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ABSTRACT 
Human computation systems, which draw upon human 
competencies in order to solve hard computational prob-
lems, represent a growing interest within HCI. Despite the 
numerous technical demonstrations of human computation 
systems, however, there are few design guidelines or 
frameworks for researchers or practitioners to draw upon 
when constructing such a system. Based upon findings from 
our own human computation system, and drawing upon 
those published within HCI, and from other scientific and 
engineering literatures, as well as systems deployed com-
mercially, we offer a framework of five challenging issues 
of relevance to designers of systems with human computa-
tion elements: designing the motivation of participants in 
the human computation system and sustaining their en-
gagement; orienting participants, framing and orienting 
participants; using situatedness as a driver for content gen-
eration; considering the organisation of human and machine 
roles in human computation systems; and reconsidering the 
way in which computational analogies are applied to the 
design space of human computation. 
Keywords 
Human computation, design framework, games with a pur-
pose, citizen science, crowdsourcing. 
ACM Classification Keywords 
H5.m. Information interfaces and presentation (e.g., HCI): 
Miscellaneous.  
INTRODUCTION 
Recently within HCI, a strand of research has developed 
concerned with the ways in which we might harness human 
‘computational power’ for the purposes of solving difficult 
computational problems. Most prominently this work has 
manifested itself within HCI via the so-called ‘games with a 
purpose’ (GWAP) genre (e.g., [28, 30, 31, 13, 9]), in which 
hard problems for computation (e.g., image labelling) are 
distributed to humans in the form of competitive games.  
This work has a wider significance. Human activity has 
been envisaged, particularly within networked and ubiqui-
tous systems (e.g., the internet, ad-hoc networks, etc.), as 

offering vast resources of computation. In particular, it is 
this potential for solving hard computational tasks that has 
drawn researchers to designing systems which involve hu-
man activity as an integral part of their operation. These 
attempts have been characterised as ‘human computation’ 
systems, employing humans as “processing nodes for prob-
lems that computers cannot yet solve” [29], while others 
have likened this opportunity to a dynamically available 
“remote server rackspace” of “distributed human brain-
power” [34]. Motivating this trend is the knowledge that, in 
theory, interactive computation provides greater computa-
tional power than non-interactive algorithmic systems [33].  
Existing literature within HCI includes many impressive 
demonstrations of ways that human activity, coupled with 
computational processes, may be employed to solve varied 
problems, such as image recognition [28, 31] and audio 
tagging [17]. As yet, however, there is little research that 
offers generally applicable recommendations or design 
frameworks that might assist us in realising this potential 
power. 
Furthermore, there are numerous systems outside the do-
main of HCI that draw upon similar strategies to human 
computation. So, when we consider more general design 
frameworks for human computation, it appears sensible to 
examine the larger domain of systems that involve com-
plementary human-machine relationships (‘human-based 
computation’), in which computer systems become partners 
in interactive processes [11]. For example, we have seen the 
spread of systems employing similar techniques to human 
computation in scientific domains outside computer sci-
ence. ‘Citizen science’ projects have employed human 
computation methods, particularly for processing large data 
sets. There are also elements of human computation con-
cepts within popular notions of ‘crowdsourcing’ [14] and 
the ‘wisdom of crowds’ [25], as well as increasing numbers 
of mainstream and commercial crowdsourcing ventures. 
Work done in HCI also links to other disciplines within 
computer science, and interest has been generated in infor-
mation retrieval, natural language processing, genetic and 
evolutionary computation, and artificial intelligence com-
munities.  
As a contribution to this growing literature, we develop five 
core challenges facing designers of human computation 
systems. Before presenting these distinct challenges, we 
review in more detail our own human computation game, 
‘EyeSpy’, and the range of human computation systems 
within the literature. This literature, coupled with our own 
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human computation system design experiences, inform the 
design challenges. 
HUMAN COMPUTATION SYSTEMS 
In this section we review various human computation sys-
tems within HCI, as well as our own mobile human 
computation system [1]. We shall also examine other sys-
tem examples with similarities to human computation, and 
begin to piece together a sense of the boundaries of the de-
sign space. 
Games with a purpose 
Human computation ‘games with a purpose’ within HCI 
typically involve simple game mechanics in order to pro-
duce fun and enjoyable activities for players. As a by-
product of player activities, these systems generate useful 
data for other tasks. The ESP Game epitomises this [28]. 
Players are paired online via a website, and type relevant 
descriptions for a given image which, if matched with the 
other player’s keywords, score the players points. This ac-
tivity results in the rapid collection of annotations for large 
numbers of images. In its design, the ESP Game addresses 
the hard computational problem of generating meta-data 
about large quantities of images in order to make them 
searchable. 
Various other games with a purpose have been devised in 
the style of the ESP Game, such as Verbosity [30] and 
Matchin [13] (like the ESP Game, both are presented as 
web-based games). Verbosity attempts to collect a database 
of ‘commonsense’ statements within the context of a game 
structure similar to that of the ESP Game. The purpose of 
Verbosity is the reuse of these commonsense statements 
within AI applications. Matchin on the other hand involves 
each user selecting an image they think the player they are 
paired with will prefer. If both players match in their pre-
dictions about what the other player will prefer, then the 
players both score points. Games produced within this 
genre also involve the categorisation of other media than 
images. TagATune [17], for example, involves categorisa-
tion of audio clips, where players work to commonly agree 
upon textual descriptions for a section of music that is 
played to both of them at the same time.  
von Ahn and Dabbish also characterise GWAP systems as 
follows: “output agreement”, where players must share the 
same input, and must match their outputs whilst being un-
able to see one another’s outputs; “input agreement”, where 
players receive different or identical inputs and, by sharing 
one another’s outputs, must determine between them 
whether those inputs are indeed different or the same; and 
finally, “inversion-problem” games, where one player re-
ceives an input, and the other player must determine this 
input, based upon the first player’s output [29].  
It was within the context of human computation games that 
we designed our own system, EyeSpy [1]. EyeSpy is a sim-
ple mobile-based multiplayer game that generates photos 
and text labels for geographic locations. In order to test the 
game we recruited 18 participants who were each given a 
phone with the game software. The game itself ran for two 

‘rounds’ lasting 3 weeks in total. Participants’ interactions 
with the game were extensively logged. After the game’s 
end we interviewed all participants, the transcripts of which 
were qualitatively analysed for key themes of player ex-
perience.  
As a by-product of players’ activities, EyeSpy collects a 
high quality set of photos that are useful for navigation on 
foot around urban areas. In the game, players ‘tagged’ 
landmarks and other prominent urban features within their 
local environment. Other players then physically located 
and confirmed these ‘tags’ (see Figure 1) for which they 
earned points for themselves and the players who created 
the tags. Participants generated 257 georeferenced photo 
tags and 197 georeferenced text tags over the course of the 
trial. Through engaging in the game, players generated a set 
of photographic tags that consisted of varied pictures of 
buildings, streets, monuments, signs, and other objects in 
the environment. Crucially, in order to be successful within 
the game, players needed to ‘design’ tags of high quality for 
the purposes of play, i.e., to be very findable and recognis-
able images, that other players could rapidly go to the 
locations in question and align themselves so as to success-
fully confirm the tags. In this way, our study found that 
players demonstrated a concern for the navigational experi-
ences of one another [1]. A follow-on experiment showed 
that the photo set’s navigational qualities, designed into 
them by players, significantly assisted their secondary use 
as navigational aids during a simple route finding test (sub-
jects had to locate images from the photo sets, and 
corresponding geolocated images drawn from Flickr) [1].  
Thus, as a by-product of player activities, EyeSpy offers 
one solution to the difficult problem of selecting ‘good’ 
images to assist navigation. The interaction of players, and 
their activities with and around the game, can thus be seen 
as a way in which to ‘process’ the physical urban envi-
ronment and extract suitable imagery that is navigation-
ready. Whilst such a task may well be partially possible via 
existing machine-based algorithms for processing image 
databases (e.g., extracting ‘good’ navigational images from 
Google Streetview or Flickr’s geotagged image sets), the 
human work employed within EyeSpy permits the designer 
to leverage local knowledge and player orientation to ‘what 
anyone knows’ regarding the navigational features of the 

Figure 1: Browsing available tags (l); confirming a tag (r). 



 

local area in which the game was played. This particular 
topic will be returned to in greater detail in our set of chal-
lenges for human computation systems designers. 
Citizen science 
Games with a purpose are only one part of the range of sys-
tems that employ human computation. For example, there 
are increasingly many websites and applications that recruit 
members of the public in order to assist the processing of 
scientific data. This distributed ‘citizen science’ technique 
enables the analysis of large data sets that would be intrac-
table via machine computation. 
One of the most interesting examples of citizen science, 
Galaxy Zoo, is a website that invites users to engage in the 
recognition of galaxy types drawn from image data gener-
ated by the Sloan Digital Sky Survey [8]. Users voluntarily 
classify images according to specific attributes such as the 
number of spirals, general shape (e.g., ‘cigar’ shaped), and 
any unusual features that might be visible for a given ga-
laxy (see Figure 2, left). Recognition of particular types 
may involve recourse to the community of Galaxy Zoo 
users, where users negotiate an agreed classification of im-
ages and develop common orientations to the methods of 
classification (i.e., develop competence). In this and other 
ways, Galaxy Zoo users may engage in the community of 
others via forums on the website. Findings of users are 
highlighted to the community via “object of the day” post-
ings and so on. 
Other groups of scientists with large data sets have taken a 
similar approach. Stardust@home [23], for instance, draws 
on visitors of its website to engage in the detection of inter-
stellar dust particles embedded in the aerogel collector on 
NASA’s Stardust spacecraft (see Figure 2, right). For vari-
ous reasons, these dust particles are very hard to detect 
automatically, and so analysis is conducted using humans. 
In contrast with the above two examples’ use of relatively 
raw data, citizen science systems also may involve humans 
manipulating abstract representations of data. FoldIt [7] in 
particular recruits participants to manipulate protein struc-
tures as represented in a downloadable application. Large 
numbers of participants ‘fold’ these protein structures into 
stable shapes—something that is a hard computational 
problem—thus leading to the mass collection of appropriate 
protein configurations. 
Finally, citizen science systems may also be mobile-based. 
Paulos et al. [20], for example, employ participatory data 

collection techniques in urban environments in order to map 
out pollution data. Crucially for human computation, such 
systems support selection of data that is meaningful to 
urban inhabitants by through drawing upon human agency 
and local practices tied up in urban life. In contrast, using a 
fully automated system that drew information from dense 
arrays of static sensors in the environment might collect 
similar data, however may well entail great computational 
complexity in determining which readings were most mean-
ingful to local inhabitants. 
Crowdsourcing 
Systems popularly characterised as ‘crowdsourcing’ appli-
cations often rely on human computation methods in their 
configurations of humans and machines. One of the best-
known examples is Amazon’s Mechanical Turk website 
[19] in which tasks are distributed to users who subse-
quently receive payment based on their completion of the 
task. Many of these tasks involve hard computational prob-
lems, for instance, labelling images, the generation of 
summarisations of text documents, or transcribing audio 
and performing recognition on video streams.  
Other services provide mobile versions of the Mechanical 
Turk, such as TxtEagle, which recruits developing world 
populations for various tasks such as translation and tran-
scription work (that often require highly localised 
knowledge). These tasks are delivered to participants by 
mobile phone in return for payment [27]. 
A further example, perhaps better known to HCI audiences, 
is reCAPTCHA [32]. Web CAPTCHAs are used to secure 
websites against spammers, by challenging a potential user 
with a hard computational problem that is easy for humans 
to solve (in particular, the recognition of distorted text). The 
reCAPTCHA system modifies this by sourcing the distorted 
text from words selected from digitised books via an OCR 
process. Since OCR processes may fail to perform correct 
recognition, human activity (i.e., reading, recognising and 
rendering CAPTCHAs into plain text) may be employed to 
solve the problem. Thus, reCAPTCHAs use the ‘side ef-
fects’ or ‘by-products’ of human activity directed towards 
another purpose (e.g., accessing a portion of a website), as 
we saw with EyeSpy and other games with a purpose. 
Interactive computations 
Our final systems to review differ in scale and form to citi-
zen science, crowdsourcing and games with a purpose. 
Interactive evolutionary computation (IEC) and interactive 
machine learning systems [6] are employed for computa-
tional problems in which selecting optimal configurations 
that are best for a given process is computationally hard. 
So, in order to solve the problem of deciding upon an opti-
misation index, IEC systems rely upon human interaction, 
bringing a user’s activity to bear upon the task, and exploit-
ing human judgement in order to guide the ongoing 
machine-computational process.  
Early work on ‘biomorphs’ [5], in which users select a par-
ticular evolutionary path from various machine-suggested 
paths, led to various other demonstrations of IECs. In an 

Figure 2: Classifying galaxies with Galaxy Zoo (l); a slide 
from Stardust@home (r) 



 

extensive review of the field, Takagi discusses how human 
evaluative abilities can be brought to bear on computational 
problems, such as image detection, in which current algor-
ithms benefit from human guidance in order to finesse 
results [26]. In another example, human scientific expertise 
is brought to bear upon geophysics problems, such as de-
termining the location of natural mines through modelling 
mantle convection within the earth [26]. (This is, interest-
ingly, an inverse of the well-known expert systems found in 
artificial intelligence.) 
Interestingly, and unlike other systems discussed so far, 
IECs typically do not rely on mass participation, in contrast 
with ‘citizen science’, ‘games with a purpose’ and ‘crowd-
sourcing’ applications (although mass participation is not 
inconceivable). Instead they invert the model: multiple re-
sults are machine-generated and then presented to a single 
user for selection, rather than one machine distributing 
many tasks to multiple users. 
What do we mean by human computation? 
Based on our brief review, there are a number of systems 
that might plausibly be ‘human computation’ systems. As 
such, we can begin to piece together what human computa-
tion systems ‘look like’, albeit in an approximate way.  
Firstly we can say that the systems we have reviewed gen-
erally rely upon interaction between machine and human 
(e.g., via some kind of division of labour between the two 
[16]). Secondly, we can see that another important aspect 
shared by these systems is that work is done by a human 
that might otherwise be represented algorithmically for use 
in a computer system. Indeed, other authors ask similar 
questions of whether an algorithm could possibly produce 
similar results to their system in order to present it as being 
in the ‘human computation’ genre [3]. Bound up in this is 
the question of the level of output quality of an equivalent 
machine-computable version of the task, which itself often 
contrasts drastically with human computation system out-
puts. So, for example, whilst machine-based translation is 
possible, results remain poor outside of domain-bound tasks 
(e.g., weather reports) when compared with human-based 
translation systems.  
We note that the classes of problems delegated to humans 
tend to be what are seen as computationally ‘hard’ tasks, 
such as computer vision problems, or natural language pars-
ing, which are currently difficult for computers to perform, 
but easy for humans [29] (although there may be reasons to 
delegate computationally ‘easy’ or tractable tasks, which 
we shall discuss later). Generally we suggest that human 
computation tasks can often be characterised by know-
ledge-based procedures, expertise or skilled activity, or 
activity that is highly contextualised. Such tasks often draw 
upon commonsense and practical reasoning that everyday 
members of society engage in routinely.  
However, as this approximate ‘definition’ might indicate, 
the boundaries of human computation remain fuzzy, par-
ticularly with regard to what constitutes a reasonable task. 
Thus there are some caveats in this rough characterisation 

of these systems. Some systems we have covered in our 
review push the boundaries. For example, systems like 
Matchin begin to involve more aesthetic judgements that 
are less clearly amenable to algorithmic approaches, i.e., 
determining human preferences for attractive imagery, al-
though we note that services such as Flickr’s 
“interestingness” rating for photos [4] indicate algorithmic 
approaches. In a similar way, IEC systems may also com-
bine more obviously subjective processes, such as guided 
music composition (Sonomorphs and GenJam [26]) or 3D 
lighting design, in which computer-generated arrangements 
of lighting in virtual scenes are selected by human interven-
tion (i.e., to decide the appropriate configuration for the 
scene).  
Citizen science has also been used to describe systems that 
appear to sit further outside the boundaries of what we 
might consider human computation. For example, some 
projects involve large numbers of geographically distri-
buted participants collecting biological data, e.g., Ebird or 
NestWatch. Such tasks are not obviously computational 
matters and have no clear algorithmic representation. Simi-
larly, crowdsourcing systems also emphasise the blurry 
boundaries of human computation. The Mechanical Turk 
website, for instance, offers many tasks that fall well out-
side what we have considered so far as a relevant 
computational problem for human computation systems. 
These may be obviously non-computational tasks, such as 
writing reviews of music, or, instead, computational tasks 
that are relatively simple (i.e., not ‘hard’), such as scraping 
web content. Finally, some TxtEagle tasks, such as citizen 
journalism, also do not fit within the boundaries as they 
would stretch the notion of ‘computation’ in the term ‘hu-
man computation’. 
DESIGN CHALLENGES FOR HUMAN COMPUTATION 
In our short review above, the use of human computation 
methods within standalone, networked and mobile systems 
is very varied. With the increasing diversity of applications 
of human computation, there is a need for developing a 
design-oriented understanding for the ways in which hu-
mans and their interactions together may be employed as 
computational ‘components’ within machine processes.  
Drawing from our study of EyeSpy and the systems re-
viewed in the previous section, here we develop five 
challenges facing designers of human computation systems. 
Some of these challenges also have relevance outside the 
domain of human computation we have loosely defined and 
in concluding we shall discuss this issue.  
Challenge one: designing for motivation and sustaina-
bility 
Human computation tasks will require groups of partici-
pants to be recruited and then motivated and sustained in 
particular ways. As part of configuring player activity in 
EyeSpy, we had to consider how players could be moti-
vated to engage in playing the game as well as reflecting 
upon the inherent ‘saturation point’ that was reached after a 
certain amount of play (i.e., when all the ‘obvious’ land-



 

marks had been tagged). In this way a considerable issue 
for designers is the need to choose appropriate motivation 
and sustaining strategies for the task at hand and likely 
participant base. Here we will examine the motivation and 
sustaining strategies used by other systems we have re-
viewed as well as our own system. 
Competition and gaming 
In EyeSpy, we configured the motivations of players pri-
marily by offering them a competitive game and scoring 
structure, which most players reported as a major feature of 
their own interest in taking part. This approach is common 
among games with a purpose. At the core of these game-
based and game-like systems is the notion of competition 
(often in the form of scoreboards or ranking schemes), and 
social interaction between players (via in-game chat, for-
ums, etc.). So, in using the combination of competition and 
social interaction to form a key role in motivation to play, 
such human computation systems will as a by-product en-
able the processing of large amounts of data.  
Characteristic of a competition or game-based motivational 
strategy is the increased separation between the role of the 
objects manipulated by players within the game, and the 
role of those same objects outside of the game. Thus, for 
instance, for ESP Game images, players interact with one 
another using the game objects (i.e., images) as the central 
focus of the work of playing the game. However, subse-
quently these images and descriptive tags are then used in a 
very different context, namely image search. This again is 
similar to EyeSpy, with players generating images for other 
players to confirm, whereas subsequently the same images 
were repurposed for navigational tasks of little relevance 
within the game for players. 
Although a citizen science project, FoldIt is explicitly mar-
keted to users as a “puzzle” game and includes game-like 
components such as leaderboards of most prolific ‘folders’. 
Further to this, FoldIt users may form teams in order to 
compete in a more collaborative way with other users. 
However, FoldIt is not framed purely as a game to potential 
users, and, like Galaxy Zoo and Stardust@home, highlights 
the scientific importance of a user’s activity (in this case 
helping find medical advances in treatments for HIV / 
AIDS, cancer and so on). In this way, FoldIt merges moti-
vational strategies of gaming enjoyment, and at the same 
time implies that a participant’s altruism has some rel-
evance for their engagement with the system. The ESP 
Game and others in the genre also highlight that the player 
is not only “having fun”, but helping “computers get 
smarter” [9], thus contributing to some scientific or engi-
neering achievement. This leads us to examine the role of 
altruism—implied or otherwise—within human computa-
tion systems. 
Altruism and status payoffs 
A common motivation relied upon by the citizen science 
projects we have examined in previous sections is a sense 
of altruism on the part of the participants. In systems such 
as Galaxy Zoo and Stardust@home, a considerable part of 

the way in which user motivation is framed appears to be 
altruistic, in that participants are asked to contribute to-
wards scientific endeavours. Of course, other motivational 
factors such as individual fun and enjoyment may still play 
a vital role in user engagement in such systems. 
There are also potential situations in which users may gain 
social status amongst other participants. For Galaxy Zoo, 
highlighting unusual images offers a ‘payoff’ for partici-
pants (e.g., an anomaly, “Hanny’s Voorwerp”, was named 
after the Galaxy Zoo user who detected it, Hanny van 
Arkel, bringing them to prominence and generating further 
scientific investigation [18]). Thus, for Galaxy Zoo, gaining 
participants relies on user self-motivation initially, but the 
configuration of the system maintains these users both 
through potential payoffs and social interaction in the form 
of community forums in which findings may be shared and 
discussed (indeed, this is how “Hanny’s Voorwerp” was 
first brought to attention).  
Compensatory payoffs are perhaps made clearer for Star-
dust@home users. Besides a more prominent user rankings 
system helping foster clearer competition between partici-
pants, any participants discovering a particle of interstellar 
dust are offered co-authorship on publications related to 
that particle, in addition to naming the particle themselves. 
This more explicit competition compares with strategies 
employed in EyeSpy and other ‘games with a purpose’. 
Stardust@home, whilst not being a ‘game’, presents an 
explicit motivational scoring structure with further motiva-
tion provided by the accolade of finding a particle track. 
Here we can return again to the notion of game structures 
and their merging with other motivational forces, such as 
altruism. At the same time we are also led to consider the 
separation between the payoffs for the designer, and the 
payoffs for the user. We find a range of choices with regard 
to how much human computation systems contain game-
like components.  
One side of this range is typified by citizen science projects 
that have hints of game qualities, and yet involve fairly ex-
plicit integration of the products of the task, i.e., payoffs for 
the designers, and what it is that users are achieving, i.e., 
the payoffs for the user. In Stardust@home, for example, 
we see a clear and explicit focus on the examination of 
technical data and the potential resulting scientific acco-
lades for a discovering user. This payoff coincides with the 
payoff for the designers as well (e.g., a publication). At the 
same time, we also see on the Stardust@home site game-
like elements such as a leaderboard, which promotes com-
petition and potential payoff mostly between users (since it 
is irrelevant for the scientific results how the details of any 
competition between users works out). 
The opposite side of this range are systems in which user 
payoffs and manipulation of task objects (e.g., enjoyment in 
the case of playing the ESP Game, and tagging its images) 
are very separate from the payoffs for the designer, and the 
subsequent repurposing of those objects (e.g., the ESP 
Game’s link to image search).  



 

Monetary motivations 
For EyeSpy, we also offered a nominal payment in order to 
compensate players for any inconvenience generated by 
playing the game (e.g., going out of their usual routines). 
This was also a motivational feature of the game, however 
was balanced with players’ desire to compete with one an-
other and to win. Such monetary motivations are also 
present in crowdsourcing systems such as the Mechanical 
Turk and TxtEagle, except in these cases, providing a core 
component of participants’ interaction with the system (i.e., 
that, on the completion of a task, participants then receive 
payment). It is interesting see that identical human compu-
tation tasks found in the ESP Game and on the Mechanical 
Turk website may differ greatly in the strategy employed 
for motivation: the ESP Game is presented as a simple, fun 
game with the payoff being enjoyment (or perhaps a mo-
mentary distraction), with no monetary motivation 
whatsoever, whereas similar results are achieved through 
explicit monetary means as Mechanical Turk tasks. 
Sustaining human computation 
Coupled with these issues, and raised in our analysis of 
EyeSpy, is one aspect of sustaining engagement, in particu-
lar the problem of how ‘complete’ work done by 
participants during some human computation task may be. 
As we found with EyeSpy, due to the players saturating a 
small geographic area with photo and text tags, play within 
that area (i.e., finding locations that had not been tagged 
already) became more difficult with time. Participants ex-
plicitly mentioned this as a demotivating factor in playing 
the game. Thus, sustaining play came at the expense of the 
motivation strategies we employed (fun, enjoyment and 
competition).   
Sustaining motivation is also important in other systems. 
Projects such as FoldIt, for example, are enriched by par-
ticipants becoming more skilled in their task, so in this case, 
fostering community and competition, and thus sustained 
engagement, becomes important. Contrastingly, systems 
like the ESP Game may benefit from a more rapidly churn-
ing user base in order to assist the reduction of players 
becoming very familiar with the system and potentially 
developing ways to ‘game the system’. 
However, within the literature, there are few accounts of 
how existing systems sustain participants over long periods 
of time, and the challenges that are faced by designers over 
this matter (or how the user base itself may change with 
time). Players may get bored by the simplicity of a game, or 
confused by over-complex rules (or perhaps confused by 
system ‘framing’, as in EyeSpy). Alternatively they may 
suffer from fatigue, drop out, or have problems weaving 
their play into everyday life. Other significant social factors 
will influence the success of human computation systems, 
such as how to ‘market’ them to potential users. Users may 
move on, and be replaced by entirely different people with 
markedly different practical engagements with the system. 
Many of these and other questions remain unexplored, but 
remain important factors when designing human computa-
tion systems. 

Discussion 
Various obvious motivational strategies are offered in hu-
man computation systems: fun, altruism, social interaction, 
payment and competition, to name a few (as there are surely 
others). Strategies such as these also may be employed 
more generally in trials of interactive systems (e.g., paying 
compensation for participation is a common technique). We 
are also reminded that, for many of the human computation 
systems reviewed in this paper, social interaction is a core 
motivation for participation even when this appears periph-
eral to the actual task. 
Configuring motivation using these strategies forms a key 
design consideration for human computation systems, and 
will have significant knock-on effects for the quality or 
characteristics of the objects that come to be manipulated or 
analysed by users. Designers must take into account the 
various vectors of motivation that may come into play when 
engaging participants in their design, and be aware of moti-
vations that are emergent and have not explicitly been 
designed into the system. 
In these instances designers may attempt to minimise the 
possibility of deliberate disruption, motivating or assisting 
users with engaging in the task at hand. Designers are also 
constructing potential social interactions that may be folded 
into use with and around the system, and this is a further 
key component of motivation for users. For games this is 
most apparent when rules of competition provide explicit 
support for social interactions that motivate engagement in 
the human computation task.  
Finally, considering whether we might want a continually 
changing group of participants or a stable group is an im-
portant decision to address in system design. It may be a 
virtue for the human computation task at hand to have a 
rapid ‘churn’ of participants. This ‘lifetime’ of a user, com-
bined with what the design requires for successful outputs 
of participant task work, may at one extreme maximise life-
time through maintaining user interest in the task, or at the 
other extreme ensure a continual flow of new users. Alter-
natively a significant component in the sustained success of 
a human computation task may be how to fit the system 
into existing everyday routines and interactions. 
Challenge two: balancing system design and user prac-
tices through orientation and framing 
The second challenge involves understanding the nature of 
balance within human computation system design. This 
includes understanding participant use of that design, in 
practice. Once again, this challenge has relevance for other 
HCI systems.  
We found that EyeSpy’s game rules oriented players toward 
a strong concern for two aspects of navigation—
recognisability and findability—which were in accord with 
our repurposing those images for navigation. Nevertheless, 
the game rules and context encouraged rather than enforced 
such an orientation. Through this we came to appreciate the 
importance of considering the context in which the game 
was presented.  For example, even the language we used in 



 

order to introduce and frame the game configured certain 
expectations about how to play (using the name ‘EyeSpy’ 
confused some players initially due to the similar name of 
the children’s game ‘<Children’s game>’). Oriented by this, 
some players initially began creating ‘riddle’ tags that in-
volved cryptic descriptions of locations, requiring 
‘detective work’ on the part of other players (i.e., in keep-
ing with the notion of ‘<Children’s game>’). Rapidly, 
however, players ceased to create such tags, since the game 
encouraged an orientation to findable and recognisable tags. 
This ‘framing’ of the ways in which we presented the sys-
tem to our participants thus challenged the system’s 
premises.  
The way participants in human computation systems practi-
cally interpret system rules is influenced by the way in 
which the system itself is presented to them. By being 
aware of and even explicitly designing a process of framing 
in the deployment, we can attempt to orient participants to a 
particular way of conducting themselves in their interac-
tions with and around the system, and with others. One 
practical way to do this is to take care with the language 
that is presented to users of the system, and perhaps employ 
scripted introductions and debriefings for users to carefully 
configure their expectations in ways designers intend. 
Researchers in other domains have also described the rel-
evance of system framing for users and how it influences 
their interpretation of the system and directs subsequent 
action [12]. This also has relevance for the design of other 
human computation systems we have reviewed; how the 
attitudes, norms and particular approaches of users in their 
interaction with one another are shaped by the system’s 
very construction and design. Matchin is of particular inter-
est here because it throws into relief some of the mechanics 
present in other ‘games with a purpose’. In their study of 
Matchin’s results, Hacker and von Ahn suggest that cultural 
norms come to be reflected within the image selections, 
particularly the way in which considerations of gender 
came to feature in players’ interactions with one another 
(such as treating some images as ‘masculine’ or ‘feminine’, 
so influencing the other player’s preference) [13]. Thus, 
orientations to other participants as found in systems like 
EyeSpy and Matchin, forms a key part of the way that game 
objects are produced and manipulated.  
The designer’s intent in constructing system rules, and how 
that intent is interpreted by participants, is also relevant. For 
instance, reCAPTCHAs present their purpose to users (e.g., 
to sign up to a service on a website), but hide their secon-
dary purpose (e.g., to digitise scanned text). Instead of 
motivating participants with a game mechanic or relying on 
monetary or altruistic motivation, reCAPTCHAs exhibit an 
almost complete separation between the intentions of the 
participant in manipulating the object (i.e., rendering the 
image of text to plaintext) and the ways in which that ac-
tivity is then used (i.e., to manually digitise books).  
The relationship between system rules and user practices is 
delicate and hard to predict (as are the specific sequences of 

action users engage in [21]). The design of the system will 
shape, be appropriated, and be subverted by the practical 
and mundane activities of users.  
There are further complications for framing and orienting 
users human computation systems, however, particularly 
within systems that produce ‘by-products’. Once again, 
designer and user orientations may involve potentially con-
flicting or competing concerns, as well as more 
complementary or harmonious concerns. In systems with 
by-products, the framing of the objects manipulated by 
users within the system, the intentions in that manipulation, 
and the role and intentions of use of those same objects 
outside of the system (say, within some scientific practice), 
must be carefully balanced.  
There are of course many such dimensions and factors that 
play a role in successful configurations of these relation-
ships. The challenge might be, for instance, balancing 
creativity and fun (as normally associated with gaming and 
more widely, systems that are enjoyable to use) with the 
requirement for quality system by-products. In order to 
meet such challenges, highly adaptive software design pro-
cesses that involve significant levels of user feedback and 
offer the possibility of rapid updates in response, may form 
one way to quickly and iteratively fine-tune the relationship 
between system rules and human computation products. In 
this way a suitable balance between motivation strategies 
(e.g., enjoyment) and the quality of participant’s work may 
be reached more rapidly than for more traditional iterative 
design involving successive static software deployments. 
Finally, we note that many systems are inherently ‘open’ in 
their construction; in particular the under-constrained nature 
of game rules fosters the construction and continual nego-
tiation of shared understandings of ‘appropriate play’ in and 
around the game. Often within human computation systems 
design, this openness has often led to a preoccupation with 
issues such as accuracy, ‘cheating’ and ‘gaming the sys-
tem’, and thus a concentration on the ways in which such 
activities may be curtailed in order to promote a particular 
quality of game objects (e.g., by-products). Whilst this is 
clearly an important feature, it should be coupled with a 
more general concern for how framings and orientations 
may shape user activity, in practice. 
Challenge three: using situatedness as a resource 
A key feature employed within the design of EyeSpy in-
volved exploiting the situated, local understandings of 
players. In order to generate our useful data from EyeSpy, 
the design drew on ‘what anyone knows’ [10] about the 
local area in order to successfully select (and capture) navi-
gationally relevant images. Players concerned themselves 
with other players’ potential routes, places locally con-
sidered to be central and so on. Social roles were also 
important to local understandings. This was demonstrated 
particularly by one of the participants in his orientation to 
‘students’ as hypothesised recipients of his images (our trial 
involved mostly students, however non-students also 
played). However, although in EyeSpy the role of practical 



 

knowledge as deployed by players in the game featured as 
judgements regarding what people (‘anyone’) could find in 
a local area, we found that even this depended on the cul-
tural positioning of players (e.g. as pedestrians in the city 
rather than drivers). More generally, then, in EyeSpy, ex-
ploiting the local knowledge of participants meant 
producing more culturally relevant images. 
Other systems we have reviewed also purposefully exploit 
local knowledge. TxtEagle, for instance, relies upon the 
localised and practical understanding of its participants for 
a given area, in order to address highly specific linguistic 
problems such as providing local dialect terms to finesse 
translations.  
This third challenge, like many of the others outlined in this 
paper, also offers an opportunity. EyeSpy demonstrated to 
us how human computation does not just involve producing 
‘objective’ results, but can also be about using situated 
understandings to produce content that draws upon subjec-
tive, creative and practical knowledge. The centrality of 
situatedness in interaction has been a conceptual interest 
within HCI for some time (e.g., Suchman’s ethnomethod-
ological analysis of situated action with technology [24]) 
and it is key for human computation system design that it 
both takes into account situatedness and even takes advan-
tage of it.  
Thus as designers we must take note of everyday common-
sense and localised understandings. These understandings 
may be a resource to exploit or a hindrance to work around. 
The situated nature of participant interactions with, via and 
around the system will offer the opportunity of taking ad-
vantage of local knowledge and practical understandings of 
the world that are often very difficult to access otherwise. 
EyeSpy and TxtEagle both demonstrate ways in which this 
may be exploited to the advantage of the system, and is 
particularly pertinent for any mobile human computation 
systems (of which we may see increasing numbers).  
Although there is a clear opportunity here for design, so 
there is a corresponding potential danger in not accounting 
for such commonsense, culturally specific or highly 
localised understandings. This is especially true when de-
ploying human computation systems on the web (e.g., 
GWAP, Mechanical Turk tasks). For instance, what might 
be the ways in which conflicts in ‘what anyone knows’ can 
come to bear when categorising the content of images 
found in the ESP Game? The geographic position of web-
based participants is of relevance and we can imagine how 
one symbol may mean very different things to different 
groups of users (e.g., a swastika or manji, commonly used 
in Japanese maps to mark temples).  
Challenge four: organising human-machine relations 
A fourth challenge to designers is the organisation of the 
human and machine components in their system, particu-
larly how to design their roles. One way, following 
Kosorukoff [16], is to analyse human computation systems 
as being based on variations of ‘selection’ and ‘innovation’ 
roles for humans and computers. So, for instance, ‘citizen 

science’ systems may involve computer-based selection, 
organisation and distribution of the data to be processed, 
and alongside this, human innovation to conduct piecemeal 
analysis of the data. However, innovation work, i.e., report-
ing what can be ‘seen’ in, say, astronomical imagery in 
Galaxy Zoo, is, of course, the job for the human partici-
pants. IEC and interactive machine learning systems invert 
selection and innovation roles, with humans providing the 
selection work in order to guide ‘innovation’ on the com-
puter’s part. 
In EyeSpy the machine role was selection of tags, using a 
strategy that distributed them randomly and without identi-
fying information amongst players (who innovated by 
generating content). In our interviews, we found that play-
ers were often concerned with who else was playing the 
game. One player, for instance described it as “walking in 
the footsteps” of others whereas another “saw other people 
that [she] thought were doing the same thing”. In this way, 
organisation of the ‘thin channel’ between the selection 
interface and players helped motivate play, increasing the 
sense of intrigue reported by players and maintaining inter-
est in the game.  
For systems in which ‘innovation’ is the human role, we 
have also highlighted how human computation systems 
may be discussed in terms of content creation or content 
analysis (for humans in a ‘selection’ capacity, such as in an 
interactive machine learning system, the role will always be 
analysis). For EyeSpy, players created content which was 
then analysed by other players for validity, whereas for 
players of the ESP Game, the primary job is content analy-
sis, and it is players’ various analyses of images which are 
then validated through gathering large numbers of results.  
Challenge five: reconsider the utility of machine analo-
gies in human computation 
Our final challenge is conceptual. As mentioned in the 
introduction, much existing discussion on human computa-
tion systems has been based on information processing 
models of human activity. However, we suggest there are 
problems when using machine computation or abstract al-
gorithmic processes as a design analogy for collected 
human activities. If we wish to use humans as ‘algorithms’ 
and “networked brainpower” [34] for hard computational 
problems, analogies between the two can potentially ob-
scure the considerable design differences.  
In what ways do the challenges for designing for machine 
algorithmic components and to designing for human ‘com-
ponents’ differ? One immediate issue is that algorithms are 
generally deterministic and have known upper bounds cal-
culation time (computational complexity). They are highly 
‘accountable’ in that one can examine in detail precisely 
how an output was created. In comparison, within human 
computation systems, the time needed to obtain information 
is nondeterministic, and subject to the vagaries of human 
participation, motivation and conformity with regard to 
norms of interaction. For example, we were unable to pre-
dict how much content would be created during the 3 weeks 



 

of trialling EyeSpy. In contrast to the fixed accountability 
of an algorithm, accountability in human computation sys-
tems is negotiated continuously between users themselves, 
which, again, was a key feature in the production of navi-
gable images in EyeSpy—players’ activities were made 
accountable to one another in the game via tagging [1].  
Indeed, existing design techniques for human computation 
systems have been concerned with a very human problem – 
that of ways to preclude ‘gaming the system’ or feeding the 
system spurious data (e.g., [28]). This has highlighted the 
importance of moderation, quality control and ‘orchestra-
tion’ activities as vital components in keeping the system 
running successfully (see [15]), especially with large num-
bers of participants. However, this is only one part of a 
broader conceptual challenge in which human roles in com-
putational systems are not seen as interchangeable with 
machine-based algorithmic components. So, as designers 
we should question the utility (and applicability) of simply 
repackaging design strategies that are useful for machine 
computation, when approaching human computation sys-
tems, their design, implementation, and evaluation. 
DISCUSSION 
This paper has offered five challenging dimensions along 
which to design human computation systems, providing a 
framework for designers that is derived both from our own 
study and wide ranging analysis of various systems in HCI 
and beyond. This framework serves multiple purposes: it 
provides both strategies and opportunities, but also sensi-
tises designers to conceptual issues. The challenges we 
have covered in this paper vary in type from general inter-
action design issues, to particular opportunities that exist 
for human computation systems specifically, to questions 
that are hard to currently address fully. We can briefly re-
flect upon this framework for EyeSpy. (1) Designing for 
motivation and sustainability: we motivated our users with 
fun, competition and money, however we found the game 
design did not ensure it was sufficiently sustainable. This 
may have been solved with a more adaptive game design. 
(2) Balancing system design and user practices through 
orientation and framing: we experienced conflicts between 
our inadvertent framing and orientation of users (via the 
language we chose) and the way we intended users to en-
gage with the system. Induction ‘rituals’ [2] and careful 
naming may have been of benefit. (3) Using situatedness as 
a resource: we created useful by-products (photos of land-
marks, etc.) as a product of our system making a virtue of 
local knowledge as a game resource, although we note that 
the by-products were also a function of the particular group 
and mobility they employed—cyclists for instance would 
‘see’ things differently (e.g., see [22]). (4) Organising hu-
man-machine relations: in EyeSpy, we maintained player 
interest by restricting the machine interface between play-
ers, making tags into ‘clues to be found’. (5) Reconsider the 
utility of machine analogies in human computation: we re-
lied on the accountability of human activity, balanced via 
the restricted communication between players (see 4), in 
order to help drive successful tag creation. 

A final topic for discussion is the inherent imprecision of 
the boundaries and limits of what constitutes a human com-
putation system. There are complexities in any potential 
definition, mostly due to the diffuse nature of what may or 
may not reasonably constitute a ‘machine-computable task’. 
We argue for the value of not providing too narrow or ob-
jectifying a definition, and that arriving at such a definition 
may not only be very difficult but perhaps inappropriate to 
the phenomenon under study.  
In addition, our discussion retains some ambiguity partly 
because it is vital to understanding the relevance and scope 
of the challenges outlined in this paper. We have noted how 
some of the challenges have relevance both within and to-
wards the boundaries of human computation tasks. For 
example, the importance of motivation strategies applies to 
citizen science projects such as NestWatch, which we have 
argued probably sits outside the limits of human computa-
tion. 
We note also that there are computational tasks which are 
very ‘easy’ for machines, however, the contexts that ad-
dress such computational situations may well be ‘hard’ for 
other, non-computational reasons. The associated costs of 
developing machine-based algorithms might well be more 
costly than the more rapid development potential of human-
based solutions. Some tasks on the Mechanical Turk web-
site, for example, rely on this fact (e.g., harvesting online 
data on businesses). Alternatively, logistics may mean that 
human computation methods work for the collection of data 
that could easily, but (in a monetary sense) expensively, be 
gathered. In these cases we might employ the non-monetary 
methods of human computation systems design, such as 
enjoyable game mechanics or altruism, in order to motivate 
and sustain participation. 
CONCLUSION 
This paper presented one way of understanding and struc-
turing the emerging design space of human computation, 
and offers five key issues for consideration when designing 
such systems. We examined various strategies for design-
ing and sustaining motivation, framing and orienting users, 
and organising human and machine components in terms of 
innovation and selection relationships. Opportunities such 
as exploiting everyday commonsense and localised under-
standings may also present themselves in human 
computation systems. We also explored conceptual issues 
such as the use of machine analogies. 
In this paper we have moved forward from demonstrations 
of particular designs and have begun to develop frame-
works that offer more generalised directions for researchers 
and practitioners. This has not been without limitations, 
however; for instance, a restriction of our study of EyeSpy 
was the size and nature of the trial, and it is clear that mass 
participation is key in deepening our understanding of hu-
man computation system design. We are also particularly 
interested in further validating the framework by employing 
it in design formatively. Through understanding this space 
we hope to empower diverse groups of non-experts in de-



 

veloping their own human computation systems, as well as 
expanding human computation into areas it does not cur-
rently address.  
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