
Real Numbers IEEE 754 Floating Point Arithmetic

Computer Systems Architecture
http://cs.nott.ac.uk/∼txa/g51csa/

Thorsten Altenkirch and Liyang Hu

School of Computer Science
University of Nottingham

Lecture 08: Real Numbers and IEEE 754 Arithmetic

http://cs.nott.ac.uk/~txa/g51csa/


Real Numbers IEEE 754 Floating Point Arithmetic

Representing Real Numbers

So far we can compute with a subset of numbers:
Unsigned integers [0, 232) ⊂ N
Signed integers [−231, 231) ⊂ Z

What about numbers such as
3.1415926 . . .
1/3 = 0.33333333 . . .
299792458

How do we represent smaller quantities than 1?



Real Numbers IEEE 754 Floating Point Arithmetic

Shifting the Point

Use decimal point to separate integer and fractional parts
Digits after the point denote 1/10th, 1/100th, . . .

Similarly, we can use the binary point
Bit 3rd 2nd 1st 0th . -1st -2nd -3rd -4th

Weight 23 22 21 20 . 2-1 2-2 2-3 2-4

Left denote integer weights; right for fractional weights

What is 0.1012 in decimal?
0.1012 = 2-1 + 2-3 = 0.5 + 0.125 = 0.625

What is 0.110 in binary?
0.110 = 0.0001100110011 . . .2
Digits repeat forever – no exact finite representation!



Real Numbers IEEE 754 Floating Point Arithmetic

Fixed Point Arithmetic

How do we represent non-integer numbers on computers?

Use binary scaling: e.g. let one increment represent 1/16th

Hence, 0000.00012 = 1 ∼= 1/16 = 0.0625
0001.10002 = 24 ∼= 24/16 = 1.5

Fixed position for binary point

Addition same as integers: a/c + b/c = (a + b)/c

Multiplication mostly unchanged, but must scale after
a

c
× b

c
=

(a × b)/c

c
e.g. 1.5× 2.5 = 3.75

0001.10002 × 0010.10002 = 0011.1100 00002

Thankfully division by 2e is fast!



Real Numbers IEEE 754 Floating Point Arithmetic

Overview of Fixed Point

Integer arithmetic is simple and fast
Games often used fixed point for performance;
Digital Signal Processors still do, for accuracy
No need for a separate floating point coprocessor

Limited range
A 32-bit Q24 word can only represent [−27, 27 − 2-24]
Insufficient range for physical constants, e.g.
Speed of light c = 2.9979246× 109 m/s
Planck’s constant h = 6.6260693× 10-34 N·m·s

Exact representation only for (multiples of) powers of two
Cannot represent certain numbers exactly,
e.g. 0.01 for financial calculations



Real Numbers IEEE 754 Floating Point Arithmetic

Scientific Notation

We use scientific notation for very large/small numbers
e.g. 2.998× 109, 6.626× 10-34

General form ±m × be where
The mantissa contains a decimal point
The exponent is an integer e ∈ Z
The base can be any positive integer b ∈ N∗

A number is normalised when 1 ≤ m < b
Normalise a number by adjusting the exponent e
10× 100 is not normalised; but 1.0× 101 is

In general, which number cannot be normalised?
Zero can never be normalised
NaN and ±∞ also considered denormalised



Real Numbers IEEE 754 Floating Point Arithmetic

Floating Point Notation

Floating point – scientific notation in base 2

In the past, manufacturers had incompatible hardware
Different bit layouts, rounding, and representable values
Programs gave different results on different machines

IEEE 754: Standard for Binary Floating-Point Arithmetic
IEEE – Institute of Electrical and Electronic Engineers
Exact definitions for arithmetic operations
– the same wrong answers, everywhere

IEEE Single (32-bit) and Double (64-bit) precision
Gives exact layout of bits, and defines basic arithmetic

Implemented on coprocessor 1 of the MIPS architecture

Part of Java language definition



Real Numbers IEEE 754 Floating Point Arithmetic

IEEE 754 Floating Point Format

Computer representations are finite

IEEE 754 is a sign and magnitude format
Here, magnitude consists of the exponent and mantissa

Single Precision (32 bits)

sign exponent mantissa
1 bit ← 8 bits → ← 23 bits →

Double Precision (64 bits)

sign exponent mantissa
1 bit ← 11 bits → ← 52 bits →



Real Numbers IEEE 754 Floating Point Arithmetic

IEEE 754 Encoding (Single Precision)

Sign: 0 for positive, 1 for negative

Exponent: 8-bit excess-127, between 0116 and FE16

0016 and FF16 are reserved – see later

Mantissa: 23-bit binary fraction
No need to store leading bit – the hidden bit
Normalised binary numbers always begin with 1
c.f. normalised decimal numbers begin with 1. . . 9

Reading the fields as unsigned integers,
(−1)s × 1.m × 2e−127

Special numbers contain 0016 or FF16 in exponent field
±∞, NaN, 0 and some very small values



Real Numbers IEEE 754 Floating Point Arithmetic

IEEE 754 Special Values

Largest and smallest normalised 32-bit number?
Largest: 1.1111...2 × 2127 ≈ 3.403× 1038

Smallest: 1.000...2 × 2-126 ≈ 1.175× 10-38

We can still represent some values less than 2-126

Denormalised numbers have 0016 in the exponent field
The hidden bit no longer read as 1
Conveniently, 0000 000016 represents (positive) zero

IEEE 754 Single Precision Summary

Exponent Mantissa Value Description
0016 = 0 0 Zero
0016 += 0 ±0.m × 2-126 Denormalised

0116 to FE16 ±1.m × 2e−127 Normalised
FF16 = 0 ±∞ Infinities
FF16 += 0 NaN Not a Number



Real Numbers IEEE 754 Floating Point Arithmetic

Overflow, Underflow, Infinities and NaN

Underflow: result < smallest normalised number

Overflow: result > largest representable number

Why do we want infinities and NaN?
Alternative is to give a wrong value, or raise an exception
Overflow gives ±∞ (underflow gives denormalised)

In long computations, only a few results may be wrong
Raising exceptions would abort entire process
Giving a misleading result is just plain dangerous

Infinities and NaN propagate through calculations, e.g.
1 + (1÷ 0) = 1 +∞ =∞
(0÷ 0) + 1 = NaN + 1 = NaN



Real Numbers IEEE 754 Floating Point Arithmetic

Examples

Convert the following to 32-bit IEEE 754 format
1.010 = 1.02 × 20 = 0 0111 1111 00000...

1.510 = 1.12 × 20 = 0 0111 1111 10000...

10010 = 1.10012 × 26 = 0 1000 0101 10010...

0.110 ≈ 1.100112 × 2-4 = 0 0111 1011 100110...

Check your answers using
http://www.h-schmidt.net/FloatApplet/IEEE754.html

Convert to a hypothetical 12-bit format,
4 bits excess-7 exponent, 7 bits mantissa:

3.141610 ≈ 1.10010012 × 21 = 0 1000 1001001

http://www.h-schmidt.net/FloatApplet/IEEE754.html


Real Numbers IEEE 754 Floating Point Arithmetic

Floating Point Addition

Suppose f0 = m0 × 2e0 , f1 = m1 × 2e1 and e0 ≥ e1

Then f0 + f1 = (m0 + m1 × 2e1−e0)× 2e0

1 Shift the smaller number right until exponents match
2 Add/subtract the mantissas, depending on sign
3 Normalise the sum by adjusting exponent
4 Check for overflow
5 Round to available bits
6 Result may need further normalisation; if so, goto step 3



Real Numbers IEEE 754 Floating Point Arithmetic

Floating Point Multiplication

Suppose f0 = m0 × 2e0 and f1 = m1 × 2e1

Then f0 × f1 = m0 ×m1 × 2e0+e1

1 Add the exponents (be careful, excess-n encoding!)
2 Multiply the mantissas, setting the sign of the product
3 Normalise the product by adjusting exponent
4 Check for overflow
5 Round to available bits
6 Result may need further normalisation; if so, goto step 3



Real Numbers IEEE 754 Floating Point Arithmetic

IEEE 754 Rounding

Hardware needs two extra bits (round, guard) for rounding

IEEE 754 defines four rounding modes

Round Up Always toward +∞
Round Down Always toward −∞
Towards Zero Round down if positive, up if negative
Round to Even Rounds to nearest even value: in a tie,

pick the closest ‘even’ number: e.g. 1.5
rounds to 2.0, but 4.5 rounds to 4.0

MIPS and Java uses round to even by default



Real Numbers IEEE 754 Floating Point Arithmetic

Exercise: Rounding

Round off the last two digits from the following
Interpret the numbers as 6-bit sign and magnitude

Number To +∞ To −∞ To Zero To Even
+0001.01 +0010 +0001 +0001 +0001
-0001.11 -0001 -0010 -0001 -0010
+0101.10 +0110 +0101 +0101 +0110
+0100.10 +0101 +0100 +0100 +0100
-0011.10 -0011 -0100 -0011 -0100

Give 2.2 to two bits after the binary point: 10.012

Round 1.375 and 1.125 to two places: 1.102 and 1.002


	Real Numbers
	Representing Real Numbers
	Shifting the Point
	Fixed Point Arithmetic
	Overview of Fixed Point

	IEEE 754
	Scientific Notation
	Floating Point Notation
	IEEE 754 Floating Point Format
	IEEE 754 Encoding (Single Precision)
	IEEE 754 Special Values
	Overflow, Underflow, Infinities and NaN
	Examples

	Floating Point Arithmetic
	Floating Point Addition
	Floating Point Multiplication
	IEEE 754 Rounding
	Exercise: Rounding


