Computer Systems Architecture
http://cs.nott.ac.uk/~txa/gblcsa/

Thorsten Altenkirch and Liyang Hu

School of Computer Science
University of Nottingham

Lecture 09: Floating Point Arithmetic and the MIPS FPU

r

The University of

Nottingham

http://cs.nott.ac.uk/~txa/g51csa/

Floating Point Arithmetic
.

Floating Point Addition

@ Suppose fy = mg x 2%, f; = my X 2 and e > €
o Then fy + fi = (mg + my x 2817%0) x 2%

Q Shift the smaller number right until exponents match

@ Add/subtract the mantissas, depending on sign

© Normalise the sum by adjusting exponent

©Q Check for overflow

© Round to available bits

O Result may need further normalisation; if so, goto step 3

r

The University of

Nottingham

Floating Point Arithmetic
]

Floating Point Multiplication

@ Suppose fy = mg x 2% and f; = m; x 2%
o Then fy X fi = mg x my x 2%7Te

© Add the exponents (be careful, excess-n encoding!)

© Multiply the mantissas, setting the sign of the product
© Normalise the product by adjusting exponent

©Q Check for overflow

© Round to available bits

O Result may need further normalisation; if so, goto step 3

r

The University of

Nottingham

Floating Point Arithmetic

IEEE 754 Rounding

@ Hardware needs two extra bits (round, guard) for rounding
o |EEE 754 defines four rounding modes
Round Up Always toward 400
Round Down Always toward —oo
Towards Zero Round down if positive, up if negative
Round to Even Rounds to nearest even value: in a tie,
pick the closest ‘even’ number: e.g. 1.5
rounds to 2.0, but 4.5 rounds to 4.0

@ MIPS and Java uses round to even by default

r

The University of

Nottingham

Floating Point Arithmetic
°

Exercise: Rounding

@ Round off the last two digits from the following
o Interpret the numbers as 6-bit sign and magnitude

Number | To +00 | To —oc0 | To Zero | To Even
+0001.01 | +0010 +0001 +0001 +0001
-0001.11 | -0001 -0010 -0001 -0010
+0101.10 | +0110 +0101 +0101 +0110
+0100.10 | +0101 +0100 +0100 +0100
-0011.10 | -0011 -0100 -0011 -0100

@ Give 2.2 to two bits after the binary point: 10.01,
@ Round 1.375 and 1.125 to two places: 1.10, and 1.00,

r The University of
~

Nottingham

IEEE 754 for MIPS
°

IEEE 754 for MIPS

IEEE operations performed by Floating Point Unit (FPU)

e MIPS core refers to the FPU as coprocessor 1
o Previously a separate chip, now usually integrated

FPU features 32 single precision (32-bit) registers
o $£0, $f1, $£2, ..., $£31
Or as 16 pairs of double precision (64-bit) registers

o $£0, $£2, $£4, ..., $£30 (even registers only!)
e Here $£i actually stands for the pair $£/ and $£(i + 1)

Eight condition code flags for comparison and branching

FPU instructions does not raise exceptions
o May need to check for 00 or NalN
MIPS FPU defaults to round to even r
—~~

The University of

Nottingham

IEEE 754 for MIPS
.

MIPS Floating Point Arithmetic

@ Single- and double-precision: mmm.s and mmm.d

add.s fdst, fsrcy, fsrc; — addition, single-precision

o fdst := fsrcg + fsrcy

o Example: add.s $f0, $f1, $£f2
$£f0 := $f1 + $f2

@ Double: add.d $f0, $f2, $f4
($£0,8f1) := ($£2,$£f3) + ($£f4,$£5)

@ Other instructions include: sub.f, mul.f, div.f
where f is s or d
@ See H&P Appendix A-73 for more r

The University of

Nottingham

IEEE 754 for MIPS
(]

Load / Store for Floating Point

@ No encoding for immediate floating-point operands

o Too many bytes — must be placed in .data segment
o Assembler directives: .single n or .double n

1l.s fdst, n(src) — load single
@ Load 32-bit word at address src+n into register fdst

s.d fdst, n(src) — store double
@ Store 64-bit double-word to src+n from register pair fdst

@ Address src+n must be double-word aligned!

The University of

@ Others instructions: 1.d and s.s r
A' | Nottingham

IEEE 754 for MIPS
.

Floating Point 1/0

@ How do we input/output floating point numbers?
@ Complete list in Hennessey and Patterson, Appendix A-44

syscall $v0 | Arguments Result
print _float 2 $£12 none
print_double | 3 | ($£f12,$f13) none
read_float 6 none $£0
read_double 7 none ($£0,$£1)

The University of

Nottingham

r

IEEE 754 for MIPS
(]

Example: Area of a Circle

.data
pi: .double 3.141592653589793
.text
.globl main
main: 1i $v0, 7 # read_double
syscall # radius <- user input
la $a0, pi
1.d $£12, 0($a0) # a := pi
mul.d $£f12, $f12, $f0 # a := a * r
mul.d $£f12, $£f12, $f0 # a := a *x r

1i $v0, 3 # print_double
syscall # print area

j $ra Iff

The University of

Nottingham

IEEE 754 for MIPS
.

Floating Point Comparison

o Eight independent condition code (cc) flags, from 0 to 7

c.eq.d cc fsrcy, fsrc; — compare double for equality

o flag cc := fsrcg == fsrc; 7 true : false

o General form: c.rel.f cc fsrcy, fsrc

Relation ‘ Name ‘ Abbr. rel
= equals eq
< less than or equals le
< less than 1t

@ Example: c.le.s 4 $£f0, $f1
set flag 4 if $£0 < $£f1 o
The University of

Nottingham

r

IEEE 754 for MIPS
°

Branching on FPU Flags

bclt cc label — branch on coprocessor 1 true

o if (flag cc true) then goto label

@ Similarly, there's bc1f — branch on coprocessor 1 false
o With this we can implement #, > and > comparisons

@ Remember 0.1 * 0.1 !'= 0.017

@ One final useful instruction: abs.f — absolute value

abs.d fdst, fsrc — single precision absolute value
o fdst := fsrc < 0 7 -fsrc : fsrc or fdst := |fsrc|

The University of

Nottingham

r

IEEE 754 for MIPS
.

Floating Point <~ Integers Conversion

round.w.f fdst, fsrc — round to nearest word

@ Round fsrc to nearest 32-bit integer

@ fdst receives bit pattern of a two's complement integer

Instruction

Description

cvt.d.s fdst,
cvt.s.d fdst,
cvt.w.f fdst,
ceil.w.f fdst,
floor.w.f fdst,
round.w.f fdst,

fsrc
fsrc
fsrc
fsrc
fsrc
fsrc

Convert to double from single
Convert to single from double
Round to integer, towards zero
Round to integer, towards +oo
Round to integer, towards —oo
Round to nearest integer (not even)

@ FPU does not understand two's complement integers

e Must move to CPU for processing r
]
—~~

The University of

Nottingham

IEEE 754 for MIPS
.

FPU —~ CPU

mfcl dst, fsrc — move from coprocessor 1
@ dst := fsrc

mtcl dst, fsrc — move to coprocessor 1
@ fsrc := dst

@ Words can be transferred between the FPU and CPU
o eg. set $£12 := 0 using mtcl $zero, $£f12
o But only the bit pattern, not the value!

@ Can be manipulated or stored like any other data

o e.g. to flip the sign of the single precision $£7:
mfcl $t0, $£7
xor $t0, $t0, 0x80000000 J
mtcl $t0, $£7 m

The University of

Nottingham

IEEE 754 for MIPS
°

Example: Approximately Equal

.text | .data

la $a0, tenth | tenth: .float 0.1

la $al, hundredth | hundredth: .float 0.01

la $a2, epsilon I epsilon: .float 1.0e-7
|

1l.s $£0, ($a0)
l.s $£1, ($al) Fomm
l.s $f2, ($a2)

mul.s $£0, $£f0, $£f0 # $£f0 := 0.1 * 0.1

sub.s $f3, $f0, $f1 # $£f3 := (0.1 * 0.1) - 0.01
abs.s $£3, $£3 # $£3 := (0.1 *x 0.1) - 0.01]
c.lt.s 6 $£3, $f2 # flag 6 = $£3 < 1.0e-7 7

bclf 6 not_quite # if (not flag 6) goto not_quite
approximately equal!
not_quite: .
m The Uniyersitg of
Nottingham

	Floating Point Arithmetic
	Floating Point Addition
	Floating Point Multiplication
	IEEE 754 Rounding
	Exercise: Rounding

	IEEE 754 for MIPS
	IEEE 754 for MIPS
	MIPS Floating Point Arithmetic
	Load / Store for Floating Point
	Floating Point I/O
	Example: Area of a Circle
	Floating Point Comparison
	Branching on FPU Flags
	Floating Point Integers Conversion
	FPU CPU
	Example: Approximately Equal

