
Design and Implementation of Geometric and Texture-Based Flow

Visualization Techniques

Robert S. Laramee, Markus Hadwiger, and Helwig Hauser∗

VRVis Research Center
Donau-City-Strasse 1

Vienna, Austria
www.VRVis.at

Abstract

Usually, research related software consists of individual, isolated
prototypes because researchers are interested in a small proof-of-
concept application for demonstration. Here we present software
developed for research purposes, but which has been included into
a larger, commercial visualization system. We describe the design
and implementation of a flow visualization subsystem within the
framework of a software package capable of modeling, simulation,
and visualization of CFD simulation data. Our flow visualization
subsystem provides several research related geometric and texture-
based visualization techniques. As a result, we are able to combine
visualization options in new ways that typical research prototypes
cannot. Here we describe some of our design and implementation
decisions and outline the resulting advantages and disadvantages.

CR Categories: I.3.0 [Computer Graphics]: General I.3.2 [Com-
puter Graphics]: Graphics Systems I.3.4 [Computer Graphics]:
Graphics Utilities I.3.8 [Computer Graphics]: Applications I.3.m
[Computer Graphics]: Miscellaneous

Keywords: computational fluid dynamics (CFD), software de-
sign, systems, applications, flow visualization, vector field visual-
ization

1 Introduction

Demand for visualization solutions for CFD simulation data has
grown rapidly in the last decade. This is due, in part, by the interest
of manufactures in minimizing the time taken for their production
cycle. This objective is realized with the use of CFD software tools
to analyze design decisions before constructing real, heavy-weight
objects. CFD software can be structured according to the three prin-
ciple stages typical of engine component design:

1. modeling: starting with a model generated by computer aided
design (CAD) software, a 3D unstructured mesh is generated
consisting of small volumetric cells

2. simulation: given the 3D mesh and a set of initial conditions,
a simulation of flow through the model is computed

3. visualization: the results of the simulation are explored, ana-
lyzed, and presented with a variety of visualization tools

∗email: {Laramee,Hadwiger,Hauser}@VRVis.at

visualizationsimulation

CAD surface
model

modeling
CFD

3D CFD
grid + initial

conditions

grid +
simulation

data

modeling
CAD

Figure 1: The CFD process is iterative and can be pipelined into
modeling, simulation, and visualization stages. Rounded boxes
represent input/output data while processing stages are depicted as
rectangles.

The process is iterative, as illustrated in Figure 1. The visualization
process often either verifies or conflicts the results expected by the
engineer and may instigate changes to the model design.

We performed the research and implemented research software in-
side of a large commercial software package whose job is to per-
form those tasks conveyed in Figure 1. The result is a system
which is further integrated than typical research prototypes. Typ-
ical research software consists of stand-alone prototypes for proof-
of-concept only. As a result of our integrated system, we enable the
possibility to combine multiple visualization options with one an-
other. Incorporating research features into larger systems has both
beneficial and non-beneficial consequences. We discuss both the
advantages and disadvantages of such an approach.

We focus on the design and implementation of the visualization
subsystem shown on the right of Figure 1. More specifically, we
focus on those software components that provide geometric and
texture-based flow visualization results. We describe several as-
pects related to the design and implementation of our flow visual-
ization software modules as well as those factors that motivated our
decisions.

The rest of this paper is organized as follows: Section 2 describes
the three classes of flow visualization techniques that form the basis
of design. Section 3 outlines the user requirements and goals of the
visualization software. Section 4 presents the overall design of the
visualization system while Section 5 details the implementation and
design of our flow visualization software modules. Section 6 eval-
uates some aspects of our design and implementation and discusses
some advantages and disadvantages of our work.

2 Flow Visualization Classification

Three different approaches are widely used in flow visualiza-
tion [Post et al. 2002]:

Direct flow visualization: This category of techniques uses a trans-
lation that is as straightforward as possible for representing flow



data in the resulting visualization. The result is an overall picture of
the flow. Common approaches are drawing arrows or color coding
velocity.

Geometric flow visualization: These approaches often first inte-
grate the flow data and use geometric objects in the resulting visu-
alization. The objects have a geometry that reflects the properties of
the flow. Examples include streamlines, streaklines, and timelines.
Not all geometric objects are based on integration. Another useful
geometric approach is generating isosurfaces, e.g., with respect to
an isovalue of pressure or magnitude of velocity. A more thorough
description of geometric techniques is presented by Post et al. [Post
et al. 2002]

Dense, texture-based flow visualization: A texture is computed that
is used to generate a dense representation of the flow. A notion of
where the flow travels is conveyed through co-related texture values
along the vector field. In most cases this effect is achieved through
filtering of texels according to the local flow vector. Texture-based
methods offer a dense representation of the flow with complete cov-
erage of the vector field. Examples include Image Based Flow
Visualization (IBFV) [van Wijk 2002] and Image Space Advec-
tion (ISA) [Laramee et al. 2004b], which can generate both Spot
Noise [van Wijk 1991] and LIC-like [Cabral and Leedom 1993]
imagery. We note that a full comparison of texture-based flow vi-
sualization techniques is beyond the scope of this paper [Laramee
et al. 2004a].

The focus of this paper is on the design and implementation of soft-
ware for the geometric and texture-based category of visualization
options provided by our software.

3 System Requirements and Goals

The VRVis research center collaborates with AVL (www.avl.com) in
order to provide flow visualization solutions for analysis of their
CFD simulation result data. AVL’s own engineers as well as engi-
neers at industry affiliates use flow visualization software to analyze
and evaluate the results of their automotive design and simulation
on a daily basis. The analysis of an engineer includes tasks such
as searching for areas of extreme pressure, looking for symmetries
in the flow, searching for critical points, and comparing simulation
results with previous simulation results and with measured, exper-
imental results. As such, AVL engineer’s have the following re-
quirements:

Interaction: One pervading message we hear consistently is that
users are interested in more interactive control of the flow visual-
ization results–a classic theme in the realm of scientific visualiza-
tion [Hibbard and Santek 1989]. Users generally want feedback as
soon as possible after modifying visualization parameters. Interac-
tion is essential in the engineer’s design process. Engineers as well
as users from other disciplines are interested in having a collec-
tion of user-options and parameters that allow them to fulfill their
individual goals, whether their goals are exploration, analysis, or
presentation. Interactive tools facilitate an iterative visual analysis
and exploration process i.e., an environment in which the user is
able to make rapid decisions and refinement based on visualization
results.

Platform Independence: Despite the popularity of research re-
lating to programmable graphics hardware, our software design and

Figure 2: The CFD simulation grid of an intake port. This image
illustrates the versatility of a typical, unstructured, CFD simulation
grid.

Figure 3: A close-up view of the intake ports in the same CFD
simulation grid as shown in Figure 2. The mesh contains multiple,
adaptive resolution levels of unstructured grid cells.

implementation must maintain platform independence. Our soft-
ware must function for different users on a wide variety of oper-
ating systems including: Linux, HP-UX, SGI, IBM AIX, UNIX,
and others. Thus, algorithms or software bound to a specific graph-
ics card are not welcome candidates for inclusion in this system.
Platform independence includes not only hardware independence,
but software independence as well. That is why all of our software
uses only platform independent software libraries such as the well
established OpenGL standard.

Support for a Wide Range of Simulation Data Sets: AVL
analyzes a large, varied collection of data sets ranging from small
geometries such as small fluid conduits to mid-range size geome-
tries such as cooling jackets, to large geometries such as automotive
exteriors. The geometric sizes of these grids differ by six or more
orders of magnitude as well as the sizes of the underlying polygons.
Hence, the tools used to visualize the simulation results also need
to span this range of sizes.



Simulation Result
Manager

Attribute
Scalar Vector

Attribute

Geometric Flow
Visualization
Subsystem

Texture−Based
Flow

Visualization 
Subsystem

2D

2.5D

3D

3D Viewer

Triangle Renderer

Polygon Renderer

Polyline Renderer

Quad Renderer

Visualization System

User
Interface

Graphical

Manager
Subsystem

Mesh

Figure 4: A schematic of the design of the visualization system into which we incorporated our research related software. Only the major
subsystems are illustrated.

Support for Versatile CFD Grids: Another reason the users
request more interaction control over the visualization results is be-
cause CFD meshes embrace a wide variety of components, features,
and levels of resolution. To illustrate this idea, we look at Figure 2
showing two intake ports. We observe multiple adaptive levels of
resolution: (1) for the flow source on the left and the cylinder on
the lower, right, (2) another level of resolution for the connecting
pipes in the middle, (3+4) and two levels of resolution for the in-
take port components. When we look closer (Figure 3) we find five
adaptive levels of resolution: (a) two levels for the top of the ports,
(b) approximately the same two levels of detail plus an added layer
of finer resolution grid cells for a few of the rings around the base
of the ports. Facets in the flow source (Figure 2 left) are approx-
imately 1000–2000 times larger than the finest resolution facets at
the base of the intake ports.

Tools that Address the Perceptual Challenges in 3D Flow
Visualization: Flow visualization on boundary surfaces and in
3D presents additional perceptual challenges such as occlusion,
lack of directional cues, lack of depth cues, and visual complex-
ity. Almost all of the CFD simulation models at AVL are unstruc-
tured and three dimensional. Although engineers often use 2D cuts
through the 3D meshes during their analysis, there is a strong in-
terest in 3D and boundary surface visualization techniques that ad-
dress the perceptual problems mentioned above. We also know that
there is strong evidence to support the notion that users acquire a
better understanding of 3D data sets using 3D visualization tech-
niques as opposed to 2D visualization techniques [Ware and Franck
1996].

4 Visualization System Design

The visualization software modules we develop are included in a
product called IMPRESS. IMPRESS is part of a larger package called
CFDWM (The CFD Workflow Manager) that includes the model-
ing and simulation modules. In this section, our focus is on the

visualization system shown in greater context in Figure 1 and in
more detail in Figure 4.

CFDWM is a large project, currently over 4,000 files. Thus, we rely
on object-oriented methodology in order to design and incorporate
our flow visualization features. In modern, object-oriented software
development, more time is spent on software design [Wirfs-Brock
et al. 1990] in order to make software more robust, increase code
re-use, facilitate maintenance, and make it easier to extend. The
design of our software is based on object-oriented methodology.

The design of our visualization system, using the notation of Wirfs-
Brock et al. [Wirfs-Brock et al. 1990] is shown in Figure 4. A semi-
circle with an arrow pointing to it represents a contract. A contract
is a subsystem or class interface with other classes or subsystems.
It represents the set of services that a subsystem or class provides.
Figure 4 illustrates the different subsystems and the relationships
they have with one another.

The Graphical User Interface subsystem is responsible for pre-
senting all of the user options and associated events triggered by the
user. The 3D Viewer subsystem is responsible for all of the render-
ing, including point, polyline, triangle, quad, and polygonal prim-
itives. The implementation of the 3D viewer is based on OpenGL
for its platform independence. The Mesh Manager contains the
unstructured CFD mesh. It is responsible for generating slices, sur-
face representations, and volume representations. The Mesh Man-
ager has a close relationship with the Simulation Result Manager
which stores the CFD simulation data attributes such as tempera-
ture, pressure, flow velocity etc.

In the next section, we describe two subsystems in more detail: the
Geometric Flow Visualization Subsystem and the Texture-Based
Flow Visualization Subsystem. This is where the majority of our
research related development was done. These two subsystems, like
the others, are composed of a fairly complex set of classes and as-
sociated responsibilities.



User Specified 

Integration
Streamline 

Rendering

Mesh Topology
Computation

Generation
Seed

CFD Mesh 

Simulation
Data

Positions
Initial

Object
Geometry

Parameters

Streamline

Figure 5: The processing pipeline for the geometric flow visualiza-
tion subsystem.

5 Subsystem Design and Implementation

Here we detail how our research software was integrated into a
larger visualization system. Our implementation inherits both ben-
efits and non-beneficial aspects of the larger visualization system.
It is here we put our design principles into actual practice.

5.1 The Geometric Flow Visualization Subsystem

Figure 5 illustrates the main processing pipeline of the geometric
flow visualization subsystem. The input and output data is shown in
rectangles with rounded corners and processes are shown in boxes.
Note that this design and implementation subsystem focuses on
geometric objects such as streamlines which require integration.
Other geometric objects such as isosurfaces are handled by another
subsystem.

5.1.1 The Geometric Flow Visualization Process

The main input to this process is the CFD mesh and associated vec-
tor field data. Since the mesh is unstructured and adaptive resolu-
tion, the mesh adjacency information is computed as a preprocess-
ing step. After the user specifies their input requirements, such as
the position of the seeding rake or plane and color-mapping param-
eters, the pipeline follows that of the standard streamline generation
process. The 3D seeding process is interactive. This relates back to
our requirement of interaction. Engineers require explicit seeding
control in order to visualize or highlight specific subsets of the flow.
And the subsets of the flow in which the engineers are interested
cannot always be found beforehand and detected automatically.

The seeding process involves a grid cell searching phase. The
streamlines are then integrated using an Euler integrator with small
step sizes for smaller grid cells as the default. The resulting integral
paths are stored and handed off to the streamline renderer. Note that
an object oriented design like that shown in Figure 5 allows higher
order integrators such as a second order Runge-Kutta [Conte and
de Boor 1980] to be incorporated into the pipeline with little to no

Streamline
Renderer

Solid
Streamline

Dashed
Streamline

Animated
Streamline

Shaded
Streamline

Oriented
Streamline

StreamComet

Animated
StreamComet

Figure 6: The class hierarchy of streamline and geometric flow vi-
sualization options. UML notation is used.

alteration of the other classes. The ability to swap functional com-
ponents with one another is an important part of big system design.

5.1.2 Geometric Flow Visualization Design

Figure 6 shows our streamline rendering options displayed in the
class hierarchy in which they were designed and implemented. The
hierarchy, following UML notation [Fowler 2003], illustrates the
is-kind-of relationship between rendering classes. At the top of the
hierarchy we have an abstract base, Streamline Renderer that de-
scribes the behavior and contains the interface that all streamline
rendering objects implement. Animated, shaded, oriented stream-
lines, and streamcomets all relate back to our requirement of de-
veloping tools that address the perceptual challenges in 3D flow
visualization since they are all targeted at 3D flow.

Of course one advantage to this type of design is that behavior
added to the parent classes are inherited by all of the children.
Thus adding features such a streamrunner [Laramee 2002], color-
mapping, and anti-aliasing can be inherited by child classes who,
in many cases, may automatically pick up the new features. Also,
adding new rendering features only requires a few lines of new code
to be written since we only have to override the render method of
a parent class. We note also, that the streamline computation, e.g.,
Euler and Runge-Kutta integrators on 2D slices, 2.5D surfaces, and
3D meshes, are completely separate from the rendering subsystem.
Hence any rendering option can be associated with any integration
result.

5.2 The Texture-Based Flow Visualization Subsys-

tem

The texture-based flow visualization subsystem is where the most
research related software development took place. Three new,
closely related algorithms were implemented, namely Image-Based
Flow Visualization (IBFV) [van Wijk 2002], Image Space Advec-
tion (ISA) [Laramee et al. 2003], and Image Based Flow Visualiza-
tion for Curved Surfaces (IBFVS) [Laramee et al. 2004b]. The ISA



Case
Dynamic

k 
= 

k 
+ 

1

k 
= 

k 
+ 

1

Case
Dynamic

k 
= 

k 
+ 

1

Case
Static

k 
= 

k 
+ 

1

Case
StaticNoise Injection

and Blending
Noise Injection
and Blending

Image Advection
Mesh Computation

Image Overlay Application Image Overlay Application

Edge Blending Edge Blending

Edge Detection Edge Detection

Polygonal Advection
Mesh Computation o

i

i

i

i

i

i

o

o

o

i

i

Vector Field Projection

Texture Mapping Texture Mapping

Mesh Projection

i

i

IBFVS PipelineISA Pipeline

o

i

o

Figure 7: The processing pipeline of the texture-based flow visualization subsystem.

and IBFVS algorithms were implemented within the same software
package in order to compare them with one another.

5.2.1 The Texture-Based Flow Visualization Process

A side-by-side illustration of the processing pipelines of both al-
gorithms is shown in Figure 7. In brief, the ISA and IBFVS algo-
rithms simplify the problem of advecting textures on surfaces by
confining the advection of texture properties to image space. After
a projection to image space phase, a series of textures are mapped,
blended, and advected. The ISA method for visualization of flow
on surfaces is comprised of the following procedure (Figure 7, left):
(1) project the vector field to the image plane, (2) detect geomet-
ric edge discontinuities, (3) compute advected texture coordinates,
(4) advect the image, (5) inject and blend in noise, (6) blend ad-
ditional noise along geometric edge discontinuities, and (7) apply
shading and other additional graphics. The IBFVS method is very
similar, the essential difference being that advected texture coordi-
nates are computed in object space rather than image space. Steps
1-7 of the pipeline are necessary for the dynamic cases of time-
dependent geometry, rotation, translation, and scaling, and only a
subset is needed for the static cases (steps 4-7) involving no changes
to the view-point and steady-state flow. Each stage is described in
more detail in previous research [Laramee et al. 2004b].

In order to speed up the computation time of advecting textures on
surfaces, texture coordinates are computed in image space rather
than 3D. The result is that some portions of the algorithms take
place in image space and some in object space. Those operations
which take place in image space are notated with an i in Figure 7,
similarly an o for those operations taking place in object space. In
some pipeline modules, like the ISA vector field projection, a tran-
sition takes between object space and image space. This is notated
with o −→ i. Which stages of the respective pipelines take place
in image space and object space identify the essential differences
between the algorithms, since conceptually they share many over-
lapping components.

Another property that makes these algorithms faster than previous
related work is that the stages of the pipeline shown in Figure 7 map
well to graphics card hardware. However, rather than depending on
a specific type graphics card, these algorithms exploit only standard

Image
OverLay

Depth
Buffer

Image
Velocity

Injector
Dye

Stack
Texture

OpenGL
3D Viewer

Texture

Visualizer

Based
Texture−

Flow

1

1

1

1

1

*
1

Figure 8: The major components of the texture-based flow visu-
alization design. Here aggregation, or is-part-of, relationships are
shown.

features offered by graphics cards that support OpenGL 1.1, thus
making them fast across a variety of platforms.

5.2.2 Texture-Based Flow Visualization Design

Figure 8 shows the class relationship between the major compo-
nents of the texture-based flow visualization subsystem, again us-
ing UML notation. However, rather than showing is-kind-of rela-
tionships as in Figure 6 we show composition, a variety of aggre-
gation. With composition, the part object may belong to only one
whole, further, the parts are usually expected to live and die with the
whole [Fowler 2003]. For example, the Texture Stack object is part



of the Texture-Based Flow Visualizer object and the relationship
is one-to-one. Furthermore, an instance of Texture Stack may be
in an instance of Texture-Based Flow Visualizer but not the other
way around. This is indicated by the black diamond shape arrow. It
is in fact possible to create multiple instances of the texture-based
flow visualizer, just like it is possible to create more than one in-
stance of a viewer. However, this may result in a performance hit as
multiple instances of these classes compete for hardware resources.

Here we outline the major components that make up the texture-
based flow visualization subsystem shown in Figure 8. The
Texture-Based Flow Visualizer is the class with the most responsi-
bility, namely that of coordinating pipelines in Figure 7 of both the
ISA and IBFVS algorithms [Laramee et al. 2004b]. The OpenGL
3D Viewer class is responsible for general rendering of primitives
such as points, lines, and polygons. The Texture Stack is respon-
sible for managing a stack of textures. This stack can be used to
implement the injection and blending of noise for the IBFV [van
Wijk 2002], ISA [Laramee et al. 2003], and IBFVS [Laramee et al.
2004b] algorithms. The Texture Stack is composed of individ-
ual Textures. It is worthy of note that textures are also an object
in OpenGL 1.1. A Velocity Image is responsible for the vector
field projection, the first step in the ISA pipeline of Figure 7 which
simplifies the computation from 3D to 2D. The Depth Buffer ob-
ject stores a copy of the OpenGL depth buffer. This information is
used in the edge detection and blending process in the ISA algo-
rithm [Laramee et al. 2003]. IBFV, ISA, and IBFVS can all include
Dye Injector functionality. The representation of the dye injection
design has been simplified here. In fact it is its own subsystem in-
cluding a hierarchy of Dye Source objects. The Image OverLay
includes perceptual information such as shading and depth cues and
is the final stage of both ISA and IBFVS. Here, we use a separate
object for this job.

Laying out the responsibilities in this way facilitates improvement.
Immediately we can see one area of improvement would be to split
up the responsibilities of the Texture-Based Flow Visualizer into
two separate classes, one for only the ISA pipeline and another for
IBFVS, perhaps with a common base class. Figures 6 and 8 are
simplified representations of the overall design. They leave out the
classes responsible for the user interface and it’s associated event
handlers. A design process is essential for producing stable soft-
ware that is robust enough to meet the requirements of a commer-
cial grade application.

Our commercial system targets many different hardware architec-
tures. As we know, hardware evolves rapidly, especially graphics
hardware. The range of hardware our application targets also spans
several years, including systems that are more than five years old.
This is one reason we have given users interactive control of the
amount of texture-memory used by the texture-based flow visual-
izer. Users with old systems may set the controls to use less texture
memory for faster performance also trading off quality, or more
texture memory for users with modern graphics cards and plenty of
texture memory.

6 Discussion and Evaluation

After presenting the design and implementation of our geometric
and texture-based flow visualization sub-systems, we now discuss
the advantages and disadvantages of implementing them into an in-
tegrated system and evaluate the modules against the requirements
and goals specified in Section 3.

A big advantage of integrating the research related subsystems into
a larger commercial system is the ability to combine visualization

options. Figure 9 shows the visualization of tumble flow [Laramee
et al. 2004c] using a combination of texture-based flow visualiza-
tion, color-mapping, streamlines seeded with two seeding planes,
and a color-mapped pressure isosurface 1. Figure 10 shows our ap-
plication including the user interface components. It is unusual to
have this many visualization options combined into a commercial
software package, and even more rare in a research prototype. Pro-
viding engineers and other users with a wide variety of options is
helpful because each technique has a unique set of advantages and
disadvantages, e.g., some techniques are better suited for 3D visual-
ization than others. Another advantage of a big project is that much
functionality has already implemented, especially the routine engi-
neering tasks such as file I/O, saving and loading data sets, setting
up a general purpose GUI (Figure 10), acquiring CFD grids and
simulation data etc. These are often tasks which a researcher must
dedicate time towards in order to build a good prototype.

Naturally there are also disadvantages to integrating research re-
lated software into a large industry level system. Since large sys-
tems can be composed of thousands of files and classes, the time
taken to learn and understand the software well enough to add new
modules is longer. Common, daily developer tasks also require
more time for the developer of a large system. Compiling the entire
CFD workflow manager requires more than one hour. Simply load-
ing the project source into main memory over a network can take
five to ten minutes.

Plus there is also overhead from testing. The software is used by
more people, hence it should be more stable. Features must be ro-
bust enough to analyze a very wide variety of data sets, not just
two or three data sets carefully selected by the researcher. How-
ever, coupled directly with this is an advantage: the large number
of data sets that require exploration and analysis force the software
engineer to write algorithms which are robust and efficient.

With respect to interaction, many of our visualization features are
interactive. Our animated streamlines achieve real-time frame rates.
In texture-based flow visualization, ISA and IBFVS are amongst
the first texture-based flow visualization algorithms to achieve in-
teractive frame rates for surfaces. Of course, when the data set
sizes grow big enough, interactivity becomes problematic. Also,
our streamline integration process is not interactive for large num-
bers of streamlines, only the rendering phase. Platform indepen-
dence is achieved through the use of platform independent libraries.
To our knowledge, OpenGL is the only widely supported, platform
independent graphics library. Most of our features rely on OpenGL
1.1. Also, we use the FOX windowing toolkit (www.fox-toolkit.org)
in order to achieve platform independence with respect to the user
interface. FOX is an easy-to-learn GUI library suitable for CFD
applications. FOX was the programming library of choice (as op-
posed to other libraries like the VTK [Kit ], Amira [TGS ], or AVS
Express [Adv ]) for multiple reasons including: (1) it is platform
independent, (2) it is open source, (3) it is developed specifically
for commercial CFD applications. As such it was an appropriate
choice.

In terms of versatility, our tools, having been incorporated into com-
mercial software, must undergo more testing by more users than
typical research prototypes. Our features have been used to explore
and visualize on a wide range of data sets with both static and dy-
namic geometry. One important aspect of the design is a complete
range of user control. It is important to provide the user with con-
trol over the visualization parameters in order to meet the versatility
and range of data sets. The developer simply cannot predict all of
the models and their respective features to which the visualization

1For supplementary, high resolution images, please visit:
http://www.VRVis.at/scivis/design/



Figure 9: Visualization of tumble motion using a combination of several visualization options including: color-mapping, slicing, texture-based
flow visualization, isosurfacing, and streamlines seeded with multiple seeding planes.

techniques will be applied.

Our range of tools also includes those that address the perceptual
challenges in 3D visualization. These tools include the streamrun-
ner [Laramee 2002], streamcomets, and variable resolution stream-
line seeding plane [Laramee et al. 2004c]. However, applying
texture-based flow visualization techniques to true 3D flow still re-
mains an unsolved problem in this context.

7 Conclusion

We have presented the design and implementation of research based
software modules integrated within a larger, industry level visual-
ization system. We have discussed our design decisions and the
associated motivation for those decisions. And although we have
focused on flow visualization specific software, we believe the
principles outlined here can be applied in a more general way to
other similar projects. The result of incorporating research related
software into a large system brings both advantages and disadvan-
tages. Benefits include a rich visualization feature set and robust-
ness while disadvantages include all those tasks inherent in com-
mercial software development such as a steep learning curve and
large project maintenance.

8 Acknowledgments

We would like to thank all those who have contributed to financing
this research, including AVL (www.avl.com) and the Austrian re-
search program Kplus (www.kplus.at). All CFD simulation data
is courtesy of AVL.

References

ADVANCED VISUAL SYSTEMS INC. OpenVIZ. 300 Fifth Avenue,
Waltham, MA 02451. http://www.avs.com.

CABRAL, B., AND LEEDOM, L. C. 1993. Imaging Vector Fields
Using Line Integral Convolution. In Poceedings of ACM SIG-
GRAPH 1993, Annual Conference Series, 263–272.

CONTE, S. D., AND DE BOOR, C. 1980. Elementary Numerical
Analysis. McGraw-Hill, New York.

FOWLER, M. 2003. UML Distilled: A Brief Guide to the Standard
Object Modeling Language, third ed. Object Technology Series.
Addison-Wesley, Sept.

HIBBARD, W., AND SANTEK, D. 1989. Interactivity is the Key.
In Proceedings of the Chapel Hill Workshop on Volume Visual-
ization, 39–43.

KITWARE INC. The Visualization Toolkit. 28 Corpo-
rate Drive, Suite 204, Clifton Park, New York 12065.
http://www.kitware.com.

LARAMEE, R. S., JOBARD, B., AND HAUSER, H. 2003. Image
Space Based Visualization of Unsteady Flow on Surfaces. In
Proceedings IEEE Visualization ’03, IEEE Computer Society,
131–138.

LARAMEE, R. S., HAUSER, H., DOLEISCH, H., POST, F. H.,
VROLIJK, B., AND WEISKOPF, D. 2004. The State of the Art
in Flow Visualization: Dense and Texture-Based Techniques.
Computer Graphics Forum 23, 2 (June), 203–221.

LARAMEE, R. S., VAN WIJK, J. J., JOBARD, B., AND HAUSER,
H. 2004. ISA and IBFVS: Image Space Based Visualization



Figure 10: A screen shot of our industry level application being used to visualize the vector field at the surface of two intake ports.

of Flow on Surfaces. IEEE Transactions on Visualization and
Computer Graphics 10, 6 (Nov.), 637–648.

LARAMEE, R. S., WEISKOPF, D., SCHNEIDER, J., AND
HAUSER, H. 2004. Investigating Swirl and Tumble Flow with
a Comparison of Visuaization Techniques. In Proceedings IEEE
Visualization ’04, 51–58.

LARAMEE, R. S. 2002. Interactive 3D Flow Visualization Using
a Streamrunner. In CHI 2002, Conference on Human Factors
in Computing Systems, Extended Abstracts, ACM Press, ACM
SIGCHI, 804–805.

POST, F. H., VROLIJK, B., HAUSER, H., LARAMEE, R. S., AND
DOLEISCH, H. 2002. Feature Extraction and Visualization of
Flow Fields. In Eurographics 2002 State-of-the-Art Reports, 69–
100.

TGS INC. (TEMPLATE GRAPHICS SOFTWARE). Amira
3.1, User’s Guide and Reference Manual. 5330 Carroll

Canyon Road, Suite 201, San Diego, California 92121-3758.
http://www.amiravis.com.

VAN WIJK, J. J. 1991. Spot noise-Texture Synthesis for Data Vi-
sualization. In Computer Graphics (Proceedings of ACM SIG-
GRAPH 91), T. W. Sederberg, Ed., vol. 25, 309–318.

VAN WIJK, J. J. 2002. Image Based Flow Visualization. ACM
Transactions on Graphics 21, 3, 745–754.

WARE, C., AND FRANCK, G. 1996. Evaluating Stereo and Mo-
tion Cues for Visualizing Information Nets in Three Dimensions.
ACM Transactions on Graphics 15, 2 (Apr.), 121–140.

WIRFS-BROCK, R., WILKERSON, B., AND WIENER, L. 1990.
Designing Object-Oriented Software. Prentice-Hall.


