but modifies the value at the corner to a weighted average scalar value. Our current
implementation uses the first approach to generating MR data so that a vertex has
the same values at all resolutions and vertex positions are preserved at coarser resolu-
tions. Relaxing either of these constraints can allow the creation of more accurate MR
representations but complicates the processing of the resulting AR representation.

8.2.1 Rendering By Octant

If we try a straightforward rendering of a full octree of size 1282 we get near the end of
octant number 3 before the program starts thrashing and grinds to a halt. Therefore,
we store each of the eight octants in separate files. When a 1283 volume is read in from
eight separate files, each file containing an octant worth of volume data, we get the
exact same result. The application thrashes to a virtual halt near the end of octant
number 3. Therefore, our next approach to rendering an entire octree at 1283 resolution
is to process, from start to finish, one octant at a time. That means:

e reading one octant
e storing in the octree

e performing MC
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e outputting the partial isosurface

e freeing that octant from memory and

e processing the next octant

8.3 Conclusion

In this research we set out to design and implement an algorithm for isosurface rendering
of AR data representation. We identified different types of discontinuities caused by
AR data including:

1. inconsistent interpolation (section 4.2)
2. missing vertices (section 4.3)
3. discontinuities caused by facial vertices (section 4.4).
We used several different data structures to implement our algorithm including:
1. an AR octree (see section 2.2.5)
2. a 2"? pass list (see section 4.5)

3. a shared vertex list (see Figure 6.2)

53



We evaluated our algorithm based on factors such as:
1. rendering time (see section 7.3.1)
2. storage space (see section 7.3.2)
3. image quality (see section 7.3.3)
4. image complexity (see section 7.3.4)

Our goals in implementing the algorithm were to improve processing time, save storage
space, and preserve image quality. Although the algorithm realizes those goals, it is
clear that careful consideration and testing must be performed to choose a reasonable
AR § value and that results also vary according to the data set and isovalue.
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APPENDIX A

PREPATORY RESEARCH
TASKS SUMMARY

The following is a list of tasks involved in preparing this research:

1. We acquired a source of volume data from the University of North Carolina at
Chapel Hill. The Chapel Hill Volume Rendering test data set is located at SoftLab
Software Systems Laboratory at the University of North Carolina department
of Computer Science, Chapel Hill, NC 27599-3175. The Chapel Hill Volume
Rendering test data set, Volume I is a collection of the following files:

e head data -A 109-slice MRI data set of a human head
e knee data -A 127-slice MRI data set of a human knee.

e HIPIP data -The result of a quantum mechanical calculation of a SOD data
of a one-electron orbital of HIPIP (high potential iron protein), an iron
protein. Provided courtesy of Louis Noodleman and David Case, Scripps
Clinic, La Jolla, CA.

e SOD data - An electron density map of the active site of SOD (superoxide
dismutase). Provided courtesy of Duncan McRee, Scripps Clinic, La Jolla,
CA.

The Computer Science Department, University of North Carolina distributes these
files by anonymous FTP. The data sets are provided courtesy of Siemens Medical
Systems, Inc., Iselin, NJ.

2. We implemented an MR generation program as described in section 2.3. The pro-
gram is written in C. It takes the original volume data set as input and produces
a multiresolution representation of the data set.

3. We implemented an AR generation program as described in section 4.1. This
program is also written in C. It takes the MR data set as input and produces an
AR representation of the same data set. It is the output of this program that we
use as input to our AR rendering program.

4. We implemented the marching cubes algorithm. This is written in Java 1.1.7.
As part of the project we ported this to Java 1.2/2.0.
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5. We wrote an initial display algorithm, the binary space partitioning (BSP) algo-
rithm. This is also written in Java 1.1.7. As part of the research, we replaced
this display algorithm with VisAD (which uses Java 1.2/2.0 and Java 3D).
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APPENDIX B

OCTREE DIAGRAM

See section 2.2.5 on page 6 for a description of the octree.

level O

level 1

Figure B.1: The octree representation of the volume data in Figure 1.1 on page 1
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APPENDIX C

APPLICATION OVERVIEW
& DESIGN

Figure C.1 on page 63 shows the application software design in the form of a collab-
oration graph. The AR renderer is the director of the application. It contains the
main method responsible for most of the initialization processes and contains the main
interfaces for access to the Marching Cubes engine and the Geometric renderer.

C.1 Collaboration

The application starts off with the AR renderer requesting the Marching Cubes Reader
to parse the input data. The input file stores adaptive resolution data representing 3D
volume data (in both ASCII format for debugging and binary format for performance).
It is this parsing of the input data that is the longest process in the application. The
Marching Cubes Reader, in addition to parsing the cube data, collaborates with the
Cube and Vertez (a member class of Cube) objects in order that they may be instan-
tiated and added to the Octree.

The Octree is our main storage object. It contains the OctreeNodes for storage of the
cubes. The Octree and Octree Node classes are where we put much of the innovation
we need to implement procedures such as finding the common ancestor of more than
one cube and finding a cube’s neighbor. See section 2.2.5 on page 6 for a more detailed
description of the Octree. Octree Nodes are either internal or leaf nodes. Internal
nodes contain a 3 pointers, one to child 0, one to its parent node, and one to its sibling
node. Internal nodes also have 2 values: the minimum and maximum values of all its
descendants (children). Leaf nodes have 8 data values and a minimum and maximum
of those data values. It is the leaf nodes that are rendered. The Marching Cubes and
Marching Cubes Cases objects hold the responsibilities necessary in order to carrying
out the algorithm described in section 2.2.

The Triangle Vertex List object is a data structure of vertices, some of which may need
to be completed or updated. Each triangle vertex is part of a Triangle object. When
traversing the octree, a cell compares its own resolution with that of its neighbor. We
do not have specific z,y, z values for triangle endpoints, but a position object whose
z,y,z values may be updated. When the corresponding finer resolution voxels that
share this point are traversed, they update this list.

62



Marching Cubes
AR renderer Rea%er Cube Vertex
Lattice Octree Octree Node Octree ID ———=+ Octree Cache

/

Marchi b Marching Cubes
arching Cubes Cases
\ Pending Vertex
Isosurface List
Geometric .
Triangle Interpolator
Renderer 9 PO

\ Canvas

Figure C.1: A collaboration graph showing application design. See section C on page
62 for a complete description

The Interpolator class handles all of the interpolation calculations. When an isosurface
value falls between two vertex values in a cube, a linear interpolation is computed to
find out where the intersection occurs between the two vertices.

An IsoSurface object is the output from the rendering algorithm. The IsoSurface is a
set of Triangle objects. If we are generating more than one isosurface, there may be
some significant advantages of being able to pass a set of isosurface specifications, a set
of isosurface objects, and go through the data only once, to generate more than one
isosurface.

The Geometric Renderer object encapsulates Java specific (or Java dependent) ren-
dering responsibilities. The former rendering subsystem that used the Binary Space
Partitioning (BSP) algorithm was replaced with VisAD which uses Java 3D. See section
4.6 -VisAD for more on the VisAD system.
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APPENDIX D

TESTING OPTIONS

We implemented a few testing options for our algorithm. These testing features allow us
to verify the proper functionality of old algorithms such as the conventional Marching
Cubes as well as new algorithms such as our AR Marching Cubes.

D.1 The Cube Step Function

One testing function we added to the Marching Cubes algorithm was the option of
rendering one cube at a time with its associated polygons. Normally, the algorithm
works by processing all of the volume data in one sweep. Then the triangles defining
the resulting isosurface are rendered. We can slow the process down to one cube at
a time. This is a useful tool for examining individual cubes and polygons as they are
rendered. We also have the option of displaying the cubes along with the isosurface.
Rendering one unit of volume cube at a time is useful if we are interested in identifying
which marching cubes case a set of polygons belongs to. It is also useful in identifying
which polygons belong to which subvolumes and as a tool to test the classic Marching
Cubes algorithm itself with. See Figure D.1 on page 65 for a picture of this utility.

D.2 Rendering Cubes By Direction and Resolution

Another function we added to the Marching Cubes algorithm that makes use of the
octree is the ability to choose a direction in which to render an isosurface. The user may
choose at any point to pick direction, either left, right, backward, forward, down, or up
and see what the isosuface looks like in the subvolume adjacent to the most recently
rendered subvolume. Again, the user has the option of turning on or off the rendering
of the cubes themselves. This feature is useful for testing our octree neighbor finding
methods. The user at any time may also choose to increase or decrease the level of
resolution of the isosurface rendering. For example the user may choose to render the
subvolume to the right of the current subvolume at the next finest level of resolution.
These features are useful to test the complete traversal of the octree.

D.3 MR Cube Utility

One of the goals of the project is the implementation of a tool used to examine neigh-
boring AR data on a case-by-case basis. This tool is useful because we may examine
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Figure D.1: This is the utility we implemented to examine one cube at a time.

any two AR facial neighbors and examine the discontinuity in the isosurface between
them. For example, we may decide to look up close at the discontinuity between march-
ing cubes case 3 and case 6 (Figure 2.2 on page 5) when they are face neighbors at
different resolutions. This is useful if we want to examine the possibility of special
case handling of isosurface discontinuities. Special case solutions of discontinuities may
involve assigning a predetermined solution to a specific instances of neighboring AR
cube data. See Figure D.2 on page 66 to see the AR utility in action.
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Figure D.2: This is the utility we implemented to examine neighboring AR data.
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APPENDIX E

INCONSISTENT
INTERPOLATION FIGURE
AND CASE TABLES

See Figures E.1 on page 68, E.2 on page 69 and E.3 on page 71 and Table E.1 on page
70 for more details about inconsistent interpolation.
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Figure E.1: This figure shows the shared and facial edges between a finer and coarser
resolution cube for coarser octants 0 — 3. For example (top, left) a finer resolution cube
shares edges on its left, down, and back faces abutting a coarser resolution cube. This
is used to correct inconsistent interpolation and identify when to subdivide a cube.
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Figure E.2: This figure shows the shared and facial edges between a finer and coarser
resolution cube for coarser resolution octants 4 — 7.
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OCTANT DIRECTION FINE COARSE FACIAL
EDGE EDGE EDGE
0 LEFT 3 1 10
8 9 7
DOWN 0 2 9
8 10 4
BACK 0 4 1
3 7 2
1 RIGHT 1 3 11
9 8 5
DOWN 0 2 8
9 11 4
BACK 0 4 3
2 5 2
2 RIGHT 1 3 9
11 10 5
UP 2 0 10
11 9 6
BACK 1 5 0
2 6 3
3 LEFT 3 1 8
10 11 7
UP 2 0 11
10 8 6
BACK 2 6 1
3 7 0
4 LEFT 7 5 10
8 9 3
DOWN 4 6 9
8 10 0
FRONT 4 0 5
7 3 6
5 RIGHT 5 7 11
9 8 1
DOWN 4 6 8
9 11 0
FRONT 4 0 5
5 1 6
6 RIGHT 5 7 9
11 10 1
UP 6 4 10
11 9 2
FRONT 5 1 4
6 2 7
7 LEFT 7 5 8
10 11 3
UP 6 4 11
10 8 2
FRONT 6 2 1
7 3 4

Table E.1: The lookup table used by a finer resolution node to identify shared edge
intersections and facial intersections when examining a coarser resolution neighbor. We
construct this table by looking at figure of edge intersections.
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Figure E.3: This figure shows the shared edges between a coarser cube and its four

finer resolution neighboring cubes for each of the coarser cubes six faces.

This is

used when a coarser resolution cube searches finer resolution neighbors for inconsistent

interpolati

on.
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Figure E.4: This figure shows the shared edges between coarser and finer resolution
cubes for each of the six faces of a coarser cube. This is used when searching for missing
vertices.
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APPENDIX F

SUBDIVISION AND CASE
TABLE(S)

See figure F.1 for further details about subdivision.
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Figure F.1: This figure shows the shared vertices for each cube face when subdividing.
The shared vertices are shown for each of the six faces of a coarser resolution cube. (i
indicates an interpolated value, P indicates a vertex value.)
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APPENDIX G

IMAGES

File Data Set Data Format Level Rapresentation File Data Set Data Format Level Representation

Figure G.1: This is an MR isosurface with ~ Figure G.2: This is an AR isosurface with
resolution 642 and isovalue 0.185. resolution 642, isovalue 0.185, and 6 = 1%.
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File Data Set Data Farmat Level Representation File Data Set Data Farmat Level Representation

Figure G.3: This is an AR isosurface with Figure G.4: This is an AR isosurface with
resolution 642, isovalue 0.185, and § = 2%.  resolution 642, isovalue 0.185, and 6 = 5%.

File Data Set Data Farmat Level Representation File Data Set Data Farmat Level Representation

Figure G.5: This is an AR isosurface with Figure G.6: This is an AR isosurface with
resolution 643, isovalue 0.185, and § = resolution 643, isovalue 0.185, and § =
10%. 15%.
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File Data 5et Data Format Level Representation File Data Set Data Format Level Representation

Figure G.7: This is an AR isosurface with Figure G.8: This is an AR isosurface with
resolution 642, isovalue 0.185, and § = resolution 642, isovalue 0.185, and § =
20%. 25%.

File Data Set Data Farmat Level Representation
File Data Set Data Farmat Level Representation

Figure G.10: This is an AR isosurface
with resolution 643, isovalue 0.378, and
0 =1%.

Figure G.9: This is an AR isosurface with
resolution 642 and isovalue 0.378.
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File Data 5et Data Format Level Representation File Data Set Data Format Level Representation

Figure G.11: This is an AR isosurface Figure G.12: This is an AR isosurface
with resolution 643, isovalue 0.378, and with resolution 643, isovalue 0.378, and

d =2%. d =5%.

File Data 5et Data Format Level Representation File Data Set Data Format Level Representation

Figure G.13: This is an AR isosurface Figure G.14: This is an AR isosurface
with resolution 643, isovalue 0.378, and with resolution 642, isovalue 0.378, and
0 = 10%. 0 = 15%.
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File Data 5et Data Format Level Representation File Data Set Data Format Level Representation

Figure G.15: This is an AR isosurface Figure G.16: This is an AR isosurface
with resolution 643, isovalue 0.378, and with resolution 643, isovalue 0.378, and
0 = 20%. 0 = 25%.

File Data 5et Data Format Level Representation File Data Set Data Format Level Representation

Figure G.17: This is an AR isosurface Figure G.18: This is an AR isosurface
with resolution 1283, isovalue 0.185, and with resolution 1282, isovalue 0.378, and
0 = 10%. 0 =10%.
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File Data Set Data Farmat Level Representation File Data Set Data Farmat Level Representation

Figure G.19: This is an MR isosurface of Figure G.20: This is an AR isosurface
a lobster with resolution 643 and isovalue with resolution 642, isovalue 0.051, and
0.051. 0 = 1%.

File Data S5et Data Format Level Representation File Data Set Data Format Level Representation

Figure G.21: This is an AR isosurface of Figure G.22: This is an AR isosurface
a lobster with resolution 64, isovalue = with resolution 643, isovalue = 0.051, and
0.051, and § = 2%. d =5%.
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File Data Set Data Format Level Representation File Data Set Data Format Level Representation

Figure G.23: This is an AR isosurface of Figure G.24: This is an AR isosurface
a lobster with resolution 643, isovalue = with resolution 643, isovalue = 0.051, and
0.051, and § = 10%. 0 = 15%.

File Data Set Data Format Level Representation File Data Set Data Farmat Level Representation

Figure G.25: This is an AR isosurface of Figure G.26: This is an AR isosurface
a lobster with resolution 643, isovalue = with resolution 643, isovalue = 0.051, and
0.051, and § = 20%. 0 = 25%.
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