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Abstract

William Shakespeare was one of the greatest writers the world has ever seen.

His works have been translated and retranslated many times into many languages.

Studying the variations of these translations is important to understand the evolu-

tions for translation, culture, as well as history. A group of researchers in the College

of Art and Humanities at Swansea University has a collection of different German

translations of Shakespeare’s play, Othello. They attempt to study the variations of

words between different translations, and to find unique words in certain transla-

tions. This project aims at creating an interactive visualization system of text data

by providing a parallel view to compare varieties of text between translation ver-

sions. In addition to this, a software is designed to enable users to interact with the

visualization. The data processed in this project contains 15 German translations of

Othello and a base text in English, collected by Dr. Cheesman from College of Arts

and Humanities at Swansea University. Our goal is to provide visualization solutions

that assist them to identify and analyse such words and translations.
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1 Introduction and Motivation

Data sets have risen dramatically over the past few years, and these data sets have become

increasingly complicated to analyse. How to deal with large amounts of data has become

a challenge in certain fields [Laramee, a]. According to [Ward et al., 2015], when receiving

large volumes of information, people tend to use sight as the main sense to understand it.

Data visualization, as a mechanism using graphics to represent data [Ward et al., 2015],

provides a good solution for exploring huge sets of complicated data.

As stated by [Williams et al., 1995], data visualization is defined as ”the visual represen-

tation of a domain space using graphics, images, animated sequences, and sound augmen-

tation to present the data, structure, and dynamic behaviour of large, complex data sets

that represent systems, events, processes, objects and concepts” [Williams et al., 1995]. By

applying techniques of data visualization, more information can be explored.

Text data emerges in large quantities every day in newspapers, blogs, and social media.

Hence, extracting information from text data is becoming highly needed. In some certain

study areas, studying the relationship between words, sentences and texts’ structure may

help researchers to understand important information hiding in the text. For example, in

an archaeological laboratory, analysing the text they found from a historic site may help

them understand the dates of files, antecedent events, or the host of the grave, even with-

out knowing the meaning of the ancient language. Similarly in the archaeological industry,

techniques in text data analysis is fundamental and significant in translation study. Many

institutes rely on knowledge of text data analysis to explore the variation of language in

history, style of authors, as well as the social status of people in a particular period.

The ways to analyse and present text data have become a popular topic as the volume

of the text data is often huge and complicated in format, genre, and morphology. For in-

stance, languages inherited from different roots may lead to different expressions when

translating from one to another. Authors of different eras or regions may use different

words to express the same things. The same contents may appear in different styles of ex-

pressions according to the purpose of the texts. Also, to deal with these problems, text

data can be analysed and represented from lexical, syntactic and semantic perspectives

[Ward et al., 2015], so that the unstructured text can be converted to structured data.

Calculating frequency and weights of words can help to explore the information of con-

tent. There have been plentiful tools to visualize the structure of text data, such as Word

Clouds, Word Tree, Tex Arc, etc. And for different research purpose, text data are often

analysed separately in a single document and a collection of documents. One such collec-
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tion of documents is Othello.

Othello, as one of the greatest tragedies of Shakespeare’s plays, has been translated more

than 60 times in German [Geng et al., 2011].The College of Arts and Humanities at Swansea

University has a collection of 55 different German translations of Othello. The time span

of these translations range from 1766 to 2010. And there are also different genres such as

poems and prose, as well as plays. Applying data visualization techniques to help repre-

sent these text data will contribute to new research in the study of Shakespeare’s work,

and explorations into visualization. More concretely, the aims of this project are as fol-

lows:

• To develop an interactive visualization system that enable the researchers in the Col-

lege of Art and Humanities to explore detailed translation information of different

versions.

• To design a software of textual data visualization to display more information by

compare different versions of translations, such as time span, genre, interpretation.

• To explore potential solutions in textual data visualization for difficulties in transla-

tion comparison, such as parallel text and data filtering.

Using textual data visualization as an aid to explore the text data of Othello’s transla-

tions will benefit for researchers to understand the changes, interactions, and impacts of

these translation versions and cultures, time span, and styles [Alrehiely, 2014]. Based on

the work of [Geng et al., 2015], [Alrehiely, 2014], and [Tom et al., 2012],we attempt to de-

velop an interactive visualization system aimed to allow our users to view, compare, and

analyse tokens in each version. The visualization tool will be designed to assist in viewing

the variation of tokens in different translation versions, and in comparing the varieties of

tokens after applying different methods to process the text data. Apart from the essential

information about each version, such as the author and data of publication, there are three

unique fields the data provides: the frequency of tokens, weight of tokens, and results from

lemmatization for tokens.

The outcomes of the visualization system should be helpful in understanding the variation

of word morphologies, varieties of text styles, and the complex features of the German lan-

guage. It also facilitates improved comprehension of literature dynamics, the differences

between languages, and the perception of translating cultures. Moreover, this project will

provide a visualization tool for books, articles, newspapers, etc., to represent large sets of

text data.
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The German Shakespeare text data in this project, several special problems are caused by

antiquated language, and poetic orthography. The former means that some words used in

the 18th or 19th century may not be in the lexis of training corpora, if these are based on

20th/21st century sources. And by using the poetic orthography, take “verloren” (mean-

ing: lost) for example, the word is normally written as “verloren”, though can also be

spelled verlor’n, or verlorn in some places in Shakespeare texts (the word normally has 3

syllables, pronounced VER-LOR-RUN, but the writer wants it to be spoken as 2 syllables,

VER-LORN). This kind of situation happens a lot. Yet there are no effective algorithms

to recognise these forms. To find a solution to these problems, some methods from Natural

Language Processing may be applied, such as lemmatization.

Choosing this project for my dissertation was on account of my interest in the field of data

visualization and language analysis. The background of programming and language study

will further my comprehension of data analysis and processing. Developing a project such

as Translation Visualisation is becoming a significant topic for language studying and text

data processing.

Following [Laramee, 2011], the rest of this thesis is structured as follows: Section 1 to sec-

tion 4 are modified versions of work previously presented by the author in [Liu, ]. Section

2 details the background research, along with the literature review, introduction to exist-

ing systems, and data characteristics. Section 3 details the specifications of the project,

which includes the features specification of software and technology choices. Section 4

presents the approach of the project, time arrangement and potential risks. Section 5 pro-

vides an overview of project design. Section 6 describes how the project is implemented.

In section 7, we provide the performance and feedback from a domain expert as an evalua-

tion. Section 8 draws a conclusion of this project, and section 9 discusses potential further

work.
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2 Background Research

In this section, a literature review is first introduced to present the most relevant works to

this project. In the second part, previous systems in a similar project are introduced. The

third part provides a detailed analysis of the data characteristics.

2.1 Literature Review

This section defines principles and techniques for data preprocessing and text data visuali-

sation.

Text Visualisation Browser [Kucher, 2014] is an online tool which provides the most com-

prehensive summary of published text visualisation [Cao and Cui, 2016]. According to

Text Visualisation Browser, from 1976 to 2017, there exist 400 published text visualisation

papers in total, in which 396 publications are aimed to analyze text alignment. By search-

ing ’Word’, there shows 20 publications, and ’Translation’ gets 16 results. Whereas when

typing ’Frequency’ and ’Weighting’, each keyword gets one results. Also, keywords such as

’Machine learning, ’Data Mining’, ’Natural Language Processing’ got no publication col-

lected. The results indicate that in text visualisation domain, most researchers focus on

presenting alignment of texts. There are certain amounts of research focus on the topic

such as ’word analysis’ and ’translation’, which is similar to this project. However, apply-

ing more specific techniques such as ’Natural Language Processing’ haven’t been applied in

text visualisation widely.

Interactive Exploration of Versions across Multiple Documents

In the work of Interactive Exploration of Versions across Multiple Documents, [Jong

et al., 2008] provide an interactive visualisation tool, MultiVersioner, to address the is-

sues of comparing several versions of texts. The MultiVersioner enables users to search for

items such as words, phrases and lines, along with the analysis of the frequency patterns

of these items. In addition, methods such as colour-coded highlighting and overview are

also rendered in this tool. Figure 1 serves as an example of overview for many versions and

documents in this software. In the overview, terms are denoted by blocks. If user mouses

over a single block, a tooltip with the relevant sentence will be popped up.
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Figure 1: An overview of many versions and documents in MultiVersioner ( [Jong et al.,

2008]).

The work of MultiVersioner allows users to compare multiple documents. Meanwhile, it

provides a helpful feature to search for entities such as words and lines. Moreover, it can

be served as a tool to analyse the frequency patterns of the words. However, there are only

limited features provided in this software. Some helpful functions such as alignments be-

tween versions, or version turning on and off need to be explored.

Interactive Visual Alignment of Medieval Text Versions

[Stefan and Wrisley, 2017] discussed novel methods to compare text versions in the work

Interactive Visual Alignment of Medieval Text Versions. They provide a visual analytics

system which enables computationally align complex textual differences such as orally in-

flected text. The data they deal with is a group of medieval poetries with complex text

forms. Their works include three basic visualisations:
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• A visualisation of text alignment This is a visualisation in which highly unsta-

ble text versions are identified and aligned. This feature is accomplished applying

parameter-driven approach. Moreover, a visual analytic process is rendered which

accept tweaking parameters for iterative improvement of the alignment.

• Multi-level alignment visualisation In this view, various visualisations are pre-

sented which enables users to analyse texts alignments on different hierarchy levels.

• Meso Reading This is a visualisation to interpret texts in parallel. Similarly, the

connections are demonstrated among text versions. This feature is considered as a

novel feature which provides an intermediate perspective to display complex variance

in texts.

Figure 2 is an interpretation of this project. The screenshot in [Stefan and Wris-

ley, 2017] displays different views of the distant reading, the meso reading, the close

reading, and full-line matches. In part one, distant reading results of high similarity

on words are displayed in the form of parallel lines. In addition, diagonal lines repre-

sent several repetitions. In part two, meso reading results are shown in the verse line

’Qui me dist que li ange sont’. In part three, a close reading feature is explored to

show false positive alignment while part four are the matches for numerous full-line

text.

Figure 2: (1) distant reading (2) meso reading (3) close reading (4) full-line matches (

[Stefan and Wrisley, 2017]).

However, this tool is more suitable for French context, which limited the rage of data text

can be processed applying methods in this work.
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Visualizations Translation Variation of Shakespeare’s Othello: A Survey of

Text Visualisation and Analysis Tools

In their work Visualizations Translation Variation of Shakespeare’s Othello: A Survey

of Text Visualisation and Analysis Tools, [Geng et al., 2011] developed a visualisation sys-

tem which can be used to view and analyse variations between translation and based text.

The data of this project is a collection of German translations of Shakespeare’s Othello.

In this project, several techniques are applied to get an interactive visualisation system.

These techniques include parallel coordinate, Tree-map, and DOI-tree. The tools which

they developed provides features that enable users to brush words so that these words can

be displayed in a parallel tag cloud. Figure 3 is a screen shot which illustrates the outcome

of applying the TagCrowd feature into one of Othello translation version. In this view, the

stop words are identified and removed manually from the original text.

Figure 3: The TagCrow ( [Tag, ]) visualisation of a passage from Othello.

ShakerVis: Visual Analysis of Segment Variation of German Translations of

Shakespeare’s Othello
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ShakerVis [Geng et al., 2015] is a special visualisation tool which is designed to pro-

vide an interactive visualisation system to display version variations. In this system, [Geng

et al., 2015] applies following visualisation techniques:

• Parallel Coordinate View provides outcomes by using Eddy value. The descrip-

tion of Eddy value can be seen in Previous System chapter.

• Scatter Plot View presents an average similarity value for each translation across

multiple segments.

• Term-document Frequency Heat Map renders a way to analyse differences be-

tween pairs of versions in details, including a measurement of character-string simi-

larities.

2.2 Previous Systems

The Version Variation Visualization (VVV) project was introduced by Dr Tom Cheesman

from Modern Language Centre at Swansea University. It aims to create interactive data

visualisation system to build cross-cultural exploration networks. The VVV project fo-

cus on developing digital tools which can help to compare and analyze different versions

of translation [Cheesman et al., 2012]. So far, the tools developed in the project is Ebla,

Prism and ShakerVis. Ebla served as the corpus, is a software to stock the text data and

detailed information about them. Prism provides the interface for separating texts into

segments and processing the segments as alignment. Based on the idea of this two soft-

ware, ShakerVis provides an interactive interface for visualizing the information of the

translation versions [Geng et al., 2015].

There are three types of data visualisation in this project: Time-Map, Alignment Maps,

Parallel view and Eddy and Viv view.

Time-Map

Figure 4 supplies a screen shot of Time Map, which shows the location of the authors

and the year of translation versions published. From this view, we can tell that some par-

ticular places such as Berlin and Dresden in which more authors were born this places and

more translaitons versions were published from here. This can be deemed as that these

two cities are popular places with large scale of city.
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Figure 4: A demo screen shot for Time-Map ( [Cheesman et al., 2012]).

Alignment Map

Figure 5 exhibits a parallel visualisation which provides an alignment from the segments

in th base texts to the translation versions. The yellow parts highlighted the whole seg-

ment selected while the blue line serves as the alignments. By comparing these texts, one

can tell the general differences between the base text and translations. For example, if one

segment of certain translation is longer than that of the base text, it is possible that a par-

ticular expression in German is appeared.
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Figure 5: A screen shot of the demo of Alignment Maps ( [Cheesman et al., 2012]).

Parallel View

Parallel View provides an explicit view between the base text and selected version. Fig-

ure 6 shows a straightforward view of base text and selected translations. In this visualisa-

tion, segments are more explicit to find.
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Figure 6: A screen shot for the demo of Parallel View ( [Cheesman et al., 2012]).

Eddy and Viv View

Eddy and Vis view enable researchers to understand more details of vocabulary. Figure

7 demonstrates Eddy and Viv view, which provides more information of the translation

comparison. From the sort bar, we can tell that there are four types can be visualized.

Eddy value shows the variation of words used in the segment. Relatively, Viv value pro-

vides the changes or rivalries for some segments in translation. If we choose version name,

segment length or reference date as the order of sorting, there will be other information

on translation variations. Also, there are back-translation based on machine translation

provided, which is another powerful function for comparing the text data.
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Figure 7: A screen shot of Eddy and Vis view ( [Cheesman et al., 2012]).
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3 Project Specification

This part is the specification of the project which includes the features specification and

technology choices to the software. The user features the system will also be stated. The

project specification discussed in the initial document is modified and updated here as a

section of the final dissertation.

3.1 Data Characteristics

Data is a major part of all visualisation, which along with user experience play an impor-

tant role as ”driving factor” with respect to the choice and attributes of the visualization

method [Laramee, b]. In this chapter, the data relevant to this project is analysed, includ-

ing the type, size, format, and characteristics of data. Also, a description of data prepro-

cessing will be discussed.

The data sets used in this project come from a collection of 57 different German trans-

lations of Othello, which is contributed by Dr. Tom Cheesman, from College of Arts and

Humanities at Swansea University, working on a project in [Tom et al., 2012]. To develop

analytic tools and probe the translations in this corpus, the team digitalized 32 transla-

tion versions, with the formats being normalized, texts being segmented, speech by speech

and line by line. The content of these 32 texts corresponds to Act1, Scene 3 of the English

version of Othello (1604) play as the base text. Based on this corpus, we are given 15 text

files of German translation versions by Dr. Tom Cheesman for this project. And together

with the base text in English, these 16 text sets are read and processed when implement-

ing the project.All these files are encoded as UTF-8 when converting from .docx format to

.txt format. The number of words in each document are different according to the genres

of text data (327 words at maximum, and 214 words at minimum). Figure 8 is a screen

shot of the text data used in the project. All data has been segmented and cleaned
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Figure 8: A screen shot of text data used in this project.

The text file is commonly used to store plain texts data. It is a simple text file format

which can be worked with many programming languages, including Java. Choosing .txt

file as the data set is owing to following reasons:

• The aim of this project focuses on word processing, which requires computers to

read text literally, without applying complicated data processing techniques.

• Since the text data sets in the corpus are stored in .docx format which is difficult

to read directly from Java, it is easier and safer to convert the .docx format into .txt

format.

• There exist methods in Java.io, a Java API, used to read .txt data directly from

files.

• Apart from the basic and simple information (publication year and author) of each

version, there is no need to obtain more information from the text. Additionally, be-

cause the data set in each version is not large, the computer can calculate the essen-

tial features of the data, in a short time, every time the program is ran.
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3.2 Feature Specification

This project is aimed at developing an interactive visualisation for a group of different text

documents. The result of this visualisation should assist users in identifying and exploring

the variations between these translation versions. The software has following features:

• Provide an interactive visualisation system.

• Develop a user interface serves as a tool for users to select options.

• Read and store data from .txt files.

• Provide a parallel visualisation for comparing terms in different translation versions.

• Generate concordance view with frequency bars

• Add author and publish year as the title of each concordance.

• Provide a visualisation with scroll bars.

• Connect same words in each concordance applying coloured edge.

• Provide user option for scaling the visualisation.

• Scale the size of window.

• Generate a colour mapping view, and the colour represents the frequency of words.

• Render a user option for turning translations on and off.

• Create an English-German word translation index.

• Add user option: highlight the bar and connection when clicking single bar.

• Provide user option: highlight bars with same frequency when clicking a block in

colour legend.

• Generate a Lemma and Frequency visualisation.

• Generate a Tf-Idf Visualisation.

• Generate a Lemma and Tf-Idf Visualisation.
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3.3 Technology Choices

According to the project specification and required features presented previously, the demon-

stration of technology choices is made in the following chapter.

3.3.1 Programming language

For the implementation of the software in this project, Java programming language is se-

lected to develop the software. Java has known that it is an object-oriented language and

class-based [Gosling, James; Joy, Bill; Steele, Guy; Bracha, Gilad; Buckley, 2014]. It is also

simple enough to understand fast. With years of upgrading and improvement, it has been

growing into a mature programming language. This also means using Java to develop soft-

ware will have fewer mistakes and bugs when programming. There are also active commu-

nities on the internet, in which lots of people share useful ideas and resources of Java. In

addition, due to the limitation of background which is not Computer Science, the author is

more familiar with Java programming language.

3.3.2 Java Library

Java Swing Library

The Java Swing Library is the tool we used in this project to generate GUI of the soft-

ware. This is a free, cross-platform resource which is appropriate for using Java in imple-

menting this project.

Stanford NLP Library

The Stanford NLP Library is attempted during we generate the lemma for English ver-

sion text [Sta, ]. This is a free and open source for Natural Language Processing. However,

because this library has not provided German lemmatisation function, we adopted other

solutions in this project.

3.3.3 Other Techniques

TreeTagger
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TreeTagger, developed by Helmut Schmid at the Institute for Computational Linguistics

of the University of Stuttgart [Tre, ], is a tool for annotating text data and lemma infor-

mation. It has been used to tag many languages including German.

Github

For source code backup requirement, the Github is adopted. The main software we used

most is the GitKraken (See Figure 9), which provides an interactive user interface to com-

mit project. As a version control tool, the Github helps in organizing the development

process of our software and in keeping an updated version of the software.

Figure 9: A screenshot for the user interface of GitKraken.

Dropbox

The Dropbox is another backup software which can be used to store data. We adopt

this software to store our source data in the case that equipment is broken, or the website

of Github is collapsed.

Eclipse and Visual Studio Code
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Eclipse and Visual Studio Code are tools we used in this project for Java programming.

The Eclipse is the main tool to program in Java, while the Visual Studio Code serves as a

backup software in the case that Eclipse is collapsed.

Notepad++

The Notepad++ is a free and useful tool for source code editing. It also supports edit-

ing files in many kinds of format. In this project, we adopt Notepad++ to encode data

during Data Processing phase.
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4 Project Plan and Time Management

4.1 Development Approach

Traditionally, Waterfall Model is used as the guiding methodology for many projects. It

uses linear flow to show the progress of the project and allow people to understand easily

the further steps after completing the previous step. It is suitable for sequential design,

which means it may be impossible for developers to go back to steps if they found some

problems at the end. The progress of the Waterfall Model is, according to [Adenowo and

Adenowo, 2013], include five phases: Requirement analysis, design, implementation, test-

ing, and operation and maintenance.(See Figure 10)

Figure 10: Five phases of the waterfall Module ( [Adenowo and Adenowo, 2013]).

However, when projects run out of time, the testing phase will be cut, which may lead to

poor quality outcomes. In addition, in the last step of implementation, developers may be

unaware of steps they have taken; hence, it is impossible for developers to change the code

until the last phase.
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Figure 11: A comparison between Waterfall methodology and Agile methodology ( [Agi, ]).

Unlike with the Waterfall methodology which separates the whole project into several

phases and implements it step by step, the Agile methodology separates the project into

several tasks and every task is implemented in several phases. By doing this, it is change-

able for developers when they find mistakes; therefore the quality and visibility issues

of the Waterfall methodology are solved. For this reason, we adopt Agile as our guiding

methodology when implementing this project.

4.2 Project Timetable

This section indicates time management for the project. This project can be separated

into five phases [Laramee, b] as follow:

• 1. Requirements Specification; Data Preprocessing; Project Presentation; Exploring

existing tools; Project Specification; complicated data processing techniques.

• 2. Software Design; Candidate Classes and Responsibilities; Candidate Hierarchy;

Collaboration and Subsystems;

• 3. Implementation; Software Development; GUI;

• 4. Debugging and Testing;
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• 5. Documentation;

Figure 12 indicates the Gantt chart of the project timeline. This project is initiated on

the 17th February 2016, and the final deadline is the 15th December 2017. In every phase,

there are several tasks to be done. Most of the tasks in phase one were completed by Dr.

Tom Cheeseman before the data preprocessing took place; the second phase finished before

July 2017, which allowed for more time to be used in the implementation phase. Prior-

ity needs to be given to software implementation, which will be executed according to the

designs done by previous work. After the implementation, simple Graphic User Interface

(GUI) framework will be put into effect. From the middle of November 2017, the project

commenced its debugging and testing phase. Finally, a report and Doxygen was done in

December 2017.
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Figure 12: Gantt chart for project timeline.
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4.3 Risk Analysis

This section explains the potential risks this project. Figure 13 illustrates the analysis of

these risks: The first risk is the limited time. The impact of limited time has been consid-

ered as high because the project requires a high level of attention to detail which is time-

consuming. Regular meetings with the supervisor were important to consult on the diffi-

culties encountered during the process. The second risk identified is the personal illness of

the author. It is a low possibility risk with medium impact for the project. To deal with

this case, keeping a good healthy is important to author herself. In addition, there is wel-

fare service department on campus and the author has the international student’s insur-

ance. Equipment failure is identified as the third risk. It is classified as medium in terms

of both possibility and impacts. Yet the resources of Swansea University are available 24

hours per day, which will reduce the impact of this risk. In addition, using the application

Github for regular backup is essential. Data loss is considered as the fourth risk. The pos-

sibility of this happening is low but will cause high impact on the project. To avoid this

situation, Dropbox is essential for backup. The last risk the necessities having a new su-

pervisor, due to unforeseen circumstances. Swansea University procedure exists to support

students by providing a second supervisor.
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Figure 13: A screen shot of Risk Analysis Table ( [Liu, ]).
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5 Project Design

Project design is the first step in software development. Due to the programming language

used to implement the project being Java, the design will follow object-oriented principles.

Classes and their responsibilities will be provided in following sections.

5.1 Data Reading

Data preprocessing is the first stage in doing this project. As discussed in Chapter 2, the

data source is a collection of 16 .txt files. In the following part, all classes in Data prepro-

cessing phase are introduced, with diagrams to illustrate the concept of the design.

DataReader Class

The DataReader class is one of the base classes that is designed for reading and process-

ing data from all 16 files. The data is then passed to other objects to be stored and used.

There are five main functions as follows:

• Read data from .txt files;

• Calculate term frequencies, point locations, colour values;

• Pass the calculated values to other classes and store them;

• Accept Tf-Idf values from other classes;

• Generate a List of Lists to store all information needed and pass that to visualisation

parts;
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Figure 14: DataReader Class Diagram.

The structure of the DataReader class is presented in Figure 14.

Item Class

The Item class is an object class used to store the basic information of terms: the string

of word, frequency, rectangle, Tf-Idf value, location, font, translation sets, and lemma. All

these values are generated from the DataReader class. Then these values are stored into

lists of Item objects as a column. When the visualization is being generated, these values

will be used directly. The data can also be modified from accessor methods when interact-

ing with software. The class diagram is shown in Figure 15.
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Figure 15: Item Class Diagram.

Version Class

The Version class is another object class used to store information related to each ver-

sion of the text, such as author, publication year, title location. It also includes a list of

Item objects for the concordance of this translation version. After all 16 texts have been

read and processed, there will be a list of Version objects generated and the data will be

displayed and modified on the visualization panels. The class diagram of Version class is
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shown in Figure 16.

Figure 16: Version Class Diagram.

TFIDFCalculator Class

The TFIDFCalculator class is designed to process the Tf-Idf value for each term. The

Tf- Idf calculation comes after the original data is read and processed so that the term

frequency can be used directly in this class. This class includes 3 stages:

• Accept frequency data and word sets from DataReader class;

• Calculate Idf value using word sets;

• Calculate Tf-Idf value and pass them back to DataReader class;
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The algorithm of Tf-Idf value will be introduced in the Implementation chapter. The class

diagram of TFIDFCalculator is presented in Figure 17.

Figure 17: Tf-IdfCalculator Class Diagram.

LemmaProcess Class

The LemmaProcess class is designed to generate lemma for each term. As shown in Fig-

ure 18, this class includes three main steps:

• Read data from German lemma corpus;

• Search lemma for each term which is passed from DataReader class;

• Store the lemma for each term into a new .txt file;

Detailed information of the lemma processing part will be stated in Implementation part.
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Figure 18: LemmaProcess Class Diagram.

5.2 Tasks to Support Visualisation Mantra

TranslationVisualisation Class

The translation generation stage comes after data reading and processing (See Figure

19). The Transla- tionVisualisation class is designed for accepting all data processed from

the data reading phase and generating the visualization using the software. This includes

following stages:

• Accept data from DataReader class;

• Initialize all GUI components;

• Pass the data to GUI components;

• Set GUI components and add them to accordingly visualisation panels and frames;
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Figure 19: TranslationVisualisation Class Diagram.

5.3 GUI

Most of the GUI classes in the software are inherited from Java AWT libraries.

ConcordancePanel Class

The ConcordancePanel is the main visualization panel in the software. It is inherited

the JPanel class which belongs to Java Swing library. It is designed to render a canvas
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drawing of all parallel visualization of concordances. Data is passed from the visualization

part and used to display visualization within the ConcordancePanel. There is also a Mouse

Click Listener in this class used to listen to the rectangle area clicking event. Several func-

tions of this class are as follow:

• Accept data from DataReader class;

• Initialize JPanel;

• Draw strings, rectangles, lines on the canvass;

• Pass events data from event listeners;

• Recalculate data;

• Repaint the graphic;

The class card of ConcordancePanel class is shown in Figure 20.
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Figure 20: ConcordancePanel Class Diagram.

ColorLegendPanel Class

The ColourLegendPanel class inherits data from JPanel. This class renders a colour

map, where each colour owns an event listener. The data passed in this class is term fre-

quencies, or Tf- Idf values, depending on user preferences. An event listener is added to

each colour block to listen which block is selected. Then the selected data will be passed

to TranslationVisualisation class. The class diagram is displayed in Figure 21.
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Figure 21: ColorLegendPanel Class Diagram.

VersionChoosenPanel Class

The VersionChoosenPanel class inherits from JPanel. There are several steps in this

class:

• Accept data from DataReader class;

• Initialize JPanel;

• Display version titles in JCheckBox as a version selector;

• Pass events data to ConcordancePanel class;

• Display which version is selected;

The structure of this class is shown in the diagram of Figure 22.
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Figure 22: The VersionChoosePanel Class Diagram.
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6 Implementation

In this section we describe how the project is implemented in detail. The subsystems ex-

ecuted are data reading, visualisation rendering and the user options. Screen captures of

the GUI are added to illustrate further information.

6.1 Data Processing

The main concept of data processing is to read text data from .txt files, calculate values

need, and store them into Java Arraylist. At this stage, the greatest challenge is to keep

the data being accessible and can be changed, as the new data may be written over the

old due to events in other class. Hence, after the original data is read and stored, it is re-

trieved and modified through mutator methods [Laramee, 2009]. In addtion to the flex-

ibility, another difficulty at this stage is generating values for each term and store them

appropriately. As discussed in the Project Features section, the aim of the software we de-

signed is to present information about terms and provide an concordance view for each

version. In this project, we calculate and sort frequencies of terms; compute colour values;

computed locations of strings; instantiate Rectangle objects to represent data; create ar-

rays to store translations.

Java.io, which enables for system input and output through data streams, is used in this

project. It serves as a data buffer and reader in this project. The FileReader class, which

extends the InputStreamReader class, can be used to read character files which by default

are assumed to be an appropriate size. Since the volume of data in each document is not

large, we instantiate a FileReader (object) to access each text file. The other data reading

class adopted is the BufferedReader class. It is used to read text data from a character-

input stream, and buffer the data to provide efficient reading of strings, arrays and lines

[Gosling, James; Joy, Bill; Steele, Guy; Bracha, Gilad; Buckley, 2014]. Java.util is another

package imported in the DataReader class. To store and access data, the ArrayList, Hashtable,

and Map classes from this package are used. In addition, classes such as JsonObject, Json-

Reader, and JsonArray in Javax.json package are used to read data from a Json file.

The main class that is responsible for reading the original data file is the DataReader

class. This class analyses .txt files and generates a list of Version objects to parse all infor-

mation needed in the software. Each Version object stores information of the concordance.

For a more detailed description of the Version class and Item class, please see the Design

section.
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6.2 Generating Concordances

Concordances are the most basic visualisation in this project. They are designed to display

the information of terms, and to help in comparing the terms between different translation

versions.As shown in the Figure 23, the concordance visualisation involves several parts:

Figure 23: The Screen shot of one concordance in the visualisation

• String is drawn to display the term, frequency, version author, publication year;

• Rectangle is used to present the frequency. As the values are sorted in data pro-

cessing phase, the width of rectangles are set according to these sorted values.

37



• Colour is used to present differences on frequency. Each colour represents a number

of frequency, so there will be same colours in different terms.

The process in generating the concordance visualisation goes through the following steps:

• Obtain the string of each term from text source. This step is done in the DataReader

class. Detailed illustration seeing Data Reading implementation section.

• Calculate the number of times, namely term frequency, of each term occurred in the

text (See Data Reading implementation section).

• Calculate the rectangle width for each term using the frequency of term. The equa-

tion of the rectangle width calculating is show in Equation (1):

rectWidth = wordFrequency ∗ unit ∗ scaleV alue (1)

Where unit is the width of each segment since the rectangle is composed of a number

of segments. WordFrequency is the value deciding how many segments compose the

rectangle, while scaleValue is the percentage value used to scale the rectangle, range

from 10% to 200%.

• Calculate the location of the string and rectangle.The location, or point, is the start

drawing point for the string and rectangle. It combined with two point value: point.X,

and point.Y. The Equation (2), (3) illustrate how we calculate these points in the

software:

point.x = versionNumber ∗ versionDistance ∗ scaleV alue (2)

point.y = lineNumber ∗ lineDistance ∗ scaleV alue (3)

Where versionNumber represents order number of the version. versionDistance per-

forms the distance between two neighbour versions. In addition, a scale value need to

be multiplied so that the location of string and rectangle changes according to user

preference. Similarly, the lineNumber is order number of the term while lineDistance

represents the distance between two terms.
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• Calculate the value of colour. According to [Jbu, ], we use the equation as shown in

Equation (4):

color = Math.sin(colorFrequency∗wordFrequency+phase)∗amplitude+center

(4)

Where colorFrequency is a constant that controls how fast the wave oscillates. The

wordFrequency is variable used to display different colour according to word fre-

quency. The phase is applied to change the alignment of the green or blue sine waves.

The amplitude controls how high (or low) the wave goes. The center controls the

center position of the wave.

• Paint the strings, blocks, and colours by invoking drawing methods in Graphic class.

6.3 Parallel View of Concordances

Following the generation of the Concordance visualisation, a parallel view of all concor-

dances is created, as shown in Figure 24. During this stage, lines are drawn to highlight

identical terms. The comparison stage is done in the ConcordancePanel class.

Figure 24: Parallel view of concordances.
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However, after this parallel visualisation is generated, an obvious problem appears, there

is not enough space for all 16 concordances to be shown simultaneously. Therefore the so-

lution is either to scale the panel, or to select several versions for showing at one time. We

have included both solutions, which are detailed in the following section.

6.4 Zooming

Zooming in and out is a basic feature in the software which is designed to provide two

zooming options: one is for scaling the content of the visualisation, the other is for scal-

ing the frame. In addition to these two scaling options, there are also scroll bars used to

scroll the visualisation panel.

To implement these features, several steps as followed are gone through:

• Generate the JSlider objects. This is carried out in the TranslationVisualization

class. Figure 25 displays the JSlider applied in the software.

Figure 25: The screen shot of the JSliders.

• Obtain scale values from JSlider object and pass them to DataReader class.

• Recalculate the data by invoking the calculating methods such as calculatePoint()

and setRectWidth().

• Update the List¡Version¿ object.

• Repaint graphics.

During this process, the most difficult part is to recalculate all values of graphics: points,

widths and heights for rectangles, and the distances between versions. To overcome this

dilemma, two solutions are attempted: At the first phase, scale() method in Graphics2D

class is invoked. By applying this method, computer will calculate and repaint all the

graphics using scale parameters passed in. However, when the project prompting to the

Term Selecting phase (See Interactive Selection of Terms section below), a problem of ob-

taining mouse clicking location appears. Hence, the second phase of scaling visualisation

comes out.
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At the second phase, scale values attained from JSlider objects are passed to DataReader

class and applied in relevant formulas to calculate variables such as points, widths and

heights of rectangles. See Equation (1), (2), and (3). As shown in 25, 100 is set as the ini-

tial value for the slider, so that the visualisation shown when the visualisation generated

at the first time is scaled as 100%.

6.5 Text Label Toggling

As the scale values become smaller, the strings begin overlap. This inspires a new fea-

ture; toggling labels in the visualisation, enabling users to focus only on the rectangles and

colours. Hence a new desire appearing: hide strings on the visualisation. So that users can

focus on the rectangles and colours only. Next, an event listener is registered to the JBut-

ton. When the button is clicked, its label value is replaced by “Text Off”. Consequently,

with the default state ‘true’ is toggled ‘false’, then passed to the ConcordancePanel class.

In the third step, a boolean value preset when drawing strings of terms will be assigned

the same truth value as the boolean passed in. If it is ”true”, then draw the strings, else if

it is ”false” then do not the drawString() method. Finally, we repaint the graphic. Figure

26 is a screen shot of concordance view with labels toggled off.

Figure 26: Results of toggling off text.
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6.6 Adding, Subtracting, Selecting Items

To render the user option feature for selecting several concordances displaying on the panel,

a new class called VersionChosenPanel is created. By interacting with this feature, not

only can the user select which concordance to display in the visualisation, but also the or-

der in which they are displayed. Figure 27 shows the menu where users can select which

versions to display.

Figure 27: Version selection menu.

To implement the version selection feature we did the following steps:

• Rendering a list of JCheckBox objects to display the author name as the index.

• An event listener for each JCheckBox object, so that the action of selection can be

generated as an object of class Object.

• Toggle the selecting status of the index.

• Generate a new list of Version objects according to the events passed from JCheck-

Box’s ActionListener. Every time the user selects a name in the index, a new list of

Version objects will be generated and passed to the ConcordancePanel.

• Redraw the concordance visualization by invoking ConcordancePanel’s repain()

method.

• Add an option to toggle the display of all concordances, which is responsible to dis-

play or hide all concordances as their original order.
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Figure 28 shows the base text, which originally appears first in the display is now last.

Figure 28: The screen shot of version selection feature.

6.7 Interaction and Selection of Terms

On the grounds that each concordance contains a large number of terms, the ability to

highlight terms defined by the user is desired. In order to provide an features for terms,

new features are putting in the visualisation. Therefore a clear view of highlighting terms

comes out.

This features are achieved by put into effect the following phases:

• Obtain the mouse pointer’s co-ordinates via the getPoint() in MouseEvent class.

• Calculate which item region the point lies in. In this process, the regions of the dis-

play are divided as term regions. As the value of each region is calculated during

data reading phase, the point passed from mouseClicked() method can be used to

identify which region the point belongs. Further more, the Item object of this block

is singled out and rendered.

• Identify the Item objects in other concordances sharing the same term, and pass

them to [the highlighting method].
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• Highlight the blocks of all selected Item objects. In this step, lines are drawn around

the rectangles.

• Make other blocks transparent by setting the transparency values.

• Overwrite the colour values of all lines to make the lines connecting two highlighted

items are also highlighted, while other lines becoming semitransparent.

• Retrieve the translation of this term and highlight the blocks in the original English

version.

As a result, by clicking one single rectangle in the panel, the rectangle is highlighted and

given an border while the colour of the other rectangles become transparent.additionally,

the lines connecting identical terms are likewise highlighted by setting other lines transpar-

ent. An illustration of this feature can be seen in Figure 29

Figure 29: A visualisation of highlighting certain word in the concordance.
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6.8 Colour Mapping

The colours selected are related by the number of occurrences of terms in each concor-

dance. To increase visibility, the visualization should use as large a range of colours pos-

sible., which can be achieved through colour mapping. In this project, we instantiate the

ColorLegendPanel class to fulfill this role. In addition, values of the frequency are dis-

played in the Colour Mapping view. The following is the process took to implement this

function:

• Retrieve the colour value of each item from the DataReader class. An explanation

of colour values can be found in Data Reading chapter.

• Instantiate JLabel objects as representation for colours.

• Add the JLabel objects to the panel.

• Display frequency values beside colour blocks.

The demo of Colour Mapping is shown in Figure 30.

Figure 30: A screen shot of colour mapping.
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6.9 Interactive Colour Legend

Colour mapping is not reserved for just static visualizations, we can dynamically change

the map to create an interactive visualization. In this project, we add a feature enabling

users to interact with the colour legend. If the user clicks a label in the colour legend, all

blocks of that colour in the concordance view will be highlighted. This function is per-

formed by identifying all items possessing the same frequency value. As illustrated in the

Design chapter, an index of frequency values is generated in the DataReader class. Af-

ter data reading phase, we can access this list of frequency values through an accessor

method. By iterating through all values in the list, the ConcordancePanel class, where the

list of Version objects is overwritten and the panel is repainted.

As a result, by clicking one colour block in colour legend, all items sharing the same fre-

quency, or colour, are highlighted using the same methods of highlighting described in

Interaction and Selection of Terms chapter. Figure 31 serves as a demo to illustrate this

feature.

Figure 31: A screen shot of highlighting items sharing same number of frequency.
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6.10 Lemmatisation

The lemma visualisation is a significant feature in this project. Lemma is a linguistic term

which is described as the dictionary form of a word. Word ’decide’ is the lemma for ’de-

cided’, ’decides’and ’deciding’. Accordingly, lemmatisation is the process to obtain the

lemma for each word. To achieve the effect of lemma view, several steps are necessary:

• Obtain the German lemma corpus which contains an index of lemmas and words.

• Compare the words in our German translation corpus with the words in the Ger-

man lemma corpus, and find the lemma for each term in our corpus.

• Store all the lemmas found and generate a new lemma index.

• Apply the lemmatisation results into visualisation.

For this project, an inevitable dilemma is the limited resources of German lemma corpus.

As illustrated in Data Characteristics chapter, no relevant German lemma corpus was pro-

vided when we start this project. Also, German, as an affected language, is difficult to

lemmatise. During this process, we attempted two solutions: Treetagger and DeReWo,

which we explained in following sections.

6.10.1 TreeTagger

As introduced in the Technology Choices chapter, TreeTagger is a tool for annotating text

data and lemma information. Figure 32 shows the User Interface of the TreeTagger. While

applying this tool in the lemmatising task of the project, we found this tool has the follow-

ing advantages:
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Figure 32: The User Interface of the TreeTagger.

• The software is easy to obtain, without any redundant procedures such as registra-

tion. The tool can be downloaded directly from the website http://www.cis.

uni-muenchen.de/˜schmid/tools/TreeTagger/.

• The user interface of the tool is clear and easy to use.

• The software takes as parameters a .txt file and returns a .txt file of results.

However, there are also some problems we encountered:

• The format of the text file must be encoded in Latin-1, while the text file we have is

encoded in UTF-8. Therefore, some German terms with special characters cannot be

recognised by the tool.

• From the results we achieved, the tool cannot recognise words with capital letters.

• The tool cannot be used to lemmatise a batch of files at one time, which is not ap-

propriate for a project which needs to process large datasets.

We connected a domain expert, Dr. Tom Cheesman from the College of Arts and Human-

ities at Swansea University, to evaluate the results of the lemmatisation produced by Tree-

Tagger. Due to the low accuracy of the results for the data in this project, this solution

was discarded in the end.
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6.10.2 DeReWo

DeReWo is a project done by ’The Institute for the German Language’. This project aims

at developing methods to create frequncy-based ranking list of lemmas based on random

virtual corpora. In the DeReWo website http://www1.ids-mannheim.de/direktion/

kl/projekte/methoden/derewo.html?L=1, there are some downloadable resources

of German lemma, including ’DeReKo-2014-II-MainArchive-STT.100000.freq’, which is a

file storing top 100,000 German words, lemmas and POS. The format of this document

is .freq, which can be edited in Visual Studio Code. It also can be read by Java directly.

Using this corpus, we successfully obtained all the lemmas for each term in the Othello

corpus for this project.

There are several phases of using DeReWo to generate lemma visualisation:

• Read text file from Othello corpus.

• Read German lemma corpus file.

• Search for the lemma of each term.

• Store the lemma in a new text file. In this step, we create 15 .txt files for all Ger-

man translations. For each version of Othello translation, the two files (Othello source

file and lemma file) are served as an index for words and lemmas.

• Replace all terms with their lemmas and visualise the new results.

Figure 33 shows the outcome of the lemma visualisation.
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Figure 33: A screen shot of Lemma view.

6.11 Tf-Idf

Tf-Idf visualisation is an important feature in this project. As explained in the Design

chapter, the Tf-Idf value represents the weightings of words, which also means we can

get rid of unimportant words, namely stopping words. Therefore, the visualisation pro-

vided will be more helpful for researchers to study the varieties of translation. To fulfill

this function, the most challenging step is to implement the formula of the Tf-Idf into

code [Manning et al., 2009]. The TfIdfCalculator class is created to process the Tf-Idf val-

ues.

The Tf-Idf visualisation generation process goes through the following steps:

• Calculate term frequency value. This step is done in the data reading stage. The Tf

value hence can be achieved from DataReader object.

• Calculate Idf value.

• Replace the frequency with Tf-Idf value.

• Visualise according to the new results.

There are two visualisations generated using Tf-Idf value: one is to visualise the data us-

ing its Tf-Idf value and the original unchanged terms, as shown in Figure 34; the other
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form is visualized using Tf-Idf is to visualise using Tf-Idf value together with lemma data

which is displayed in Figure 35.

Figure 34: A result of Tf-Idf visualisation.
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Figure 35: Lemma and Tf-Idf Visualisation.
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7 Evaluation

In this section, we provide the description of the performance of the project, along with

the illustration of our observations from the outcome of the visualizations. Feedback from

a domain expert was also sought and forms part of this evaluation. evaluation.

7.1 Results

High Frequency View

The High Frequency View is the basic feature and the primary task in this project. In

this visualisation, we provided a parallel view of concordances to display the most frequent

words in each version of the translation. As shown in 29, the colour of blocks differs from

each other and the width of blocks represents ranges from the longest to the shortest. A

highlight feature allows user to see same terms in each concordance.

However, from the results in the frequency visualisation, we can tell that the most frequent

words in each version are the noise, and stop words such as ’ich’ which means ’I’ in En-

glish, or ’und’ which means ’and’ in English. These kinds of words are little help in trans-

lation comparison.

Tf-Idf View

The Tf-Idf View is another feature provided in this project. Based on features in High

Freuency View, the Tf-Idf View displays the most important words in the concordance.

Therefore, the results of this visualisation are quite different compared to the High Freuency

View. In Figure 34, 27, terms in each concordance changed significantly. As illustrated in

the Tf-Idf visualisation implementation section, if a word is listed on the top of a concor-

dance, it means this word may appear many times in this version of the translation, while

appearing not so frequently in the other concordance. For example, in Figure 36, we see

the word ’fassung’ meaning ’composure’ (in the 1941 version of the translation written by

Schwarz) appears to have a high Tf-Idf value. When selecting ’fassung’, it appears that no

other blocks are highlighted, which means this word is not used by other authors. There

are several guesses for this result:

• The word ’fassung’ is used multiple times in this translation version. So this is used

to translate certain word or express specific meaning. (In this text, it is used to trans-

late ’patience’ or express ’the state of being calm and in control of oneself’)
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• This word does not appear in other versions, and we can assume that special trans-

lation techniques were adopted, such as reformulation, adaptation, or compensation.

• This unique outcome is likely because of culture influences. Different cultural influ-

ences may lead to nuances in linguistic expression. In other words, the author may

come from a distinct region when compared with other places and people can use

different words to express the same meaning.

Figure 36: The word ’fassung’ is ranked high Tf-Idf value in one version

Lemmatised View

Lemmatised View is generated after applying a lemma corpus to process our data. After

lemmatisation, words are supposed to change into the original form, namely, the dictio-

nary form (See Implementation chapter for relevant explanation). This feature is designed

to combine the same words with different inflected forms. For example, the English word

’you’ can be translated into ’dir’, ’du’, ’sie’ and ’euch’ in German. Figure 37 is the result

after we select ’you’ in the base text concordance. However, in Lemmatised View, only

’ihr’ is highlighted.
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Figure 37: After clicking the block of English ’you’ in base text, all German translations

in other concordances are highlighted, such as ’dir’, ’du’, ’sie’ , ’euch’, and ’euch’.

Figure 38: After clicking the block of English ’you’ in base text, only one German word is

highlighted.

As a result of lemmatisation, the length of column is shorter in the lemma view than in

the frequency view. Also the frequency of words are changed. This can be seen from the

colour legend in 39. Similarly it can be assumed that the variety of words are more obvi-

ous. However, more proofs and interpretations need to be explored in the future.
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Figure 39: After combining the inflected form of words, the frequencies are incremented.

Lemmatised Tf-Idf View

The last view we rendered is the Lemmatised Tf-Idf View. In this view, both the tech-

niques of lemmatisation and Tf-Idf are utilized to display a parallel translation comparison

in the software. From this visualisation, not only can we see the dictionary words, but the

stop words are filtered. To prove the advantages of these results, two comparisons is neces-

sary:

• Tf-Idf View vs Lemmatised Tf-Idf View

The German word ’wen’, meaning ’whom’ in English, which bears little content in-

formation but merely performs grammar function. In Tf-Idf visualisation of Figure

34, the word ’wen’ ranked on the top of second version from the left which is writ-

ten by Baudissin ed Wenig in 1832 [Hotho et al., 2005]. However, in Figure28, which

applied both lemmatisation techiniques and Tf-Idf algorithm, this word disappears.
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This can be caused by the virtue that the word is combined with the dictionary word

of ’wen’, which has low Tf-Idf value.

• Lemmatised View vs Lemmatised Tf-Idf View

If we only apply lemmatisation in the visualisation, stop words are still present. In

Figure 33, words such as ’die’(’the’ in English), ’ich’(’I’ in English), and ’und’(’and’

in English) are all considered as stop words [Hotho et al., 2005], which contribute

little in translation studies. In the Lemma and Tf-Idf view, these words have disap-

peared because they are ranked to the bottom.

7.2 Domain Expert Feedback

A domain expert, Dr. Tom Cheesman from the College of Art and Humanities at Swansea

University, was invited as the user to give feedback on this project. During the meetings,

we demonstrated the visualisations and features to him. The first one was organised on

13th November, 2017. Following the feedback, some features were overwritten and several

new features were developed. The second meeting was on 4th December, 2017, in which he

approved the new features.

7.2.1 Session 1

At this stage, High Freuency View was finished, along with features such as turning the

visualisation on and off, scaling the frame, version selection, and colour legend were imple-

mented. Dr. Tom Cheesman expressed his interest by leaning his body to watch closer to

the laptop. He asked some questions such as ”What do the numbers beside colour legend

represent?”, ”What are the connections?”. He also requested that only the base text and

three other German translations were shown so that he could understand the alignments.

In the feed back, words like ’interesting’, ’useful’ and ’good’ were used a lot. Meanwhile,

other suggestions were mentioned and discussed, such as filtering stop words and seeing

the most important words, together with showing the lemma of the words to decrease in-

flected words.

7.2.2 Session 2

In this stage, according to the feedback Dr. Cheesman gave at the first meeting, we did

some more changes for the project: utilizing Tf-Idf algorithm in data processing, and using

the German lemma corpus to lemmatize the terms.
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In the meeting, Dr. Cheesman expressed his interest and excitement by saying ”This is

good, this is pulling up some interesting stuff”, ”This is great...I can play with this”. He

showed great interest in the Lemma and Tf-Idf view, and pointed out some remarkable

translations such as abbreviation words in the version written by Baudissin ed Brunner in

1947, (See Figure 40). From the view, we can tell that more abbreviation words are used

in this version which implies there is a unique translation strategy which the author uses.

At the end of this meeting, Dr. Cheesman asked for a copy of the tools for assisting his

translation studies.

Figure 40: After combining the inflected form of words, the frequencies are incremented.
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8 Conclusion

In conclusion, data visualisation is becoming a fundamental necessity in various domains

due to the need for understanding increasingly large volumes of information. This project,

which aims at developing an interactive visualisation system, reveals that there is great

potential in the ways that data visualisation can be exploited in information analysis.

The first aim for this project was to create a parallel text visualisation to assist users com-

paring words in different translation versions. This aim is met with the four visualisations:

• Visualise the most frequent words in each version. This has been achieved in the

Frequency Visualisatoin.

• Visualise the most important words in each verson. This feature can be seen from

the Tf-Idf Visualisation.

• Visualise the most frequent dictionary words in each version, which is provided in

Lemma and Frequency Visualisation.

• Visualise the most important dictionary words in each version. This visualisation is

displayed in the Lemma and Tf-Idf Visualisation.

All these four visualisations have been accomplished in this project. However, the perfor-

mance of the visualisations remain to be improved in the future. For example, all the four

visualisations are parallel texts, so the Frequency Visualisation can be combined into one

of other three visualisations.

The second aim is to provide a software application which enables interactive user options.

This is also met by rendering following features:

• Button used to toggle the visualisations.

• Slider used to scale the visualisation.

• Slider used to scale the frame.

• Button used to turn on and off the texts in the visualisation.

• Menu used to select certain concordances. It also can be used to arrange the order

of concordances.

• Interactive Colour Legend used to visualise frequency or Tf-Idf values of the

words. It also can be used to view words with certain values.
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• Interactive blocks used to view specific words and the same words in other ver-

sions by highlighting these words.

Overall, the project can be deemed to be a success. However, there are some issues with

the performance of the algorithm when version selection is attempted in Lemma visuali-

sation. A limitation with highlighting items has also been identified if the slider bars are

notmoved.

A video demonstration of the software is available along with other resources produced

for the project at the following web address: http://cs.swansea.ac.uk/˜cswang/

Xiaoxiao_Othello/Doxygen/
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9 Future Work

The first priority to continue this project would be to lemmatise the English version text.

The project for now is only supported lemma views for German lemmatisation, with En-

glish version still keep many inflected words such as ’I’, ’my’, me. Further more, if weight-

ings for these English words calculated in specific contexts is rendered, this project may

display new results. For the English lemmatisation, this can be accomplished by intro-

duced extra English lemmatisation libraries, such as Stanford NLP Java library. For the

English Tf-Idf, this can be attempted by introduce the results from VVV project, which

has a corpus stored all the Tf-Idf values computed in the corpus of all Shakespeare works

in English.

The software could also be extended to combine the views into one or two visualisation.

For example, to provide two views such as Tf-Idf Visualisation and Lemma and Tf-Idf Vi-

sualisation in one visualisation, which would allow users to compare different results. In

order to do this, new frame can be added to enable the comparison view.

Further improvements could be made to the software such as enabling users to search

words by adding a ’search box’. This can be worked out by applying ’Text Field’ in Java.
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A Minutes of Meeting

Minutes of Meeting: Bob, Rhodri, Xiaoxiao, Carlo, Mohammed

———————————————————–

Date: 1 December 2017

Start time: 15:00

End time: 16:00

Date and time of next meeting: Friday, 8 December 2017, 15:00 (Last ”Official” meeting)

Topics discussed:

– Das Institut für Deutsche Sprache–Corpus-Based Lemma and Word Form Lists(http://www1.ids-

mannheim.de/direktion/kl/projekte/methoden/derewo.html?L=1)

– Gregynog Presentation

– Meng initial document

Progress:

– 3rd year project initial document feedback

– Carlo: Implements recursive web crawler in python

– Carlo: Started sentiment analysis in NLTK in python

– Xiaoxiao: Working on swithing between TF-IDF and high frequency coloumns

– Rhodri: Plot of 1 Atom over time

– Rhodri: Draft of initial document

TODO:

– Mohammed: Ask Ben Mora for initial document specification and deadline

– Mohammed: Demonstrate working example of chess game

– Mohammed: Investigagte existing chess engines in java

– Xiaoxiao: Send link of German lemmatization ot Bob, Mohammed, Tom and Angelika

– Xiaoxiao: Prepare for demonstration on Monday

– Xiaoxiao: Try to get TF-IDF verses frequency terms user option working

– Xiaoxiao: Investigate writing help services- visit English language training services- 3rd

floor Margam Building- ask if they can help

– Xiaoxiao: Send email to 2nd supervision asking for MSc viva on afternoon of 14, 15,

Dec. (CC: Bob)

– Rhodri: Try to verify correctness of Atom pth

– Rhodri: Show starting positions of Atoms and compass with VMD (lipids) lipids only

The above is only one meeting. ’Bob’s Minutes of Meeting Protocol’ [Laramee, 2010] is

followed to document the meetings. The URL below contains all the other minutes of
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meetings. http://cs.swansea.ac.uk/˜cswang/minutes/ http://cos-ugrad.

swansea.ac.uk/838940/minutes/
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B Documentation

The file of Doxygen documentation is presented in the following pages. The URL below

contains the full Doxygen docuementation:

http://cs.swansea.ac.uk/˜cswang/Xiaoxiao_Othello/Doxygen/
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Chapter 1

Hierarchical Index

1.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

JPanel
translationVisualizatonGUI.ColorLegendPanel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
translationVisualizatonGUI.ConcordancePanel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
translationVisualizatonGUI.VersionChosenPanel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10



2 Hierarchical Index
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Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

translationVisualizatonGUI.ColorLegendPanel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
translationVisualizatonGUI.ConcordancePanel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
translationVisualizatonGUI.VersionChosenPanel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10



4 Class Index
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Chapter 3

Class Documentation

3.1 translationVisualizatonGUI.ColorLegendPanel Class Reference

Inheritance diagram for translationVisualizatonGUI.ColorLegendPanel:

translationVisualizatonGUI.ColorLegendPanel

JPanel

Public Member Functions

• GridBagConstraints getConstraint ()
• ConcordancePanel getM_ConcordancePanel ()
• void setM_ConcordancePanel (ConcordancePanel m_ConcordancePanel)
• void setColorLegend (List< Map.Entry< Integer, Color >> m_ColorIndex, List< Map.Entry< String, Inte-

ger >> m_FrequencyIndex)

The documentation for this class was generated from the following file:

• ColorLegendPanel.java

3.2 translationVisualizatonGUI.ConcordancePanel Class Reference

Inheritance diagram for translationVisualizatonGUI.ConcordancePanel:

translationVisualizatonGUI.ConcordancePanel

JPanel



6 Class Documentation

Public Member Functions

• ConcordancePanel (List< Version > versionList)
• boolean isFirstVersion ()
• void setFirstVersion (boolean firstVersion)
• boolean getM_OnAndOff ()
• void setOnAndOff (boolean onAndOff)
• int getScaleValue ()
• void setScaleValue (int scaleValue)
• DataReader getDataReader ()
• void setDataReader (DataReader dataReader)
• int getM_VersionNumber ()
• void setM_VersionNumber (int m_VersionNumber)
• List< Version > getM_VersionList ()
• void setM_VersionList (List< Version > m_VersionList)
• Version getM_singleVersion ()
• void setM_singleVersion (Version m_singleVersion)
• double getZoomValue ()
• void setZoomValue (int zoomValue)
• Point getHighlightPoint (Point eventPoint, int scaleValue)
• void displaySingleVersion (List< String > VersionSelected)
• void resetLocations ()
• void scaleConcordancePanel (int scaleValue)
• void freqHighlight (String token)
• void tokenHighLight (Point point)
• void clickTransVersion (int versionNumber, int lineNumber, Version choosenVersion, Item choosen←↩

Concordance)
• void clickBaseText (int versionNumber, int lineNumber, Version choosenVersion, Item choosen←↩

Concordance)
• void drawTitleString (Version version, Graphics g)
• void drawTokenStrings (Graphics g)
• void drawRectangles (Graphics g)
• void paintComponent (Graphics g)
• void drawLines (Item concordanceCompare, Graphics g)
• boolean isFreqOrTfidf ()
• void setFreqOrTfidf (boolean freqOrTfidf)
• Version getM_Version ()
• void setM_Version (Version m_Version)
• Item getM_Concordance ()
• void setM_Concordance (Item m_Concordance)

Public Attributes

• List< Version > m_VersionList =new ArrayList<Version>()
• boolean freqOrTfidf =false

3.2.1 Constructor & Destructor Documentation

3.2.1.1 ConcordancePanel()

translationVisualizatonGUI.ConcordancePanel.ConcordancePanel (

List< Version > versionList ) [inline]

Constructor
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3.2 translationVisualizatonGUI.ConcordancePanel Class Reference 7

Parameters

versionList

3.2.2 Member Function Documentation

3.2.2.1 displaySingleVersion()

void translationVisualizatonGUI.ConcordancePanel.displaySingleVersion (

List< String > VersionSelected ) [inline]

Parameters

List<String>

3.2.2.2 drawRectangles()

void translationVisualizatonGUI.ConcordancePanel.drawRectangles (

Graphics g ) [inline]

Draw all the rectangles for tokens

Parameters

g - the Graphic to be drawed

3.2.2.3 drawTitleString()

void translationVisualizatonGUI.ConcordancePanel.drawTitleString (

Version version,

Graphics g ) [inline]

Draw the stirng of titles, including author names and publish years

Parameters

version - current Version object

g - the Graphic to be drawed
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3.2.2.4 drawTokenStrings()

void translationVisualizatonGUI.ConcordancePanel.drawTokenStrings (

Graphics g ) [inline]

Draw token strings

Parameters

g - the Graphic to be drawed

3.2.2.5 freqHighlight()

void translationVisualizatonGUI.ConcordancePanel.freqHighlight (

String token ) [inline]

if one color on color legend panel is clicked, all tokens with the ame frequency will be highlighted

Parameters

token

3.2.2.6 getZoomValue()

double translationVisualizatonGUI.ConcordancePanel.getZoomValue ( ) [inline]

a formula is applied here to make sure we return a float value to fit the .scale() method.

Returns

zoomValue

3.2.2.7 paintComponent()

void translationVisualizatonGUI.ConcordancePanel.paintComponent (

Graphics g ) [inline]

Draw the version visualization on ConcordancePanel. This method is called from ConcordancePanel.

3.2.2.8 scaleConcordancePanel()

void translationVisualizatonGUI.ConcordancePanel.scaleConcordancePanel (

int scaleValue ) [inline]

rescale concordance panel, recalculate the locations and widths
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Parameters

scaleValue

3.2.2.9 setZoomValue()

void translationVisualizatonGUI.ConcordancePanel.setZoomValue (

int zoomValue ) [inline]

this method pass zoomValue from translationVisualization.getM_Slider().addChangeListener()

Parameters

scaleValue

3.2.2.10 tokenHighLight()

void translationVisualizatonGUI.ConcordancePanel.tokenHighLight (

Point point ) [inline]

set the transparency of the rectangles' when one token is clicked

Parameters

point

3.2.3 Member Data Documentation

3.2.3.1 m_VersionList

List<Version> translationVisualizatonGUI.ConcordancePanel.m_VersionList =new ArrayList<Version>()

the list of versions passed from translation visualization

The documentation for this class was generated from the following file:

• ConcordancePanel.java
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3.3 translationVisualizatonGUI.VersionChosenPanel Class Reference

Inheritance diagram for translationVisualizatonGUI.VersionChosenPanel:

translationVisualizatonGUI.VersionChosenPanel

JPanel

Public Member Functions

• String [ ] getM_FilePath ()
• void setInitialFilePath ()
• void setGermanLemmaFilePath ()
• void addAllVersions (String[ ] string)
• List< String > getM_versionNames ()
• void setM_versionNames (List< String > m_versionNames)
• List< JCheckBox > getM_checkList ()
• void setM_checkList (List< JCheckBox > m_checkList)
• JCheckBox getM_VersionNameCBox ()
• void setM_VersionNameCBox (JCheckBox m_VersionNameCBox, String str)
• void allSelection (ActionEvent actionEvent, ConcordancePanel concordancePanel)
• void singleSelection (ActionEvent actionEvent, ConcordancePanel concordancePanel, Boolean one←↩

Selected)
• ActionListener add_ActionListener (ConcordancePanel concordancePanel)
• void addVersions (List< String > versionNameList, ConcordancePanel concordancePanel)
• void initialize (ConcordancePanel concordancePanel, List< String > versionNames)
• GridBagConstraints getConstraint ()

Public Attributes

• List< String > m_versionNames
• String [ ] m_FilePath

3.3.1 Member Function Documentation

3.3.1.1 getM_FilePath()

String [] translationVisualizatonGUI.VersionChosenPanel.getM_FilePath ( ) [inline]

Returns

file path string array
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3.3.2 Member Data Documentation

3.3.2.1 m_FilePath

String [] translationVisualizatonGUI.VersionChosenPanel.m_FilePath

Initial value:

={ "1604 BaseText Shakespeare.txt", "1832 Baudissin ed Wenig.txt", "1920 Gundolf.txt", "1941 Schwarz.txt",
"1947 Baudissin ed Brunner.txt", "1952 Flatter.txt", "1962 Schroeder.txt",
"1963 Rothe.txt", "1970 Fried.txt", "1973 Lauterbach.txt",
"1976 Engler.txt", "1978 Laube.txt", "1985 Bolte Hamblock.txt",
"1992 Motschach.txt", "1995 Guenther.txt", "2003 Zaimoglu.txt" }

3.3.2.2 m_versionNames

List<String> translationVisualizatonGUI.VersionChosenPanel.m_versionNames

the list of String to store version names and pass this list to concordance panel and repaint new panel with versions
only selected

The documentation for this class was generated from the following file:

• VersionChosenPanel.java
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