
Introduction to Formal Reasoning
(COMP2009)

Release 0.1

Thorsten Altenkirch

Nov 21, 2022

CONTENTS

1 Introduction 1
1.1 Interactive proof systems . 1
1.2 Lean . 1

2 Propositional logic 3
2.1 What is a proposition? . 3
2.2 Our first proof . 4
2.3 Using assumptions . 5
2.4 Proof terms . 6
2.5 Conjunction . 7
2.6 The Currying Equivalence . 9
2.7 Disjunction . 9
2.8 Logic and algebra . 10
2.9 True, false and negation . 11
2.10 Summary of tactics . 12

3 Classical logic 13
3.1 The de Morgan laws . 13
3.2 The law of the excluded middle . 15
3.3 Indirect proof . 15
3.4 Intuitionistic vs classical logic . 17

4 Predicate logic 19
4.1 Predicates, relations and quantifiers . 19
4.2 The universal quantifier . 20
4.3 The existential quantifier . 22
4.4 Another Currying equivalence . 23
4.5 Equality . 24
4.6 Classical Predicate Logic . 27
4.7 Summary of tactics . 28

5 The Booleans 29
5.1 Functions on bool . 29
5.2 Proving some basic properties . 31
5.3 Proving equations about bool . 32
5.4 Relating bool and Prop . 34

6 The Natural Numbers 37
6.1 Basic properties of N . 37
6.2 Structural recursion . 38
6.3 Induction . 39

i

6.4 Addition and its properties . 41
6.5 Multiplication and its properties . 44
6.6 Some Algebra . 46
6.7 Ordering the numbers . 47
6.8 Decidability . 48

7 Lists 51
7.1 Basic properties of list . 51
7.2 The free monoid . 52
7.3 Reverse . 54
7.4 Insertion sort . 56

8 Trees 63
8.1 Expression trees . 63
8.2 Tree sort . 70

Bibliography 77

ii

CHAPTER

ONE

INTRODUCTION

These are lecture notes for the formal reasoning part of COMP2009: Algorithms Correctness and Efficiency.
The main goal is to teach formal logic using an interactive proof system called Lean. You will be able to
use predicate logic to make precise statements and to verify them using a proof system. The covers both
statements in Mathematics and statements about computer programs, e.g. their correctness.

1.1 Interactive proof systems

Interactive proof systems have been used in the past to verify a number of interesting statements, for
example the four colour theorem (that every map can be coloured with 4 colour) and the formal correctness
of a optimising C compiler. The formal verification of hardware like processors is now quite standard and
there is a growing number of software protocols being formally certified. In academia it is now common to
accompany a paper in theoretical computer science with a formal proof to make sure that the proofs are
correct. Mathematicians are just starting to verify their proofs.

Even if you are not going to use formal verification, it is an important part of a computer science degree
to have some acquaintance with formal logic, either to read formal statements made my others or by being
able to express facts precisely without ambiguity. I believe that the best way to learn logic these days is by
using an interactive proof system because this removes any ambiguity on what constitutes a proof and also
you can play with it on your own without the need of a teacher or tutor.

An interactive proof system is not an automatic theorem prover. The burden to develop a correct proof is
on you, the interactive proof systems guides you and makes sure that the proof is correct. Having said this,
modern proof assistants offer a lot of automatisation which enables to user not to have to get bogged down in
trivial details. However, since our goal is to learn proofs, at least initially we won’t use much automatisation.
It is like in Harry Potter, to be allowed to use the more advanced spells you first have to show that you
master the basic ones.

1.2 Lean

Many interactive proof systems are based on Type Theory, this is basically a functional programming lan-
guage with a powerful type system that allows us to express propositions as types and proofs as programs.
A well known example is the Coq system which was developed (and still is) in France. However, we will use
a more recent system which in many respects is similar to Coq, this is Lean which was (and is) developed
under the leadership of Leonardo de Moura at Microsoft Research. Leonardo is famous for his work on
automatic theorem proving, he developed the Z3 theorem prover. Lean’s goal is to connect automatic and
interactive theorem proving. The system is called Lean because it only relies on a small core of primitive
rules and axioms to make sure that it is itself correct.

1

Introduction to Formal Reasoning (COMP2009), Release 0.1

Lean is available for free from https://leanprover.github.io/download/ It will be already installed on the lab
machines (I hope). You can use it either via Microsoft’s Visual Code Studio or via emacs using lean mode.
Yet another way to use lean is via a browser based version we will also use in the online version of these
lecture notes.

Here is an example of a simple proof in Lean: we show that the sum of the first n odd numbers is the square
of n. (Actually this example already uses some advanced magic in form of the ring tactic).

def sum_N : N → (N → N) → N
| zero f := 0
| (succ n) f := f n + sum_N n f

def nth_odd (i : N) : N :=
2*i+1

#reduce (nth_odd 3)

#reduce (sum_N 5 nth_odd)

theorem odd_sum : ∀ n : N , sum_N n nth_odd = n^2 :=
begin
assume n,
induction n with n' ih,
refl,
calc
sum_N (succ n') nth_odd
= 2*n'+1+ sum_N n' nth_odd : refl _
... = 2*n'+1+n'^2 : by rw ih
... = (n' + 1)^2 : by ring,

end

If you read this online, you can just click try it! which should transport you to the web interface. You
need to wait until the orange text Lean is busy is replaced by a green Lean is ready (which may take a while
depending on your computer, especially the 1st time).

You can put the cursor in the proof to see what the proof state is and you can evaluate the expressions after
#reduce and maybe change the parameters. You can also change the proof (maybe you have a better one)
or do something completely different (but then don’t forget to save your work by copy and paste). While
you can work using the browser version only, for bigger exercises it may be better to install Lean on your
computer.

The Lean community is very active.If you want to know more about Lean and it’s underlying theory, I
recommend book Theorem Proving in Lean [AvMoKo2015] whose online version also uses the web interface.
Actually if you notice that these lecture notes and the book use a very similar format then this is because
I have stolen their setup (on the suggestion of one of the authors). Another useful book is The Hitchhiker’s
Guide to Logical Verification [BaBeBlHo2020] (this is material for an MSc course at the University of
Amsterdam) which goes beyond this course. A good place for questions and discussions is the Lean zulip
chat (https://leanprover.zulipchat.com/) but please don’t post your coursework questions anywhere on social
networks — this is considered academic misconduct. And yes, we do have staff members who can read other
languages than English.

2 Chapter 1. Introduction

https://leanprover.github.io/download/
https://leanprover.zulipchat.com/

CHAPTER

TWO

PROPOSITIONAL LOGIC

2.1 What is a proposition?

A proposition is a definitive statement which we may be able to prove. In Lean we write P : Prop to express
that P is a proposition.

We will later introduce ways to construct interesting propositions i.e. mathematical statements or statements
about programs, but in the moment we will use propositional variables instead. We declare in Lean:

variables P Q R : Prop

This means that P Q R are propositional variables which may be substituted by any concrete propositions.
In the moment it is helpful to think of them as statements like “The sun is shining” or “We go to the zoo.”

We introduce a number of connectives and logical constants to construct propositions:

• Implication (→), read P → Q as if P then Q.

• Conjunction (∧), read P ∧ Q as P and Q.

• Disjunction (∨), read P ∨ Q as P or Q.

Note that we understand or here as inclusive, it is ok that both are true.

• false, read false as Pigs can fly.

• true, read true as It sometimes rains in England.

• Negation (¬), read ¬ P as not P.

We define ¬ P as P → false.

• Equivalence, (↔), read P ↔ Q as P is equivalent to Q.

We define P ↔ Q as (P → Q) ∧ (Q → P).

As in algebra we use parentheses to group logical expressions. To save parentheses there are a number of
conventions:

• Implication and equivalence bind weaker than conjunction and disjunction.

E.g. we read P ∨ Q → R as (P ∨ Q) → R.

• Implication binds stronger than equivalence.

E.g. we read P → Q ↔ R as (P → Q) ↔ R.

• Conjunction binds stronger than disjunction.

E.g. we read P ∧ Q ∨ R as (P ∧ Q) ∨ R.

3

Introduction to Formal Reasoning (COMP2009), Release 0.1

• Negation binds stronger than all the other connectives.

E.g. we read ¬ P ∧ Q as (¬ P) ∧ Q.

• Implication is right associative.

E.g. we read P → Q → R as P → (Q → R).

This is not a complete specification. If in doubt use parentheses.

We will now discuss how to prove propositions in Lean. If we are proving a statement containing proposi-
tional variables then this means that the statement is true for all replacements of the variables with actual
propositions. We say it is a tautology.

Tautologies are sort of useless in everyday conversations because they contain no information. However, for
our study of logic they are important because they exhibit the basic figures of reasoning.

2.2 Our first proof

In Lean we write p : P for p proves the proposition P. For our purposes a proof is a sequence of tactics
affecting the current proof state which is the sequence of assumptions we have made and the current goal.
A proof begins with begin and ends with end and every tactic is terminated with ,.

We start with a very simple tautology P → P: If P then P. We can illustrate this with the statement if
the sun shines then the sun shines. Clearly, this sentence contains no information about the weather, it is
vacuously true, indeed it is a tautology.

Here is how we prove it in Lean:

theorem I : P → P :=
begin

assume h,
exact h,

end

We tell Lean that we want to prove a theorem (maybe a bit too grandios a name for this) named I (for
identity). The actual proof is just two lines, which invoke tactics:

• assume h means that we are going to prove an implication by assuming the premise (the left hand
side) and using this assumption to prove the conclusion (the right hand side). If you look at the html
version of this document you can click on Try it to open lean in a separate window. When you move
the cursor before assume h You see that the proof state is:

P : Prop
⊢ P → P

This means we assume that P is a proposition and want to prove P → P. The ⊢ symbol (pronounced
turnstile) separates the assumptions and the goal. After assume h, the proof state is:

P : Prop,
h : P
⊢ P

This means our goal is now P but we have an additional assumption h : P.

• exact h, We complete the proof by telling Lean that there is an assumption that exactly matches the
current goal. If you move the cursor after the , you see no goals. We are done.

4 Chapter 2. Propositional logic

Introduction to Formal Reasoning (COMP2009), Release 0.1

2.3 Using assumptions

Next we are going to prove another tautology: (P → Q) → (Q → R) → P → R. Here is a translation
into english:

If if the sun shines then we go to the zoo then if if we go to the zoo then we are happy then if the sun shines
then we are happy

Maybe this already shows why it is better to use formulas to write propositions.

Here is the proof in Lean (I call it C for compose).

theorem C : (P → Q) → (Q → R) → P → R :=
begin

assume p2q,
assume q2r,
assume p,
apply q2r,
apply p2q,
exact p,

end

First of all it is useful to remember that → associates to the right, putting in the invisible brackets this
corresponds to:

(P → Q) → ((Q → R) → (P → R))

After the three assume we are in the following state:

P Q R : Prop,
p2q : P → Q,
q2r : Q → R,
p : P
⊢ R

Now we have to use an implication. Clearly it is q2r which can be of any help because it promises to show
R given Q. Hence once we say apply q2r we are left to show Q:

P Q R : Prop,
p2q : P → Q,
q2r : Q → R,
p : P
⊢ Q

The next step is to use apply p2q to reduce the goal to P which can be shown using exact P.

Note that there are two kinds of steps in these proofs:

• assume h means that we are going to prove an implication P → Q by assuming P (and we call this
assumption h) and then proving Q with this assumption.

• apply h if we have assumed an implication h : P → Q and our current goal matches the right hand
side we can use this assumption to reduce the problem to showing P (wether this is indeed a good idea
depends on wether it is actually easier to show P).

The apply tactic is a bit more general, it can also be used to use a repeated implications. Here is an example:

2.3. Using assumptions 5

Introduction to Formal Reasoning (COMP2009), Release 0.1

theorem swap : (P → Q → R) → (Q → P → R) :=
begin

assume f q p,
apply f,
exact p,
exact q,

end

After assume f q p (which is a short cut for writing three times assume) we are in the following state:

P Q R : Prop,
f : P → Q → R,
q : Q,
p : P
⊢ R

Now we can use f because its conclusion matches our goal but we are left with two goals:

2 goals
P Q R : Prop,
f : P → Q → R,
q : Q,
p : P
⊢ P

P Q R : Prop,
f : P → Q → R,
q : Q,
p : P
⊢ Q

After completing the first goal with exact p it disappears and only one goal is left:

P Q R : Prop,
f : P → Q → R,
q : Q,
p : P
⊢ Q

which we can quickly eliminate using exact q,.

2.4 Proof terms

What is a proof? It looks like a proof in Lean is a sequence of tactics. But this is only the surface: the
tactics are actually more like editor commands which generate the real proof which is a program. This also
explains the syntax p : P which is reminiscent of the notation for typing 3 :: int in Haskell (that Haskell
uses :: instead of : is a regrettable historic accident).

We can have a look at the programs generated from proofs by using the #print operation in Lean:

#print I

#print C

6 Chapter 2. Propositional logic

Introduction to Formal Reasoning (COMP2009), Release 0.1

The proof term associated to I is:

theorem I : ∀ (P : Prop), P → P :=
λ (P : Prop) (h : P), h

and the one for C is:

theorem C : ∀ (P Q R : Prop), (P → Q) → (Q → R) → P → R :=
λ (P Q R : Prop) (p2q : P → Q) (q2r : Q → R) (p : P), q2r (p2q p)

If you have studied functional programming (e.g. Haskell) you should have a dejavu: indeed proofs are func-
tional programs. Lean exploits the propositions as types translation (aka the Curry-Howard-Equivalence)
and associates to every proposition the type of evidence for this proposition. This means that to see that a
proposition holds all we need to do is to find a program in the type associated to it.

Not all Haskell programs correspond to proofs, in particular general recursion is not permitted in proofs but
only some limited form of recursion that will always terminate. Also the Haskell type system isn’t expressive
enough to be used in a system like Lean, it is ok for propositional logic but it doesn’t cover predicate logic
which we will introduce soon. The functional language on which Lean relies is called dependent type theory
or more specifically The Calculus of Inductive Constructions.

Type Theory is an interesting subject but I won’t be able to say much in this course. If you want to learn
more about this you can attend Proofs, Programs and Types (COMP4074) which can be also done in year 3.

2.5 Conjunction

How to prove a conjunction? Easy! To prove P ∧ Q we need to prove both P and Q. This is achieved via the
constructor tactic. Here is a simple example (and since I don’t want to give it a name, I am using example
instead of theorem).

example : P → Q → P ∧ Q :=
begin

assume p q,
constructor,
exact p,
exact q,

end

constructor turns the goal:

P Q : Prop,
p : P,
q : Q
⊢ P ∧ Q

into two goals:

2 goals
P Q : Prop,
p : P,
q : Q
⊢ P

(continues on next page)

2.5. Conjunction 7

Introduction to Formal Reasoning (COMP2009), Release 0.1

(continued from previous page)

P Q : Prop,
p : P,
q : Q
⊢ Q

Now what is your next question? Exactly! How do we use a conjunction in an assumption? Here is an
example, we show that ∧ is commutative.

theorem comAnd : P ∧ Q → Q ∧ P :=
begin

assume pq,
cases pq with p q,
constructor,
exact q,
exact p

end

After assume pq we are in the following state:

P Q : Prop,
pq : P ∧ Q
⊢ Q ∧ P

Assume P ∧ Q is the same as assuming both P and Q. This is facilitated via the cases tactic which needs
to know which assumption we are going to use (here pq) and how we want to name the assumptions which
replaces it (here p q). Hence after cases pq with p q, the state is:

P Q : Prop,
p : P,
q : Q
⊢ Q ∧ P

The name cases seems to be a bit misleading since there is only one case to consider here. However, as we
will see cases is applicable more generally in situations where the name is better justified.

I hope you notice that the same symmetry of tactics how to prove and how to use which we have seen in the
tactics for implication aso show for conjunction. This pattern is going to continue.

It is good to know that Lean always abstracts the propositional variables we have declared. We can actually
use comAnd with different instantiation to prove the following:

theorem comAndIff : P ∧ Q ↔ Q ∧ P :=
begin
constructor,
apply comAnd,
apply comAnd,

end

In the 2nd use of comAnd we instantiate Q with P and P with Q. Lean will find these instances automatically
but in some more complicated examples it may need some help.

8 Chapter 2. Propositional logic

Introduction to Formal Reasoning (COMP2009), Release 0.1

2.6 The Currying Equivalence

Maybe you have already noticed that a statement like P → Q → R basically means that R can be proved
from assuming both P and Q. Indeed, it is equivalent to P ∧ Q → R. We can show this formally by using ↔.
You just need to remember that P ↔ Q is the same as (P → Q) ∧ (Q → P). Hence a goal of the form P
↔ Q can be turned into two goals P → Q and Q → P using the constructor tactic.

All the steps we have already explained so I won’t comment. It is a good idea to step through the proof
using Lean (just use Try It if you are reading this in a browser).

theorem curry : P ∧ Q → R ↔ P → Q → R :=
begin
constructor,
assume pqr p q,
apply pqr,
constructor,
exact p,
exact q,
assume pqr pq,
cases pq with p q,
apply pqr,
exact p,
exact q,

end

I call this the currying equivalence, because this is the logical counterpart of currying in functional program-
ming: i.e. that a function with several parameters can be reduced to a function which returns a function.
E.g. in Haskell addition has the type Int -> Int -> Int instead of (Int , Int) -> Int.

2.7 Disjunction

To prove a disjunction P ∨ Q we can either prove P or we can prove Q. This is achieved via the appropriately
named tactics left and right. Here are some simple examples:

example : P → P ∨ Q :=
begin

assume p,
left,
exact p,

end

example : Q → P ∨ Q :=
begin

assume q,
right,
exact q,

end

To use a disjunction P ∨ Q we have to show that the current goal follows both from assuming P and from
assuming Q. To achieve this we are using cases again, but this time the name actually makes sense. Here is
an example:

2.6. The Currying Equivalence 9

Introduction to Formal Reasoning (COMP2009), Release 0.1

theorem case_lem : (P → R) → (Q → R) → P ∨ Q → R :=
begin

assume p2r q2r pq,
cases pq with p q,
apply p2r,
exact p,
apply q2r,
exact q,

end

After assume we are in the following state:

P Q R : Prop,
p2r : P → R,
q2r : Q → R,
pq : P ∨ Q
⊢ R

We use cases pq with p q which means that we are going to use P ∨ Q. There are two cases to consider one
for P and one for Q resulting in two subgoals. We indicate which names we want to use for the assumptions
in each case namely p and q:

2 goals
case or.inl
P Q R : Prop,
p2r : P → R,
q2r : Q → R,
p : P
⊢ R

case or.inr
P Q R : Prop,
p2r : P → R,
q2r : Q → R,
q : Q
⊢ R

To summarise: there are two ways to prove a disjunction using left and right. To use a disjunction in an
assumption we use cases to perform a case analysis and show that the current goal follows from either of
the two components.

2.8 Logic and algebra

As an example which involves both conjunction and disjunction we prove distributivity. In algebra we know
the law x(y + z) = xy + xz a similar law holds in propositional logic:

example : P ∧ (Q ∨ R) ↔ (P ∧ Q) ∨ (P ∧ R) :=
begin
sorry

end

Sorry, but I was too lazy to do the proof so I left it to you. In Lean you can say sorry and omit the proof.

10 Chapter 2. Propositional logic

Introduction to Formal Reasoning (COMP2009), Release 0.1

This is an easy way out if you cannot complete your Lean homework: you just type sorry and it is fine.
However, then I will say Sorry but you don’t get any points for this.

The correspondence with algebra goes further: the counterpart to implication is exponentiation but you have
to read it backwards, that is P → Q becomes Q^P. Then the translation of the law xyz = (xy)z corresponds
to the currying equivalence P ∧ Q → R ↔ P → Q → R.

Maybe you remember that there is another law of exponentiation xy+z = xyxz. And indeed its translation
is also a law of logic:

theorem case_thm : P ∨ Q → R ↔ (P → R) ∧ (Q → R) :=
begin
sorry

end

Actually the right to left direction is a curried version of the case_lem we have already shown. It turns out
that it is another logical equivalence. It shouldn’t be too difficult to complete the proof.

Intrigued? I can only warn you not to study category theory to find out more because it is highly addictive.

2.9 True, false and negation

There are two logical constants true and false. I find it always difficult to translate them into english
because we don’t really use them in conversations to state a proposition. Hence the best approximation for
true is something which is obviously true like It sometimes rains in England and to translate false with
something obviously false, like Pigs can fly.

As far is logic and proof concerned, true is like an empty conjunction and false is an empty disjunction.
Hence it is easy to prove true

example : true :=
begin
constructor,

end

Alternatively we can use the tactic trivial.

While in the case of ∧ we were left with 2 subgoals now we are left with none, ie. we are already done.

Symmetrically there is no way to prove false because we neither have left nor right and this is good so.
On the other hand doing cases on false as an assumption makes the current goal go away as by magic and
leaves no goals to be proven.

theorem efq : false → P :=
begin

assume pigs_can_fly,
cases pigs_can_fly,

end

efq is short for the latin phrase Ex falso quod libet which means from false follows everything. This confuses
some people because it isn’t really a principle of everyday logic where there are different levels of impossibility.
However, in logic the reasoning If pigs can fly then I am the president of America is valid.

We define ¬ P as P → false which means that P is impossible. Dear gentlemen, if you ask a girl to marry
you and she replies If we get married then pigs can fly, this means no.

As an example we can prove the law of contradiction: it cannot be that both P and ¬ P hold.

2.9. True, false and negation 11

Introduction to Formal Reasoning (COMP2009), Release 0.1

theorem contr: ¬ (P ∧ ¬ P) :=
begin

assume pnp,
cases pnp with p np,
apply np,
exact p,

end

2.10 Summary of tactics

Below is a table summarising the tactics we have seen so far:

How to prove ? How to use?
→ assume h apply h
∧ constructor cases h with p q
∨ left right cases h with p q
true constructor
false cases h

They are related to introduction and elimination rules in natural deduction, a system devised by the german
logician Gerhard Gentzen.

The syntax for using conjunction and disjunction is the same, cases h with p q , but the effect is quite
different. In particular the two assumptions are added both to the context in the case of ∧ but only one of
them in each of the subproofs in the case of ∨.

You can omit the with clause and just write cases h in those situations and Lean will generate names for
you. However, this is not acceptable for solutions submitted as homework.

We also have exact h which is a structural tactic that doesn’t fit into the scheme above. Actually h could be
any proof term but since we have not introduced proof terms we will use exact only to refer to assumptions.
There is also an alternative - the tactic assumption checks wether any assumption matches the current goal.
Hence we could have written the first proof as:

theorem I : P → P :=
begin

assume h,
assumption,

end

Important! There many more tactics available in Lean some with a higher degree of automatisation. Also
some of the tactics I have introduced are applicable in ways I haven’t explained. When solving exercises,
please use only the tactics I have introduced and only in the way I have introduced them.

12 Chapter 2. Propositional logic

CHAPTER

THREE

CLASSICAL LOGIC

We stick to propositional logic for the moment but discuss a difference between the logic based on truth you
may have seen before and the logic based on evidence which we have introduced in the previous chapter.

The truth based logic is called classical logic while the evidence based one is called intuitionistic logic.

3.1 The de Morgan laws

The de Morgan laws state that if you negate a disjunction or conjunction this is equivalent to the negation
of their components with the disjunction replaced by conjunction and vice versa. More precisely:

¬ (P ∨ Q) ↔ ¬ P ∧ ¬ Q
¬ (P ∧ Q) ↔ ¬ P ∨ ¬ Q

These laws reflect the observation that the truth tables for ∧ and ∨ can be transformed into each other if
we turn them around and swap true and false.

P Q P ∧ Q P ∨ Q ¬ P ∧ ¬ Q ¬ P ∨ ¬ Q ¬(P ∧ Q) ¬(P ∨ Q)
false false false false true true true true
true false false true false true true false
false true false true false true true false
true true true true false false false false

Here is the proof of the first de Morgan law in its full glory:

theorem dm1 : ¬ (P ∨ Q) ↔ ¬ P ∧ ¬ Q :=
begin
constructor,
assume npq,
constructor,
assume p,
apply npq,
left,
exact p,
assume q,
apply npq,
right,
exact q,
assume npnq pq,
cases npnq with np nq,

(continues on next page)

13

Introduction to Formal Reasoning (COMP2009), Release 0.1

(continued from previous page)

cases pq with p q,
apply np,
exact p,
apply nq,
exact q,

end

It is rather boring because there are a lot of symmetric cases but I didn’t break a sweat proving it. However,
the 2nd law is a different beast. Here is my attempt:

theorem dm2 : ¬ (P ∧ Q) ↔ ¬ P ∨ ¬ Q :=
begin
constructor,
assume npq,
left,
assume p,
apply npq,
constructor,
exact p,
sorry,
assume npnq pq,
cases pq with p q,
cases npnq with np nq,
apply np,
exact p,
apply nq,
exact q,

end

As you see I got stuck with the left to right direction, the right to left one went fine. What is the problem?
The proof state after assume npq is (ignoring the propositional assumptions and the other goal):

npq : ¬(P ∧ Q)
⊢ ¬P ∨ ¬Q

Now the question is do we go left or right - there seems to be no good reason for either because everything
is symmetric. Ok let’s try left we end up with:

npq : ¬(P ∧ Q)
⊢ ¬P

Now the next steps is obvious assume p:

npq : ¬(P ∧ Q),
p : P
⊢ false

There is only one purveyor of false, hence we say apply npq:

npq : ¬(P ∧ Q),
p : P
⊢ P ∧ Q

Now we say constructor and the first subgoal is easily disposed with exact p but we end up with:

14 Chapter 3. Classical logic

Introduction to Formal Reasoning (COMP2009), Release 0.1

npq : ¬(P ∧ Q),
p : P
⊢ Q

And there is no good way to make progress here, indeed it could be that P is true but Q is false. As soon as
we said left we ended up with an unprovable goal.

What has happened? The truth tables provided clear evidence that the de Morgan law should hold but we
couldn’t prove it. Indeed let’s consider the following example: It is not the case that I have a cat and that I
have a dog can we conclude that I don’t have a cat or I don’t have a dog ? No because we don’t know which
one is the case, that is we don’t have evidence for either.

3.2 The law of the excluded middle

To match the truth semantics we need to assume one axiom, the law of the excluded middle. This expresses
the idea that every proposition is either true or false or to speak with Shakespeare To P or not to P that is
P ∨ ¬ P for any proposition P. In latin this law is called Tertium non datur, which translates to the 3rd is
not given.

In Lean we access this axiom by:

open classical

#check em P

Here I am using the command #check which checks the type of a term. For any proposition P, em P proves
P ∨ ¬ P. Using em P we can complete the missing direction of the 2nd de Morgan law:

theorem dm2_em : ¬ (P ∧ Q) → ¬ P ∨ ¬ Q :=
begin

assume npq,
cases em P with p np,
right,
assume q,
apply npq,
constructor,
exact p,
exact q,
left,
exact np,

end

The idea of the proof is that we look at both cases of P ∨ ¬ P. If P holds then we can prove ¬ Q from ¬
(P ∧ Q), otherwise if we know ¬ P then we can obviously prove ¬ P ∨ ¬ Q.

3.3 Indirect proof

There is another law which is equivalent to the principle of excluded middle and this is the principle of
indirect proof or in latin reduction ad absurdo (reduction to the absurd). This principle tells you that to
prove P it is sufficient to show that ¬ P is impossible. Here is how we derive this using em:

3.2. The law of the excluded middle 15

Introduction to Formal Reasoning (COMP2009), Release 0.1

theorem raa : ¬ ¬ P → P :=
begin

assume nnp,
cases (em P) with p np,
exact p,
have f : false,
apply nnp,
exact np,
cases f,

end

The idea is to assume ¬¬ P and then prove P by analysing P ∨ ¬ P: In the case P we are done and in the
case ¬ P we have a contradiction with ¬¬ P and we can use that false implies everything.

We can derive em from raa. The key observation is that we can actually prove ¬ ¬ (P ∨ ¬ P) without
using classical logic.

theorem nn_em : ¬ ¬ (P ∨ ¬ P) :=
begin

assume npnp,
apply npnp,
right,
assume p,
apply npnp,
left,
exact p,

end

This proof is a bit weird. After apply npnp we have the following state:

P : Prop,
npnp : ¬(P ∨ ¬P)
⊢ P ∨ ¬P

Now you may say again do we go left or right? But this time the cases are not symmetric. we certainly
cannot prove P hence let’s go right. After a few steps we are in the same situation again:

P : Prop,
npnp : ¬(P ∨ ¬P),
p : P
⊢ P ∨ ¬P

But something has changed! We have picked up the assumption p : P. And hence this time we go left and
we are done.

Here is a little story which relies on the idea that double negating corresponds to time travel:

“There was a magician who could time travel who wanted to marry the daughter of a king. There
was no gold in the country but people were not sure wether diamonds exist. Hence the king set
the magician the task to either find a diamond or to produce a way to turn diamonds into gold.
The magician went for the 2nd option and gave the king an empty box so he could marry the
daughter. However, if the king would get hold of a diamond at some point and his lie would
become obvious he would just take the diamond, travel back in time and go for the first option.”

Now if we assume we have a constant proving raa we can show em:

16 Chapter 3. Classical logic

Introduction to Formal Reasoning (COMP2009), Release 0.1

constant raa : ¬¬ P → P

theorem em : P ∨ ¬ P :=
begin
apply raa,
apply nn_em,

end

Note that while em and raa are equivalent as global principles this is not the case for individual propsoitions.
That is if we assume P ∨ ¬ P we can prove ¬¬ P → P for the same proposition P but if we assume ¬¬ P
→ P we cannot prove P ∨ ¬ P for that proposition but we actually need a different instance of raa namely
: ¬¬ (P ∨ ¬ P) → P ∨ ¬ P.

3.4 Intuitionistic vs classical logic

Should we always assume em (or alternatively raa), hence should we always work in classical logic? There is
a philosophical and a pragmatic argument in favour of avoiding it and using intuitionistic logic.

The philosophical argument goes like this: while facts about the real world are true or false even if we don’t
know them this isn’t so obvious about mathematical constructions which take place in our head. The set of
all numbers doesn’t exist in the real world it is like a story we share and we don’t know wether anything we
make up is either true or false. However, we can talk about evidence without needing to assume that.

The idea that the world of ideas is somehow real, and that the real world is just a poor shadow of the world
of ideas was introduced by the greek philosopher Plato and hence is called Platonism. In contrast that our
ideas are just constructions in our head is called Intuitionism.

However, the pragmatic argument is maybe more important. Intuitionistic logic is constructive, indeed in a
way that is dear to us computer scientists: whenever we show that something exists we are actually able to
compute it. As a consequence intuitionistic logic introduces many distinctions which are important especially
in computer science. For example we can distinguish decidable properties from properties in general. Also
by a function we mean something we can compute like in a (functional) programming language.

Here is a famous example to show that the principle of excluded middle destroys constructivity. Since we
haven’t yet introduced predicate logic and many of the concepts needed for this example in Lean I present
this just as an informal argument:

We want to show that there are two irrational numbers p and q (that is numbers that cannot be
written as fractions) such that their power pq is rational. We know that

√
2 is irrational. Now

what is
√
2
√
2? Using the excluded middle it is either rational or irrational. If it is rational then

we are done p = q =
√
2 . Otherwise we use p =

√
2
√
2 which we now assume to be irrational

and q =
√
2. Now a simple calculation shows pq = (

√
2
√
2
)
√
2 =

√
2
√
2
√
2
=

√
2
2
= 2 which is

certainly rational.

Now after this proof we still don’t know two irrational numbers whose power is rational. I hasten to add
that we can establish this fact without using em but this particular proof doesn’t provide a witness because
it is using excluded middle.

In the homework we will distinguish proofs that use excluded middle and once which do not. In my logic
poker I ask you to prove propositions intuitionistically where possible and only use classical reasoning where
necessary.

Now a common question is how to see wether a proposition is only provable classically. E.g. why can we
prove all the first de Morgan law and one direction of the 2nd but not ¬ (P ∧ Q) → ¬ P ∨ ¬ Q? The
reason is that the right hand side contains some information, i.e. which of the ¬ P or ¬ Q is true while ¬

3.4. Intuitionistic vs classical logic 17

Introduction to Formal Reasoning (COMP2009), Release 0.1

(P ∧ Q) is a negative proposition and hence does contain no information. In contrast the both sides of the
first de Morgan law ¬ (P ∨ Q) and ¬ P ∧ ¬ Q are negative, i.e. contain no information.

18 Chapter 3. Classical logic

CHAPTER

FOUR

PREDICATE LOGIC

4.1 Predicates, relations and quantifiers

Predicate logic extends propositional logic, we can use it to talk about objects and their properties. The
objects are organized in types, such as N : Type the type of natural numbers {0, 1, 2, 3, . . . } or bool :
Type the type of booleans {tt, ff}, or lists over a given A : Type: list A : Type, which we will introduce
in more detail soon. To avoid talking about specific types we introduce some type variables:

variables A B C : Type

We talk about types where you may be used to sets. While they are subtle differences (types are static while
we can reason about set membership in set theory) for our purposes types are just a replacement of sets.

A predicate is just another word for a property, e.g. we may use Prime : N → Prop to express that a
number is a prime number. We can form propositions such as Prime 3 and Prime 4, the first one should
be provable while the negation of the second holds. Predicates may have several inputs in which case we
usually call them relations, examples are ≤ : N → N → Prop or inList : A → list A → Prop to
form propositions like 2 ≤ 3 and InList 1 [1,2,3] (both of them should be provable).

In the sequel we will use some generic predicates for examples, such as

variables PP QQ : A → Prop

The most important innovation of predicate logic are the quantifiers, which we can use to form new propo-
sitions:

• universal quantification (∀), read ∀ x : A , PP x as all x in A satisfy PP x.

• existential quantification (∃), read ∃ x : A, PP x as there is an x in A satsifying PP x.

Both quantifiers bind weaker then any other propositional operator, that is we read ∀ x : A, PP x ∧ Q as
∀ x : A , (PP x ∧ Q). We need parenheses to limit the scope, e.g. (∀ x : A, PP x) ∧ Q which has a
different meanting to the proposition before.

It is important to understand bound variables, essentially they work like scoped variables in programming.
We can shadow variables as in ∀ x:A , (∃ x : A , PP x) ∧ QQ x, here the x in PP x referes to ∃ x
: A while the x in QQ x refers to ∀ x : A. Bound variables can be consistently renamed, hence the pre-
vious proposition is the same as ∀ y:A , (∃ z : A , PP z) ∧ QQ y, which is actually preferable since
shadowing variables should be avoided because it confuses the human reader.

Now we have introduced all these variables what can we do with them. We have new primitive proposition:

• equality (=), given a b : A we write a = b which we read as a is equal to b.

19

Introduction to Formal Reasoning (COMP2009), Release 0.1

In the moment we only have variables as elements of types but this will change soon when we introduce
datatypes and functions.

4.2 The universal quantifier

To prove that a proposition of the form ∀ x : A , PP x holds we assume that there is given an arbitrary
element a in A and prove it for this generic element, i.e. to prove PP a, we use assumption a to do this.
If we have an assumption h : ∀ x : A , PP x and our current goal is PP a for some a : A then we can
use apply h to prove our goal. Usuall we have some combination of implication and for all like h : ∀ x :
A, PP x → QQ x and now if our current goal is QQ a and we invoke apply h Lean will instantiate x with
a and it remains to show QQ a.

Best to do some examples. Let’s say we want to prove

(∀ x : A, PP x) → (∀ y : A, PP y → QQ y) → ∀ z : A , QQ z

Here is a possible translation into english where we assume that A stands for the type of students in the
class, PP x means x is clever and QQ x means x is funny then we arrive at:

If all students are clever then if all clever students are funny then all students are funny.

example : (∀ x : A, PP x)
→ (∀ y : A, PP y → QQ y)
→ ∀ z : A , QQ z :=

begin
assume p pq a,
apply pq,
apply p,

end

Note that after assume the proof state is:

p : ∀ (x : A), PP x,
pq : ∀ (y : A), PP y → QQ y,
a : A
⊢ QQ a

That is the x in QQ x has been replaced by a. I could have used x again but I though this may be misleading
because you may think that you have to use the same variable as in the quantifier.

Let’s prove a logical equivalence imvolving ∀ and ∧, namely that we can interchange them. That is we are
going to prove

(∀ x : A, PP x ∧ QQ x) ↔ (∀ x : A , PP x) ∧ (∀ x : A, QQ x)

To illustrate this: to say that all students are clever and funny is the same as saying that all students are
clever and all students are funny.

Here is the Lean proof:

example : (∀ x : A, PP x ∧ QQ x)
↔ (∀ x : A , PP x) ∧ (∀ x : A, QQ x) :=
begin
constructor,
assume h,

(continues on next page)

20 Chapter 4. Predicate logic

Introduction to Formal Reasoning (COMP2009), Release 0.1

(continued from previous page)

constructor,
assume a,
have pq : PP a ∧ QQ a,
apply h,
cases pq with pa qa,
exact pa,
assume a,
have pq : PP a ∧ QQ a,
apply h,
cases pq with pa qa,
exact qa,
assume h,
cases h with hp hq,
assume a,
constructor,
apply hp,
apply hq,

end

I am using a new structural rule here. After assume a I am in the following state (ignoring the parts not
relevant now):

h : ∀ (x : A), PP x ∧ QQ x,
a : A
⊢ PP a

Now I cannot say apply h because PP a is not the conclusion of the assumption. My idea is that I can prove
PP a ∧ QQ a from h and from this I can prove PP a. Hence I am using

have pq : PP a ∧ QQ a,

which creats a new goal:

h : ∀ (x : A), PP x ∧ QQ x,
a : A
⊢ PP a ∧ QQ a

h : ∀ (x : A), PP x ∧ QQ x,
a : A,
pq : PP a ∧ QQ a
⊢ PP a

but also inserts an assumption pq in my original goal. Now I can prove PP a ∧ QQ a using apply h and
then I am left with:

h : ∀ (x : A), PP x ∧ QQ x,
a : A,
pq : PP a ∧ QQ a
⊢ PP a

which I can prove using cases on pq.

4.2. The universal quantifier 21

Introduction to Formal Reasoning (COMP2009), Release 0.1

4.3 The existential quantifier

To prove a proposition of the form ∃ x : A , PP x it is enough to prove PP a for any a : A. We use
existsi a for this and we are left having to prove PP a. Note that a can be any expression of type A not
necessarily a variable. However so far we haven’t seen any way to construct elements, but this will change
soon.

On the other hand to use an assumption of the form h : ∃ x : A , P x we are using cases h with x
px which replaces h with two assumptions x : A and px : P x.

Again it is best to look at an example. We are going to prove a proposition very similar to the one for ∀:

(∃ x : A, PP x) → (∀ y : A, PP y → QQ y) → ∃ z : A , QQ z

Here is the english version using the same translation as before:

If there is a clever student and all clever students are funny then there is a funny student.

Here is the Lean proof:

example : (∃ x : A, PP x)
→ (∀ y : A, PP y → QQ y)
→ ∃ z : A , QQ z :=

begin
assume p pq,
cases p with a pa,
existsi a,
apply pq,
exact pa,

end

After the assume we are in the following state:

p : ∃ (x : A), PP x,
pq : ∀ (y : A), PP y → QQ y
⊢ ∃ (z : A), QQ z

We first take p apart using cases p with a pa:

pq : ∀ (y : A), PP y → QQ y,
a : A,
pa : PP a
⊢ ∃ (z : A), QQ z

and now we can use existsi a:

pq : ∀ (y : A), PP y → QQ y,
a : A,
pa : PP a
⊢ QQ a

which we now should know how to complete.

As ∀ can be exchanged with ∧, ∃ can be exchanged with ∨. That is we are going to prove the following
equivalence:

(∃ x : A, PP x ∨ QQ x) ↔ (∃ x : A , PP x) ∨ (∃ x : A, QQ x)

Here is the english version

22 Chapter 4. Predicate logic

Introduction to Formal Reasoning (COMP2009), Release 0.1

There is a student who is clever or funny is the same as saying there is a student who is funny
or there is a student who is clever.

Here is the complete lean proof (for you to step through online):

example : (∃ x : A, PP x ∨ QQ x)
↔ (∃ x : A , PP x) ∨ (∃ x : A, QQ x) :=

begin
constructor,
assume h,
cases h with a ha,
cases ha with pa qa,
left,
existsi a,
exact pa,
right,
existsi a,
exact qa,
assume h,
cases h with hp hq,
cases hp with a pa,
existsi a,
left,
exact pa,
cases hq with a qa,
existsi a,
right,
exact qa,

end

4.4 Another Currying equivalence

You may have noticed that the way we prove propositions involving → and ∀ is very similar. In both cases
wem use assume to prove them by introducing an assumption in the first case a proposition and in the
secnde an element in a type and in both cases we use them using apply to prove the current goal. Similarily
∧ and ∃ behave similar: in both cases we prove them using constructor where we have to construct two
components in the first case the two sides of the conjunction and in the second the element and the proof
that it satisfies the property. And in both case we are using cases with two components which basically
replaces the assumption by its two components.

The similarity can be seen by establishing another currying-style equivalence. While currying in propositional
logic had the form

P ∧ Q → R ↔ P → Q → R

where we turn a conjunction into an implication, currying for predicate logic has the form

(∃ x : A, QQ x) → R ↔ (∀ x : A , QQ x → R)

ths time we turn an existential into a universal quantifier. For the intuition, we use QQ x to mean x is clever
and R means the professor is happy. Hence the equivalence is:

If there is a student who is clever then the professor is happy is equivalent to saying if any student
is clever then the professor is happy.

Here is the proof in Lean:

4.4. Another Currying equivalence 23

Introduction to Formal Reasoning (COMP2009), Release 0.1

theorem curry_pred : (∃ x : A, PP x) → R ↔ (∀ x : A , PP x → R) :=
begin
constructor,
assume ppr a p,
apply ppr,
existsi a,
exact p,
assume ppr pp,
cases pp with a p,
apply ppr,
exact p,

end

4.5 Equality

There is a generic relation which can be applied to any type: equality. Given a b : A we can construct a =
b : Prop expressing that a and b are equal. we can prove that everything is equal to itself using the tactic
reflexivity.

example : ∀ x : A, x=x :=
begin

assume a,
reflexivity,

end

If we have assumed an equality h : a=b we can use it to rewrite a into b in the goal. That is if our goal is
PP a we say rewrite h and this changes the goal into PP b. Here is a simple example (with a little twist):

example: ∀ x y : A, x=y → PP y → PP x :=
begin

assume x y eq p,
rewrite eq,
exact p,

end

Sometimes we want to use the equality in the other direction, that is we want to replace b by a. In this case
we use rewrite← h. Here is another example which is actually what I wanted to do first:

example: ∀ x y : A, x=y → PP x → PP y :=
begin
assume x y eq p,
rewrite← eq,
exact p,

end

Equality is an equivalence relation, it mens that it is

• reflexive (∀ x : A, x=x),

• symmetric (∀ x y : A, x=y → y=x)

• transitive (∀ x y z : A, x=y → y=z → x=z)

24 Chapter 4. Predicate logic

Introduction to Formal Reasoning (COMP2009), Release 0.1

We have already shown reflexivity using the appropriately named tactic. We can show symmetry and
transitivity using rewrite:

theorem sym_eq : ∀ x y : A, x=y → y=x :=
begin

assume x y p,
rewrite p,

end

After the assume the goal is:

x y : A,
p : x = y
⊢ y = x

Now I was expecting that after rewrite p the goal would be:

x y : A,
p : x = y
⊢ y = y

but actually rewrite automatically applies reflexivity if possible, hence we are already done.

Moving on to transitivity:

theorem trans_eq : ∀ x y z : A, x=y → y=z → x=z :=
begin

assume x y z xy yz,
rewrite xy,
exact yz,

end

Sometimes we want to use an equality not to rewrite the goal but to reqrite another assumption. We can do
this giving rise to another proof of trans.

theorem trans_eq : ∀ x y z : A, x=y → y=z → x=z :=
begin

assume x y z xy yz,
rewrite<- xy at yz,
exact yz,

end

That is by saying rewrite xy at yz we are using xy to rewrite yz. The same works for rewrite←.

Actually Lean already has built-in tactics to deal with symmetry and transitivity which are often easier to
use:

example : ∀ x y : A, x=y → y=x :=
begin

assume x y p,
symmetry,
exact p

end

example : ∀ x y z : A, x=y → y=z → x=z :=
(continues on next page)

4.5. Equality 25

Introduction to Formal Reasoning (COMP2009), Release 0.1

(continued from previous page)

begin
assume x y z xy yz,
transitivity,
exact xy,
exact yz,

end

After we say‘‘transitivity‘‘ the goals looks a bit strange:

2 goals
A : Type,
x y z : A,
xy : x = y,
yz : y = z
⊢ x = ?m_1

A : Type,
x y z : A,
xy : x = y,
yz : y = z
⊢ ?m_1 = z

The ?m_1 is a placeholder since Lean cannot figure out at this point what we are going to use as the
intermidiate term. We can just proceed, because as soon as we say exact xy, Lean can figure out that ?m_1
is y and we are left with:

A : Type,
x y z : A,
xy : x = y,
yz : y = z
⊢ y = z

which is the 2nd goal with ?m_1 instantiated. Actually we are not going to use transitivity in equational
proofs but we use a special format for equational proofs indicated by calc:

example : ∀ x y z : A, x=y → y=z → x=z :=
begin

assume x y z xy yz,
calc
x = y : by exact xy
... = z : by exact yz,

end

After calc we prove a sequence of equalities where each step is using by followed by some tactics. Any
subsequent line starts with ... which stends for the last expression of the previous line, in this case y.

There is one more property we expect from equality. Assume we have a function f : A → B and we know
that x = y for some x y : A then we want to be able to conclude that f x = f y. We say that equality is
a congruence. We can prove this easily using rewrite:

theorem congr_arg : ∀ f : A → B , ∀ x y : A, x = y → f x = f y :=
begin

assume f x y h,
(continues on next page)

26 Chapter 4. Predicate logic

Introduction to Formal Reasoning (COMP2009), Release 0.1

(continued from previous page)

rewrite h,
end

We will use congr_arg f : ∀ x y : A, x = y → f x = f y when we need that f preserves equality.

There is a special proof style in Lean for equational proofs calc which enables to have more readable
equational derivations, which we will introduce later.

4.6 Classical Predicate Logic

We can use classical logic in predicate logic even though the explanation using truth tables doesn’t work
anymore, or let’s say we have to be prepared to use infinite truth tables which need a lot of paper to write
out.

There are predicate logic counterparts of the de Morgan laws which now say that you can move negation
through a quantifier by negating the component and switching the quantifier. And again one of them is
provable intuitionistically:

theorem dm1_pred : ¬ (∃ x : A, PP x) ↔ ∀ x : A, ¬ PP x :=
begin
constructor,
assume h x p,
apply h,
existsi x,
exact p,
assume h p,
cases p with a pa,
apply h,
exact pa,

end

While the other direction again needs classical logic:

theorem dm2_pred : ¬ (∀ x : A, PP x) ↔ ∃ x : A, ¬ PP x :=
begin
constructor,
assume h,
apply raa,
assume ne,
apply h,
assume a,
apply raa,
assume np,
apply ne,
existsi a,
exact np,
assume h na,
cases h with a np,
apply np,
apply na,

end

4.6. Classical Predicate Logic 27

Introduction to Formal Reasoning (COMP2009), Release 0.1

Actually I had to use indirect proof raa twice to derive the left to right direction. Still our explanation we
had given previously still applies: the existential statement ∃ x : A, ¬ PP x conatins information but the
negated universal one ¬ (∀ x : A, PP x) deosn’t. Intuitively: knowing that not all students are stupid
doesn’t give you a way to come up with a student who is not stupid.

4.7 Summary of tactics

Here is the summary of basic tactics for predicate logic:

How to prove ? How to use?
∀ assume h apply h
∃ existsi a cases h with x p
= reflexivity rewrite h rewrite← h

Note that the a after exsistsi can be any expression of type A, while h x p are variables.

28 Chapter 4. Predicate logic

CHAPTER

FIVE

THE BOOLEANS

The logic we have introduced so far was very generic. We fix this in this chapter by looking at a very simple
type, the booleans bool which has just two elements tt (for true) and ff (for false) and functions on this
type. Then we are going to use predicate logic to prove some simple theorems about booleans.

In the lean prelude bool is defined as an inductive type:

inductive bool : Type
| ff : bool
| tt : bool

This declaration means:

• There is a new type bool : Type,

• There are two elements tt ff : bool,

• These are the only elements of bool,

• tt and ff are different elements of bool.

Inductive is quite versatile we can use it to define other finite types, infinite types like N and type con-
structors like maybe or list. It is similar to the data type constructor in Haskell but not exactly since there
are data definitions in Haskell which are not permitted in Lean.

5.1 Functions on bool

Let’s define negation on booleans this is a function bnot : bool → bool. By a function here we mean
something which we can feed an element of the input type (here bool) and it will return an element of the
output type (here bool again. We can do this by matching all possible inputs:

def bnot : bool → bool
| tt := ff
| ff := tt

To define a function with two inputs, like and for booleans band we use currying, that is band applied to
a boolean returns a function which applied to the 2nd boolean returns a boolean, hence band : bool →
bool → bool. As we have already seen → is right associative hence putting the extra brackets in the type
is band :bool → (bool → bool).

We could list all the four cases, reproducing the truth table, but we get away with just two matching only
on the first argument:

29

Introduction to Formal Reasoning (COMP2009), Release 0.1

def band : bool → bool → bool
| tt b := b
| ff b := ff

If the first argument is tt, that is we look at band tt : bool → bool then this is just the identity on
the snd argument, because band tt tt = tt and band tt ff = ff. If the first argument is ff then the
outcome wil be ff whatever the 2nd argument its. With other words band ff : bool → bool is the
constant function which will always return ff.

Symmetrically we can define bor : bool → bool → bool with just two cases:

def bor : bool → bool → bool
| tt b := tt
| ff b := b

In this case if the first argument is tt, bor tt : bool → bool is always tt while if the first argument is
ff, bor ff : bool → bool is just the identity.

The lean prelude also introduces the standard infix notation for operations on bool:

x && y := band x y

and

x || y := bor x y.

We can evaluate boolean expressions using #reduce:

#reduce ff && (tt || ff)
#reduce tt && (tt || ff)

When I defined the binary boolean functions my choice to match on the first argument was quite arbitrary,
I could have used the 2nd argument just as well:

def band2 : bool → bool → bool
| b tt := b
| b ff := ff

def bor2 : bool → bool → bool
| b tt := tt
| b ff := b

These functions produce the same truth table as the ones we have defined before but their computational
behaviour is different which is important when we prove something about them. This can be seen by applying
them to a variable:

variable x : bool

#reduce band tt x
#reduce band2 tt x
#reduce band x tt
#reduce band2 x tt

We see that band tt x reduces to x because it matches on the first argument, while band2 x tt is stuck,
it needs to see what x turns out to be. If we fix the 2nd argument it is just the other way around, this time
band2 is better behaved.

30 Chapter 5. The Booleans

Introduction to Formal Reasoning (COMP2009), Release 0.1

When we are doing proofs it is important to remember how the function is defined because when we are
doing case analysis we should instantiate the arguments which allow us to reduce the function, if possible.

5.2 Proving some basic properties

To reason about bool we can use cases x to analyze a variable x : bool which means that there are two
possibilities tt and ff. For example we can state and prove in predicate logic that every element of bool is
either tt or ff:

example : ∀ x : bool, x=tt ∨ x=ff :=
begin

assume x,
cases x,
right,
refl,
left,
refl,

end

After assume x we are in the following state:

x : bool
⊢ x = tt ∨ x = ff

And after cases x we get two subgoals:

2 goals
case bool.ff
⊢ ff = tt ∨ ff = ff

case bool.tt
⊢ tt = tt ∨ tt = ff

Both of them are straightforward to prove. Now lets prove that both are different. The idea is to define a
predicate is_tt : bool → Prop by case analysis:

def is_tt : bool → Prop
| ff := false
| tt := true

Now we can use is_tt to show that tt and ff cannot be equal:

theorem cons : tt ̸= ff :=
begin
assume h,
change is_tt ff,
rewrite ← h,
trivial,

end

Here I am using tt ̸= ff which just a shorthand for ¬ (tt = ff) (and which again is just short for tt =
ff → false).

5.2. Proving some basic properties 31

Introduction to Formal Reasoning (COMP2009), Release 0.1

I am also using a new tactic change which replaces the current goal with another one that is definitionally
the same. In our case we have::

h : tt = ff
⊢ false

and we know that is_tt ff = false hance we can say change is_tt ff to replace the goal:

h : tt = ff ⊢ is_tt ff

But now we can use rewrite ← h to change the goal to is_tt tt which is equal to true and hence provable
by trivial.

However, since this is a common situation Lean provides the tactic contradiction which we can use to
prove goals like this:

example : tt ̸= ff :=
begin

assume h,
contradiction,

end

contradiction will solve the current goal if there is an inconsistent assumption like assuming that two
different constructors of an inductive type are equal.

5.3 Proving equations about bool

Ok next let’s prove some interesting equalities. We are going to revisit our old friend, distributivity but this
time for booleans:

theorem distr_b : ∀ x y z : bool,
x && (y || z) = x && y || x && z :=

begin
assume x y z,
cases x,
dsimp [band],
dsimp [bor],
refl,
dsimp [band],
refl,

end

After assume x y z, we are in the following state:

x y z : bool
⊢ x && (y || z) = x && y || x && z

We do case analysis on x which can be either tt or ff. Hence after cases x we are left with two subgoals:

2 goals
case bool.ff
y z : bool
⊢ ff && (y || z) = ff && y || ff && z

(continues on next page)

32 Chapter 5. The Booleans

Introduction to Formal Reasoning (COMP2009), Release 0.1

(continued from previous page)

case bool.tt
y z : bool
⊢ tt && (y || z) = tt && y || tt && z

Let’s just discuss the first one. We can instruct Lean to use the definition of && (i.e. band) by saying dsimp
[band], we are left with

y z : bool
⊢ ff = ff || ff

Now we just need to apply the definition of || (i..e bor) using dsimp [bor]:

y z : bool
⊢ ff = ff

and now we only need to use refl to dispose of this goal.

Can you see why in the 2nd case it is enough to use dsimp [band].

We can apply several definitions in one tactic, i.e. in the first case dsimp [band,bor] would have done the
same. But actually in this proof there is no need for dsimp at all because refl will automatically reduce its
arguments, hence we could have just written:

theorem distr_b : ∀ x y z : bool,
x && (y || z) = x && y || x && z :=

begin
assume x y z,
cases x,
refl,
refl,

end

However, when doing proofs interactively it may be helpful to see the reductions. Also, later we will encounter
cases where using dsimp is actually necessary.

Could we have used another variable than x. Let’s see what about z?

example : ∀ x y z : bool,
x && (y || z) = x && y || x && z :=

begin
assume x y z,
cases z,
sorry

end

After cases zz we are in stuck in the following state:

x y : bool
⊢ x && (y || ff) = x && y || x && ff

No reduction is possible because we have defined the functions matching on the first argument. Using cases
y would have done a bit reduction but not enough. cases x was the right choice.

Now have a go at the de Morgan laws for bool yourselves, both are provable just using case analysis:

5.3. Proving equations about bool 33

Introduction to Formal Reasoning (COMP2009), Release 0.1

theorem dm1_b : ∀ x y : bool, bnot (x || y) = bnot x && bnot y :=
begin
sorry,

end

theorem dm2_b : ∀ x y : bool, bnot (x && y) = bnot x || bnot y :=
begin
sorry,

end

5.4 Relating bool and Prop

I am sure it has not escaped you that we seem to define logical operations twice: once for Prop and once for
bool. How are the two related? Indeed we can use is_tt for example to relate ∧ and &&:

theorem and_thm : ∀ x y : bool, is_tt x ∧ is_tt y ↔ is_tt (x && y) :=
begin

assume x y,
constructor,
assume h,
cases h with xtt ytt,
cases x,
cases xtt,
cases y,
cases ytt,
constructor,
assume h,
cases x,
cases h,
cases y,
cases h,
constructor,
constructor,
constructor,

end

I recommend to step through the proof, we are only using tactics I have already explained. Note that cases
x is used for two things: for doing case analysis on booleans and to eliminate inconsistent assumptions.

I leave it is an exercise to prove the corresponding facts about negation and disjunction:

theorem not_thm : ∀ x : bool, ¬ (is_tt x) ↔ is_tt (bnot x) :=
begin
sorry,

end

theorem or_thm : ∀ x y : bool, is_tt x ∨ is_tt y ↔ is_tt (x || y) :=
begin
sorry,

end

Another challenge is to define

34 Chapter 5. The Booleans

Introduction to Formal Reasoning (COMP2009), Release 0.1

implb : bool → bool → bool

and

eqb : bool → bool → bool

and show that they implement → and ↔ for bool.

5.4. Relating bool and Prop 35

Introduction to Formal Reasoning (COMP2009), Release 0.1

36 Chapter 5. The Booleans

CHAPTER

SIX

THE NATURAL NUMBERS

We have already used the natural numbers (N) in examples but now we will formally define them. We will
in spirit follow Guiseppe Peano who codified the laws of natural numbers using predicate logic in the late
19th century. This is referred to as Peano Arithmetic.

Peano viewed the natural numbers as created from zero (0 = zero) and succ successor, i.e. 1 = succ 0,
2 = succ 1 and so on. In Lean this corresponds to the following inductive definition:

inductive nat : Type
| zero : nat
| succ : nat → nat

This declaration means:

• There is a new type nat : Type,

• There are two elements zero : nat, and given n : nat we have succ n : nat.

• All the elements of nat can be generated by zero and then applying succ a finite number of times,

• zero and succ n are different elements,

• succ is injective, i.e. given succ m = succ n then we know that m = n.

We adopt the notation that N = nat and Lean also automatically translates the usual decimal notation into
elements of N. This is convenient because otherwise it would be quite cumbersome to write out a number
like 1234 : N.

6.1 Basic properties of N

Let’s verify some basic properties of N which actually correspond to some of Peano’s axioms. First of all we
want to verify that 0 ̸= succ n which corresponds to true ̸= false for bool. We could apply the same
technique as before but actually contradiction does the job straight away:

example : ∀ n : N, 0 ̸= succ n :=
begin

assume n h,
contradiction,

end

Next let’s show that succ is injective. To do this we define a predecessor function pred using pattern
matching which works the same way as for bool:

37

Introduction to Formal Reasoning (COMP2009), Release 0.1

def pred : N → N
| zero := zero
| (succ n) := n

#reduce (pred 7)

We can test the function using #reduce (pred 7).

We defined pred 0 = 0 which is a bit arbitrary. However, pred does the job to show that succ is injective:

theorem inj_succ : ∀ m n : nat, succ m = succ n → m = n :=
begin

assume m n h,
change pred (succ m) = pred (succ n),
rewrite h,

end

Here I am using change again to replace the goal m = n with pred (succ m) = pred (succ n) exploiting
that pred (succ x) = x. On the new goal I can apply rewrite.

However, there is also a tactic called injection which does this automatically for all inductive types which
avoids the need to define pred:

example : ∀ m n : nat, succ m = succ n → m = n :=
begin

assume m n h,
injection h,

end

injection h can be applied to a hypothesis of the form h : succ m = succ n.

6.2 Structural recursion

You may have already seen recursive programs. When defining functions on N we will need recursion but
unlike the general recursion available in programming languages we will only use structural recursion. That
is when we define a function on the natural numbers we can use the function on n to compute it for succ n.
A simple example for this is the double function which doubles a number:

def double : N → N
| zero := 0
| (succ n) := succ (succ (double n))

#reduce (double 7)

Here double (succ n) is suc (suc (double n)). That is basically every succ is replaced by two succ s.
For example:

double 3
= double (succ 2)
= succ (succ (double 2))
= succ (succ (double (succ 1)))

(continues on next page)

38 Chapter 6. The Natural Numbers

Introduction to Formal Reasoning (COMP2009), Release 0.1

(continued from previous page)

= succ (succ (succ (succ (double 1))))
= succ (succ (succ (succ (double (succ 0)))))
= succ (succ (succ (succ (succ (succ (double 0))))))
= succ (succ (succ (succ (succ (succ (double zero))))))
= succ (succ (succ (succ (succ (succ zero)))))
= 6

That we allowed to use recursion really is a consequence of the idea that every natural number can be
obtained by applying succ a finite number of times. Hence when we run the recursive program it will
terminate in a finite number of steps. Other uses of recursion are not allowed, for example we are not
allowed to write:

def bad : N → N
| zero := zero
| (succ n) := succ (bad (succ n))

Indeed this function would not terminate and Lean complains about it. However, actually structural recursion
is a bit more general then what I just said, for example we can define the inverse to double (which is division
by 2 without remainder):

def half : N → N
| zero := zero
| (succ zero) := zero
| (succ (succ n)) := succ (half n)

#reduce (half 7)
#reduce (half (double 7))

We define half which replaces every two succ s by one. In the recursion we use half n to compute half
(succ (succ n)) because it is clear that n is structurally smaller that succ (succ n).

For more sophisticated uses of recursion we may have to prove that the recursion is actually terminating but
we leave this for the advanced wizard level.

6.3 Induction

Proof by induction is very closely related to structural recursion which we have just seen, it is basically the
same idea but for proofs. As an example let’s actually prove that half is the inverse of double:

theorem half_double : ∀ n : N , half (double n) = n :=
begin

assume n,
induction n with n' ih,
refl,
dsimp [double,half],
apply congr_arg succ,
exact ih,

end

After assume n we are in the following state:

6.3. Induction 39

Introduction to Formal Reasoning (COMP2009), Release 0.1

n : N
⊢ half (double n) = n

Now induction n works very similar to cases (which we can also use on natural numbers) but it gives us
an extra assumption when proving the successor case, which I have labelled ih for induction hypothesis. So
after induction n we have two subgoals:

2 goals
case nat.zero
⊢ half (double 0) = 0

case nat.succ
n' : N,
ih : half (double n') = n'
⊢ half (double (succ n')) = succ n'

The first one is easily disposed off using refl, because half (double 0) = half 0 = 0. The successor
case is more interesting:

n' : N,
ih : half (double n') = n'
⊢ half (double (succ n')) = succ n'

Here we see the extra assumption that what we want to prove for succ n' already holds for n'. Now we
can apply the definitions of double and half using dsimp [double,half]:

n' : N,
ih : half (double n') = n'
⊢ succ (half (double n')) = succ n'

And now we can use that succ preserves equality by appealing to congr_arg succ:

n' : N,
ih : half (double n') = n'
⊢ half (double n') = n'

And we are left with a goal that exactly matches the induction hypothesis, hence we are done using exact
ih.

This is a very easy inductive proof but it serves to show the general idea. Because every number is finitely
generated from zero and succ we can run an inductive proof for any number by repeating the inductive
step as many times as there are succ s and obtain a concrete proof without using induction.

There is nothing mysterious or difficult about induction itself but it is the main work horse to prove properties
on inductive types like N. Not all proofs are as easy as this one, and in many cases we have to think a bit to
generalize the goal we want to prove so that induction goes through or we may have to prove an auxiliary
theorem (a lemma) first to make progress. So it is not induction itself that is difficult but it is used in many
situation which require some thinking.

The best way to learn how to do proofs using induction is to look at examples, so let’s just do this.

40 Chapter 6. The Natural Numbers

Introduction to Formal Reasoning (COMP2009), Release 0.1

6.4 Addition and its properties

While addition is an operation which you may have learned already in kindergarden it still needs to be
defined. And, horror, its definition already uses recursion. They don’t tell the kids this in kindergarten!

Here is the definition of add:

def add : N → N → N
| m zero := m
| m (succ n) := succ (add m n)

So add m n applies n succ s to m. We define m + n as add m n. So for example:

3 + 2
= add 3 2
= add 3 (succ 1)
= succ (add 3 1)
= succ (add 3 (succ 0))
= succ (succ (add 3 0))
= succ (succ (add 3 zero))
= succ (succ 3)
= 5

Lean defines addition by recursion over the 2nd argument, while I actually think it is better to recur over
the first one, even though the output is the same because add is commutative (m + n = n + m) as we will
show soon. In any case the reasons are a bit involved but I am happy to answer to explain why if you ask
me, However, let’s stick with the Lean definition.

Now what are the basic algebraic properties of +? First of all 0 is a neutral element, that is n + 0 = n and 0
+ n = n. We may think that we only need to prove one of them since addition is commutative but actually
we will need exactly this property when proving commutativity. It turns out that one of the two is trivial
while one of them needs induction. First the easy one:

theorem add_rneutr : ∀ n : N, n + 0 = n :=
begin

assume n,
refl,

end

This theorem is easy because n + 0 = n holds by definition of add. However, this is not the case for the
other one which does need induction:

theorem add_lneutr : ∀ n : N, 0 + n = n :=
begin

assume n,
induction n with n' ih,
refl,
apply congr_arg succ,
exact ih,

end

Another important property of addition is that brackets don’t matter, that is (l + m) + n = l + (m + n)
this is called associativity. We need induction to prove this but there is a lot of choice: do we do induction

6.4. Addition and its properties 41

Introduction to Formal Reasoning (COMP2009), Release 0.1

over l m or n? And yes, it does matter!

If you remember the two definitions of band you should know that we need to analyse the argument which
is used in the pattern matching. That is we need to do induction on the 2nd argument of addition which is
n because addition matches on this (had we used my preferred definition of addition then it would be n).

theorem add_assoc : ∀ l m n : N , (l + m) + n = l + (m + n) :=
begin

assume l m n,
induction n with n' ih,
refl,
dsimp [(+), nat.add],
apply congr_arg succ,
exact ih,

end

Already the 0 case only works if we choose n:

l m : N
⊢ l + m + 0 = l + (m + 0)

Both sides reduce to l+m, notice that l + m + 0 really means (l + m) + 0 which is equal to l + m by
definition. But also l + (m + 0) = l + m because m + 0 = m. Hence we just say refl.

Now in the successor case:

l m n' : N,
ih : l + m + n' = l + (m + n')
⊢ l + m + succ n' = l + (m + succ n')

we observe that:

(l + m) + succ n'
= succ ((l + m) + n')

and:

l + (m + succ n')
= l + (succ (m + n'))
= succ (l + (m + n'))

Hence after using congr_arg succ we are back to the induction hypothesis.

We have shown the following facts about + and 0:

• 0 is right neutral: n + 0 = n (add_rneutr),

• 0 is left neutral: 0 + n = n (add_lneutr),

• + is associative : (l + m) + n = l + (m + n) (add_assoc).

Such a structure is called a monoid. If you look this up on wikipedia don’t get distracted by the philosophical
notion with the same name. Do you know some other monoids?

However, we have not yet talked about commutativity which isn’t required for a monoid. Ok how do we
prove m + n = n + m? The choice of variable isn’t clear here because they swap places. Hence we may as
well just go for m. Here is an attempt:

42 Chapter 6. The Natural Numbers

Introduction to Formal Reasoning (COMP2009), Release 0.1

The 0 case looks like this:

n : N
⊢ 0 + n = n + 0

Clearly the right hand side reduces to n and hence we just need to apply add_lneutr. But the succ case is
less clear:

n m' : N,
ih : m' + n = n + m'
⊢ succ m' + n = n + succ m'

Again the right hand side reduces to succ (n + m') but there isn’t much we can do with the left hand side.
This is the case for a lemma which states that the alternative definition of + is true as a theorem, provable
by induction:

lemma add_succ_lem : ∀ m n : N, succ m + n = succ (m + n) :=
begin

assume m n,
induction n with n' ih,
refl,
apply congr_arg succ,
exact ih,

end

Now we can complete the proof of add_comm:

theorem add_comm : ∀ m n : N , m + n = n + m :=
begin

assume m n,
induction m with m' ih,
apply add_lneutr,
transitivity,
apply add_succ_lem,
apply congr_arg succ,
exact ih,

end

We need to apply two steps here, which is why we use transitivity

n m' : N,
ih : m' + n = n + m'
⊢ succ m' + n = n + succ m'

And after transitivity we see:

2 goals
n m' : N,
ih : m' + n = n + m'
⊢ succ m' + n = ?m_1

n m' : N,
ih : m' + n = n + m'
⊢ ?m_1 = n + succ m'

6.4. Addition and its properties 43

Introduction to Formal Reasoning (COMP2009), Release 0.1

The ?m_1 is a placeholder which can be filled in later. We are using our lemma which forces ?m_1 to be succ
(m' + n) and we are left with:

n m' : N,
ih : m' + n = n + m'
⊢ succ (m' + n) = n + succ m'

which now can be reduced to ih by using congr_arg succ.

Using transitivity and tactics to do equational proofs isn’t very readable, hence there is the calc syntax
which looks like a usual equational derivation:

theorem add_comm : ∀ m n : N , m + n = n + m :=
begin

assume m n,
induction m with m' ih,
apply add_lneutr,
calc
succ m' + n = succ (m' + n) : by apply add_succ_lem
... = succ (n + m') : by apply congr_arg succ ih
... = n + succ m' : by refl

end

The disadvantage is that we have to construct each step by hand but it is certainly more readable. Also we
can make the unfolding of definitions explicit by putting in trivial steps using refl.

Together with the previous facts we have now shown that N with + and 0 form a commutative monoid.

Mathematicians prefer it if you also have inverse as for the integers where for every integer i there is -i such
that i+(- i) = 0 and (- i) + i = 0. Such a structure is called a group.

6.5 Multiplication and its properties

Ok, we are doing things slowly but I won’t go in as much detail this time but leave the fun for you. First of
all lets define multiplication:

def mul : N → N → N
| m 0 := 0
| m (succ n) := (mul m n) + m

And as usual we define x * y to stand for mul x y. As + was repeated succ, * is repeated +. That is m *
n is m added n times, for example:

3 * 2
= mul 3 2
= mul 3 (succ 1)
= mul 3 1 + 3
= mul 3 (succ 0) + 3
= mul 3 0 + 3 + 3
= 0 + 3 + 3
= 6

What are the properties of multiplication. First we note that it also forms a commutative monoid, with 1
now playing the role of 0 for + – it is the neutral elements. We can show:

44 Chapter 6. The Natural Numbers

Introduction to Formal Reasoning (COMP2009), Release 0.1

theorem mult_rneutr : ∀ n : N, n * 1 = n :=
begin
sorry,

end

theorem mult_lneutr : ∀ n : N, 1 * n = n :=
begin
sorry,

end

theorem mult_assoc : ∀ l m n : N , (l * m) * n = l * (m * n) :=
begin
sorry,

end

theorem mult_comm : ∀ m n : N , m * n = n * m :=
begin
sorry,

end

This time I leave it as an exercise to prove the properties. You will certainly need to use the properties of
addition we have already shown and the order in which you prove these propositions may not be the way in
which I write them. Indeed, you may want to take the next properties into account as well.

Apart from addition and multiplication both being commutative monoids they also interact in an interesting
way. You have will have seen this in school when you are asked to simplify an expression of the form x*(y
+ z) by multiplying out to x*y + x*z. The property is called distributivity. There is also a case for an
empty addition, ie. when the one argument is 0 we want that x*0 = 0. And if we don’t want to assume
commutativity (indeed we may use these properties to prove it) we also need the symmetric cases, That is
we have the following properties:

theorem mult_zero_l : ∀ n : N , 0 * n = 0 :=
begin
sorry,

end

theorem mult_zero_r : ∀ n : N , n * 0 = 0 :=
begin
sorry,

end

theorem mult_distr_r : ∀ l m n : N , l * (m + n) = l * m + l * n :=
begin
sorry,

end

theorem mult_distr_l : ∀ l m n : N , (m + n) * l = m * l + n * l :=
begin
sorry,

end

Now this structure, we have two monoids and the distributivity laws just stated and we do need to require
that addition is commutative, is called a semiring actually in this case where multiplication is commutative
too it is a commutative semiring. Rings and semirings are a very central structure in algebra and they are

6.5. Multiplication and its properties 45

Introduction to Formal Reasoning (COMP2009), Release 0.1

closely related to polynomials (that is expressions like 7*x^2 + x + 5 but possibly with higher exponents
and several variables).

6.6 Some Algebra

Once we have established that multiplication and addition form a commutative ring we can establish many
well known equations. For example the well know binomial equality, (x+ y)2 = x2 + 2xy + y2. Ok to state
this lets define exponentiation, which is just repeated multiplication in the same way as multiplication is
repeated addition (you may notice a pattern):

def exp : N → N → N
| n zero := 1
| n (succ m) := exp n m * n

In this case we have to do recursion over the 2nd argument because exponentiation is not commutative like
addition and multiplication.

The Lean prelude also introduces the standard notation for exponentiation, i.e. we define x^y = exp x y.
Now we can state the binomial theorem:

theorem binom : ∀ x y : N, (x + y)^2 = x^2 + 2*x*y + y^2 :=
begin
sorry,

end

Now you can prove this using the properties we have established above but it is very laborious. You should
do it at least once but luckily some clever people have implemented a tactic which does this automatically:

theorem binom : ∀ x y : N, (x + y)^2 = x^2 + 2*x*y + y^2 :=
begin
assume x y,
ring,

end

That is ring automatically solves any equations which can be shown using the fact that multiplication and
addition form a (semi-)ring. How does it work? You may not want to know. The basic idea is to reduce
the expression to a polynomial and then it is easy to check wether two polynomials are equal The nice thing
about a system like Lean is that we also generate the proof from basic principles, there is no danger of
cheating.

We have just opened the door to the exciting realm of algebra. There is not enough time in this course to
cover this in any depth but here is a table with a quick overview over different algebraic structures:

Example Algebraic structure
Natural numbers (N) Semiring
Integers (Z) Ring
Rational numbers (Q) Field
Real numbers (R) Complete Field
Complex numbers (C) Algebraically complete Field

A ring is a semiring with additive inverses that is for every number x : Z there is −x : Z such that x+(−x) = 0
and −x+x = 0. Here subtraction is not a primitive operation but it is defined by adding the additive inverse
x− y := x+ (−y).

46 Chapter 6. The Natural Numbers

Introduction to Formal Reasoning (COMP2009), Release 0.1

A field also has the multiplicative inverses for all numbers different from 0. The simplest example are the
rational numbers = fractions. For every p : Q different from 0 there is p−1 : Q such that p ∗ p−1 = 1 and
p−1 ∗ p = 1. Note that for a fraction a

b : Q the multiplicative inverse is (ab)
−1 = b

a .

The real numbers include numbers like
√
2 : R and π : R, they have the additional property that any

converging infinite sequence of real numbers has a unique limit. The complex numbers include i =
√
−1 : C

have the additional feature that every polynomial equation has a solution (e.g. x2 + 1 = 0) , this is called
algebraically complete.

6.7 Ordering the numbers

Next we will look at the ≤ relation, which defines a partial order on the numbers. We say that m ≤ n if
there is a number k:N such that n = k + m. In full lean glory that is:

def le(m n : N) : Prop :=
∃ k : N , k + m = n

local notation (name := le) x ≤ y := le x y

I hasten to add that this is not the official definition of ≤ in Lean, because they are using an inductive
relation and I don’t want to introduce this concept just now.

There is a precise meaning of the word partial order: a partial order is a relation which is reflexive,
transitive and antisymmetric. Maybe you remember that we have already met the words reflexive and
transitive when we looked at equality which is an equivalence relation. Here is a reminder what this meant
but this time applied to ≤

• reflexive (∀ x : A, x≤x),

• transitive (∀ x y z : A, x≤y → y≤z → x≤z)

For an equivalence relation we also demanded that it should be symmetric (∀ x y : A, x=y → y=x) but
this doesn’t apply to ≤. Almost the opposite is true, the only situation in which we have x≤y and y≤ x is
if they are actually equal. That is we have

• antisymmetry (∀ x y : N , x ≤ y → y ≤ x → x = y)

A relation which has these three properties (reflexive, transitive and antisymmetric) is called a partial order.
It is not hard to prove that ≤ is reflexive and transitive:

theorem le_refl : ∀ x : N , x ≤ x :=
begin
assume x,
existsi 0,
ring,

end

theorem le_trans : ∀ x y z : N , x ≤ y → y ≤ z → x ≤ z :=
begin
assume x y z xy yz,
cases xy with k p,
cases yz with l q,
existsi (k+l),
rewrite← q,

(continues on next page)

6.7. Ordering the numbers 47

Introduction to Formal Reasoning (COMP2009), Release 0.1

(continued from previous page)

rewrite← p,
ring,

end

For reflexivity we choose k=0 and exploit that 0 + x =x and for transitivity we add the differences exploiting
associativity. I am leaving all the equational reasoning to the ring tactic avoiding unnecessary detail in the
proof.

The 3rd one, antisymmetry, I found a bit harder to prove and I needed to show some lemmas. But I don’t
want to spoil the fun and leave this to you:

theorem anti_sym : ∀ x y : N , x ≤ y → y ≤ x → x = y :=
begin
sorry,

end

We can also define < by saying that m < n means that m+1 ≤ n:

def lt(m n : N) : Prop :=
m+1 ≤ n

local notation (name := lt) x < y := lt x y

I am not going to discuss < in much detail now: it is antireflexive (∀ n : N, ¬ (n < n)), transitive
and strictly antisymmetric (∀ m n : N, m < n → n < m → false). Indeed antireflexivity and strict an-
tisymmetry follow from another important property of <, that it is well-founded. This means that any
sequence starting with a number and always choosing smaller numbers, like 10 > 5 > 3 > 0 will eventu-
ally terminate. This property is important to prove the termination of algorithms which are not primitive
recursive. We are not going to define well-founded now because it goes a bit beyond what we have learned
so far.

Another important property of < is trichotomy, that is that any two numbers one is greater than the other
or they are equal or one is smaller than the other:

theorem trich : ∀ m n : N, m < n ∨ m = n ∨ n < m :=
begin
sorry

end

A relation that is transitive, trichotomous and well-founded is called a well-order. Well-orderings are very
useful and there is a famous theorem by Cantor that every set can be well-ordered. However, this is not
accepted by intuitionists and indeed no well-ordering of the real numbers is known.

6.8 Decidability

Equality for natural numbers is decidable, that is we can actually implement it as a function into bool:

def eq_nat : N → N → bool
| zero zero := tt
| zero (succ n) := false
| (succ m) zero := false
| (succ m) (succ n) := eq_nat m n

48 Chapter 6. The Natural Numbers

Introduction to Formal Reasoning (COMP2009), Release 0.1

We need to show that eq_nat indeed decides equality. First of all we show that eq_nat returns tt for equal
numbers:

lemma eq_nat_ok_1 : ∀ n : N , eq_nat n n = tt :=
begin

assume n,
induction n with n' ih,
reflexivity,
exact ih,

end

On the other hand we can also show that if eq_nat returns tt then we its arguments must be equal:

lemma eq_nat_ok_2 : ∀ m n : N, eq_nat m n = tt → m = n :=
begin

assume m,
induction m with m' ih_m,
assume n,
induction n with n' ih_n,
assume _,
reflexivity,
assume h,
contradiction,
assume n,
induction n with n' ih_n,
assume h,
contradiction,
assume h,
apply congr_arg succ,
apply ih_m,
exact h,

end

Here we need a double induction. Putting everything together we can show that eq_nat decides equality:

theorem eq_nat_ok : ∀ m n : N, m = n ↔ eq_nat m n = tt :=
begin

assume m n,
constructor,
assume h,
rewrite h,
apply eq_nat_ok_1,
apply eq_nat_ok_2,

end

We can do the same for ≤, that is we implement a function leb : N → N → bool and then show ∀ m n
: N, m ≤ n ↔ leb m n = tt.

Certainly not all relations or predicates are decidable. An example for an undecidable relation is equality of
functions that is given f g : N → N is f = g? Two functions are equal iff they agree on all arguments f
= g ↔ ∀ n :N,f n = g n. It is clear that we cannot decide this, i.e. define a function into bool, because
we would have to check infinitely many inputs.

6.8. Decidability 49

Introduction to Formal Reasoning (COMP2009), Release 0.1

50 Chapter 6. The Natural Numbers

CHAPTER

SEVEN

LISTS

If you have already used a functional programming language like Haskell you know that lists are a very
ubiquitous datastructure. Given A : Type there is list A : Type which is the type of finite sequences of
elements of A. So for example [1,2,3] : list N or [tt] : list bool, we can also have lists of lists so for
example [[],[0],[0,1],[0,1,2]] : list (list N) is a list of lists of numbers. However, all elements
of a list must have the same type, hence something like [1,tt] is not permitted.

For any type A we always can construct the empty list [] : list A, which is also called nil (this comes
from the phrase not in list and it was used in the first functional language LISP which was first implemented
in 1959). On the other hand if we have an element a : A and a list l : List A we can form the list a ::
l : list A with a in front of l, e.g. 1 :: [2,3] = [1,2,3]. We call this cons - another heritage from
LISP. Indeed the notation using [..] is just a short-hand, e.g.:

[1,2,3] = 1 :: 2 :: 3 :: []

or using nil and cons:

= cons 1 (cons 2 (cons 3 nil))

All lists can be created from nil and cons hence lists can be defined inductively in a manner very similar
to N

inductive list (A : Type)
| nil : list
| cons : A → list → list

This declaration means:

• For any type A : Type There is a new type list A : Type,

• There are elements nil : list A, and given a : A and l : list A we have cons a l.

• All the elements of list A can be generated by nil and then applying cons a finite number of times,

• nil and cons a l are different elements,

• cons is injective, i.e. given cons a as = cons b bs then we know that a = b and as = bs.

7.1 Basic properties of list

Most of the basic properties and their proofs are very similar to the natural numbers. First of all we want to
show that nil ̸= a :: l which corresponds to 0 ̸= succ n and true ̸= false we had seen before. These
properties are called no confusion properties. We can use contradiction as before for natural numbers:

51

Introduction to Formal Reasoning (COMP2009), Release 0.1

theorem no_conf : ∀ (a:A)(l : list A), nil ̸= a :: l :=
begin

assume a l,
contradiction

end

Next we want to show injectivity of ::. Unlike in the case for natural numbers there are two results we want
to prove: given a :: l = a' :: l' we need to show that a = a' and l = l'. The second part we can
prove the same way as for N, instead of pred we define tl (for tail) and use this in the proof:

def tl : list A → list A
| [] := []
| (a :: l) := l

theorem inj_tl : ∀ (a a':A)(l l' : list A), a :: l = a' :: l' → l = l' :=
begin

assume a a' l l' h,
change tl (a :: l) = tl (a' :: l'),
rewrite h,

end

However the first part turns out more difficult. It seems that we need to define a function hd : list A →
list A which extracts the head of a list. But what should we do for the [] case

def hd : list A → list A
| [] := ?
| (a :: l) := a

There is really nothing we can plug in here because A may be empty but there is an empty list over the
empty type. We could define a function that returns an error, i.e.

def hd : list A → option (list A)
| [] := none
| (a :: l) := some a

But this doesn’t help us to prove injectivity. I leave this as a challenge because the only solution I know
involves dependent types which I am not covering in this course.

However, the injection tactic which we have seen before works in this case:

theorem inj_hd : ∀ (a a':A)(l l' : list A), a :: l = a' :: l' → a = a' :=
begin

assume a a' l l' h,
injection h,

end

injection also works in the proof of inj_tl alleviating the need to define tl.

7.2 The free monoid

In the section on natural numbers we encountered a monoid using + and 0 on N. There is a very similar
monoid for lists using ++ and []. Here ++ (append) is the operation that appends two lists e.g. [1,2]++[3,4]

52 Chapter 7. Lists

Introduction to Formal Reasoning (COMP2009), Release 0.1

= [1,2,3,4]. We define it recursively:

definition append : list A → list A → list A
| [] l := l
| (h :: s) t := h :: (append s t)

local notation l1 ++ l2 := append l1 l2

I am cheating a bit here because like +, ++ is already defined in the Lean prelude.

In the definition of append we are using pattern matching and structural recursion on lists. This works in
the same way as for natural numbers: we can recursively use append for the smaller list s. To prove that
this forms a monoid we need induction. However, different from +, now left neutrality is easy because it
follows from the definition:

theorem app_lneutr : forall l : list A, [] ++ l = l :=
begin

assume l,
reflexivity,

end

But now right neutrality requires induction:

theorem app_rneutr : forall l : list A, l ++ [] = l :=
begin

assume l,
induction l with a l' ih,
reflexivity,
apply congr_arg (cons a),
exact ih,

end

Induction for lists means to prove something for all lists you prove it for the empty list [] and assuming
that it holds for a list l you show that it holds for a :: l for any a. Comparing the proof with the one
for left neutrality for + we see that it is almost the same proof replacing congr_arg succ with congr_arg
(cons a).

The switch between left and right neutrality is a consequence of that we have defined + by recursion over
the 2nd argument while we have defined ++ by recursion over the first. We could have defined + by recursion
over the first argument and then this difference would have disappeared (I prefer this but the designers of the
lean standard library had different ideas). We couldn’t have defined ++ by recursion over the 2nd argument
- do you see why?

The proof of associativity of ++ again is very similar to the one for +. The main difference is that now we
do induction over the first argument instead of the last - again this is caused by the fact that we now use
recursion over the first instead of the 2nd argument.

theorem app_assoc :
forall l1 l2 l3 : list A , (l1 ++ l2) ++ l3 = l1 ++ (l2 ++ l3) :=

begin
assume l1 l2 l3,
induction l1 with a l1' ih,
reflexivity,
dsimp [(++),list.append],
apply congr_arg (cons a),

(continues on next page)

7.2. The free monoid 53

Introduction to Formal Reasoning (COMP2009), Release 0.1

(continued from previous page)

exact ih,
end

For + we also proved commutativity that is m + n = n + m, but clearly this doesn’t hold for ++, e.g. [1,2]
++ [3,4] = [1,2,3,4] while [3,4] ++ [1,2] = [3,4,1,2].

Indeed list A with ++ and [] is the free monoid over A which intuitively means that only the monoid
equations hold but now additional laws like commutativity. In this sense this monoid is free not to follow
any laws apart from the monoid ones.

7.3 Reverse

Since the list monoid is not commutative, order matters. In particular we can reverse a list. That is we
are going to define a function which given a list like [1,2,3] produces the list with the elements in reverse
order, in this case [3,2,1].

How do we reverse a list? Recursively! The reverse of the empty list is the empty list and the reverse of a
list of the form a :: l is the reverse of l with a put in the end. So for example the reverse of [1,2,3] =
1 :: [2,3] is the reverse of [2,3], i.e. [3,2] with 1 put at the end giving [3,2,1].

To define reverse we need an auxiliary operation which puts an element at the end. We call this operation
snoc because it is the reverse of cons. We could define snoc using ++, but for our purposes it is slightly
more convenient to define it directly using recursion:

def snoc : list A → A → list A
| [] a := [a]
| (a :: as) b := a :: (snoc as b)

#reduce (snoc [1,2] 3)

Using snoc we are ready to implement the recursive recipe for reversing a list:

def rev : list A → list A
| [] := []
| (a :: as) := snoc (rev as) a

#reduce rev [1,2,3]

A central property of rev is that it is self-inverse that is if we reverse a list twice we obtain the original list,
e.g. rev (rev [1,2,3])) = rev [3,2,1] = [1,2,3]

Ok, let’s try and prove this using list induction:

theorem revrev : ∀ as : list A , rev (rev as) = as :=
begin

assume as,
induction as with a as' ih,
reflexivity,
dsimp [rev],
sorry,

I got stuck in this proof, I am in the following situation:

54 Chapter 7. Lists

Introduction to Formal Reasoning (COMP2009), Release 0.1

ih : rev (rev as') = as'
⊢ rev (snoc (rev as') a) = a :: as'

I cannot apply my induction hypothesis because my current goal doesn’t contain an expression of the form
rev (rev as'). However, I should be able to exploit the fact that to reverse a snoc is the same as a cons
of the reverse. Then we can reason:

rev (snoc (rev as') a)
= a :: rev (rev as')
= a :: as'

This leads us to proving the following lemma:

theorem revsnoc :
∀ a : A, ∀ as : list A, rev (snoc as a) = a :: rev as :=

begin
assume a as,
induction as with b as' ih,
reflexivity,
dsimp [snoc,rev],
rewrite ih,
dsimp [snoc],
reflexivity,

end

This is exactly what was missing to complete the proof of revrev:

theorem revrev : ∀ as : list A , rev (rev as) = as :=
begin

assume as,
induction as with a as' ih,
reflexivity,
dsimp [rev],
rewrite revsnoc,
rewrite ih,

end

This is a nice example about the art of proving which is a bit like putting stepping stones into a stream to
cross it without getting wet feet. When getting stuck with our induction, then looking at the point where we
are stuck often leads us to identifying another property which we can prove and which helps us to complete
the original proof. There is no fixed method to identify a good auxiliary property (a lemma) it is a skill
which improves by practice.

Here is another problem to do with reverse which you can use to practice this skill: if you have attended
Prof Hutton’s Haskell course you will know that the above definition of reverse is very inefficient, indeed it
has a quadratic complexity. A better definition is the following:

def revaux : list A → list A → list A
| [] bs := bs
| (a :: as) bs := revaux as (a :: bs)

def fastrev (l : list A) : list A
:= revaux l []

(continues on next page)

7.3. Reverse 55

Introduction to Formal Reasoning (COMP2009), Release 0.1

(continued from previous page)

#reduce fastrev [1,2,3]

fastrev only has linear complexity. However, we should convince ourselves that it behaves in the same way
as rev, that is we should prove the following theorem:

theorem fastrev_thm : ∀ as : list A , fastrev as = rev as :=
begin
sorry,

end

I leave it as an exercise to figure out what lemma(s) we need. Also it may be useful to employ some properties
we have already proven.

7.4 Insertion sort

Finally, we are going to look at a slightly more interesting algorithm: insertion-sort. Insertion-sort is quite
an inefficient algorithm because it has quadratic complexity while the best sorting algorithms have a n logn
complexity. However, insertion-sort is especially easy to implement and verify.

To keep things simple I will only sort lists of natural numbers wrt ≤ : N → N → Prop using the fact that
we have an implementation in form of ble : N → N → bool. That means for the following we assume
in particular that ble is decidable, i.e.

lemma Le2ble : ∀ m n : N, m ≤ n → ble m n = true := sorry
lemma ble2Le : ∀ m n : N, ble m n = true → m ≤ n := sorry

7.4.1 Implementing sort

So our goal is to implement a function sort : list N → list N that sorts a given list, e.g. sort [6,3,
8,2,3] = [2, 3, 3, 6, 8].

Insertion sort can be easily done with a deck of cards: you start with an unsorted deck and you take a card
form the top each time and insert it at the appropriate position in the already sorted pile. Inserting a card
means you have to go through the sorted pile until you find a card that is greater and then you insert it just
before that. Ok, there is also the special case that the sorted pile is empty in which case you just make a
pile out of one card. Here is the recursive function implementing the algorithm:

def ins : N → list N → list N
| a [] := [a]
| a (b :: bs) := if ble a b then a :: b :: bs else b::(ins a bs)

#reduce ins 6 [2, 3, 3, 8]

Using ins it is easy to implement sort by inserting one element after the other, recursively:

def sort : list N → list N
| [] := []
| (a :: as) := ins a (sort as)

#reduce (sort [6,3,8,2,3])

56 Chapter 7. Lists

Introduction to Formal Reasoning (COMP2009), Release 0.1

7.4.2 Specifying sort

To verify that the algorithm indeed sorts we need to specify what it means for a list to be sorted. That is we
need to define a predicate Sorted : list N → Prop. To define this we also need an auxiliary predicate
which tells us that an element we want to add to a sorted list is smaller then the first element of the list
Le_list : N → list N → Prop.

To define these predicates we are going to use inductive definitions of predicates which are similar to the
inductive datatypes we have already seen. The basic idea is that we state some rules how to prove the
predicate like we used constructors for inductive types like zero , succ or nil and cons. We also presume
that using those rules is the only way to prove the predicate. So for example we define Le_list:

inductive Le_list : N → list N → Prop
| le_nil : ∀ n:N, Le_list n []
| le_cons : ∀ m n : N, ∀ ns : list N, m ≤ n → Le_list m (n :: ns)

That is the we can prove that any element fits into the empty list and that if we have an element that is
smaller then the head of a list this is ok too and these are the only ways to establish this fact.

So for example we can prove:

example : Le_list 3 [6,8] :=
begin
apply le_cons,
apply ble2Le,
trivial,

end

Note that I am using one of the direction of the proof that ble decides ≤. This was actually left as an
exercise in the chapter on natural numbers.

Using the principle that the two rules le_nil and le_cons are the only way to prove Le_list we can also
invert le_cons:

lemma le_cons_inv : ∀ m n : N, ∀ ns : list N,
Le_list m (n :: ns) → m ≤ n :=

begin
assume m n ns h,
cases h with _ _ _ _ mn,
exact mn

end

I am using cases here again. The idea is that the only way to prove Le_list m (n :: ns) are le_nil and
le_cons but le_nil can be ruled out since it only proves it for the empty list. Hence we must have used
le_cons but then we know that we have assumed mn : m ≤ n and we can use this.

The definition of Le_list is not recursive, hence cases is sufficient. However, the definition of Sorted is
actually recursive:

inductive Sorted : list N → Prop
| sorted_nil : Sorted []
| sorted_cons : ∀ n : N, ∀ ns : list N, Le_list n ns

→ Sorted ns → Sorted (n :: ns)

7.4. Insertion sort 57

Introduction to Formal Reasoning (COMP2009), Release 0.1

We say that the empty list is sorted, and given a sorted list and an element that is smaller than the first
then the list obtained by consing this element in front of the list is sorted. And these are the only ways to
prove sortedness.

7.4.3 Verifying sort

We now want to prove that sort only produces sorted outputs. What principle are we going to use? Exactly:
induction over lists. The base case is easy: the empty list is sorted by definition.

theorem ins_sort_sorts : ∀ ns : list N, Sorted (sort ns) :=
begin

assume ns,
induction ns with a as' ih,
apply sorted_nil,
dsimp [sort],
sorry

end

In the cons case we are left in the following state:

ih : Sorted (sort as')
⊢ Sorted (ins a (sort as'))

We know that sort sorts for as' and from this we have to conclude that also ins a (sort as') is sorted.
This suggests the following lemma:

lemma ins_lem : ∀ n : N, ∀ ns : list N, Sorted ns → Sorted (ins n ns) :=
begin

assume n ns sns,
sorry,

end

To prove this lemma we actually have a choice we can either do induction over the list ns or the derivation
of Sorted ns. I found it is easier to the former.

lemma ins_lem : ∀ n : N, ∀ ns : list N, Sorted ns → Sorted (ins n ns) :=
begin

assume n ns sns,
induction ns,
sorry,

end

In the base case we need to show Sorted (ins n nil) which reduces to Sorted [n]. It is easy to show
that singletons (lists with just one element) are always sorted:

lemma sorted_sgl : ∀ n : N, Sorted [n] :=
begin

assume n,
apply sorted_cons,
apply le_nil,
apply sorted_nil,

end

Ok this kills the base case, the cons case is certainly more difficult:

58 Chapter 7. Lists

Introduction to Formal Reasoning (COMP2009), Release 0.1

lemma ins_lem : ∀ n : N, ∀ ns : list N, Sorted ns → Sorted (ins n ns) :=
begin

assume n ns sns,
induction ns,
apply sorted_sgl,
dsimp [ins],
sorry,

end

We end up with the following goal:

ns_ih : Sorted ns_tl → Sorted (ins n ns_tl),
sns : Sorted (ns_hd :: ns_tl)
⊢ Sorted (ite �(ble n ns_hd) (n :: ns_hd :: ns_tl) (ns_hd :: ins n ns_tl))

ite is just the internal code for if-then-else. Clearly the proof is stuck at the condition. We need to do a
case analysis on the outcome of ble n ns_hd. The tt case is pretty straightforward, so let’s do it first

lemma ins_lem : ∀ n : N, ∀ ns : list N, Sorted ns → Sorted (ins n ns) :=
begin

assume n ns sns,
induction ns,
apply sorted_sgl,
dsimp [ins],
cases eq : ble n ns_hd,
sorry,
apply sorted_cons,
apply le_cons,
apply ble2Le,
exact eq,
exact sns

end

The ff case is more subtle, we are in the following situation:

ns_ih : Sorted ns_tl → Sorted (ins n ns_tl),
eq : ble n ns_hd = ff,
sns_a_1 : Sorted ns_tl,
sns_a : Le_list ns_hd ns_tl
⊢ Sorted (ns_hd :: ins n ns_tl)

We know that ble n ns_hd = ff and hence ¬ (n ≤ ns_hd) but we actually need ns_hd ≤ n. This actu-
ally follows from trichotomy, which we discussed in the section on natural numbers, so let’s just assume it
in the moment:

lemma ble_lem : ∀ m n : N , ble m n = ff → n ≤ m := sorry

However, we still need another lemma because we need to know that if ns_hd ≤ n then it will still fit in
front of ins n ns_tl, that is Le_list ns_hd is n ns_tl holds. This leads to another lemma:

lemma ins_lem_le_list : ∀ m n : N, ∀ ns : list N , n ≤ m
→ Le_list n ns → Le_list n (ins m ns) :=

begin
(continues on next page)

7.4. Insertion sort 59

Introduction to Formal Reasoning (COMP2009), Release 0.1

(continued from previous page)

sorry,
end

You see what I mean with the stepping stones? Anyway, now we have all the stones together we can pass to
the other side - here is the complete proof:

lemma sorted_sgl : ∀ n : N, Sorted [n] :=
begin

assume n,
apply sorted_cons,
apply le_nil,
apply sorted_nil,

end

lemma ins_lem_le_list : ∀ m n : N, ∀ ns : list N , n ≤ m → Le_list n ns → Le_list n␣
↪→(ins m ns) :=
begin

assume m n ns nm nns,
cases ns with hd tl,
apply le_cons,
exact nm,
dsimp [ins],
cases eq : ble m hd,
cases nns with _ _ _ _ nhd,
apply le_cons,
exact nhd,
apply le_cons,
exact nm,

end

lemma ins_lem : ∀ n : N, ∀ ns : list N, Sorted ns → Sorted (ins n ns) :=
begin

assume n ns sns,
induction ns,
apply sorted_sgl,
dsimp [ins],
cases eq : ble n ns_hd,
cases sns with nx nsx lex sx,
apply sorted_cons,
apply ins_lem_le_list,
apply ble_lem,
exact eq,
exact lex,
apply ns_ih,
exact sx,
apply sorted_cons,
apply le_cons,
apply ble2Le,
exact eq,
exact sns

end

(continues on next page)

60 Chapter 7. Lists

Introduction to Formal Reasoning (COMP2009), Release 0.1

(continued from previous page)

theorem ins_sort_sorts : ∀ ns : list N, Sorted (sort ns) :=
begin

assume ns,
induction ns with a as' ih,
apply sorted_nil,
dsimp [sort],
apply ins_lem,
exact ih,

end

7.4.4 Permutations

Are we done now? Have we verified sort? That is if you buy a tin and it says we have proven the theorem
ins_sort_sorts are you then satisfied that the program sort does the job of sorting?

Not so! We have missed one important aspect of sort, namely that the output should be a rearrangement,
i.e. a permutation of the input. Otherwise an implementation of sort that always returns the empty list
would be ok.

We can specify the relation Perm that one list is a permutation of another inductively, using an auxiliary
relation Insert which means that a list is obtained form another by inserting an element somewhere.

inductive Insert : A → list A → list A → Prop
| ins_hd : ∀ a:A, ∀ as : list A,Insert a as (a :: as)
| ins_tl : ∀ a b:A, ∀ as as': list A, Insert a as as' → Insert a (b :: as) (b :: as')

inductive Perm : list A → list A → Prop
| perm_nil : Perm [] []
| perm_cons : ∀ a : A, ∀ as bs bs' : list A,Perm as bs → Insert a bs bs' → Perm (a ::␣
↪→as) bs'

Using these definitions it is relatively straightforward to establish that sort permutes its input:

theorem sort_perm : ∀ ns : list N , Perm ns (sort ns) :=
begin
sorry

end

I leave it as an exercise to complete the proof which also involves identifying a rather obvious lemma.

We would expect Perm to be an equivalence relation, i.e. reflexive, transitive and symmetric. While the
proof of reflexivity is straightforward, the other two are rather hard. I leave this as a challenge.

7.4.5 Parametrisation

I have presented sort for a rather special case, i.e. for ≤ on the natural numbers. However, all my construc-
tions and proofs should work in a general case. Can you parametrize both the function and the proof so
that it is applicable in much more generality?

7.4. Insertion sort 61

Introduction to Formal Reasoning (COMP2009), Release 0.1

62 Chapter 7. Lists

CHAPTER

EIGHT

TREES

Trees are everywhere, there isn’t just one type of trees but many datatypes that can be subsumed under the
general concept of trees. Indeed the types we have seen in the previous chapters (natural numbers and lists)
are special instances of trees.

Trees are also the most dangerously underused concept in programming. Bad programmers tend to try to do
everything with strings, unaware how much easier it would be with trees. You don’t have to be a functional
programmer to use trees, trees can be just as easily defined in languages like Python - see my computerphile
video.

In this chapter we are going to look at two instances of trees: expression trees and sorted trees.

Expression trees are used to encode the syntax of expressions, we are going to define an interpreter and a
compiler which compiles expression into the code for a simple stack machine and then show that the compiler
is correct wrt the interpreter. This is an extended version of Hutton’s razor an example invented by Prof
Hutton.

The 2nd example is tree-sort: an efficient alternatve to insertion-sort. From a list we produce a sorted tree
and then we turn this into a sorted list. Actually, tree-sort is just quicksort in disguise.

8.1 Expression trees

I am trying to hammer this in: when you see an expression like x * (y + 2) or (x * y) + 2 then try to see
the tree. Really expressions are a 2-dimensional structure but we use a 1-dimensional notation with brackets
to write them.

63

https://youtu.be/7tCNu4CnjVc
https://youtu.be/7tCNu4CnjVc

Introduction to Formal Reasoning (COMP2009), Release 0.1

But it isn’t only about seeing the tree we can turn this into a datatype, indeed an inductive datatype.

inductive Expr : Type
(continues on next page)

64 Chapter 8. Trees

Introduction to Formal Reasoning (COMP2009), Release 0.1

(continued from previous page)

| const : N → Expr
| var : string → Expr
| plus : Expr → Expr → Expr
| times : Expr → Expr → Expr

def e1 : Expr
:= times (var "x") (plus (var "y") (const 2))

def e2 : Expr
:= plus (times (var "x") (var "y")) (const 2)

An expression is either a constant, a variable, a plus-expression or a times-expression. To construct a constant
we need a number, for variables we need a string and for both plus and times we need two expressions which
serve as the first and second argument. The last two show that expression tress are recursive.

I am not going to waste any time to prove no-confusion and injectivity, e.g.

theorem no_conf : ∀ n : N, ∀ l r : Expr, const n ̸= plus l r :=
begin
sorry,

end

theorem inj_plus_l : ∀ l r l' r' : Expr , plus l r = plus l' r' → l=l' :=
begin
sorry,

end

Btw the name of the theorem inj_plus is a bit misleading: it is the tree constructor plus that is injective
not the operation +. Actually is + injective?

8.1.1 Evaluating expressions

Instead let’s evaluate expressions! To do this we need an assignment from variable names (i.e. strings)
to numbers. For this purpose I introduce a type of environments - I am using functions to represent
environments.

def Env : Type
:= string → N

def my_env : Env
| "x" := 3
| "y" := 5
| _ := 0

#reduce my_env "y"

The environment my_env assigns to "x" the number 3, to y the number 5 and 0 to all other variables. Really
I should have introduced some error handling for undefined variables but for the sake of brevity I am going
to ignore this. To look up a variable name we just have to apply the function, e.g. my_env "y"

Ok, we are ready to write the evaluator for expressions which gets an expression and an environment and
returns a number. And it uses - oh horror - recursion on trees.

8.1. Expression trees 65

Introduction to Formal Reasoning (COMP2009), Release 0.1

def eval : Expr → Env → N
| (const n) env := n
| (var s) env := env s
| (plus l r) env := (eval l env) + (eval r env)
| (times l r) env := (eval l env) * (eval r env)

#reduce eval e1 my_env

#reduce eval e2 my_env

eval looks at the expression: if it is a constant it just returns the numerical values of the constant, it looks up
variable in the environment and to evaluate a plus or a times we first recursively evaluate the subexpressions
and then add them or multiply them together.

I hope you are able to evaluate the two examples e1 and e2 in your head before checking wether you got it
right.

8.1.2 A simple Compiler

To prove something interesting let’s implement a simple compiler. Our machine code is a little stack machine.
We first define the instructions:

inductive Instr : Type
| pushC : N → Instr
| pushV : string → Instr
| add : Instr
| mult : Instr

open Instr

def Code : Type
:= list Instr

We can push a constant or a variable from the environment onto the stack and we can add or multiply the
top two items of the stack which has the effect of removing them and replacing them with their sum or
product. The machine code is just a sequence of instructions.

We define a run function that executes a piece of code, returning what is on the top of the stack which is
represented as a list of numbers.

def Stack : Type
:= list N

def run : Code → Stack → Env → N
| [] [n] env := n
| (pushC n ::c) s env := run c (n :: s) env
| (pushV x ::c) s env := run c (env x :: s) env
| (add :: c) (m :: n :: s) env := run c ((n + m) :: s) env
| (mult :: c) (m :: n :: s) env := run c ((n * m) :: s) env
| _ _ _ := 0

The function run analyzes the first instruction (if there is one) and modifies the stack accordongly and then
rns the remaining instructions. Again no error handling, if something is wrong, I return 0. This calls for
some serious refactoring! But not now.

66 Chapter 8. Trees

Introduction to Formal Reasoning (COMP2009), Release 0.1

As an example let’s run some code that computes the values of e1:

def c1 : Code
:= [pushV "x",pushV "y",pushC 2,add,mult]

#eval run c1 [] my_env

Now I have compiled e1 by hand to c1 but certainly we can do this automatically. Here is the first version
of a compiler:

def compile_naive : Expr → Code
| (const n) := [pushC n]
| (var x) := [pushV x]
| (plus l r) := (compile_naive l) ++ (compile_naive r) ++ [add]
| (times l r) := (compile_naive l) ++ (compile_naive r) ++ [mult]

The compiler translates const and var into the corresponding push instructions, and for plus and times it
creates code for the subexpression and inserts an add or a mult instruction afterwards.

The naive compiler is inefficient due to the use of ++ which has to traverse the already created code each
time. And it is actually a bit harder to verify because we need to exploit the fact that lists are a monoid.
However, there is a nice trick to make the compiler more efficient and easier to verify. We add an extra
argument to the compiler which is the code that should be inserted after the code for the expression we are
just compiling (the continuation). We end up with:

def compile_aux : Expr → Code → Code
| (const n) c := pushC n :: c
| (var x) c := pushV x :: c
| (plus l r) c := compile_aux l (compile_aux r (add :: c))
| (times l r) c := compile_aux l (compile_aux r (mult :: c))

def compile (e :Expr) : Code
:= compile_aux e []

#reduce run (compile e1) [] my_env

#reduce run (compile e2) [] my_env

This version of the compiler is more efficient because it doesn’t need to traverse the code it already produced.
Indeed, this is basically the same issue with rev vs fastrev. The other advantage is that we don’t need to
use any properties of ++ in the proof because we aren’t using it!

8.1.3 Compiler correctness

We can see looking at the examples that compile and run produces the same results as eval but we woud
like to prove this, i.e. the correctness of the compiler.

theorem compile_ok : ∀ e : Expr, ∀ env : Env,
run (compile e) [] env = eval e env :=

begin
sorry,

end

However, we won’t be able to prove this directly because here we state a property which only holds for the
empty stack but once we compile a complex expression the stack won’t be empty anymore.

8.1. Expression trees 67

Introduction to Formal Reasoning (COMP2009), Release 0.1

This means we have to find a stronger proposition for which the induction goes through and which implies
the proposition we actually want to prove. This is known as induction loading.

Clearly we need to prove a statement for compile_aux, namely that running compile_aux for some expression
is the same as evaluating the expression and putting the result on the stack. This implies the statement we
want to prove for the special case that both the remaining code and the stack are empty.

lemma compile_aux_ok :
∀ e : Expr, ∀ c : Code, ∀ s : Stack, ∀ env : Env,
run (compile_aux e c) s env = run c ((eval e env) :: s) env :=

begin
assume e,
induction e,
sorry,

I have already started the proof. We are going to do induction over the expression e. After this we are in
the following state:

e : N
⊢ ∀ (c : Code) (s : Stack) (env : Env), run (compile_aux (const e) c) s env = run c␣
↪→(eval (const e) env :: s) env

case Expr.var
e : string
⊢ ∀ (c : Code) (s : Stack) (env : Env), run (compile_aux (var e) c) s env = run c (eval␣
↪→(var e) env :: s) env

case Expr.plus
e_a e_a_1 : Expr,
e_ih_a : ∀ (c : Code) (s : Stack) (env : Env), run (compile_aux e_a c) s env = run c␣
↪→(eval e_a env :: s) env,
e_ih_a_1 : ∀ (c : Code) (s : Stack) (env : Env), run (compile_aux e_a_1 c) s env = run c␣
↪→(eval e_a_1 env :: s) env
⊢ ∀ (c : Code) (s : Stack) (env : Env),

run (compile_aux (plus e_a e_a_1) c) s env = run c (eval (plus e_a e_a_1) env :: s)␣
↪→env

case Expr.times
e_a e_a_1 : Expr,
e_ih_a : ∀ (c : Code) (s : Stack) (env : Env), run (compile_aux e_a c) s env = run c␣
↪→(eval e_a env :: s) env,
e_ih_a_1 : ∀ (c : Code) (s : Stack) (env : Env), run (compile_aux e_a_1 c) s env = run c␣
↪→(eval e_a_1 env :: s) env
⊢ ∀ (c : Code) (s : Stack) (env : Env),

run (compile_aux (times e_a e_a_1) c) s env = run c (eval (times e_a e_a_1) env ::␣
↪→s) env

We see that we have four cases, one for each of the constructors and in the recursive cases for plus ad mult
I have induction hypothesis which say that my theorem holds for the left and right sub expressions.

I don’t want to use the names generated by lean (like e_ih_a_1) but using with here would be also getting
a bit complicated given all the names we are using. Hence I am going to use case for each of the cases which
allows my to introduce the variables separately. I also have to use {..} to turn the proof for each case into
a block.

68 Chapter 8. Trees

Introduction to Formal Reasoning (COMP2009), Release 0.1

Hence our proof is going to look like this:

lemma compile_aux_ok : ∀ e : Expr, ∀ c : Code, ∀ s : Stack, ∀ env : Env,
run (compile_aux e c) s env = run c ((eval e env) :: s) env
:=

begin
assume e,
induction e,
sorry,
case const : n {
sorry, },
case var : name {
sorry, },
case plus : l r ih_l ih_r {
sorry, },
case times : l r ih_l ih_r {
sorry,}

end

The cases for const and var are easy, we just need to appeal to reflexivity,. The cases for plus and
mult are virtually identical (another case for refactoring, in this case for a proof). Let’s have a look at plus:

l r : Expr,
ih_l : ∀ (c : Code) (s : Stack) (env : Env), run (compile_aux l c) s env = run c (eval l␣
↪→env :: s) env,
ih_r : ∀ (c : Code) (s : Stack) (env : Env), run (compile_aux r c) s env = run c (eval r␣
↪→env :: s) env,
c : Code,
s : Stack,
env : Env
⊢ run (compile_aux (plus l r) c) s env = run c (eval (plus l r) env :: s) env

By unfolding the definition of compile_aux (plus l r) c we obtain:

run (compile_aux (plus l r) c) s env
= run (compile_aux l (compile_aux r (add :: c))) s env

And now we can use ih_l to push the value of l on the stack:

... = run (compile_aux r (add :: c)) ((eval l env) :: s) env

So indeed the value of l has landed on the stack, and now we can use ih_r

... = run (add :: c) ((eval r env) :: (eval l env) :: s) env

We are almost done, we can run run one step

... = run c (((eval l env) + (eval r env)) :: s) env

And now working backward from the definition of eval we arrive on the other side of the equation:

... = run c (eval (plus l r) env :: s) env

Ok here is the proof so far using calc for the reasoning above:

8.1. Expression trees 69

Introduction to Formal Reasoning (COMP2009), Release 0.1

lemma compile_aux_ok : ∀ e : Expr, ∀ c : Code, ∀ s : Stack, ∀ env : Env,
run (compile_aux e c) s env = run c ((eval e env) :: s) env
:=

begin
assume e,
induction e,
sorry,

case const : n {
assume c s env,
reflexivity,},
case var : name {
assume c s env,
reflexivity,},
case plus : l r ih_l ih_r {
assume c s env,
dsimp [compile_aux],
calc
run (compile_aux (plus l r) c) s env
= run (compile_aux l (compile_aux r (add :: c))) s env : by refl
... = run (compile_aux r (add :: c)) ((eval l env) :: s) env

: by rewrite ih_l
... = run (add :: c) ((eval r env) :: (eval l env) :: s) env

: by rewrite ih_r
... = run c (((eval l env) + (eval r env)) :: s) env : by refl
... = run c (eval (plus l r) env :: s) env : by refl,

},
case times : l r ih_l ih_r {
sorry,}

end

I leave it to you to fill in the case for times.

You may have noticed that I didn’t introduce all the assumptions in the beginning. Could I have
done the proof starting with:

lemma compile_aux_ok : ∀ e : Expr, ∀ c : Code, ∀ s : Stack, ∀ env : Env,
run (compile_aux e c) s env = run c ((eval e env) :: s) env
:=

begin
assume e c s env,
induction e,
sorry,

It seems I would have avoided the repeated assume c s env, or is there a problem? Try it out.

8.2 Tree sort

Finally we will look at another application of trees: sorting. The algorithm I am describing is tree sort and
as I already said it is a variation of quicksort.

The idea is that we turn a list like our favorite example [6,3,8,2,3] into a tree like this one:

70 Chapter 8. Trees

Introduction to Formal Reasoning (COMP2009), Release 0.1

The nodes of the tree are labelled with numbers and the tree is sorted in the sense that at each node all the
labels in the left subtree are less or equal to the number at the current node and all the ones in the right
subtree are greater or equal. And once we flatten this tree into a list we get the sorted list [2,3,3,6,8].

8.2.1 Implementing tree sort

First of all we need to define the type of binary trees with nodes labelled with natural numbers:

inductive Tree : Type
| leaf : Tree
| node : Tree → N → Tree → Tree

To build a sorted tree from a list we need to write a function that inserts an element into a sorted tree,
preserving sortedness. We define this function by recursion over trees:

def ins : N → Tree → Tree
| n leaf := node leaf n leaf
| n (node l m r) :=

if ble n m
then node (ins n l) m r
else node l m (ins n r)

Here we query the function ble which we have already seen earlier to decide wether to recursively insert the
number into the right or left subtree.

To turn a list into a sorted tree we need to fold ins over the list, mapping the empty list to a leaf.

8.2. Tree sort 71

Introduction to Formal Reasoning (COMP2009), Release 0.1

def list2tree : list N → Tree
| [] := leaf
| (n :: ns) := ins n (list2tree ns)

#reduce list2tree [6,3,8,2,3]

Now all what is left to do to do is to implement a function that flattens a tree into a list:

def tree2list : Tree → list N
| leaf := []
| (node l m r) := tree2list l ++ m :: tree2list r

Putting both together we have constructed a sorting function on lists - treesort:

def sort (ns : list N) : list N
:= tree2list (list2tree ns)

#reduce (sort [6,3,8,2,3])

8.2.2 Verifying tree sort

To verify that tree sort returns a sorted list we have to specify what a sorted tree is. To do this we need to
be able to say things like all the nodes in a tree are smaller or greater that a number. We can do this even
more generally by defining a higher order predicate that applies a given predicate to all nodes of a tree:

inductive AllTree (P : N → Prop) : Tree → Prop
| allLeaf : AllTree leaf
| allNode : ∀ l r : Tree, ∀ m : N,

AllTree l → P m → AllTree r → AllTree (node l m r)

That is AllTree P t holds if the predicate P holds for all the numbers in the nodes of t.

Using AllTree we can define SortedTree:

inductive SortedTree : Tree → Prop
| sortedLeaf : SortedTree leaf
| sortedNode : ∀ l r : Tree, ∀ m : N,

SortedTree l → AllTree (λ x:N, x ≤ m) l
→ SortedTree r → AllTree (λ x:N, m ≤ x) r
→ SortedTree (node l m r)

We are now ready to state the correctness of sort which is the same as for insertion sort using the predicate
Sorted on lists that we have define in the previous chapter:

theorem tree_sort_sorts : ∀ ns : list N, Sorted (sort ns) :=
begin
sorry,

(continues on next page)

72 Chapter 8. Trees

Introduction to Formal Reasoning (COMP2009), Release 0.1

(continued from previous page)

end

It is not difficult to identify the two lemmas we need to show:

• list2tree produces a sorted tree (list2tree_lem)

• tree2list maps a sorted tree into a sorted list (tree2list_lem)

Hence the top-level structure of our proof looks like this:

lemma list2tree_lem : forall l : list N, SortedTree (list2tree l) :=
begin
sorry,

end

lemma tree2list_lem : ∀ t : Tree, SortedTree t → Sorted (tree2list t) :=
begin
sorry

end

theorem tree_sort_sorts : ∀ ns : list N, Sorted (sort ns) :=
begin

assume ns,
dsimp [sort],
apply tree2list_lem,
apply list2tree_lem,

end

Since you have now seen enough proofs I will omit the gory details but only tell you the lemmas (stepping
stones). First of all we want to prove list2tree_lem by induction over lists. Hence another lemma pops
up:

lemma ins_lem : ∀ t : Tree,∀ n:N,SortedTree t → SortedTree (ins n t) :=
begin
sorry,

end

This we need to prove by induction over trees. At some point we need a lemma about the interaction of ins
with AllTree, I used the following:

lemma insAllLem : ∀ P : N → Prop, ∀ t : Tree, ∀ n : N,
AllTree P t → P n → AllTree P (ins n t) :=

begin
sorry,

end

Again this just requirea tree induction. To prove the other direction it is helpfull to also introduce a higher
order predicate for lists:

8.2. Tree sort 73

Introduction to Formal Reasoning (COMP2009), Release 0.1

inductive AllList (P : N → Prop) : list N → Prop
| allListNil : AllList []
| allListCons : ∀ n : N, ∀ ns : list N, P n → AllList ns → AllList (n :: ns)

And then I prove a lemma:

lemma AllTree2list : ∀ P : N → Prop, ∀ t : Tree,
AllTree P t → AllList P (tree2list t) :=

begin
sorry,

end

To complete the proof of tree2list_lem I needed some additional lemmas about Sorted and Le_list, but
you may find a different path.

8.2.3 Tree sort and permutation

As before for insertion sort we also need to show that tree sort permutes its input. The proof is actually
very similar to the one for insertion sort, we just need to adopt the lemma for ins

lemma ins_inserts : ∀ n : N,∀ t : Tree,
Insert n (tree2list t) (tree2list (ins n t)) :=

begin
sorry

end

theorem sort_perm : ∀ ns : list N , Perm ns (sort ns) :=
begin

assume ns,
induction ns,
apply perm_nil,
apply perm_cons,
apply ns_ih,
apply ins_inserts,

end

To show ins_inserts I needed two lemmas about Insert and ++:

lemma insert_appl : ∀ n:N, ∀ ms nms is : list N,
Insert n ms nms → Insert n (is ++ ms) (is ++ nms) :=

begin
sorry,

end

lemma insert_appr : ∀ n:N, ∀ ms is nms : list N,
Insert n ms nms → Insert n (ms ++ is) (nms ++ is) :=

begin
sorry,

end

Both can be shown by induction over lists but the choice of which list to do induction over is crucial.

74 Chapter 8. Trees

Introduction to Formal Reasoning (COMP2009), Release 0.1

8.2.4 Relation to quicksort

I have already mentioned that tree sort is basically quick sort. How can this be you ask because quicksort
doesn’t actually uses any trees. Here is quick sort in Lean:

def split : N → list N → list N × list N
| n [] := ([] , [])
| n (m :: ns) := match split n ns with (l,r) :=

if ble n m
then (m :: l, r)
else (l, m::r) end

def qsort : list N → list N
| [] := []
| (n :: ms) := match split n ms with (l,r) :=

(qsort l)++(n::(qsort r)) end

#eval (qsort [6,3,8,2,3])

The program uses × and match which I haven’t explained but I hope it is obvious. Lean isn’t happy about
the recursive definition of qsort because the recursive call isn’t on a sublist of the input. This can be fixed
by using well founded recursion but this is beyond the scope of this course. However, Lean is happy running
the program using #eval.

We can get form tree sort to quicksort by a process called program fusion. In a nutshell: the function
list2tree produces a tree which is consumed by tree2list but we can actually avoid the creation of the
intermediate tree by fusing the two together, hence arriving at quick sort.

Can you see how to tree-ify merge sort? Hint: in this case you need to use trees where the leaves contain
the data not the nodes.

8.2. Tree sort 75

Introduction to Formal Reasoning (COMP2009), Release 0.1

76 Chapter 8. Trees

BIBLIOGRAPHY

[AvMoKo2015] Jeremy Avigad, Leonardo de Moura and Soonho Kong Theorem proving in Lean Microsoft
Research, 2015, https://leanprover.github.io/theorem_proving_in_lean/

[BaBeBlHo2020] Anne Baanen, Alexander Bentkamp, Jasmin Blanchette and Johannes Hölzl, The Hitch-
hiker’s Guide to Logical Verification, 2020, https://leanprover-community.github.io/learn.html

77

https://leanprover.github.io/theorem_proving_in_lean/
https://leanprover-community.github.io/learn.html

	Introduction
	Interactive proof systems
	Lean

	Propositional logic
	What is a proposition?
	Our first proof
	Using assumptions
	Proof terms
	Conjunction
	The Currying Equivalence
	Disjunction
	Logic and algebra
	True, false and negation
	Summary of tactics

	Classical logic
	The de Morgan laws
	The law of the excluded middle
	Indirect proof
	Intuitionistic vs classical logic

	Predicate logic
	Predicates, relations and quantifiers
	The universal quantifier
	The existential quantifier
	Another Currying equivalence
	Equality
	Classical Predicate Logic
	Summary of tactics

	The Booleans
	Functions on bool
	Proving some basic properties
	Proving equations about bool
	Relating bool and Prop

	The Natural Numbers
	Basic properties of ℕ
	Structural recursion
	Induction
	Addition and its properties
	Multiplication and its properties
	Some Algebra
	Ordering the numbers
	Decidability

	Lists
	Basic properties of list
	The free monoid
	Reverse
	Insertion sort

	Trees
	Expression trees
	Tree sort

	Bibliography

