
Machine Code Data Transfer Control Flow

Computer Systems Architecture
http://cs.nott.ac.uk/∼txa/g51csa/

Thorsten Altenkirch and Liyang Hu

School of Computer Science and IT
University of Nottingham

Lecture 04: Machine Code, Data Transfer and Control Flow

http://cs.nott.ac.uk/~txa/g51csa/

Machine Code Data Transfer Control Flow

Assembly to Machine Code

So far we’ve been using assembly language

Assembler turns symbolic instructions to machine code

Each instruction is 32-bits (or 4 bytes) long

The 32 bit machine code consists of several fields
Field format differ depending on instruction type
MIPS uses three basic formats: R, I and J

Assembly add $s0, $s1, $s2

Hexadecimal 0232 802016

Binary 0000 0010 0011 0010 1000 0000 0010 00002

Machine Code Data Transfer Control Flow

Instruction Encoding (Register Operands)

R-Format

Field op src0 src1 dst shamt func
Size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

← 32 bits total →

op Basic operation code

src Source operand register

dst Destination operand register

shamt Shift amount (not relevant now; more later)

func Function / operation variant

Machine Code Data Transfer Control Flow

Instruction Encoding (Immediate Operand)

I-Format

Field op src dst imm
Size 6 bits 5 bits 5 bits 16 bits

← 32 bits total →

op Basic operation code

src Source operand register

dst Destination operand register

imm Immediate constant

Also a J format: 6 bit opcode, 26-bit immediate

Machine Code Data Transfer Control Flow

Encoding Addition

add $s0, $s1, $s2 – 0232802016

op src0 src1 dst shamt func
000000 10001 10010 10000 00000 100000
add $s1 $s2 $s0

addi $t0, $t1, 42 – 2128002A16

op src dst imm
001000 01001 01000 0000 0000 0010 1010
addi $t1 $t0 42

Machine Code Data Transfer Control Flow

Registers vs Memory

Processor can access registers directly

Limit of 32 registers
Most programs require much more data

What about larger data structures?
Document in a text editor
Program code
Graphics image displayed on screen

Extra data must be kept in memory

load transfer data from memory to register

store transfer data from register to memory

Machine Code Data Transfer Control Flow

Load Word

lw dst, n(src)

Load word at address src offset n into dst

dst := M[src + n]

M[addr] – word/half/byte at address addr

Offset n is 16 bits (lw is an I-format instruction)
Can write lw dst, (src) if n is zero

The address src + n must be word-aligned
i.e. divisible by 4

Machine Code Data Transfer Control Flow

Store Word

sw dst, n(src)

Stores word in dst into address src offset n

M[src + n] := dst

Note dst is not the ‘destination’ this time

Offset n is 16 bits (sw is an I-format instruction)

Again, the address src + n must be word-aligned

Machine Code Data Transfer Control Flow

Example: Loads and Stores

Before

Address Data
10010000 7C0802A616

10010004 BE81FFD016

After

Address Data
10010000 BE81FFD016

10010004 7C0802A616

Assembly Code

Initially $s0 = 1001000016

lw $t0, ($s0)
lw $t1, 4($s0)
sw $t0, 4($s0)
sw $t1, ($s0)

Afterwards,
$t0 = 7C0802A616

$t1 = BE81FFD016

Machine Code Data Transfer Control Flow

Bytes

Not all data is word-sized, e.g. ASCII characters

No alignment requirements
Addresses are always byte-aligned

Byte Transfer Instructions

lbu dst, n(src) – load byte unsigned
Loads M[src + n] into the lower 8 bits of dst
Sets remaining 24 bits of dst to zero
Ignore ‘unsigned’ for now; more later
There’s also lb dst, n(src) – load byte

sb dst, n(src) – store byte
Stores bits 0 to 7 of dst into M[src + n]
Ignores remaining 24 bits of dst

Machine Code Data Transfer Control Flow

Half-Words

Half-words are 16 bits long (i.e. 2 bytes)

Address src + n must be half-word aligned
Sum of src + n must be even

Half-Word Transfer Instructions
lhu dst, n(src) – load half-word unsigned

Loads M[src + n] into the lower 16 bits of dst
Sets remaining 16 bits of dst to zero
Ignore ‘unsigned’ for now; more later
There’s also lh dst, n(src) – load half-word

sh dst, n(src) – store half-word
Stores bits 0 to 15 of dst into M[src + n]
Ignores remaining 16 bits of dst

Machine Code Data Transfer Control Flow

What does this program do?

.data
num: .word 0

.text

.globl main
main: la $s0, num

li $v0, 5 # read_int
syscall

sw $v0, ($s0)
lbu $a0, 1($s0)

li $v0, 1 # print_int
syscall
j $ra

Machine Code Data Transfer Control Flow

High-Level Control Structures

Unstructured programming leads to ‘spaghetti code’

The goto keyword is avoided in high-level programming
Reserved keyword in Java, but does nothing
Can be used for jumps in C, C++ and C#.

Instead we use control structures like
if-then-else
while and for, break and continue

Edsgar Dijkstra’s “Goto Statement Consdered Harmful”
Communications of the ACM, March 1968
http://www.acm.org/classics/oct95/

See also http://en.wikipedia.org/wiki/GOTO or
http://reference.com/browse/wiki/GOTO

http://en.wikipedia.org/wiki/GOTO
http://reference.com/browse/wiki/GOTO
http://www.acm.org/classics/oct95/

Machine Code Data Transfer Control Flow

Control Flow in Assembly

No high-level control structures in assembly

Branch (or jump) instructions change the PC
Hence affects the next instruction to be executed
The sequence of branches in a program is its control flow

Conditional branches depend on a previous comparison
Otherwise we carry on with the following instruction

Unconditional branches always jumps to the given location

Machine Code Data Transfer Control Flow

Basic Branching

j label – jump (unconditional branch)

Continues execution at label — PC := [label]

beq dst, src, label – branch on equal

Continues execution at label if dst = src

if(dst == src) PC := [label]

bne dst, src, label – branch on not-equal

Continues execution at label if dst $= src

if(dst != src) PC := [label]

Labels identify addresses of program code as well as data

Machine Code Data Transfer Control Flow

If-Then-Else

PAT02F11.eps

f = g + h f = g – h

i = j i ! j
i = = j ?

E l s e :

E x i t :

How do we implement the
following Java fragment?

if(i == j)
f = g + h;

else
f = g - h;

Assume

i j f g h

$s0 $s1 $s2 $s3 $s4

Machine Code Data Transfer Control Flow

Implementing Decisions

bne $s3, $s4, else_i_ne_j
add $s0, $s1, $s2 # then-block
j if_i_eq_j_end

else_i_ne_j:
sub $s0, $s1, $s2 # else-block

if_i_eq_j_end:

Branch on opposite condition (i $= j) to the else-block

So if i = j, fall through to the add instruction

Last instruction of if-block jumps over the else-block

What if there is no else-block?

Machine Code Data Transfer Control Flow

Example: Checking for a Passcode

...
main: li $v0, 5 # read_int

syscall

li $t0, 42 # secret reply
beq $v0, $t0, correct
la $a0, go_away
j check_end

correct:
la $a0, hello

check_end:

li $v0, 4 # print_string
syscall
j $ra

Machine Code Data Transfer Control Flow

Thursday quiz

Most of the following questions are multiple choice. There is
at least one correct choice but there may be several. For each
of the questions list all the roman numerals corresponding to
correct answers but none of the incorrect ones.
Questions are marked as follows:

no errors 5 points
1 error 3 points
2 errors 1 point
≥3 errors 0 points

Machine Code Data Transfer Control Flow

Thursday quiz

1. What are important aspects of the von Neumann
architecture?

a Instructions are data.
b Separate memory for programs and data.
c Invented in Germany.
d Uses a Program Counter (PC).
e Superseded by the Harvard Architecture.

Machine Code Data Transfer Control Flow

Thursday quiz

2. What is MIPS?
a Multiple Instructions per step
b Microprocessor without Interlocked

Processor States
c Microprocessor with Interlocked Processor

States
d A typical RISC processor
e A typical CISC processor

Machine Code Data Transfer Control Flow

Thursday quiz

3. What are typical features of assembly language?
a Universal language for different processors
b Processor specific
c Uses labels for memory addresses
d Uses hexadecimal notation for instructions
e Is a compromise between C and Java.

Machine Code Data Transfer Control Flow

Thursday quiz

4. What can we say about MIPS’ registers?
a Designed for different purposes
b 32 registers because the word size is 32.
c Saved registers are not changed by system

calls
d Temporary registers are not changed by

system calls
e Register 0 always contains 0.

Machine Code Data Transfer Control Flow

Thursday quiz

5. What is the effect of add $s1, $s1, $s0?

a Stores the sum of $s1 and $s0 in $s0.
b Stores the sum of $s1 and $s1 in $s0.
c Stores the sum of $s1 and $s0 in $s1.
d Causes an interrupt because $s1 is used

twice.
e $s1 remains unchanged because $s0 always

contains 0.

	Machine Code
	Assembly to Machine Code
	Instruction Encoding (Register Operands)
	Instruction Encoding (Immediate Operand)
	Encoding Addition

	Data Transfer
	Registers vs Memory
	Load Word
	Store Word
	Example: Loads and Stores
	Bytes
	Half-Words
	What does this program do?

	Control Flow
	High-Level Control Structures
	Control Flow in Assembly
	Basic Branching
	If-Then-Else
	Implementing Decisions
	Example: Checking for a Passcode

