Automatic Stream Ribbon
Seeding

Dylan Geraint Rees
849119
September 2016

Abstract

Stream ribbons are ribbon representations that run at a tangent to the
velocity at any point in a vector field. Twisting of the ribbon highlights
helicity in a vector field. The purpose of this project is to create a novel
automatic stream ribbon seeding algorithm for static vector field flows. In
addition to this, a software application capable of implementing the algo-
rithm and to visualize the results is created using C++, Qt and OpenGL
technologies. The algorithm proposed prioritises seeding points in order
of greatest helicity magnitude. Stream ribbons must be a minimum dis-
tance from other ribbons and must meet a minimum length criteria set as
a user option.

Project Dissertation submitted to Swansea University
in Partial Fulfilment for the Degree of Master of Science

Prifysgol Abertawe
Swansea University

Department of Computer Science
Swansea University



Declaration

This work has not previously been accepted in substance for any degree and is
not being currently submitted for any degree.

September 29, 2016

Signed:

Statement 1

This dissertation is being submitted in partial fulfilment of the requirements for
the degree of a MSc in Computer Science.

September 29, 2016

Signed:

Statement 2

This dissertation is the result of my own independent work/investigation, ex-
cept where otherwise stated. Other sources are acknowledged by giving explicit
references. A bibliography is appended.

September 29, 2016
Signed:

Statement 3

I hereby give consent for my dissertation to be available for photocopying and
for inter-library loan, and for the title and summary to be made available to
outside organisations.

September 29, 2016

Signed:



Contents

10

11

Introduction

Background Research

2.1 Literature Review . . . . . .. ... ... oL L.
2.2 Previous Systems . . . . .. ... oL
2.3 Data Characteristics . . . . . . .. .. ... ..o,

Project Specification
3.1 Software Feature Specification . . . . . ... ... ... ... ...
3.2 Technology Choices . . . . . . . ... ... ... ... .......

Project Plan and Timetable

4.1 Development Approach . . . .. ... ... ... .........
4.2 Project Timing . . . . . . . . . . .
4.3 Risk Analysis . . . .. ..

Project Design

Implementation

6.1 Software Implementation. . . . . . .. .. ... ... .. .....
6.1.1 Graphical User Interface . . . . . .. ... ... ... ...
6.1.2 Loading Data . . . . . .. ... .. ... .. ... ...
6.1.3 3D Visualization Pane . . . . . . ... ... ... .....
6.1.4 Colour Legend . . . . .. ... ... ... ... ... .
6.1.5 Useroptions . . ... ... ... ... ... ... ...,

6.2 Automatic Seeding Algorithm . . . . . . ... ... ... ... ..

Testing and Evaluation
71 Results. . . . . . . . .
7.2 Performance . . . . . . . . . ...

Conclusions
Further Work
Acknowledgements
Apendix

11.1 Minutes of Meetings . . . . . . . . . .. ... .. ... .. ...,
11.2 Class Documentation . . . . . . . . . . . . . ... ... .. ....

18
18
19

22
22
23
24

27

28
28
29
31
33
36
38
43

45
45
50

51

52

53



1 Introduction

The way in which objects interact with fluids is becoming increasingly impor-
tant as new technological barriers are being broken and efficiencies are becoming
more important. For example aerodynamic efficiencies are extremely important
in the automotive industry with a call to reduce fuel consumption in road vehi-
cles and the requirement for improved performance in motorsport. The flow of
liquids, gasses and fuel through an internal combustion engine are also relevant
to the efficiency of the engine. Similarly in the aeronautical industry, the way
an aircraft interacts with the air is fundamental to the amount of lift produced
and the responsiveness which the pilot feels to their inputs. Many industries
rely on knowledge of how objects interact with fluids; marine, energy, space,
meteorology and even the medical industry where the flow of fluids around a
body is yet to be fully understood.

To understand the fluid interaction, physical prototypes can be created and
effects of the fluid interaction can be monitored or measured. However, the
measuring and monitoring of fluids in itself is not a trivial matter. To measure
the velocity of a fluid flow, a probe would have to be used which itself will
interfere with the flow. Similarly using smoke in air or dye in a liquid to visualize
the flow changes some of the properties of the fluid itself. The creation of
prototypes can also be extremely expensive when the need to test many design
iterations requiring many prototypes being produced which can be extremely
expensive especially with more complex objects such as an internal combustion
engine or a gas turbine.

The most cost effective way to understand fluid interaction is to use com-
putational simulation. Virtual models of objects can be digitally constructed
using solid modelling techniques and placed in virtual fluid flows. Computer
fluid dynamics (CFD) is the simulation of the flow of fluids, and the way they
interact with objects by using numerical analysis. CFD produces large amount
of data which can be difficult to interpret. This data represents fluid features for
all points of a mesh covering the area analysed. The mesh used can be unstruc-
tured and have different resolutions while the data contains many different fluid
properties such as vector information, density, pressure and others. In order for
engineers and researchers to gain the best insights of the data produced from
CFD simulations the visualizing of the data is vitally important. Computer
aided visualization is a field of computer science that is involved with the study
and creation of visual representations of data. Within this field there are many
subtopics, categorized by the type of data to be visualized. Flow visualization
is the subtopic that visualizes vector data such as the data produced from CFD.
Flow visualization is a scientific visualization, the geometry of the data is known
and the data represent values in a physical or temporal space.



Many CFD packages have their own visualization packages however these are
not always able to provide the user with the adequate insight into the data
generated. Often the most useful insights in flow visualization come around
unstructured flows such as vortices. These are created from interaction with
objects or when two differing flows collide. Vortices are the cause of aerodynamic
inefficiency with energy being lost in generating the vortex. There are many
visualization techniques that can show vortices, the most effective being stream
objects. Streamlines are the simplest and perhaps the most popular stream
object. Streamlines are lines drawn at a tangent to the direction of a flow from
a seeding point in a time independent flow. They visualize the theoretical path
of a massless particle through the flow. Streamlines are calculated by integrating
the vector field over a time step to form a series of points which are connected
to form the streamline. Figure 1 shows an example of streamlines as they pass
a marine turbine.

Figure 1: Manually placed streamlines flowing past a marine turbine (black
disk). Image created by author using Tecplot, a commercial CFD visualization
product.

An expansion on streamlines in three dimensional vector fields are stream
ribbons. Stream ribbons are infinitely thin surfaces or ribbons attached to the
streamline. Figure 2 show an image of stream ribbons as they flow past a
marine turbine, these can be contrast with the streamlines visualized in figure
1. Stream ribbons allow for the visualization of the twisting of streamlines along
their length, highlighting the helicity of a flow. Helicity is the measure of the
knottedness and how tangled a vector flow is. This can be thought of as the



Figure 2: Manually placed stream ribbons flowing past a marine turbine (black
disk). Image created by author using Tecplot, a commercial CFD visualization
product.

tendency of a streamline to rotate or the amount of corkscrew motion along its
length. Figure 3 shows an image of a delta wing in a water tunnel with dye
injected near its apex. The resulting dye stream shows a good example of the
helicity of the flow.

To achieve the best visualizations and therefore to gain the most knowledge
from a flow visualization, the placement of stream objects is crucial. This is
highlighted in figures 1 and 2 where the streamlines and stream objects offer
little insight into the flow other than to highlight its laminar nature. The
stream objects displayed from the centre of the representation of the turbine
blade however offer valuable insights into the flow and its turbulent nature. An
experienced engineer or researcher may know where to place stream objects to
best represent flow features, however certain aspects may be missed. Having too
many stream objects is also a problem, with occlusion becoming an issue. An
example of occlusion is when stream objects in the front of an image or aspect
block the viewer from seeing details behind. Automatic streamline algorithms
exist to locate streamlines in order to achieve the most insightful visualizations
and to minimizing occlusion, however no algorithm exists for the seeding of
stream ribbons. The aim of this project is therefore to develop a novel stream
ribbon seeding algorithm and a software tool to display them. In achieving
this aim an important objective would be to learn to use a specific tool set for
creating the visualizations.



Figure 3: A delta wing in a water tunnel with dye injected near its apex [Tsi].

The rest of this paper is structured as set out by Laramee [Lar10]. Sections 1
through 4 are modified versions of work previously presented by the author in
[Reel6].The following section highlights some background research performed;
Section 3 details the specification of the project and the features of the software
to be produced, along with a discussion of the tools to be used. Section 4 details
the approach to the project including timings and risks to the project. An
overview of the project design is presented in section 5 and the implementation
applied in section 6. Section 7 highlights testing and evaluation of the project.
A conclusion is drawn in section 8 and details of further work presented in
section 9.

2 Background Research

2.1 Literature Review

This section discusses principles and techniques currently used to visualize
data similar to the data that will be used in this project.

Telea discusses many techniques currently used in the visualization of vector
field data in his book Data Visualization Practices and principles [Tel08]. The
book introduces the concept of divergence and vorticity. Divergence is a scalar
quantity and indicates if the flow is towards or away from a point. A positive
divergence is flow moving away from a point while a negative divergence indi-
cates flow towards a point. Positive divergence points are called sources while
negative points are known as sinks. Meanwhile vorticity is a measure of local
rotation within a vector field and is a vector quantity. Both of these concepts
are important in the description of the flow within a vector field.



Vector glyphs are most commonly used to visualize a vector field. These
glyphs are usually in the shape of arrows that represent the vector field, with a
glyph for each sample point. There is a trade off, however, of sampling density
against the number of attributes that can be displayed. Often arrows are used
to display vector direction and magnitude while colour is mapped to another
attribute such as temperature or pressure. CFD derived data, such as the
data for this particular project, is often difficult to visualize due to the high
number of attributes at each dataset point. Telea points out that glyphs with 10
degrees of freedom have been designed and used in the visualization of fluid flows
albeit with limited effectiveness. A particular problem that Telea notes with 3D
visualizations is occlusion, where glyphs that are in the fore obscure glyphs
behind. This prevents the viewer from gaining insights to the flow behaviour
beyond the foreground. This can be mitigated against by using transparent
glyphs and by subsampling the dataset, although the latter leads to loss of local
detail. Another technique Telea discusses, vector colour coding, is a continuous
vector display method for surfaces. The colour hue and saturation give the
direction and magnitude of the velocity across the surface. Because this is a
surface technique, its application is limited within a 3D flow environment to
isosurfaces.

Displacement plots are another visualization technique that Telea highlights.
These are usually slices within a 3D vector field that have been distorted ac-
cording to the velocity direction and magnitude at the slice. Figure 4 shows
an example of this. These surfaces can also be coloured to better define the
distortion or to represent another attribute.

Figure 4: Displacement plot of a planar surface in a 3D vector field [Tel08].

Stream objects are perhaps the most intuitive and useful technique used in
flow visualizations. They extend the idea of vector glyphs by creating a repre-
sentation of the flow trajectory at a tangent to the flow. The simplest stream



object is a streamline which is simply a line that indicates the flow in a static
time field. This differs from streaklines and pathlines which are stream ob-
jects in time-dependent fields which are not covered in detail within the book.
The book discusses streamline calculation methods, in particular the Euler in-
tegration and the Runge-Kutta method, and the trade-off between computation
time and accuracy by varying the time step (A t). Location and the number
of streamline seed points are another important consideration of streamlines;
failure to address this could lead to a clutter of streamlines or an undersampled
area of the vector field. Stream tubes are similar to streamlines but instead of
lines use a sweeping circular cross-section, orthogonal to the streamline tangent
to create a tube structure. An example of stream tubes can be seen in figure 5.
Glyphs are often used to cap the tube ends and to show direction of flow.

inlet = seed area

Figure 5: Stream tubes traced from a seed area at the flow inlet [Tel08].

Another stream object technique is stream ribbons. These are created by
drawing a surface between two streamlines seeded close to one another. These
are particularly useful to highlight high vorticity within a 3D flow field, showing
as a twisting of the stream ribbon. Stream objects are often applied by visual-
ization packages that produce flow visualizations, however the placement of the
streamlines are vitally important to highlight areas of interest such as vortices.
The placement of stream objects can be improved due to feature detection meth-
ods which can be done analytically or by using automated functions. However
Telea points out that these functions do have some problems such as defining
precise numeric criteria and features at different scales. Further examples of
automated stream objects are discussed later in this paper.



Another technique that Telea introduces is texture-based vector visualiza-
tion. This involves the blurring of a random black and white static image along
streamlines, to create an effective continuous visualization of the flow field. Ex-
amples of texture based flow visualisations discussed are the line integral con-
volution (LIC) and the image based flow visualization (IBFV). LIC calculates
a streamline forwards and backwards, for a predetermined length, from each
pixel on the static noise image. A convolution of the grayscale colours along
the streamline is then used to produce the final colour of that pixel. IBFV
uses a static grayscale image as a basis overlaid with a grid structure which
is then warped according to the vector field. Texture based visualizations can
be animated to further enhance the visualization or to display time-dependent
data.

Telea and Wijk further demonstrate the use of IBFV in 3D in their paper
[TWO03]. The results of their work is an animated 3D stream tubes that can be
easily rendered on consumer hardware. Occlusion is however an issue with the

3D IBFV techniques as with the 3D glyphs

In order to prevent occlusion when using streamlines to represent a flow
field and to help show flow direction Fuhrmann et al. introduces dashtubes
in [FG98]. Dashtubes are described as animated, opacity-mapped streamlines
which are used in 3D vector fields. These dashtubes are sparsely and evenly
spaced throughout the volume to avoid any occlusion but to provide detail
throughout the volume. The authors also present a magic lens that can be used
to hover over areas of the volume to show more detail in that specific region.
The magic lenses can then be expanded to form magic boxes for volumetric
spaces.

McLoughlin et al. highlight and summarize some streamline placement algo-
rithms in their survey paper Over two decades of integration-based, geometric
flow visualization [McLL+-09].

One of the earliest and most popular streamline seeding algorithm is presented
by Jobard and Lefer in a paper titled 'Creating evenly-spaced streamlines of
arbitrary density’ [JLI7]. Their algorithm applies to 2D steady flow fields and
defines a minimum separation distance between streamlines. This was built on
previous work carried out by Max et al. in [MCG94]. They proposed that
lines should grow backwards and forwards from a seeding point until either the
line exceed the boundary of the flow, the line had reached a predetermined
length, a sink or source had been reached or the line came too close to another
streamline. The algorithm was originally proposed for a 3D surface by Max et
al. and extended for 2D cases by Jobard and Lefer.

Ye et al. developed a strategy presented in their paper strategy for seed-
ing 3D streamlines [YKP05]. The strategy represents an expansion of another

10



Figure 6: Long streamlines with seed points placed on a regular grid (left);
same low field computed using the Jobard and Lefer eveny spaced streamlines
algorithm [JL97].

2D strategy into 3D. Streamlines are seeded in areas where critical points are
identified, ensuring all features are covered. Filtering then occurs to remove
streamlines that are too similar and that are too straight to indicate any area
of interest.

Chen et al. present an adaptive streamline placement algorithm [CCKO7]
that uses a similarity index to form a set of candidate seed points. The simi-
larity index takes into account Euclidean distance between streamlines as well
as streamline direction and shape. The authors claim that the method pro-
duces streamlines that naturally accentuate regions of geometric interest. The
technique is relevant in both 2D and 3D vector fields but only for static data.
The authors also present an error evaluation on how correct the streamline is
in relation to the rest of the vector field.

Other stream objects that have had an automatic seeding algorithm applied
to them are stream surfaces. Stream surfaces are surfaces drawn between two
streamlines to create a surface. Edmunds et al. present an automatic stream
surface seeding in their paper Automatic Stream Surface Seeding [EMcLL+11].
Surfaces are seeded at the domain boundary from isolines derived from a scalar
field. The surfaces are then terminated when a predetermined length is reached,
the surface becomes too close to another surface or when the surface becomes
too close to the domain extremities.

Roth analyses many existing automatic feature detection algorithms to es-
tablish their underlying definition of a vortex in [Roth00]. He also proposes a
new definition for vortex cores based on a second-order derivation. The paper
also details the mathematical functions used to define key flow field parameters
such as helicity.

Helicity = (V x v) v (1)

11



Helicity is defined mathematically in equation 1 where v is the velocity field and
()V x v) is the vorticity field. The V symbol denotes the gradient of the vector
field.

An important consideration when presenting data for visualization is the
colours that are used to represent the data. Telea [Tel08] indicates five goals for
the use of an effective colourmap showing scalar values.

1. Absolute value - To be able to tell the absolute scalar value in a dataset

2. Value ordering - To be able to tell which value is higher from two given
data points .

3. Value difference - To be able to identify the value difference between two
given data points.

4. Selected values - To be able to identify data with the same scalar value.

5. Value change - To be able to see the rate of change in the scalar value.

Telea goes on to say that to meet all these goals is a difficult task. Telea
discusses the use of the rainbow map, a colour map ranging from blue through
green, yellow and orange to red similar to a rainbow. The limitations of the
rainbow colourmap are discussed, such as that warm colours attract more at-
tention then colder colours and that luminance values differ over the colour
range. Despite it’s limitations, Borland and Taylor highlight the prevalent use
of the rainbow map as the default colourmap in many commercial visualization
applications in [BT07].

Moreland also highlights the inadequacies of the rainbow colourmap in [Mor09]
and comments "Know thy enemy” of it. Moreland continues to discuss the de-
velopment of a diverging colourmap from blue to red through white. The colour
is interpolated using magnitude saturation and hue and can be seen in figure
7. Because 3D surface visualizations use lighting and shading effects to give
clues to the surface shape, the change in brightness of the colourmap should be
avoided. The colourmap developed was set as the default choice in ParaView
[Kit00] and received positive user feedback.

Another colourmap is proposed in a paper by Kindlmann et al. in [KRC02].
The paper focuses on user feedback of facial recognition with different colours
applied. The colourmap produced is based on the rainbow colourmap with the
luminance adjusted so that it monotonically increases making it more percep-
tual.

12



Figure 7: Three visualizations highlighting the use of Moreland’s blue to red
diverging MSH colour map [Para07].

Because of the novelty of Qt, OpenGL and C++ to the author, literature
guides on the use of the languages are an important consideration. A C++
reference book by Stroustrup is to be used [Str15] throughput the project as
guidance to the language. Sellers et al. introduce OpenGL in [SWH15]. Simple
OpenGL principles and programs are introduced as well as guidance on 3D
mathamatics and more in-depth topics.

Blanchette and Summerfield introduce the Qt application framework in [BS08].
The book details tutorials that will be useful while using the Qt framework.
Tutorials range from the simple "Hello World’ program to advanced full feature
GUIs. Chapters of particular interest for this project are the 2D graphics and
the 3D graphics chapters, where an introduction to creating 2D and 3D graphics
is supplied. Another chapter of interest is the container classes chapter. This
details some container classes specific to Qt such as the QVector class, which
allows the storing and direct access of other container classes, and the similar
QMap class which allows storage and access to a container object through the
use of a key.

2.2 Previous Systems

SimVis, developed by VRVis Research Center, is an application designed with
the specific task of analysing large, complex flow data produced from CFD sim-
ulations. Doleisch, one of the developers, introduces the application in his paper
[Dol07]. The application is designed specifically for analysis by a flow expert
who is able to analyse the data extract the relevant information. The application
is based on a feature-based flow visualization approach. It however introduces a
novel approach by allowing the user, an expert, to interact with the data to find
specific features rather than relying on automated feature detection. The ap-
plication features multiple linked views which can show different aspects of the
data or different representations of the same aspects. As with most applications
that visualize CFD datasets, there is a scientific 3D layout of the view. SimVis
allows this to be supplemented with other views such as 2D scatterplots, parallel

13



coordinate plots or time-dependent histograms. A screenshot of the application
can be seen in 8.

R

Figure 8: A screenshot of a SimVis scenario from [Dol07]. The image shows
simulated flow through an automotive diesel particulate filter. The left frame
shows the brushing of data from a scatter plot which is shown in the middle
plane, a histogram. The data in the histogram is then brushed to give the final
3D scientific view with focus and context in the right frame.

Another important feature is the user interaction with the data. The user
can select, or brush, specific data points of interest. This then updates other
linked views with the brushed data emphasised in the context of the other data
points, e.g. arrow glyphs representing the flow in a 3D spatial domain become
transparent and grey, while brushed data is opaque and coloured. SimVis also
incorporates a Fuzzy Classification which uses a gradient between the brushed
data and non brushed data rather than a distinct contrast.
Doleisch presents some real-world use of the SimVis software, the majority of
which are for automotive applications [LJHO3][DMG+04], but not exclusively[DMHO04].

Peng et al. of Swansea University present a generic framework for visual-
ization of high-dimensional CFD flow simulation data in their paper [PGL12].
They implemented the visualization framework to developed a software tool
designed to visualize data specifically for marine turbine applications. The soft-
ware is presented by Peng et al. in [PGN+14] and can be seen in 9. Like the
SimVis application, this application is an interactive, multiple coordinated view
program. This application does however provide some novel views not seen in
the SimVis application. These additional views are a histogram table showing
all data attributes, a spherical histogram plot and a streamline plot.

The CFD simulation data is presented as an interactive histogram table pro-
viding a multi-dimensional overview of the data. The table consists of a stack

14



Velocity
Hin 050
| sassen

| / olgzasosa
L= R

Figure 9: A screenshot of the application developed by Peng et al. of Swansea
University taken from the paper [PGN+14]. The image shows multiple views
of flow data past a marine turbine. Data highlighted in the histogram table
(bottom right) is displayed in the parallel coordinate plot (bottom left) and
spherical histogram. Data brushed in the parallel coordinates is then used to
generate the streamlines in the spatial view (top left). A scatterplot shows the
curvature along the lengths of the streamlines generated.

of histograms with each histogram showing a particular data attribute. Data
can be brushed from the histogram table by the user to update linked views.
A spherical histogram is available that displays an intuitive description of the
velocity direction of the brushed data. The user is able to interact with this
by rotating it and by customizing the bin resolution. A parallel coordinates
plot allows for investigation of the relationships between the various data at-
tributes. The parallel axis can be rearranged by the user to allow the comparison
of particular attributes. Data brushed from the parallel coordinates plot gen-
erate streamlines in a rotatable and zoom-able spatial view. The streamlines
displayed are represented in a scatter plot of calculated streamline curvature
against their length. This allows for identification of streamlines with partic-
ular relevant swirl characteristics. Individually selected streamlines from the
scatter plot are rendered in the spatial view for further exploration. The paper
highlights some particular unexpected insights gained from the visualizations
along with positive feedback from domain experts.

Another more developed and widely known visualization software is Par-
aView, developed by Kitware Inc. [Kit00]. ParaView is an open source 3D
scientific visualization software and is capable of generating many types of visu-
alizations including vector glyphs, iso-surfaces, streamlines and stream ribbons.

15



Figure 10 shows a screenshot of ParaView visualizing stream ribbons. It is a
multiplatform Qt based system designed to run on multiple cluster machines,
however it can also be run on a single computer. It allows full 3D interaction
with the visualization on screen. Although there are no automatic feature detec-
tion methods built in with the software, users are able to perform calculations
on the imported dataset.

P8 BR O 2 FRAKAD> DB b o
B G 2 58 [0 TEEsdttsdik [FHeea

7 1128
1128,127] 112
doule 12350423534

Figure 10: Screenshot of ParaView with zoomed image of ribbon in a RayleighB-
nard flow.

Tecplot 360 is another commercial visualization tool developed by Tecplot
Inc. [Tec81]. It is designed as a post-processing tool for CFD derived data
including producing visualizations. It is also capable of producing stream ribbon
visualizations as can be seen in figures 1 and 2.

MATLAB from MathWorks [Mat84] is a powerful numerical computing en-
vironment. It has many inbuilt functions to calculate a variety of vector field
properties such as vorticity, curl and divergence. It also has the ability to easily
visualize basic stream ribbons in a 3D plot using simple commands. An example
of this can be seen in figure 11. Lighting and shading effects are also included
and the ability to interact with the rendering by rotating and zooming. This
allows for quick and convenient analysis and visualization of vector fields.

2.3 Data Characteristics

Vector field data is required for both the development of an algorithm and for
development of the software product. Three different data files will be used for

16



Figure 11: Visualization of stream ribbons in wind data produced using MAT-
LAB.

the development and to testing of the product. All datasets are static velocity
fields, i.e. they do not vary with time, and all datasets use a 3D Cartesian
coordinate system. The first dataset is a tornado simulation given the name
Sally. Sally is an analytical data set produced from a procedural function on
a regular Cartesian grid. The size of the Sally dataset can be adjusted by
specifying the dimensions of the dataset, in this case a 1283 node model will be
used. Figure 12 shows a representation of Sally using a single stream ribbon,
produced in ParaView. The twisting of the ribbon highlights features that would
not be seen with a simple streamline.

The second dataset to be used is a sampled vector field of a RayleighBnard
convection flow. The dataset provided has a resolution of 128 x 32 x 64 and
is provided in a binary .raw file format. Figure 13 shows a multiple ribbon
visualization of the flow produced in ParaView.

The final dataset is a ArnoldBeltramiChildress (ABC) flow which represents
an exact solution to Euler’s equations in fluid dynamics. It is another flow field
that is produced from a procedural function as seen in equation 2 .

Asin(z) + Beos(y)
v(x) = < Bsin(z) + Ccos(z) >, z € [0, 27)? (2)
Csin(y) + Acos(x)

A, B and C represent constants that can be adjusted to create different flows.
For this project the following parameters shall be used: A = 0.1, B = 0.5 and
C = 0.5. The size of the flow field can also be adjusted as in the tornado

17



Figure 12: A 1283 node tornado simulation visualized using a single stream rib-
bon, produced in ParaView by the author. The colour of the ribbon is mapped
to the velocity magnitude.

dataset, for the purposes of this project a 1282 will be used. Figure 14 shows a
visualization of the dataset.

3 Project Specification

The primary aims of this project is to develop an automatic stream ribbon
seeding algorithm and to develop a software tool capable of showing it. The
software tool should be capable of:

e Reading a vector field data file
e Analysing the vector field to determine stream ribbon placement
e Visualizing the vector field using the stream ribbons
The most important aspect of the project is the personal development of the
author. Therefore a key objective is to increase understanding of the tools and
processes required to produce scientific data visualization. The project will be
limited to steady vector field data using 3D Cartesian coordinates.
3.1 Software Feature Specification
The software will include the following features:
1. A graphical user interface
2. A 3D visualization pane

3. The ability to read data from binary files

18



Figure 13: A multiple stream ribbon visualization of a RayleighBnard convec-
tion flow produced in ParaView by the author.

4. A mathematical function for calculating streamlines

5. An ability to visualize stream ribbons

6. A mathematical function for calculating stream ribbon seeding locations
Additional features to be implemented in the software are:

1. An interactive 3D visualization pane allowing rotation, translation and
zooming

2. Lighting and shading effects in the visualization pane
3. Filtering options for stream ribbons displayed

4. The ability to represent data fields using arrow glyphs

3.2 Technology Choices

C++ using a Qt [NCE91] GUT has been decided upon as the languages to
construct the software tool for this project. Both are commonly used in the vi-
sualization field and have the advantage of being multi platform, freely available
and well documented. Blanchette and Summerfield describe Qt as a C++ ap-
plication development framework for creating cross platform GUI applications

19



Figure 14: A hedgehog plot visualization of an ABC flow viewed from the x-y
face.

[BS08]. The Java programming language was also considered. Both Java and
C++ are popular languages, well documented, free to use and cross platform.
Java also has the advantage of running on differing platforms without the need
to recompile, unlike C++. However the use of C++ is more common in the vi-
sualization field and so it was decided to use C++ for the benefit of the personal
development of the author.

Similarly other GUT libraries were considered, FLTK [Spi98], JUCE [Sto04]
and in particular wxWidgets [Sma94]. All are cross platform and are free to use
however Qt appears to have more support options with a number of forums as
well as a mailing list. Furthermore Qt documentation is more readily available,
with a number of publications in the university library dedicated to the tech-
nology and far fewer dedicated to other GUI technologies. Qt also offers its own
interface development environment in Qt Creator, a screenshot of Qt creator
can be seen in figure 15.

The use of Qt is also more prevalent in the visualization field so it would be
more beneficial in the development of the author. To produce a 3D rendering
of the flow domain, Qt can utilise OpenGL libraries using QtOpenGL module.
OpenGL is a application programming interface for rendering graphics, utilising
GPU hardware acceleration. It has powerful in built libraries that enable such
effects as lighting and shading. These are important components in allowing

20



File Edit Build Debug Anabyze Tools Window Help

g Fiter [P . Object Class
Pl Layouts ~|  Tperer 4 MairWindow QMainWindow
5 Vertical Layout 4 5 centraMidget [ ] Quidget
= pushButton = QPushButtor
= 1) Horzortar Layout renuBar QMenuBar
233 mainToalBar QToolBar
853 OrdLayout statusBar OStatusBar
% 3 Form Layout
PushButton
Design | 4 Spacers
[ped] Horizontsl Spacer 5
B vertical spacer
a Buttons
[ Push Button
: Tool Button
Bl | @ RadioButton & )
A [ CheckBox Fiter
@ Command Link Button Manwindaw : QManwindow
~
Dialog Button Box Property Value
a Item Views (hiodel-Based) QObject
objectName Mainindow
st view ;
o QWfidget
1R Tree view
Narne Used Text Shartcut Chi windouwhodality MNonModal
ﬁ Table View enabled
Colurin View o geometry [0, 0, 400 300]
2 fterm Widgets Qtem-Based) b sizePolicy [Preferred, Pref.,
3
b st Widget minimumSize 0x0
1S b madmumsize 16777215 x 1677.
B Tree widget o sizelncrement 00
5] Table Widget > baseSize 0x0
7 Containers palette Inherited
(=] GroupBox < 3| b font A [MSShell D. ,
i scrollaven o | Action Edtor | Signals & Sots Edtor - =

<
Sl - Ty o o0 mch Resultsﬂﬂpulw(amn 0. Comul\e mwtﬁqmm Cunsu\eﬁeeneva\ ess.

Figure 15: Screenshot of Qt creator GUI creation interface.

the viewer to interpret a surface such as a ribbon and the way it twists and
turns. An alternative to OpenGL would be DirectX however this is limited to
Microsoft based platforms.

Some specific C++ libraries identified as being required for the software are
iostream, stdio.h and fstream, to allow for data files to be read. The Math.h
library will be particularly important when applying the seeding algorithm. An
example of a use of the library are of the functions sqr and sqrt to square and
root vector components in order to get a scalar value. Some refinement can be
achieved using the stdlib.h library and the 'malloc’ function to allocate memory
dynamically for increased efficiency. The OpenGL utility library (GLUT) is an
OpenGL library that contains some basic primitive shapes such as spheres and
cones. FreeGLUT is an open source alternative that perform many of the same
functions that can be used in this project.

Qt has many inbuilt libraries which can also be used such as ’‘QMouseEvent’
which allows for easy interpretation of mouse based inputs. The Qt container
class libraries will be of particular use. These include ’QVector3D’, which is an
object designed to contain a 3D vector, ’‘QVector’ a class for containing other
classes and 'QMultiMap’ Other useful Qt libraries are ’"QMessageBox’, which
displays pop-up message boxes that can be used to communicate with the user,
and ’QFileDialog’ which implements a dialog for finding and opening files within
the operating system.

21



A GitHub repository will be used to track changes in the code as it is being
developed and also used as backup in case of computer malfunction. The use of
GitHub will also allow for development access across multiple computers.

Any modern consumer grade PC with a dedicated graphics processing unit
should be able to run the product produced. To be able to visualize large sets
of data however, a large amount of RAM memory may be required. The use of
memory allocation techniques has been considered in the design of the software
which will help reduce memory requirements. The software development will be
performed on a PC with a minimum of 8GB of RAM to accommodate testing
with larger datasets.

The software application will be developed and tested on a PC with 16GB of
RAM, an Intel i5-6500 using the Intel B150 Express chipset. The PC’s operating
system will be Linux, specifically Ubuntu 16.04. Qt creator 4.0 IDE will be used
for code development using Qt version 5.6.0, OpenGL version 3.3 and compiled
using GCC 4.9.1.

4 Project Plan and Timetable

4.1 Development Approach

Due to the novel nature of this project and the authors inexperience with the
technologies to be used, an agile software development cycle has been decided
upon to manage this project. More specifically the adaptive software develop-
ment (ASD) has been selected. This approach allows for continuous evolution
of the software and promotes a learning phase as part of the cycle, which will be
crucial to the development of the software along with the personal development
of the author.

This differs from the traditional waterfall model of software development
where more emphasis is put on the design phase. The waterfall methodology
was adapted from a hardware oriented design principles, where the implemen-
tation phase would involve costs in the physical construction of the product,
so the design once, implement once methodology was important. In software
development however, the only cost involved in the implementation phase is
time; therefore a try it and see methodology promoted by the adaptive software
development is acceptable. The adaptive approach also matches the author’s
natural tendency for development. A graphical representation of the ASD cycle
can be seen in figure 16.

The cycle starts with the speculate phase where initial ideas of how to imple-
ment a software feature are sought based on the requirements and constraints
of the feature. The term speculate is used as the idea selected may not be a
workable solution but allows for a try it and see approach. The collaborate

22



\

Speculate e \

r

Figure 16: Adaptive software cycle framework.

phase is essentially the implementation phase of the software feature. The final
learning phase allows for assessment and testing of the solution implemented
before either rejecting the solution and returning to the speculate phase, or
moving to the next phase. The ASD promotes rapid iterations of this cycle in
order to find a workable solution.

This implementation works on many levels of the software development, from
trying individual functions within libraries, through implementing complete fea-
tures within the software, to the complete program. There are however some
disadvantages to this methodology. The software development could be in dan-
ger of being stuck in a continuous loop trying to implement one specific feature;
therefore careful management of the time constraints are important and an em-
phasis must be made to try to stick to the timing plan, as presented in the next
subsection.

4.2 Project Timing

This section discusses the projected timing for completion of various stages
of the project. Figure 17 shows a Gantt chart summarizing the timings.

The project is due to commence in the second week of June and proceeds
until the final deadline on the 30th of September. The project can be sepa-
rated into three components, the development of an automatic stream ribbon
seeding algorithm, the production of a software tool for visualizing the stream
ribbons and the writing of a report detailing the experience. The development
of the algorithm and the software will be done in parallel before integrating the
algorithm into the software.

23



Name Work 2016, Qtr 3
Jul Aug Sep
GUI interface development 70d [ ]
Read input data, output to command | 9d — 1
Visualize 2D vector lines 5d [ —
2D arrow glyphs 10d ——
3D (OpenGL) coloured arrows 10d 1
Colourmap arrows 5d | I—
Visualize Streamlines 11d ——
Visualize stream ribbons 1od —
Add seeding rake 5d —
Add velocity gradient arrows 5d —1
Automatic streamribbon algorithm 10d | E—
Add lighting options 5d —
Add seedpoints 1d I
Bug fixes 15d —— ]
Documentation 20d

Figure 17: Gantt chart of project timings.

The development of the user interface is to be evolved throughout the project
with modifications to be made to include new features as they are developed.
Because the development will require learning how to use the C++, Qt and
OpenGL resources, the tasks associated with completing the project are or-
dered in order of increasing complexity. The first task is to input or generate a
dataset. Once a dataset is available within the program, it can be visualized.
Easier 2D visualizations will be created first before more complex 3D OpenGL
visualizations are created. Vector arrows shall be visualized first before more
complex stream objects. Lighting options and aesthetic improvements will be
implemented last.

Four weeks have been dedicated to the writing of the report at the end of
the project. If however other sections of the project were to overrun, as a
contingency, some final software development may be done in parallel with the
commencing of the document. Bug fixes will also be performed as they are
found.

4.3 Risk Analysis

The analysis of risks to a project before commencing is an important process
so that the most likely and most devastating risks can be mitigated against.
This section discusses risks associated with this particular project.

Arnuphaptrairong discusses common risks associated with software engineer-
ing as stated in different studies in his paper [Arnll]. He lists the different top
ten risks stated in 12 different works from 1981 to 2003 to determine which are
the most agreed upon. He concludes that the risks most frequently identified
are:

e Misinterpreting project requirements

24



e Poor management support

Poor end user input

No end user commitment

End user expectation too high

e Changing project requirements

Because of the primary aim of this project is to develop an automatic seeding
algorithm for stream ribbons some of the above risks do not apply. The project
requirements are set by the author working alone on the project, therefore mis-
interpreting the requirements is unlikely. The poor management support is
interpreted as supervisor support in this instance and has been included. There
is no specific end user in this instance however consultation with a domain
expert would be required to specify what stream ribbon visualizations benefit
them the most and to provide feedback on results produced. The main risks
can be seen in table 1.

The first risk identified is that the combination of technologies identified for
the development are not adequate for the production of the desired software
product. The impact this would have on the project would be high as the goals
would not be achievable. It has however been given a low probability due to the
fact that these are mature technologies that have a proven record in producing
software of a similar nature.

The second risk identified is due to the author of the project being unfamiliar
with the technologies identified to carry out the project. This has been consid-
ered as having a high impact on the project, without the skill to use the tools,
the software cannot be created. The probability has been judged as medium
however as there is enough time scope to learn the skills required. The choice of
popular, well documented technologies helps mitigate this problem with many
support forums and mailing lists available for aid. There are also a plethora
of tutorials available online, as well as support available from the experienced
project supervisor.

The project being too complex is the third risk identified given a medium
probability and a medium impact. Due to the novel nature of the project a
degree of complexity is to be expected. Similarly to the previous risk, support
and guidance from an experienced supervisor will be helpful. Similar seeding
algorithms such as streamlines and stream surfaces can be consulted.

The fourth risk was identified from the paper by Arnuphaptrairong [Arnll]
mentioned above, having poor supervisor support. This has been deemed as
a low probability with a high impact. Because of the novelty of the project,

25



Table 1: Risk Analysis Table

Risk Probability Impact Precautions taken
The software cannot A proven language
be created with Low High is to be used along
the specified tools with powerful libraries
A lack of knowledge Well documented
or skill to successfully Medium High language and interfaces
execute the project are to be used
The project is Medium Medium Sup.erv1S(')r to. adv1§e on
too complex project simplifications
Poor supervisor Low High Weekly mee.tmgs
support with supervisor
Poor/ no domain Medium Low Caq Vlsl’F university
expert mput engineering department
Softw.are generated Medium Medium Time allovv.ed
contains errors for debugging
Wellbeing and doctors
Personal illness Low High available on
university campus
Underestimation of Scheduled writing time
the time required for Medium Medium can be shared with
sections of the project project finalisation
Equipment failure Low Medium Cor.nputer equipment
available on campus
. Ensure backups
Data loss Low High

are taken regularly

experienced guidance is necessary. With weekly face to face meetings scheduled
this risk should be mitigated.

Guidance from a domain expert is important to the project to help suggest
stream ribbon placement and to give feedback on the results produced. The
unavailability of a domain expert has been identified as a medium probability,
low impact risk. A visit to the engineering department within the university
should help locate an appropriate person to consult. However without a domain
expert the project can still be completed.

Another risk identified is that the code contains errors. This has been classed
as a medium probability risk due to the inexperience of the author in using
the technologies, with a medium impact. Again the technologies are well doc-
umented and supported which helps mitigate this. The code will be written to
standards set according to Laramees paper Bobs Concise Coding Conventions
(C3) [Larl0al, allowing easier debugging and future maintenance.

26



The seventh risk identified is due to personal illness of the author. This
has been classed as a low probability risk with a high potential impact. Student
welfare services are available on campus in case of stress and health care support
is available.

The underestimation of time for each section of the project is the next risk
identified. This has been classed as a medium risk as the author has little
experience in knowing the time required to use the technologies specified. There
is however time available within the project schedule for contingency, weekends
are not specified as working days but could be utilised. Some parallelisation of
writing the final report while completing other aspects is also possible.

Equipment failure is another risk identified and given a low probability. Po-
tential impacts are the loss of data, problems in producing a hard copy of the
final report and having a platform to write code or the report on. Alternative
equipment is available for use in this project helping to mitigate the risk.

The final risk identified is from data loss. This has been given a low probabil-
ity, but with a high potential impact. Precautions taken are to make multiple
backups of work completed so far.

5 Project Design

Table 2 lists the software classes and their responsibilities .

Figure 18 shows an interaction diagram between the software classes. There
are five different types of classes in the design. The first type is the MainWindow
class which is inherited from the inbuilt Qt ’QMainWindow’ class. This class
manages the user interaction with the main user interface. The second type
of class are those that inherit from the inbuilt Qt 'QOpenGLWidget’. These
classes are the OpenGL windows responsible for displaying information to the
user.

The third type of class are those that inherit from the Qt 'QDialog’. These
classes are responsible for managing user interaction with pop-up dialogs. The
fourth class type is the ColourMap class which is simply a container holding the
information for the colourmaps. The final class type are container classes for
flow domain data such as the vector information and helicity at each vertex.

Figure 19 shows the dependency diagram for the MainWindow class. Fur-
ther examples of Doxygen generated diagrams are available online at http://cs-
ugrad.swan.ac.uk/849119/.

27



Table 2: Class Table

Class name

Description

chooseMap

Manages the dialog for selecting a colour map.

clearPoint

Keeps track of co-ordinates availability as new seed

point. A temporary set of points is used while constructing
a ribbon. The temporary set of points get converted to
permanent on completion of an individual ribbon.

ColourMap

Colourmap rgb values.

GLWidget

Draws in the main 3D pane using OpenGL instructions.
Handles mouse interaction.
Handles lighting effects.

legGLWidget

Draws colourmap on legend.
Communicates map number to MainWindow.

load

Manages the dialog for reading or generating data.
Read datafile or generate dataset.
Communicates availability of data.

MainWindow

Manages main GUI.

Performs vector field calculations and calculates
stream objects.

Keeps track of data objects.

Ordered

Container class to order and store co-ordinates

in order of (helicity) key.

Calculates the highest and lowest value to be used
for the colour legend.

OrieGLWidget

Draws orientation pane.
Resets zoom and orientation.

scalarField

Container class for storing 3D scalar values.
Interpolates scalar values between vertices.

vecField

Container class for storing 3D vector values.
Interpolates vector values between vertices.
Calculates field gradients.

Calculates field curl.

6 Implementation

This section describes the features implemented in the project. It has been split
into two distinct parts, one for the implementation of the software and one for
the implementation of the automatic stream ribbon seeding algorithm.

6.1 Software Implementation

This subsection describes the software developed for this project. The features
of the software are explained along with details of how they are implemented.

28



) 4|— ~

chooseMap ¥ | colourMap v legGLWidget v
Class Class. Class
- QDialog \ ) - QOpenGLWidget

[ load ¥
— Class
- QDialog

.
OrieGLWidget ¥
Class
- QOpenGLWidget

of Class
- QMainWi

.
I GLWidget 1
+ Class

- QOpenGLWidget

1

((ordered " ‘ ( clearPoint v ( vecField v) [ scalarField v
Class Class Class Class
A v A 2\ I
|
Figure 18: Class interaction diagram.
/home/dyl/git/streamribbon
/main.cpp
QApplication GL/glut.h
QMainWindow vecfield.h ordered.h scalarfield.h ‘ clearpoint.h
QWector3D QList QMultiMap QVector

Figure 19: Doxygen generated dependency graph for the MainWindow class.

6.1.1 Graphical User Interface

Figure 20 shows the graphical user interface when the program is run. There are
three distinct areas that can be mediately identified, the bulk of the interface is
taken by the 3D visualization pane which is blank when the program is initiated.
On the bottom right of the interface there is an orientation pane which shows
the orientation of the dataset in the 3D visualization pane. Finally there are
the user interaction options.

To operate the program a dataset needs to be loaded. This is done by clicking
the ’Data Source’ button on the top left of the user interface. This action
launches the 'Load Data’ dialog, passing a vecField class named mData to the
dialog, which is to be populated with the velocities of the flow domain.

29



Automatic Stream Ribbon Plotter

Data Source

Streampath | Rake Arrows Colour.

Show seed points.

Figure 20: Stream ribbon software when initially opened.

The vecField class is the main data structure used in the software. It is a
class designed to hold the three velocity vectors at each vertex. The main data
structure within the class is a 2D array consisting of three floating point numbers
for each vertex within the flow domain. Memory is allocated for the vecField
object using the 'malloc’ function from the ’stdlib’ library. An alternative data
storage method would have been to use the Qt ’QList’ container along with the
’Q3DVector’ container. Before data can be input into the vecData class, the size
of the flow domain must first be input using the ’setSize’ function. Vector data is
input into the class using either ’setX’; ’setY’ or ’setZ’ function as appropriate.

The vecField class is able to process the data to return different properties of
the vector field. These are accessible by using the get methods of the class. The
getX, getY and getZ functions return the x, y and z vector components respec-
tively for a given x, y and z coordinate. The vecField class also has a function
that interpolates the data between vertices to return vector components. The
getSpeed function returns the scalar speed value for given coordinates while the
angV function returns the angular velocity about the flow tangent. Six velocity
gradients are also retrievable, the x velocity gradient in the y and z direction,
the y velocity gradient in the x and z direction and the z velocity gradient in
the x and y direction. These are accessed using the UYgrad, UZgrad, VXgrad,
VZgrad, WXgrad and WYgrad respectively.

30



6.1.2 Loading Data

A ’Load Data’ dialog box is the main interface for the user wishing to load
data into the program. A screen shot of the dialog can be seen in figure 21. The
dialog has two initial choices for the user. The first choice is to be able to load
data from a file and the second is to generate a dataset from inbuilt functions.
This choice is given in the form of a Radio Button, allowing only one option to
be selected at a time.

Load Data x
Load File Generate Data
Data modifiers
Browse
Data Dimensions
X Y Z
0 1o 1o
Ok Cancel

Figure 21: Load Data dialog box when initially opened.

While the 'Load File’ radio button is selected the user is presented with a
text field for the file path, a 'Browse’ button and a Check Box to allow for
data modifiers. On clicking the browse button a standard ’QFileDialog’ dialog
box appears that allows the user to browse and search for files on the PC. Files
displayed in the file dialog are limited to the .raw file extension, the file extension
used for the given RayleighBnard convection flow. The software is limited to
only being able to read files in a binary unsigned character in little endian
format with the .raw file extension. Once a file had been chosen, on pressing
"OK’ within the file dialog, the full path and file name will be populated into
the text field of the load data dialog.

The ’Data modifiers’ check box allows for minor alterations to be made to
the data read in from the .raw file. This option was created to accommodate
a modification required to read in the RayleighBnard convection flow dataset.
This modification required the subtraction of 0.5 from each value. Two 'Spin
Boxes’ and labels appear when the ’Data modifiers’ box is selected, the first
spin box, labelled 'Data multiplication factor’ enables a multiplication factor
to be applied to the dataset. The second spin box is labeled ’Data addition’
and allows for the addition of a value to each dataset value. Figure 22 shows
the 'Data modifiers’ check box enabled with the 0.5 subtraction applied to the
RayleighBnard convection flow dataset.

31



Load Data x
@) Load File Generate Data

|§| Data modifiers Data multiplication factor  1.00 : Data addition -0.50

/home/dyl/betty.raw Browse

Data Dimensions
X Y Z

128 |2|32 |2| 64

Ok Cancel

Figure 22: Load Data dialog with file path populated, data modifiers enabled
and dimensions of the dataset recorded.

Below the file path text field there are three additional 'Spin boxes’ that
allow for the dimensions of the dataset to be input, one for each of the x, y
and z Cartesian coordinates. The final aspect of the 'Load Data’ dialog are the
"OK’ and ’Cancel’ buttons. If the cancel button is pressed the dialog will close,
cancelling all inputs entered. The OK button applies all the settings input and
loads the appropriate dataset. If there are issues with the input data, such as
no dimensions entered for the dataset or no filename chosen, a warning message
will display with the issue. This can be seen in figure 23. The warning dialog is
created using the unmodified Qt ’QMessageDialog’ class.

Error x

A Please enter file name/path
£

OK

Figure 23: Warning Dialog received when no filename is entered.

If all the requirements have been applied and the 'Ok’ button clicked the
readFile function is applied. This function takes uses the fstream and iostream
libraries to read in the file in the given file path. The function uses three nested
for loops to read the x, y and z coordinate vectors. Data modifiers are the
applied before the data gets stored in a vecField class object, using the set
functions, which is then returned to the main window.

The ’Generate Data’ radio box allows for the generation of the other two
datasets used in the project. When the ’Generate Data’ radio button is selected,
the file path text field, the 'Browse button and the 'Data modifiers’ check box
disappear. In their place another two radio buttons will appear, one for the
generation of the tornado dataset and one for the generation of the ABC flow.
Only one of these dataset is able to be selected at a time. Selecting the "ABC’

32



radio button displays an additional three spin boxes to enable the user to set
values for the A, B and C constants for generating the dataset. By default these
values are set as A = 0.1, B = 0.5 and C = 0.5 as can be seen in figure 24.
Selecting the Tornado dataset again hides the A, B and C spin boxes. For both
the tornado and the ABC datasets, the dimensions of the flow domain must be
input as for the file load option. On clicking Ok either the ’genABC’ function
or the 'genTornado’ functions are used to populate a vecData class object with
the appropriate vector field.

Load Data x

Load File Generate Data

Tornado ABC
Aloio |2/ B 050 |Z|c 050
Data Dimensions
X Y 74
0 1o 1o

Ok Cancel

Figure 24: Load Data dialog with Generate Data and ABC radio boxes selected.

6.1.3 3D Visualization Pane

Once data has been loaded into the program, the 3D visualization pane will
display a box representing the flow domain as seen in figure 25. The 3D visu-
alization pane is managed by the GLWidget class. This class is inherited from
the Qt ’"QOpenGLWidget’ class and uses the inherited initializeGL, paintGL
and resizeGL functions. The initializeGL function is used to set the background
colour of the pane and to enable some OpenGL functions such as lighting effects
and the reflective qualities of surfaces. The resizeGL function is used to manage
the perspective when the window is resized while the paintGL function contains
the OpenGL instructions for the visualization displayed.

The paintGL function initially loads the colourMap to be used for the visual-
ization. After this it assesses the size of the flow domain to set up the perspective
in order for the whole flow domain to be displayed no matter what size. When
initially developing the software it appeared as if arrows to be drawn were not
being drawn. It was then discovered that the arrows were being drawn out of
the field of view, this feature was added to counter this.

The positioning and zoom level of the flow domain are applied next, followed
by the field rotation. The user is able to interact with the image in the 3D
visualization pane by using the mouse. The mouse movements and button
presses are tracked by the Qt ’QMouseEvent’ library, if the mouse is moved

33



Automatic Stream Ribbon Plotter

Data Source Legend
eed

Sp
streampath | Rake  Arrows  Colour B
Automatic Streamiine

Ribbon Width 300 |0

Show seed points. P

Orlentation

Que I o.asacss

Figure 25: The main graphical display after loading the RayleighBnard convec-
tion flow dataset.

while the left button is depressed, then a x and y positioning factor is adjusted.
The mouse movements also call the update function which reruns the paintGL
function. By depressing the right mouse button and moving the mouse, rotation
of the scene is applied, vertical movement causing rotation about the x axis and
horizontal movement causing rotation about the y axis. Rotation about the z
axis is achieved by pressing the right mouse button along with the Ctrl key on
the keyboard and moving the mouse in a horizontal direction. The rotation is
achieved by adjusting a floating point number which is applied in a OpenGL
command glRotatef within the paintGL function. The rotation factors are also
sent to the orientation pane.

Zooming is available by using the Qt ’QWheelEvent’ function. Rotating the
wheel on the mouse changes a floating point zoom factor number. This number
then adjusts the perspective allowing for zooming of the flow domain.

Once the paintGL has handled the rotation the setLight function is called.
This function applies the light settings set by the user from the options panel,
found in the tab labelled ’Colour’. These options are to turn on or off four
separate light sources and to vary the positioning of the lights, these options
can be seen in figure 26. Lights are switched on and off by using glEnable
and glDisable functions, and their positions set using glLightfv function. The
ambient, diffuse and specular light conditions can also be set by the user using
horizontal sliders as seen in figure 27. These are also set using the OpenGL
glLightfv function.

34



Light properties Light position

X Y z
W Lamp1 |05 |- 05 |10 |o
W] Lamp2 -05|. (|05 |2 03 |0
W Lamp3 (0.2 |_||-05|. |07 |o
W] Lamp4 (20 |J||20 | 10 |0

Figure 26: User options for to enable lights and their positioning. All lights are
enabled in this case.

Light properties | Light position

Amblent
Diffuse

Specular

Figure 27: User options for lighting levels.

Once the lighting is set the paintGL function calls the drawFrame function.
This function draws the outline of the flow domain by using the glBegin function
with the GL_LINE_STRIP parameter. glVertex3f coordinate points are then
used to outline the extremities of the flow domain according to the size set by
the user. Finally the paintGL draws the velocity field according to the options
as selected by the user.

Knowing which way the flow domain is orientated after rotating can be con-
fusing. The orientation widget, on the bottom left of the user interface, was
implemented to alleviate the confusion by using arrows to allow the user to see
which way the flow domain is orientated. The orieGLWidget class manages the
visualization in this pane, which is again inherited from the Qt OpenGLWidget
class. Three coloured arrows are the only objects drawn in the pane using the
paintGL function. A yellow arrow is drawn to represent the increasing y-axis, a
red arrow for the x-axis and a green arrow for the z-axis. The arrows are drawn
using the same glBegin function as in the GLWidget but with the GL_LINES
parameter used instead. The same rotation values from the main 3D visualiza-
tion pane GLWidget are used to rotate the arrows the same as in the main 3D
visualization pane using the same glRotatef function.

35



The orieGLWidget class also uses the Qt QMouseEvent to reset the orienta-
tion back to the x-y face. Clicking the right mouse button resets the rotation
factors in both the orieGLWidget and GLWidget. Clicking the left mouse but-
ton resets the zoom factor in the GLWidget putting the whole flow domain back
into view within the 3D visualization pane.

6.1.4 Colour Legend

Once data has been loaded a colour legend appears, as can be seen in figure
25. By default this colour legend is mapped to the speed of the vector field
with a red to blue through white diverging colourmap. The coloured legend
strip is managed by another class inherited form the Qt ’QOpenGLWidget’
called legGLWidget. The paintGL function within the legGLWidget class simply
draws a rectangle and applies a colourmap to it. A LoadAllTextures function
is used to manage what colourmap is applied according to a parameter from
the MainWindow class. This parameter is a number which when applied to an
object of the colourmap class, returns an array of rgb values to be loaded as the
colour texture. The colourmap class is a class containing arrays that make up
the rgb values for the different colourmap options.

The legGLWidget class also uses the Qt 'QMouseEvent’ to allow the user to
modify the colourmap. When the user clicks the colour legend a new dialog
opens to allow the user to chose a colourmap. This dialog is managed by the
chooseMap class and can be seen in figure 28. The user has a choice of five
colourmaps which can be selected and applied using the ’OK’ button. This
sends a value corresponding to the colourmap back to the MainWindow class
where it is then used in the GLWidget and legGLWidget classes to colour vector
field visualization the and the legend respectively.

The defaut colourmap choice is a diverging colour from blue to red through
white as presented by Moreland in [Mor09]. Other colourmap options are the
Kindlmann colourmap presented in [KRC02], a red to green colourmap, a di-
verging blue to yellow to red colourmap and, despite the criticism from Moreland
in [Mor09], a rainbow colourmap.

The user has the option to chose what parameter the colour is mapped to in
the "Colour’ tab of the user options panel as can be seen in figure 29. These
options are to map colour to the vector field speed, the vector field helicity
or the vector field helicity magnitude. To calculate the scalar values at the
extremities of the scale, a ordered class was created. The ordered class takes
the x, y and z coordinates as an input along with a scalar value. The class
uses the Qt QMultiMap container class to store the x, y and z coordianates as a
QVector3D object, using the scalar value as the key. This allows the coordinates
to be stored in ascending scalar value. By accessing the first and last values in
the object, the extremities of the scale could be found.

36



Choose legend colours X

@) |Blue - Red MsH
Blue - Yellow - Red
Red Green
Kindleman

Rainbow

Cancel OK

Figure 28: Colourmap choice dialog.

Streampath Rake Arrows Colour

[H||Map to speed
Map to helicity

Map to helicity magnitude

Manual rescale Hide legend

Figure 29: User colour mapping options.

The ordered class has a set method which takes a set of coordinates as an
input along with the scalar value to input into the class. A getFScal method can
be used to return the highest scalar value in the object while a getL.Scal method
returns the lowest values. While developing the software it was discovered that
the RayleighBnard convection dataset has a few values that were far lower than
the vast majority. This caused a skewing of the colourmap. To counter this
a function was added into the ordered class which took the scalar values at
the 99.9"" percentile and compared it to the extremities. If the value at the
extremeties were found to be far beyond the scale to the 99.9*" percentile, the
scalar value for the 99.9" percentile position would be used. This function is
accessed via the getUCS for the maximum value of the scale and via the getL.CS
for the minumum value of the colour scale.

A getScal function is also available within the class that return the scalar
value for a given set of coordinates as an input. This is a slow accessors method
however and was not implemented in the software. getFQVec and getLQVec
functions return the first (lowest scalar value) and last (highest scalar value)
coordinate positions. These functions take an integer input to return the value
of the position of the integer, e.g. entering the integer value three into the
getFQVec function will return the coordinates of the third lowest scalar value.

37



This was found to be a slow accessors method for larger inter inputs therefore
a new function was added that copied the QVector3D values into a QList class,
keeping the same order. The QList class has the capability of being directly
accessed whereas the QMultiMap class does not.

When the option to map the colour is changed to helicity or helicity mag-
nitude, the helicity must first be calculated. The helicity is calculated within
the MainWindow class and is computed when required. Helicity is calculated
according to equation 1, this requires vorticity to be calculated first. The x-
axis vorticity is calculated by subtracting the mData vecField VZgrad from the
WYgrad value. The y-axis vorticity by subtracting the WXgrad value from the
UZgrad value and the z-axis vorticity by subtracting the UYgrad value from the
VXgrad value. Once vorticity is calculated, the x-axis vorticity is multiplied by
the x-axis velocity component, the y-axis vorticity by the y-axis velocity com-
ponent and the z-axis vorticity by the z-axis velocity component. Adding all
three values together give the helicity. Because helicity is directional, the helic-
ity magnitude is also calculated by using the ’fabs’ function from the Math.h
library. The helicity values are stored in a scalarField class. The scalarField
class is similar to the vecField class except that there is only one value to be
stored at each vertex and gradient functions are absent. The helicity values are
also passed into a ordered object to find the colour legend extremities. The
helicity scalarField class is passed to the GLWidget class which then uses the
appropriate scalar values to plot each vertex colour. The maximum and mini-
mum values returned from the ordered class for the appropriate scalar value are
then added to the legend, with a middle point calculated.

A hide legend option is available that allows the user to hide the colour legend,
as well as manual rescale options. When the manual rescale option is selected,
two vertical sliders appear either side of the legend as can be seen in figure 30.
By moving these sliders it is possible to change the scale of the colourmap to
allow greater colour definition.

6.1.5 User options

The user option panel has multiple options to allow the user to create visu-
alizations. Within the "Arrows’ tab there are options to allow for the domain
to be filled with arrow glyphs. Arrows can be used to show the velocity or the
velocity gradient. An example of the arrows can be seen in figure 30. The size
of the arrows displayed are by default proportional to the value that they are
showing. The size of the arrows can however be increased by a multiplication
factor used in the spin box labelled arrow size. A normalize arrows check box
is also available to make all arrows the same size. Arrows are placed at vertices
according to the arrow spacing spin box. A value of ten in the spin box signifies
that arrows will be visualized at every tenth vertex.

38



Automatic Stream Ribbon Plotter

Data Source Legend
Speed
0505189

Streampath Rake Arrows Colour

0.499939

Orlentation

Que o.asacss

Figure 30: Velocity arrows on the RayleighBnard flow at an spaced at an interval
of five. Colour is mapped to speed using the Blue - Yellow - Red colourmap.
Manual legend rescale sliders can be seen.

When the Vector Arrow’ option is selected, a boolean value within the
GLWidget class is switched to allow for the arrows to be drawn. The mData vec-
Field dataset, generated when the data was loaded, is passed into the GLWidget
so the vector information can be accessed and drawn. To generate the gradient
arrows, the velocity gradient must first be calculated. The gradient is calcu-
lated within the MainWindow class and is computed when required, if only
speed arrows are drawn the gradient is not calculated at all. Once calculated,
the gradient vectors are stored until the program is terminated or a new dataset
is loaded. The gradient vectors are stored in another vecField class which is
then passed to the GLWidget for rendering. The vector gradient is calculated
by comparing the speed at either side of a vertex in one axis of the flow domain,
the difference between the values give the gradient component for the chosen
axis. This is done for all three axis to give the gradient vector.

The GLWidget contains a function for rendering the arrows called drawAr-
rows. This function is called with the location coordinates of the vertex the
arrow is to be drawn on and the coordinates of the end of the arrow. The func-
tion then draws a the arrow line along with a cone object from the freeGLUT
OpenGL libraries, orientating the cone in the right direction.

Another option on the ’Arrows’ tab of the user interface allows for the arrows
to be drawn in place of stream objects. This allows arrows to be drawn along

39



the calculated stream lines generated in other tabs rather than filling the whole
domain.

To render stream objects, an integrator must be applied to the vector at a
seed point to find the line at a tangent to the flow. This software implements
the fourth order Runge-Kutta method as seen in equation 3. The integrator
options can be set under the "Streampath’ tab. Options available are the size of
the time step, the integrator direction and the maximum number of steps. The
integrator direction can be set to forward, backward or backward and forward.
Figure 31 shows the Streampath tab along with the integrator options.

Sis1=8;+(a+2eb+2e0c+d)/6
a=dteuv(s;) 3)
b=dteuv(s;+a/2)

c=dtev(s;+b/2)
d=dteuv(s; +¢/2)

Streampath = Rake Arrows Colour

Automatic Streamline

Manually add streamribbons

Ribbon spacing : Z) :
Minimum ribbon length : 160 :

Time step (dt): Number of steps:
0.050 | . 10000 o

Integrator direction

Forward & Backward v
Ribbon Width : 3.00
Apply

Show seed points

Figure 31: The Streampath tab of the user interface.

The tab labelled 'Rake’enables the user to manually set a seed point for a
stream ribbon. Three spin boxes are available to be filled with the x, y and z
coordinates for the ribbon seed point. Once coordinates have been entered, the
stream ribbon calculated from that seed point shall be rendered according to
the integrator settings and to the width stated in the 'Ribbon width’ spin box,
also on the Streampath tab. The stream ribbon is stored as a QList of QVec-
tor3D and is calculated using the matRibbon function within the MainWindow

40



class. The matRibbon function takes the coordinates of the seed point as an
argument and calculates the coordinates of the next step by using the forth
order Runge-Kutta. If the coordinates of the next step exceed the flow domain
the function exits. A normal is found to the vector between the seed point and
the coordinates of the next step. The positions that are half the ribbon width
either side of the seed point, along the normal line are stored in the QList. The
next step is then performed but with the addition of a rotation of the normal
about the streamline axis. The magnitude of the rotation is set according to
the angular velocity. The stream ribbon continues until a termination condition
has been reached. This ribbon is then passed into the GLWidget class where it
can be rendered. A single manually seeded stream ribbon can be seen in figure
32.

As well as a singular stream ribbon, it is possible to draw a rake of stream
ribbons. This is also done in the 'Rake’ tab. The 'Rake’ tab of the user interface
can be seen in figure 32. The length of the rake is input in the 'Rake Length’
spin box while the number of seeding points along the rake set in the ’Number
of streams’ spin box. The rake will be drawn from the seed point a distance set
by the rake length spin box. The direction of the rake is set according to the
normalised vector in the rake orientation x, y and z spin boxes.

Automatic Stream Ribbon Plotter

Data Source Legend
Hellcity Mag

Streampath Rake Arrows Colour 0126918

Seed point
x v z

3600 2| 1600 |2 [3500 |2
Rake Lengih  Number o streams
000 | 12
Rake orientation

x [10 |2 v: 00 [C 2 00 [0

0310804,

Orlentation

Quit 3.8445¢-06

Figure 32: A single stream ribbon manually seeded in the RayleighBnard convec-
tion flow. The Red Green colour map is used and mapped to helicity magnitude
and the scale manually adjusted. The Rake tab of the user interface can be seen
with the seeding location.

41



The extra ribbons are constructed in the same manner as the single ribbon
and again passed into the GLWidget class. Within the GLWidget class there
is a QList container class that stores a QList class of QVector3D classes. This
QList container class stores the array of ribbons to be rendered.

The automatic stream ribbon seeding algorithm is applied by selecting the
"Automatic’ check box on the Streampath tab that can be seen in figure 31. The
following section describes the algorithm used. The algorithm uses an additional
class called clearPoint. The clearPoint class consists of two arrays of boolean
values, with the length of each of the arrays equal to the number of vertices in
the flow domain. One array is considered the permanent array while the other
array is considered temporary. All values are initially set to true in both arrays.
While a stream ribbon is being constructed, the boolean in the temporary array
equivalent to the vertex that is being added to the ribbon object are set to
false. The boolean in the temporary array is also set to false for all vertices
that surround the vertex being added to the stream ribbon. The surrounding
distance is set using a clearance value in the clearPoint class, which in turn is
set to the value in the 'Ribbon Spacing’ spin box. Therefore by increasing the
value in the ribbon spacing spin box, more vertices will be set as false in the
temporary array.

If a ribbon fails to meet the length specified in the minimum ribbon length
spin box, the boolean values in the temporary array within the clearPoint class
are all reset to true and the ribbon calculated discarded. If the ribbon calculated
exceeds the minimum ribbon length, the values that are false in the temporary
array are set to false in the permanent array and the ribbon is then added to
the list to be rendered. When a new ribbon is being constructed, vertices are
checked against the clearPoint class permanent array to check they are not too
close to existing ribbons. If they vertex for the construction of a new ribbon
has already been set in the clearPoint class, the construction of the new ribbon
is then halted. If the ’Automatic’ box is deselected the clearPoint class is reset.

A horizontal slider is enabled on the ’Streampath’ tab when the ’Automatic’
check box is checked. This slider controls the number of ribbons being rendered.
Decreasing the slider removes the last constructed stream ribbon by stopping
the GLWidget iterating through all ribbons in the QList.

A 'Manually add streamribbons’ option is also enabled when the ’Automatic’
check box is selected. When this option is selected, the 'Ribbon spacing’ and
"Minimum ribbon length’ options are disabled and the 'Number of paths’ spin
box is enabled. Deselecting the 'Manually add streamribbons’ option reverses
this. When enabled the automatic algorithm is overridden and a number of
stream ribbons equal to the value in the 'Number of paths’ spin box will be
rendered. The ribbons will be seeded in the order of greatest helicity magnitude,
disregarding the positioning of any other stream ribbon.

42



A ’Streamline’ check box is also visible on the ’Streampath’ tab. By select-
ing this option, all stream ribbons will be rendered as streamlines. Another
check box on the 'Streampath’ tab is the ’Show seed points’ option. Selecting
this renders a black sphere at the point where each stream ribbon was seeded.
The sphere is generated in the GLWidget using the freeGLUT library function.
Seeding points can be seen in figure 33.

6.2 Automatic Seeding Algorithm

This subsection describes the seeding algorithm implemented for this project.

The advantage of stream ribbons over streamlines are that they have the
ability to show helicity in a field. Therefore a stream ribbon placement should
primarily take into account the helicity of the field. With this in mind the al-
gorithm first calculates the helicity value for every vertex in the volume. These
vertices are then ordered in ascending value according to the helicity magnitude.
Helicity is directional, a anticlockwise motion is negative while a clockwise mo-
tion is a positive helicity value. Because the direction of helicity is unimportant,
the helicity magnitude is used.

The program allows the user to seed the stream ribbon at the vertex show-
ing the highest helicity value, and continue adding stream ribbons at the next
highest values. This however showed to be inappropriate as often two vertices
next to one-another would have a similar helicity magnitude and so the ribbons
created from the seed points would wrap around each other as can be seen in
figure 33. A this effect is more pronounced in simulations with more nodes.

To overcome this issue it is proposed to use a technique similar to the one
used by Max et al. in [MCG94]. This only allows for seeding of streamlines, or
in this case stream ribbons, a fixed distance from another streamline. Stream
ribbons should also terminate when too close to another stream ribbon. The
separation distance allowed between stream lines can be controlled by the user.
Stream ribbon seeding order is dictated by the helicity magnitude as before, as
long as the seeding point is the minimum distance away from previous stream
ribbons. The ribbon is constructed forward and backward from each seed point.
Once all vertices within the flow domain have been analysed as seed points, the
algorithm is complete.

A tenancy for producing many short ribbons was seen while initially testing
the algorithm. These ribbons offered minimal insight into the flow pattern. To
prevent this a minimum stream ribbon length option is also proposed as a user
option. This rejects seeding points where the resulting stream ribbon does not
meet the set minimal length.

43



Streamiine Plotter

Data Source Legend
Helicity Mag

streampath | Rake | Arrows. Colour [yl
Automatic Streamline

8] Manually add streamri bbons

Number of paths B |0

Time step(dt:  Number of steps:

0150 |2 10000 |

Integrator direction

Forward & Backward

Ribbon Width 400 |7
Apply

9] show seed points

-~
ooz %

Orlentation
£

s <

’ ,

L h
_~

Quit 2.38288e-10 A\

Figure 33: Two stream ribbons seeded next to one-another in a 1283 node
tornado simulation.

Ideally the stream ribbons should occupy all features within the vector field,
even where the helicity magnitude is low, in order for the casual viewer to see
a full representation of the flow. It is therefore important to indicate flow in all
areas of the vector domain. This however can lead to a problem with occlusion
in 3D fields, therefore a balance needs to be found. Occlusion is a particular
problem with ribbons as they are essentially wide lines which take up more
space, leaving less space to see into the centre of the volume.

To counter the occlusion problem, a filtering option is proposed that removes
the last seeded ribbon, i.e. the ribbon with the least helicity magnitude. Further
filtering removes the ribbon with the next smallest helicity magnitude and so
on until all ribbons are removed.

Another consideration with producing stream ribbons is their width. As pre-
viously mentioned, if ribbons are too wide they will cause greater occlusion but
if too small the twisting will be difficult to see. A guideline ribbon width is
suggested that is proportional to the size of the flow domain. This guideline
applies to rectangular flow domains. The distance from the centre of the domain
to a corner is calculated, this is then divided by sixty. The ceiling function is
then used to give an integer value used as the ribbon width.

Given a suggested ribbon width, a suggested stream ribbon separation dis-
tance is also suggested as the same distance as the ribbon width. The minimum
ribbon length is also suggested as eight times the ribbon width. These values

44



are only initial suggestions however and the user should be able to adjust these
values to their own requirements.

7 Testing and Evaluation

This section describes the testing of the software and shows the results of the
testing.

Unit testing and integration testing were continuously performed while devel-
opment of the software was ongoing. New features implemented would be tested
alongside other features with the three separate datasets. Any bugs found were
addressed. Testing of invalid inputs that would cause the application to crash
was also performed. Three datasets were used to test both the program and the
algorithm.

The first dataset is the RayleighBnard convection flow. The dataset provided
has a fixed resolution of 128 x 32 x 64 and is provided as a file with a binary
.raw format.

The second dataset is a tornado simulation and is an analytical data set
produced from a procedural function on a regular Cartesian grid. The size of
the tornado dataset can be adjusted by manually specifying the dimensions of
the dataset. Testing will primarily use a 1283 node model.

The final dataset is a ArnoldBeltramiChildress (ABC) flow. It is another flow
field that is produced from a procedural function as seen in equation 2. A, B
and C are constants that can be adjusted to create different flows. For this
project the parameters be used are: A = 0.1, B = 0.5 and C = 0.5. The size
of the flow field can also be adjusted as for the tornado dataset, testing will
primarily use a 128% node model.

7.1 Results

Figures 34, 35 and 36 show visualizations of the three datasets created by the
software, using the automatic stream ribbon seeding algorithm. A demonstra-
tion video can be seen at:

http://cs-ugrad.swan.ac.uk/849119/

Figure 37 shows an example of the rake implementation along with the seeding
locations and the streamline implementation. The Kindlmann colourmap can
also be seen in the figure which is mapped to helicity. An example of arrows
placed on streamlines can be seen in figure 39.

45



Automatic Stream Ribbon Plotter

Data Source Legend
Hellty Mag
Streampath Rake Arrows | Colour T
Map to speed
Map to hellity
] Map to hellctty magnitude
8] manualrescale [ Hide legend
Light properties |ighUpaSiHon
Amblent
oiffuse
Specular
0305727
orientation
Quit 3.8445e-06

Figure 34: Automatic stream ribbon seeding applied to a RayleighBnard con-

vection flow. The default colourmap is used and colour is mapped to helicity
magnitude. The legend has been manually rescaled.

Automatic Stream Ribbon Plotter

Data Source Legend
Speed
Streampath |Rake  Arrows Colour o
W] Automatic Streamline
Manually add streamribbons
\umber of paths
TN 102
Minimum ibbonlength: (2135
Time step (di:  Number of steps:
0450 | 10000
Integrator direction
Forward & Backward v
Ribbon Width : 400 |
Apply
Show seed points 026972
Ortentation
—_—
Quit 00298344

Figure 35: Automatic stream ribbon seeding applied to a 1283 node tornado
simulation. Colour is mapped to speed using a rainbow colourmap.

The available colourmaps, blue to red through white diverging, blue to red
through yellow diverging, red - green, Kindlmann and rainbow can be seen in

46



Automatic Stream Ribbon Plotter

Data Source
Streampath | Rake Arrows Colour.

) Automatic Streamiine

Manually add streamribbons.

Number of paths 1

Ribbon spacing 102
Minimum ribon ength s (213 |2
Timestep (@t;  Number of steps:

01502 10000

Integrator direction
Forward & Backward v

Ribbon Width 00 |2

Apply

Show seed points.

Orlentation

L

Quit

Figure 36: Automatic stream ribbon seeding applied to a 1283 node ABC sim-

Legend
Speed
1.00994

0.506849

000375399

ulation. Colour is mapped to speed using a rainbow colourmap.

Data Source
Streampath Rake Arrows Colour
Seed point

x v z

000 |2 000 | |oo0
Rake Length ~ Number of streams
300002 Bs |2

Rake Ortentation

x (10 [2] v: [10[Z] z [10 [

Orlentation

1

Quit

Automatic Stream Ribbon Plotter
Legend

Helicity
00500484

00250245

6.91478e:07

Figure 37: A streamline diagonal rake through a 1282 node ABC simulation.
Seeding locations are shown as black spheres. Colour is mapped to helicity using

the Kindlmann colourmap.

figures 34, 30 39, 37 and 38 respectively.

47



Automatic Stream Ribbon Plotter

Data Source Legend
Speed

Streampath Rake Arrons  Colour os006s

8] Gradtent Arrow | vector Arrow

Place arrows on Streamiines

Arrow size: | 10.00 |

W) Normalise arrows

arow spacing (102
0289729

ortentation
,\/[\
Qut 00208344

Figure 38: Speed gradient arrows applied to a 1283 node tornado simulation.
Arrows are normalised and are spaced at every 10"

node. Colour is mapped to
speed using the rainbow colourmap.

Automatic Stream Ribbon Plotter x

Data Source Legend

Speed

Streampath Rake Arrows | Colour (o
Gradient Arrow (M Vector Arrow!

] Place arrows on Streamlines
Arrow Size: | 14.00 | T
Normalise arrows.

Arowspacing 38 |

0500234,

Orlentation

Quit 0496341

Figure 39: Velocity arrows placed on streamlines in a RayleighBnard convection
flow. Streamline seeding locations were generated using the automated algo-
rithm and filtered. Colour is mapped to speed using the Green-Red colourmap.

48



To test that the file read is performing correctly and that vector fields are
correct, the RayleighBnard convection flow was imported into both the software
developed for this project and ParaView, a commercial application [Kit00] to
compare results. The results, which can be seen in figure 40, show a very similar
likeness verifying the software.

Legend
Speed
0506486

0500588

0.494689

Figure 40: A top and bottom comparison of a RayleighBnard convection flow
rendered in the software developed for this project (top) and ParaView (bot-
tom).

A similar test was carried out on the tornado dataset. The function was
loaded into ParaView and a seed point added to create a stream ribbon. The
same seed point was entered into the software created for this project to compare
the results. Figure 41 shows a top and bottom comparison. The results are

49



broadly similar validating the stream ribbon calculation method, the stream
line integration method and the tornado dataset generation.

Legend
Speed

I 0375283

%
S

0.15458

01
Eb? 527
5-56.099

44.67

=3.324e401

Figure 41: A top and bottom comparison of a single stream ribbon seeded in
the 1283 node tornado simulation. The top image was rendered in the software
developed for this project and the bottom rendered in ParaView.

7.2 Performance

A noticeable performance issue is seen with the automatic seeding algorithm on
larger datasets. This is exasperated by increasing the minimum length allowed
for a ribbon. This is because there are more rejected stream ribbons meaning
that there are more seed candidates to investigate. Running the algorithm on a
1283 node dataset would take over ten minutes on the development PC. Using
a smaller dataset rectifies this due to the cubic nature of the flow domain.

50



Improvements could also be made by using multithread optimizations.

The software shows signs of limitation when rendering many vertices such
as vector arrows for every vertex in a 1283 node dataset. A slow juddering is
experienced instead of a smooth user experience when trying to interact with the
visualization. This highlights some improvements that could be made to the way
the software renders the 3D OpenGL pane. Alternatively it could be rectified
with the use of a more powerful dedicated graphics card. The same affect is
seen when rendering many vertices within the established flow visualization tool
ParaView.

A limitation with the filtering of the automated seeded stream ribbon has
also been identified. When the most helical parts of a vector field are on the
outside of the domain, the stream ribbons here would be filtered last. This
would obscure the flow features in the centre of the flow domain, which would
be the first to be filtered.

Outside of the performance issues outlined, the software and the algorithm
preform effectively.

8 Conclusions

The first aim of this project was to create a novel stream ribbon seeding algo-
rithm. Stream ribbons are ribbon representations that run at a tangent to the
velocity at any point in a vector field. Stream ribbons are most effective demon-
strating the helicity of a vector field by their twisting. This aim was met with
an algorithm created that prioritises seeding points in order of greatest helicity
magnitude. Stream ribbons must be a minimum distance from other ribbons
and must meet a minimum length criteria set as a user option. Visualizations
of the algorithm results can be seen in this document, however validation from
a domain expert is absent.

The second aim was to create a software application capable of visualizing
the algorithm which was also met. A C++ based program was created using
the Qt framework and OpenGL API. Visualizations produced by the software
can also be seen in this document.

A comparison with visualizations created using ParaView [Kit00] show sim-
ilar results validating the software. Although ParaView has many additional
features, an automatic seeding option is unavailable.

Overall the project can be deemed to be a success, however there are some
issues with the performance of the algorithm on larger datasets, especially when
a longer minimum stream ribbon length is stipulated. A limitation with the

o1



filtering has also been identified when the most helical parts of a vector field are
on the outside of the domain.

The software also shows signs of limitation when rendering many vertices, a
slow juddering is experienced instead of a smooth user experience. The software
would also benefit from extensive user testing to identify any bugs.

A key objective of this project was for the author to learn how to use the
technologies used for creating computerised data visualization. By performing
this project the author has had experience with C++, Qt and OpenGL all of
which they were previously unfamiliar with. Although there is more to be learnt
about these technologies, this project has created a good introduction.

A video demonstration of the software is available along with other resources
produced for the project at the following web address:

http://cs-ugrad.swan.ac.uk/849119/

9 Further Work

The first priority to continue this project would be to seek the view of a
domain expert in order to validate the algorithm produced. With feedback
the algorithm can be tuned to display visualizations that would be of benefit
to domain experts. The testing of the algorithm on simulations that are less
theoretical and more practical, such as CFD data as seen in figure2, could also
benefit. In order to do this, the load data functions will need to be extended to
enable a greater variety of file types to be read.

The software could also be extended to enable handling of data on non Carte-
sian grids, such as polar coordinates or tetrahedron grids. Tetrahedron grids
are often used in CFD simulations therefore to implement this option would
be beneficial. The software could also be expanded to allow for mapping of
different scalar values. CFD simulations generate many scalar values for a flow
simulation such as temperature and pressure, the ability to map colour to these
scalar values would also be beneficial. Using the scalar values as seeding points
using a similar algorithm to the one outlined in this project could also yield
interesting results.

Extending the software to accommodate time dependant data is another op-
tion to extend the project. This would allow for analysis of streak lines as well
as streamlines. Animations would then most likely be required to display the
data.

92



Further improvements could be made to the software such as using multi-
threading capabilities to speed up calculations of field attributes and to reduce
the time taken to run the automatic stream ribbon seeding algorithm on larger
flow domains. A HCI appraisal of the software user interface is another example
of further work that could be carried out.

The algorithm used for the automatic seeding of the stream ribbons could
also be expanded. Stream ribbon similarity could be mapped in order to create
an index, similar to the streamline similarity concept proposed by Chen et al.
in [CCKO07]. The aim would be to represent the whole flow domain with the
minimum possible number of stream ribbons to avoid occlusion problems.

10 Acknowledgements

I would like thank my supervisor Robert S. Laramee for the guidance and
support through the learning process of this masters thesis.

93



References

[Arnl1] Arnuphaptrairong T. Top ten lists of software project risks: Evidence
from the literature survey. InProceedings of the International MultiConfer-
ence of Engineers and Computer Scientists 2011 Mar (Vol. 1, pp. 1-6).

[BS08] Blanchette J, Summerfield M. C++ Gui Programming with Qt 4, Second
Edition. Prentice Hall Press. 2008

[BT07] Borland D, Taylor II RM. Rainbow color map (still) considered harmful.
IEEE computer graphics and applications. 2007 Mar 1;27(2):14-7.

[CCKO7] Chen Y, Cohen J, Krolik J. Similarity-Guided Streamline Placement
with Error Evaluation. IEEE Transactions on Visualization and Computer
Graphics. Volume 13, No. 6. 2007 0-201-14192-2.

[DMG+04] Doleisch H, Mayer M, Gasser M, Wanker R, Hauser H. Case
Study: Visual Analysis of Complex, Time-Dependent Simulation Results
of a Diesel Exhaust System. In: Data Visualization, Proceedings of the 6th
Joint IEEE TCVGEUROGRAPHICS Symposium on Visualization (VisSym
2004). 2004, p. 916.

[DMHO04] Doleisch H, Muigg P, Hauser H. Interactive visual analysis of hurri-
cane isabel with SimVis. In IEEE Visualization 2004.

[Dol07] Doleisch H. Simvis: Interactive Visual Analysis of Large and TimeDe-
pendent 3D Simulation Data. In: WSC 07: Proceedings of the 39th Con-
ference on Winter Simulation. Piscataway, NJ, USA: IEEE Press. ISBN 1-
4244-1306-0; 2007, p. 71220.

[EMcLL+11] Edmunds M, McLoughlin T, Laramee RS, Chen G, Zhang E, Max
N. Automatic Stream Surface Seeding. EUROGRAPHICS 2011

[FG98] Fuhrmann A, Grller E. Real-time techniques for 3D flow visualization.
InProceedings of the conference on Visualization’98 1998 Oct 18 (pp. 305-
312). IEEE Computer Society Press.

[JL97] Jobard B, Lefer W. Creating evenly-spaced streamlines of arbitrary den-
sity. InVisualization in Scientific Computing97 1997 (pp. 43-55). Springer
Vienna.

[Kit00] Kitware Inc. ParaView. Kitware Inc. http://www.paraview.org/
[September 2016].

[KRCO02] Kindlmann G, Reinhard E, Creem S. Face-based luminance match-
ing for perceptual colormap generation. InProceedings of the conference on
Visualization’02 2002 Oct 27 (pp. 299-306). IEEE Computer Society.

o4



[Lar10] Laramee RS. Bobs Project Guidelines: Writing a Dissertation for a
BSC. in Computer Science. Innovation in Teaching and Learning in Infor-
mation and Computer Sciences, 10(1):4354, February 2011. (A publication
of the UK Higher Education Academy (HEA), available online).

[Larl0a] Laramee RS. Bobs Concise Coding Conventions (C3). Advances in
Computer Science and Engineering (ACSE). 2010 Feb;4(1):23-6.

[LJHO3] Laramee RS, Jobard B, Hauser H. Image Space Based Visualization of
Unsteady Flow on Surfaces. In: Proceedings IEEE Visualization 03. IEEE
Computer Society; 2003, p. 1318.

[Mat84] MathWorks. MATLAB. MathWorks Inc.
http://uk.mathworks.com/products/matlab/ [September 2016].

[McLL+09] McLoughlin T, Laramee RS, Peikert R, Post FH, Chen M. Over
Two Decades of Integration Based, Geometric Flow Visualization. InCom-
puter Graphics Forum 2010 Sep 1 (Vol. 29, No. 6, pp. 1807-1829). Blackwell
Publishing Ltd.

[MCG94] Max N, Crawfis R, Grant C. Visualizing 3D velocity fields near con-
tour surfaces. In Proceedings of the conference on Visualization’94 1994 Oct
17 (pp. 248-255). IEEE Computer Society Press.

[Mor09] Moreland K. Diverging color maps for scientific visualization expanded.
Advances in Visual Computing. 2009 Jul 1;5876.

[NCE91] Nord H, Chambe-Eng E. Qt. The Qt Company. https://www.qt.io
[September 2016]

[Para07] Default  Color ~ Map -  ParaQ  Wiki.  June  2007.
http://www.paraview.org/ParaView /index.php/Default_Color_Map
[September 2016)

[PGL12] Peng Z, Geng Z, Laramee RS. Design and Implementation of a Sys-
tem for Interactive High-Dimensional Vector Flow Visualization. Computer
Modeling: New Research 2012.

[PGN+14] Peng Z, Geng Z, Nicholas M, Laramee RS, Croft N, Malki R, Masters
I, Hansen C. Visualization of Flow Past a Marine Turbine: The Information-
Assisted Search for Sustainable Energy. Computing and Visualization in
Science, Vol 17, No 6, December 2014, pages 89-103.

[Reel6] Rees DG, Automatic Stream Ribbon Seeding. CSCM10 - Computer
Science Project Research Methods. Swansea University department of com-
puter science. May 2016.

[Roth00] Roth, Martin. Automatic extraction of vortex core lines and other line
type features for scientific visualization. Hartung-Gorre, 2000.

95



[Sma94] Smart J.  wxWidgets: cross  platform  GUI  library.
https://www.wxwidgets.org/ [September 2016]

[Spi98] Spitzak B. Fast Light Toolkit (FLTK). http://www.fltk.org/ [September
2016]

[Sto04] Storer J. JUCE (Jules’ Utility Class Extensions). ROLI Ltd.
https://www.juce.com/ [September 2016]

[Str15] Bjarne Stroustrup. The C++ Programming Language Fourth Edition.
Addison-Wesley. 2015

[SWH15] Sellers G, Wright RS, Haemel N. OpenGL SuperBible Seventh Edi-
tion. Addison-Wesley. 2015

[Tec81] Tecplot Inc. Tecplot 360 http://www.tecplot.com [September 2016].

[Tel08] Telea AC. Data Visualization Principles and Practice. A K Peters Ltd.
2008

[Tsi] Tsinober A. Fundamental and conceptual aspects of turbulent flows
- Helicity. Slides from Imperial College London. Available online:
http://www3.imperial.ac.uk /portal /pls/portallive/docs/1/10733697.PDF
[May 2016]

[TWO03] Telea A, Wijk JJ. 3D IBFV: Hardware-accelerated 3D flow visualiza-
tion. InProceedings of the 14th IEEE Visualization 2003 (VIS’03) 2003 Oct
22 (p. 31). IEEE Computer Society.

[YKPO5] Ye X, Kao D, Pang A. Strategy for seeding 3D streamlines. InVisual-
ization, 2005. VIS 05. IEEE 2005 Oct 23 (pp. 471-478). IEEE.

11 Apendix

11.1 Minutes of Meetings
Minutes of Meeting: Bob, Dylan

Date: 08 Feb 16
Start time: 12:00
End time: 12:10

Date and time of next meeting: TBA

Topics discussed:

— Jan Masters

— First document submission 10 Mar ’16 (Confirmed)

— Bob teaches software engineering II for undergraduates Tuesdays, Fridays
10:00 AM

o6



Progress since last meeting:
— Masters project chosen

TODO (for next meeting):

— Dylan: Read Bob’s Minutes of Meeting Protocol

— Dylan: Place minutes of meeting on web server

— Dylan: Read ” Visualisation of flow past a marine turbine” paper
— Bob: Get in touch with Tan Masters for marine turbine data

— Dylan: Read Bob’s project guidelines

Minutes of Meeting: Bob, Donal, Dylan

Date: 25 Feb 16
Start time: 11:00
End time: 11:50

Date and time of next meeting: Donal: 29 Feb ’16 11:00 with Nai, 2 March
16 11:00

Topics discussed:
— Matt Edmunds
— First document submission 10 Mar 16

Progress since last meeting;:

— Minutes of Meeting Protocol

— Dylan read ”Visualisation of flow past a marine turbine” paper
— Both read Bob’s project guidelines

— Bob wrote to Ian for turbine data

TODO (for next meeting):

— Donal Put minutes of meeting online from first meeting

— Dylan get copy of Matt’s software

— Dylan read preface and chapter one of Qt book

— Dylan read chapter on vector visualization

— Donal look at data visualization book

— Donal read ”Visualization of Biomolecular Structures: State of the Art”

— Both start writing related work section of thesis - 1/2 - 1 pages per assignment

Minutes of Meeting: Bob, Donal, Dylan, Dimitrios

Date: 03 Mar 2016
Start time: 14:30
End time: 16:00

o7



Date and time of next meeting: Donal + Dimitrios: 07 Mar 2016 11:00 with
Nai, 09 March 2016 11:00

Topics discussed:

— Tecplot

— 10 March Initial Document Deadline
— Rich’s phone number - 07852377314

Progress since last meeting;:

— Donal put minutes online

— Dylan read chapter on vector field vis. and chapter 1 of QT
— Donal read more survey papers

TODO (for next meeting):

— Rees - Matt’s software is avilable for download. Add ”software” to Bob’s URL
— Rees - read "Design and Implemnetation of a System for Interactive, High-
Dimensional Vector

Field Visualization” + Sim vis paper

— All: review Bob’s project guidelines

— All : look at Markus’ marking scheme

— All: Attempt to describe data

—Donal: Strategy for a survey 1) Describe the topics covered in survey, 1-2 para-
graphs, describe how the literature is classified or categorised 1-2 paragraphs
— Donal: Ask for a copy of Nai’s work-in-progress survey paper. Choose a paper
in there for related work

— Dimitrios: Read Bob’s project guidelines

— Dimitrios: Read Bob’s minutes of meeting protocol

Minutes of Meeting: Bob, Dylan, Donal, Dimitrisl

Date: 03 Mar 2016
Start time: 11:00
End time: 11:45

Date and time of next meeting: 14 March 11:00, 16 March 11:00

Topics Discussed:

—10 March 17 Taught MSc
—17 March 16 Advanced MSc
—Tecplot

—Format, Gro Files

Pregress since last meeting:
—Donal started initial document

o8



—Dylan has copy of Maths software
—Donal got a copy of Nai’s survey

Todo

—Submit initial document: Intro,

Advenced topics: Data characteristics, Features-Specifications

—Donal keep asking Nai foa a copy of his software

—Dimitris Read ” Visualizations of sensor data from animal movement”
—Dimitris add ”data” in lower-case to Bob’s url

—Dimitris think about technology choices

—Donal place literatures in chronological order by default

Minutes of Meeting: Bob, Dylan, Donal, Dimitris

date: 16 Mar 2016
start time: 11:00
end time: 12:15

date and time of next meeting: Donal 21 March 11:00, TBA

Topics Discussed:

—Advanced MSc deadline tomorrow - Initial document
~Thursday 21st April ’16 CSCM10 presentations
—Bob away 04-07 April ’16

—Bob away 11-17 April ’16

Progress since last meeting:

—Donal, Dylan Initial documents submitted
—Bob gives MDS data to Donal

—Bob gives marine turbine data to Dylan

Todo

—Dimitris Submit initial document

—Dimitris Read ”Smooth Graphs for Visual Exploration of Higher-Order State
Transitions”

—Dimitris Google ” Visualization of time-sensitive data, free tools”
—Dimitris Look at links on Bob’s data visualization web page
—Dimitris Send Bob copy of initial document requirements
—Donal Try visualizing MDS data with existing tools

—Donal Add 7 /data” to Bob’s URL to access data

—Dylan Write to Matt Edmunds and Ian Fairley about data
—Dylan Review different versions of Tecplot

—Dylan Read Bloodhound paper

99



Minutes of Meeting: Bob, Dylan, Donal

date: 24 Mar 2016
start time: 15:00
end time: 16:00

date and time of next meeting: 7 April 2016, 21 April otherwise, subject to
change

Topics Discussed:

—QT and C++

—QT Creator

—Swansea used PC for sale
~Hexahedra

—Bob’s visa to China

Progress since last meeting;:

—Dimitrios submitted initial document
—Donal got data

—Donla visualized MDS data set with VMD
—Donal has code to read data

—Donal has Nai’s survey paper

—Dylan has marine turbine data

—Dylan looked at Bloodhound paper

Todo

—Donal: show screenshots of MDS data with MVD- upload to web server
—Both have a look at QT Creator tutorials

—Donal: see if you can write a program to read the MDS data and print it to
console

—Dylan: think about getting a new used PC

—Dylan: try viewing data in paraview

Minutes of Meeting: Bob, Dylan, Donal

date: 28 Apr 2016
start time: 15:00
end time: 15:50

date and time of next meeting: 19 May 2016 15:00 (9 May meeting with Nai
for Donal)

Topics Discussed:

—Project fair 12 May 2016, all day
—Bob away next Thursday 5 May

60



—11 May 2016 interim/final document
—Real problem, real challenges, digital solutions, digital challenges

Progress since last meeting;:
—Gave presentations

Todo

—Dylan decide between turbine vis vs streamribbon seeding
—Dylan review Tony’s survey paper with a focus on seeding
—Dylan look at Matt Edward’s papers

—Cite images

—Donal: ask Nai and Mattieu for more data sets

—Donal: Join us for 11:00 Monday meetings with Nai
—Donal: Read data in Qt

—Donal: Ask Nai for updated survey

Minutes of Meeting: Bob, Dylan, Donal

date: 02 Jun 2016
start time: 15:00
end time: 15:50

date and time of next meeting: 16 Jun 2016 15:00 (13 Jun meeting with Nai for
Donal)

Topics Discussed:

—Dylan returned computer

—Bob away at Eurovis 2016 6-10 June

~Flow data: 5 jets, ABC flow, Bernard, Marine turbine, square cylinder, tor-
nado

—Real problem, real challenges, digital solutions, digital challenges

Progress since last meeeing:
—Both submitted final documents
—Dylan new PC parts

—Donal has data

Todo

~Both read data and print to console
—Bob’s coding conventions - follow them
—Both get a C++ reference book

Minutes of Meeting: Bob, Dylan, Donal, Dimitris

61



date: 16 Jun 2016
start time: 15:00
end time: 15:40

date and time of next meeting: 23 Jun 2016 15:00 (20 Jun meeting with Nai for
Donal)

Topics Discussed:

—Bob away 25 June - 2 July - CGI 2016 conference
-QWT

—QCustomPlot

—23 YouTube video

—idvbook.com

~Ptr, Ref, (Copy), Naming conventions

Progress since last meeting;:

—Dylan Sally, Betty, ABC data format
—Donal MDS data reader

—Dimitris acquired data

Todo

—Donal XY canvas, one point, N points

—Both read QT chapter on 2D graphics

—Dylan XY canvas, one line segment per vector, N vectors
—Dimitris read in data and print to console

—Dimitris send PDF's of books to Bob (all)

—All have a look at Bob’s sample code

Minutes of Meeting: Bob, Dylan, Donal

date: 23 Jun 2016
start time: 15:00
end time: 15:50

date and time of next meeting: TBA, 14 July 2016 - tentative

Topics Discussed:

—PhD Studentships

-EU

—Bob at conference next week
—Swansea computer science society

Progress since last meeting:

—Donal - Rendered circles, panning, zooming, colour
—Dylan - Edges on a plane

62



Todo

—Donal - 1 point per atom trajectory

—~Donal - paths (a set of edges)

—Dylan - Arrow glyphs - 2D and 3D

—Dylan - Encode vector magnitude with colour

—Read chapter on 3D graphics

—Donal proof-read Nai’s paper - deadline on Monday - CGVC 2016

Minutes of Meeting: Bob, Dylan, Donal

date: 07 Jul 2016
start time: 15:00
end time: 15:45

date and time of next meeting: 14 July 2016

Topics Discussed:

—KESS Studentships

—Brexit

—Hadling periodric boundaries
—Nai away 15 July - 20 August

Progress since last meeting:
—Donal - 1 point per atom trajectory and paths based using QPainter
—Dylan - Coloured arrows based on a QT colour map (2D)

Todo

—Donal - 1 point per atom trajectory using OpenGL
—Dylan - paths (a set of edges)3D coloured arrows

Minutes of Meeting: Bob, Dylan, Donal

date: 14 Jul 2016
start time: 15:00
end time: 15:45

date and time of next meeting: 21 July 2016

Topics Discussed:

—Distant supervision

—Nai away until 20 August 2016
—PhD requirements
—Integrating Qt and OpenGL

63



—www.trentreed.net /topics/cc
—User options between swithing back and forth between Qt and OpenGL

Progress since last meeting;:
—Donal - Drawing a triangle in OpenGL
—Dylan - Drawing a cone in OpenGl

Todo

—Donal - 1 point per atom trajectory using OpenGL
—Dylan - paths (a set of edges)3D coloured arrows

Minutes of Meeting: Bob, Dylan, Donal

date: 21 Jul 2016
start time: 15:00
end time: 16:00

date and time of next meeting: 28 July 2016

Topics Discussed:
—Bob away until 3 -11 August 2016
—Bob’s Skype name is rlaramee

Progress since last meeting:

—Donal - Rendering of atom positions and paths with OpenGL
—Donal - Atoms as paths

—Dylan - One arrow glyph

Todo

—Dylan - Test out Skype

—Donal - User Option: Atom positions as circles

—Both - Read chapter 4 of the OpenGL superbible : Math for 3D graphics
—Donal - Store the data in memory

—Both - Read chapter 15: Debugging and stability of OpenGL superbible
—Dylan - Two arrow glyphs

—Dylan - Draw a grid of points

—Donal - Ask Matthieu what the term ’residue’ means in this case

Also ask him how he would cluster trajectories

Minutes of Meeting: Bob, Dylan, Donal

date: 28 Jul 2016
start time: 15:00
end time: 16:00

64



date and time of next meeting: 11 Aug 2016, 15:00

Topics Discussed:
—Bob away until 3 -11 August 2016

Progress since last meeting:

—Donal - Exchanged emails with Matthieu

—Donal - Getting data loaded into memory

—Dylan - Zooming of viewport - rendering all atoms -
initial work on colour legend - collection of arrow glyphs
—Both - Read chapter 4 of OpenGL Superbible

Todo

—Donal - User Option: Atom positions as circles, reading of data into memory
—Dylan - Streamlines

—Donal - Colour mapping

—Both - Read chapters 1 and 2 of OpenGL Superbible

—Dylan - Read chapter 6 of Data Visualization Principles and Practice

Minutes of Meeting: Bob, Dylan, Donal

date: 12 Aug 2016
start time: 15:00
end time: 16:00

date and time of next meeting: 18 Aug 2016, 15:00

Topics Discussed:

—Qvectors

—2 samples/dimension

—Vector field can be normalised for streamlines

—Over Two Decades of Integration-Based, Geometric Flow Visualization
—Sci-hub

Progress since last meeting;:

—Donal - Demo video

—Donal - Colour mapping

—Both - Read OpenGL Superbible chapters 1 and 2
—Dylan - Streamlines, Euler, Runge-Kutta2 and 4
—Dylan - User option dt

Todo

—Donal - Ask for a copy of Nai’s video
—Donal - Try out Nai’s dataset

65



—Donal - Add zooming and panning

—Donal - Try to find how much memory is available in vertex buffer
~Donal - Ask Nai for a copy of his code and Doxygen

—Donal - Colour Legend

—Donal - Ask Matthieu if he thinks your video is correct (as a link)
—Both - Read the Qt chapter on container clases

—Dylan - Introduce a vector class with a normalize function

—Dylan - Streamribbons

Minutes of Meeting: Bob, Dylan, Donal

date: 18 Aug 2016
start time: 15:00
end time: 16:00

date and time of next meeting: 25 Aug 2016, 15:00

Topics Discussed:

—Clearing

—Jet lag

—2GB of memory on graphics card
-VTK

—QElapsedTimer

—Bob away 31 Aug - 7 Sept

Progress since last meeting;:

—Donal - Lipid visualization with Nai’s data
—Bob sent email to Nai

—Donal - Colour legend

—Donal - Read chapter on container classes
—Dylan - Streamribbons

Todo

~Donal - Zooming and panning (try w/o Nai)
—Donal - Set up new laptop

—Dylan - Read Qt chapter on container classes
—Dylan - Try to finish streamribbons

Minutes of Meeting: Bob, Dylan, Donal

date: 25 Aug 2016
start time: 15:00
end time: 16:00

66



date and time of next meeting: 08 Sep 2016, 15:00

Topics Discussed:

—Texture advection on streamsurfaces
~VMD mailing list

—Bob away 31 Aug - 7 Sept

Progress since last meeting:
—Donal - Rotation, zooming and panning
—Dylan - First implementation of streamribbons

Todo

—Both - Watch advanced visualization of electroencephalography (EEC) data
~Dylan - Add lighting options

—Dylan - User option - maximum length

—Dylan - Add a seeding rake

—Dylan - Have a look at ” Automatic extraction of vortex core lines and other
—Dylan - User option: Vector velocity at each point

—Dylan - User option: Gradient vector at each point

—Donal - Zooming and panning with buffers

—Donal - Handle boundary issues

—Both - Propose thesis outline (show to Bob at next meeting)

Minutes of Meeting: Bob, Dylan, Donal

date: 08 Sep 2016
start time: 15:00
end time: 16:30

date and time of next meeting: 15 Sep 2016, 15:00

Topics Discussed:

—Trip to Portugal

—Visible lunch on Monday at 13:00 - 4th floor kitchen
—Fire alarm

—~Add "software” to Bob’s URL (lowercase)
—Iluminated lines

—-ABC data

—Streamlines similarity video

Progress since last meeting;:

—Donal - Buffered rendering - quick, panning, zooming, rotation, more colour
mapping

—Donal - Handled boundaries

—Dylan - Ribbons with shading, forward and backward integration

67



—Dylan - Vector and gradient glyphs, colour map clamping
—Dylan - Seeding based on helicity magnitude

Todo

—Donal - Experiment with shading

—Donal - Spheres user option

—Donal - Trajectories as tubes (ask Nai how he’s rendering spheres)
—Both - Cite and enhance introductory/final document

—Dylan - User options for lighting and ambient light

—Dylan - White background

—Dylan - Focus on aesthetics - try out Alex Telea

—Dylan - Try out illuminated lines?

—Both look at colour map from chapter 5 of Telea’s book

Minutes of Meeting: Bob, Dylan, Donal

date: 15 Sep 2016
start time: 15:00
end time: 16:05

date and time of next meeting: 22 Sep 2016, 15:00

Topics Discussed:

—CoS DTC

—Animate streamline evolution: Current cell, current vectors at cell vertices,
current length

Progress since last meeting:

—Donal - Next video

—Donal - Point sprites, interactive light source and ambient light
—Donal - Animation frame rates

—Dylan - Normals and ambient lighting, interactive light sources
—Dylan - Version of seeding algorithm

Todo

—Dylan - Backup copy of offer letter

—Donal - Test out/demo both lipid and protein data
—Both - Thesis writing

—Donal - Colour map selection, illuminated lines?
—Dylan - Double check integrator for smoothness
—Dylan - User option - render seed points as spheres

Minutes of Meeting: Bob, Dylan, Donal

68



date: 22 Sep 2016
start time: 15:00
end time: 16:00

date and time of next meeting: 29 Sep 2016, 15:00 (optional)

Topics Discussed:

—Distractions

—Design chapter

—Implementation: list of features 4+ images to support + link to video demo
—Doxygen as appendix, but code only in digital form (pdf on web page)
—Open Broadcaster

—The Lorenz attractor

Progress since last meeting:

—Donal - Filtering by path length, curvature, velocity, 30+ colour maps
—Donal - Next video

—Dylan - Next video, smoother streamlines

—Both - Dissertation writing

Todo
—Dylan - Try adding/modifying light sources

—Dylan - 50% Sally/50% Betty - maybe a third data set
—Both - Write thesis and submit

11.2 Class Documentation

The code documentation created using Doxygen can be found in this subsec-
tion.

chooseMap Class Reference

Signals

void mapNo (int choice)
Signal to emit mapNo.

69



Public Member Functions

chooseMap (QWidget *parent=0)

“chooseMap ()

Constructor & Destructor Documentation

chooseMap::“chooseMap ()

destructor

Member Function Documentation

void chooseMap::mapNo (int choice)[signal]

Signal to emit mapNo.

Parameters:

’ choice \ is the map number

70



clearPoint Class Reference
Public Member Functions

clearPoint ()
constructor
clearPoint (int x, int y, int z)
constructor setting parameters
void setSize (int x, int y, int z)
set Size of dataset
void setClearance (int clearance)
set Clearance value
void setPoint (int x, int y, int z)\\
setPoint as occupied
void setPoint (float x, float y, float z)
setPoint as occupied if location is float
void clearTemp ()
resets temporary positions without storing in permanent
bool checkSetPoint (float x, float y, float z)
checkSetPoint sets a point as occupied and returns if available
void newRibbon ()
indicates a new ribbon is started, converts temporary points to permanent
and resets temporary points
bool isClear (int x, int y, int z)
Checks if location is clear.
bool isClear (float x, float y, float z)
Checks if location is clear.
void reset ()
resets all data to clear
int size ()
returns length of object

Constructor & Destructor Documentation

clearPoint::clearPoint (int z, int y, int z)

constructor setting parameters

Parameters:

71



X, Y, % sizes

Member Function Documentation
bool clearPoint::checkSetPoint (float x, float y, float z)
checkSetPoint sets a point as occupied and returns if available

Parameters:

’ X, 1,2 coordinates

Returns:

if position is available or not
bool clearPoint::isClear (int z, int y, int 2)

Checks if location is clear.

Parameters:

’ X, 1,2 coordinates

Returns:

if location is clear
bool clearPoint::isClear (float z, float y, float z)

Checks if location is clear.

Parameters:

’ X, Y, 2 \ coordinates

Returns:

if location is clear
void clearPoint::setClearance (int clearance)

set Clearance value

Parameters:

’ clearance \ value

72



void clearPoint::setPoint (int z, int y, int 2)

setPoint as occupied

Parameters:

X, 1,2 \ coordinates

void clearPoint::setPoint (float x, float y, float z)

setPoint as occupied if location is float

Parameters:

X, 1,2 \ coordinates

void clearPoint::setSize (int z, int y, int z)

set Size of dataset

Parameters:

’ X,Y,2 \ sizes

int clearPoint::size ()

returns length of object

Returns:

length of object

73



ColourMap Class Reference
Public Member Functions

ColourMap ()
Constructor.
ColourMap (int tex)
Constructor setting map.
float(* getMap ())[3]
Constructor setting map.
int getSize ()
void setMap (int tex)
sets Map

Constructor & Destructor Documentation

ColourMap::ColourMap (int tex)

Constructor setting map.

Parameters:

] map \ number

Member Function Documentation
float(* ColourMap::getMap ())[3]
Constructor setting map.

Returns:

Map rgb array

int ColourMap::getSize ()

Returns:

size of map

74



void ColourMap::setMap (int tex)

sets Map

Parameters:

map number

75



GLWidget Class Reference

Collaboration diagram for GLWidget:

Q0penGLWidget vecField scalarField

¢ z
mData F .
m_speedFGrad ~ m_heliField
&

-
-

=

GLWidget

Public Slots

void dSw (bool swl)

Slot indicating that data is present to allow drawing.
void resetRot (float xORot, float yORot)

Slot for rotatation reset from orientation widget.
void resetZoom (float zoomFactor)

Slot to reset zoom.

Signals

void rotate (float xRot, float yRot, float zRot)
rotatation values to be emitted to orientation widget

Public Member Functions

GLWidget (QWidget *parent=0)
Constructor.
void initializeGL ()
initialize OpenGL sets up backround
void paintGL ()

76



Draws scene, sets positions and colours and draws according to variable
switches.

void resizeGL (int w, int h)
Behaviour on resizing GL pane.

Public Attributes

float xSize

Sizes of data field.
float ySize
float zSize
QVector3D m_seed

seed position
bool m_dSw = false

Switch for allowing draw.
bool m_line = false

Switch for drawing stream lines.
bool m_VArrows = false

Switch for drawing vector arrows.
bool m_GArrows = false

Switch for drawing gradient arrows.
bool m_streArrow = false

Switch for drawing arrows on stream line.
bool m_normArrow = false

Switch for drawing normalized arrows.
float m_aScale = 1

Switch for setting arrow scale.
vecField * mData

Contains vector field vectors for drawing arrows and colour mapping.
vecField * m_speedFGrad

Contains gradient field vectors for drawing arrows.
int xSpace = 10

Sets spacing of arrow glyphs on © axis.
int ySpace = 10

Sets spacing of arrow glyphs on y axis.
int zSpace = 10

Sets spacing of arrow glyphs on z axis.
float minScal

Sets mazimum and minimum values of colour scale.
float maxScal
scalarField m_heliField

7



values of helical field
int m_colourHeli = 0
Sets what colour is mapped to.
QVector< QList< QVector3D > > m_ribbon
m_ribbon
QVector< QVector3D > mRibSeed
Ribbon seed locaions.
GLdouble mSphereRad = 0.25f
Size of seed position sphere.
bool mDrawSeed = false
Switch for drawing seed positions.
float mLOX = 0.5f
Light 0 z position.
float mLOY = 0.5f
Light 0 y position.
float mL0Z = 0.1f
Light 0 z position.
float mL1X = -0.5f
Light 1 x position.
float mL1Y = 0.5
Light 1 y position.
float mL1Z = 0.3f
Light 1 z position.
float mL2X = 0.2f
Light 2 z position.
float mL2Y = -0.5f
Light 2 y position.
float mL2Z = 0.7f
Light 2 z position.
float mL3X = 0.2f
Light 3 x position.
float mL3Y = -0.5f
Light 3 y position.
float mL3Z = 0.7f
Light 3 z position.
GLfloat mlight0_position [3]
Light 0 position array.
GLfloat mlight1_position [3]
Light 1 position array.
GLfloat mlight2_position [3]
Light 2 position array.
GLfloat mlight3_position [3]

78



Light 3 position array.
float mAmbient = 0.05

Indicates ambient light value.
float mDiffuse = 0.5

Indicates diffuse light value.
float mSpecular = 0.6

Indicates specular light value.
GLfloat mlight_diffuse [4]

Indicates diffuse light conditions.
GLfloat mlight_specular [4]

Indicates specular light conditions.
GLfloat mlight_ambient [4]

Indicates ambient light conditions.
bool mLO = true

Indicates the use of lamp 0.
bool mL1 = true

Indicates the use of lamp 1.
bool mL2 = true

Indicates the use of lamp 2.
bool mL3 = true

Indicates the use of lamp 3.
int mTextureNo

Sets colour map.
int mPCRibbons = 100

Sets number of ribbons to draw from filter.
int mNoOfRibbs = 100

Sets mazimum number of ribbons to draw.

Protected Member Functions

void mousePressEvent (QMouseEvent *event)
Tracks mouse inputs on widget, left button for panning right button for
rotating.
void wheelEvent (QWheelEvent *event)
Tracks mouse wheel inputs on widget for zoom.
void mouseMoveEvent (QMouseEvent *event)
Tracks mouse movements.

79



legGLWidget Class Reference

Signals

void mapNum (int)
Sends map number returned from choose dialog.

Public Member Functions

legGLWidget (QWidget *parent=0)
Constructor.
void initializeGL ()
Behaviour on initializing GL pane.
void paintGL ()
Behaviour on initializing GL pane.
void resizeGL (int w, int h)
Colours widget according to chosen map/texture.

Public Attributes

int mTextureNo
Textur map number.

80



load Class Reference

Signals

void draw (bool sw)
Signal to switch when data is available to draw.

Public Member Functions

load (vecField *pData, QWidget *parent=0)

Constructor, takes in array to fill with loaded data.
“load ()

Deconstructor.

81



MainWindow Class Reference

Public Member Functions

MainWindow (QWidget *parent=0)
Constructor.

"MainWindow ()
Destructor.

82



ordered Class Reference
Public Member Functions

ordered ()
Constructor.

void set (int x, int y, int z, float val)
sets new value at coordinates creates QVector3D of coordinates and insetrts
into map with val as key

int length ()
length of

float getFScal (int pos)
getter for pos-th highest svalar value

float getLScal (int pos)
getter for pos-th lowest scalar value

float getUCS ()
Getter for the upper value for legend scale value would be highest scalar
value unless it is significantly higher that the value at the 99.9% position or
will return 99.9% position to filter stray high values.

float getLCS ()
Getter for the lower value for legend scale value would be lowest scalar value
unless it is significantly lower that the value at the 99.9% position or will
return 99.9% position to filter stray low values.

void clear ()

clear all values for new data set
float getScal (int x, int y, int z)

Getter for scalar value at coordinates.
QVector3D getFQVec (int pos)

getter for pos-th coordinates according to highest scalar value
QVector3D getLQVec (int pos)

getter for pos-th lowest coordinates according to scalar value
void convert (QVector< QVector3D > *orderFast)

Coppys map into array in same order for quicker indexed access.

Member Function Documentation

void ordered::convert (QVector< QVector3D > * orderFast)

Coppys map into array in same order for quicker indexed access.

83



Parameters:

’ orderFuast \ array passed in to fill

QVector3D ordered::getFQVec (int pos)

getter for pos-th coordinates according to highest scalar value

Parameters:

’ pos \ from end of map

Returns:

Coordinates of scalar value at posth position from end
float ordered::getFScal (int pos)

getter for pos-th highest svalar value

Parameters:

’ pos \ from start of map

Returns:

Scalar value at posth position
float ordered::getLCS ()
Getter for the lower value for legend scale value would be lowest scalar value

unless it is significantly lower that the value at the 99.9% position or will
return 99.9% position to filter stray low values.

Returns:

Lower scale value
QVector3D ordered::getLQVec (int pos)

getter for pos-th lowest coordinates according to scalar value

Parameters:

’ pos \ from end of map

Returns:

Coordinates of scalar value at posth position from end

float ordered::getLScal (int pos)

84



getter for pos-th lowest scalar value

Parameters:

] pos \ from end of map

Returns:

Scalar value at posth position from end
float ordered::getScal (int z, int y, int z)

Getter for scalar value at coordinates.

Parameters:

’ X, Y, 2 coordinates

Returns:

scalar value at coordinates
float ordered::getUCS ()
Getter for the upper value for legend scale value would be highest scalar

value unless it is significantly higher that the value at the 99.9% position
or will return 99.9% position to filter stray high values.

Returns:

Upper scale value
int ordered::length ()

length of

Returns:

length of scalar field
void ordered::set (int z, int y, int z, float val)

sets new value at coordinates creates QVector3D of coordinates and insetrts
into map with val as key

Parameters:
b y z coordinates

val

85




OrieGLWidget Class Reference
Public Slots

void rot (float xORot, float yORot, float zORot)
Slot to recieve the rotation about various axes.

Signals

void resetRot (float m_xORot, float m_yORot)
Signal to reset orientation to ’home’.

void resetZoom (float zoomFactor)
Signal to reset zoom to 'home’.

Public Member Functions

OrieGLWidget (QWidget *parent=0)
Constructor.
void initializeGL ()
Behaviour on initializing GL pane.
void paintGL ()
Draws and rotates arrows.
void resizeGL (int w, int h)
Behaviour on resizing GL pane.

Member Function Documentation

void OrieGLWidget::rot (float ORot, float yORot, float zORot)|[slot]

Slot to recieve the rotation about various axes.

Parameters:

’ rotation \ arround X, y, z axis

86



scalarField Class Reference
Public Member Functions

scalarField ()
Constructor.
scalarField (int x, int y, int 2z)
Constructor setting size of field.
void setSize (int x, int y, int z)
set Size of field
void setValue (int x_, int y_, int z_, float val)
set scalar value at coordinates
float getValue (int x_, int y_, int z_)
get scalar value at coordinates
float getValue (float x_, float y_, float z_)
get scalar value at coordinates
int getXSize ()
Getter that returns the z size of field.
int getYSize ()
Getter that returns the y size of field.
int getZSize ()
Getter that returns the z size of field.

Member Function Documentation

float scalarField::getValue (int x_, int y_, int z_)

get scalar value at coordinates

Parameters:

’ X, Y, 2 \ coordinates

Returns:

Scalar value
float scalarField::getValue (float z_, float y_, float z_)

get scalar value at coordinates

Parameters:

87



’ X, Y, 2 \ float coordinates

Returns:

Scalar value
int scalarField::getXSize ()

Getter that returns the x size of field.

Returns:

the x size of field
int scalarField::getY Size ()

Getter that returns the y size of field.

Returns:

the y size of field
int scalarField::getZSize ()

Getter that returns the z size of field.

Returns:

the z size of field
void scalarField::setSize (int z, int y, int 2)

set Size of field

Parameters:

’ X, Y, 2 \ size

void scalarField::setValue (int z_, int y_, int z_, float val)

set scalar value at coordinates

Parameters:

’ X, Y, 2 \ coordinates

88



vecA Struct Reference

The vecA struct a structure to return from rung kutta calculations.
#include <mainwindow.h>

Public Attributes

float x
float textbfy
float z
float ang

bool ok

Detailed Description

The vecA struct a structure to return from rung kutta calculations.

89



vecField Class Reference
Public Member Functions

vecField ()

Constructor.
vecField (int x, int y, int z)

Constructor setting size of field.
float * getVec (int x_, int y_, int z_)

Getter returning vectors at coordinates.
float getXVec (int x_, int y_, int z_)

Getter returning x vector at coordinates.
float getYVec (int x_, int y_, int z_)

Getter returning y vector at coordinates.
float getZVec (int x_, int y_, int z_)

Getter returningz vector at coordinates.
float getXVec (float x_, float y_, float z_)

Getter returning x vector at coordinates.
float getYVec (float x_, float y_, float z_)

Getter returning y vector at coordinates.
float getZVec (float x_, float y_, float z.)

Getter returning z vector at coordinates.
float * getN'Vec (int x_, int y_, int z_)

Getter returning normalized vectors at coordinates.
float * getN'Vec (float x_, float y_, float z_)

Getter returning normalized vectors at coordinates.
int getXSize ()

Getter that returns the x size of field.
int getYSize ()

Getter that returns the y size of field.
int getZSize ()

Getter that returns the z size of field.
float getSpeed (int x_, int y_, int z_)

Getter that returns the speed at coordinates.
void setSize (int x, int y, int 2z)

set Size of field
void setX (int x_, int y_, int z_, float xVal)

set X wvector in field
void setY (int x_, int y_, int z_, float yVal)

set Y wvector in field
void setZ (int x_, int y_, int z_, float zVal)

90



set Z vector in field
“vecField ()

destructor
float UYgrad (int x_, int y_, int z_)

Calculates gradient of = velocity in y direction.
float UZgrad (int x_, int y_, int z_)

Calculates gradient of = velocity in z direction.
float VXgrad (int x_, int y_, int z_)

Calculates gradient of y velocity in x direction.
float VZgrad (int x_, int y_, int z_)

Calculates gradient of y velocity in z direction.
float WXgrad (int x_, int y_, int z_)

Calculates gradient of z velocity in x direction.
float WYgrad (int x_, int y_, int z_)

Calculates gradient of z velocity in y direction.
float angV (int x_, int y_, int z_)

Calculates angular velocity.
float UYgrad (float x_, float y_, float z_)

Calculates gradient of = velocity in y direction.
float UZgrad (float x_, float y_, float z_)

Calculates gradient of x velocity in z direction.
float VXgrad (float x_, float y_, float z_)

Calculates gradient of y velocity in x direction.
float VZgrad (float x_, float y_, float z_)

Calculates gradient of y velocity in z direction.
float WXgrad (float x_, float y_, float z_)

Calculates gradient of z velocity in x direction.
float WYgrad (float x_, float y_, float z_)

Calculates gradient of z velocity in y direction.
float angV (float x_, float y_, float z.)

Calculates angular velocity.

Member Function Documentation

float vecField::angV (int x_, int y_, int z_)
Calculates angular velocity.

Parameters:

’ X, 1,2 coordinates

91



Returns:

angular velocity
float vecField::angV (float z_, float y_, float z.)

Calculates angular velocity.

Parameters:

’ X, 1,2 coordinates

Returns:

angular velocity
float * vecField::getNVec (int z_, int y_, int z_)

Getter returning normalized vectors at coordinates.

Parameters:

’ X, 1,2 coordinates

Returns:

Normalized vectors
float * vecField::getNVec (float x_, float y_, float z_)

Getter returning normalized vectors at coordinates.

Parameters:

’ X, Y, 2 float coordinates

Returns:

Normalized vectors
float vecField::getSpeed (int x_, int y_, int z_)

Getter that returns the speed at coordinates.

Parameters:

’ X, Y, 2 \ coordinates

Returns:

Speed

float * vecField::getVec (int z_, int y_, int z.)

92



Getter returning vectors at coordinates.

Parameters:

] X, 1,2 \ coordinates

Returns:

Vector
int vecField::getXSize ()

Getter that returns the x size of field.

Returns:

the x size of field
float vecField::getXVec (int z_, int y_, int z_)

Getter returning x vector at coordinates.

Parameters:

’ X, Y, 2 coordinates

Returns:
X Vector

float vecField::getXVec (float z_, float y_, float z.)

Getter returning x vector at coordinates.

Parameters:

’ X, Y, 2 \ float coordinates

Returns:
X Vector

int vecField::getYSize ()

Getter that returns the y size of field.

Returns:

the y size of field

float vecField::getY Vec (int z_, int y_, int z_)

93



Getter returning y vector at coordinates.

Parameters:

’ X, 1,2 \ coordinates

Returns:
Y Vector

float vecField::getY Vec (float z_, float y_, float z.)

Getter returning y vector at coordinates.

Parameters:

’ X,Y,2 \ float coordinates

Returns:
Y Vector

int vecField::getZSize ()

Getter that returns the z size of field.

Returns:
the z size of field

float vecField::getZVec (int z_, int y_, int z_)

Getter returning z vector at coordinates.

Parameters:

’ X, 1,2 coordinates

Returns:
7 Vector

float vecField::getZVec (float z_, float y_, float z_)

Getter returning z vector at coordinates.

Parameters:

’ X, Y, 2 \ float coordinates

Returns:

94



7 Vector
void vecField::setSize (int z, int y, int z)

set Size of field

Parameters:

’ X, Y, 2 \ size

void vecField::setX (int x_, int y_, int z_, float xVal)

set X vector in field

Parameters:
X, 1,2 coordinates
X velocity value

void vecField::setY (int x_, int y_, int z_, float yVal)

set Y vector in field

Parameters:
X, 1,2 coordinates
y velocity value

void vecField::setZ (int z_, int y_, int z_, float zVal)

set Z vector in field

Parameters:
X, 1,2 coordinates
z velocity value

float vecField::UYgrad (int z_, int y_, int z_)

Calculates gradient of x velocity in y direction.

Parameters:

’ X, Y, 2 coordinates

Returns:

gradient

95



float vecField::UYgrad (float x_, float y_, float

Calculates gradient of x velocity in y direction.

Parameters:

’ X,Y,2 \ float coordinates

Returns:

gradient
float vecField::UZgrad (int z_, int y_, int z_)

Calculates gradient of x velocity in z direction.

Parameters:

’ X, 1,2 \ coordinates

Returns:

gradient

float vecField::UZgrad (float z_, float y_, float z_)

Calculates gradient of x velocity in z direction.

Parameters:

’ X,Y,2 \ float coordinates

Returns:

gradient
float vecField::VXgrad (int z_, int y_, int z_)

Calculates gradient of y velocity in x direction.

Parameters:

’ X,Y,2 \ coordinates

Returns:

gradient
float vecField::VXgrad (float x_, float y_, float

Calculates gradient of y velocity in x direction.

96

=)



Parameters:

X,Y,2 \ float coordinates

Returns:

gradient
float vecField::VZgrad (int z_, int y_, int z_)

Calculates gradient of y velocity in z direction.

Parameters:

’ X, 1,2 \ coordinates

Returns:

gradient
float vecField::VZgrad (float z_, float y_, float z_)

Calculates gradient of y velocity in z direction.

Parameters:

’ X, Y, 2 \ float coordinates

Returns:

gradient
float vecField::WXgrad (int z_, int y_, int z_)

Calculates gradient of z velocity in x direction.

Parameters:

’ X, Y,z \ coordinates

Returns:

gradient
float vecField::WXgrad (float x_, float y_, float z_)

Calculates gradient of z velocity in x direction.

Parameters:

EXE | float coordinates

Returns:

97



gradient
float vecField::WYgrad (int z_, int y_, int z_)

Calculates gradient of z velocity in y direction.

Parameters:

’ X, Y, 2 \ coordinates

Returns:

gradient
float vecField::WYgrad (float x_, float y_, float z_)

Calculates gradient of z velocity in y direction.

Parameters:

EXE | float coordinates

Returns:

gradient

98



