
Procedures Stack Local Variables and Recursion Homework

Computer Systems Architecture
http://cs.nott.ac.uk/∼txa/g51csa/

Thorsten Altenkirch and Liyang Hu

School of Computer Science
University of Nottingham

Lecture 10: MIPS Procedure Calling Convention and
Recursion

http://cs.nott.ac.uk/~txa/g51csa/

Procedures Stack Local Variables and Recursion Homework

A procedure by any other name. . .

A portion of code within larger program, typically called:
procedures or subroutines in imperative languages like C
methods in OO languages like Java
and functions in functional languages such as Haskell

Functions usually return a value; procedures don’t

Procedures are necessary to
reduce duplication of code and enable re-use
decompose complex programs into manageable parts

Procedures can call other procedures; even themselves

What happens when we call a procedure?
Control hands over to the callee; the caller is suspended
Callee performs requested task
Callee returns control to the caller

Procedures Stack Local Variables and Recursion Homework

An Example of Procedures in C

int f(int x, int y) {
return sqrt(x * x + y * y);

}

int main() {
printf("f(5,12)=%d\n",f(5, 12));

}

Procedures Stack Local Variables and Recursion Homework

Calling Procedures in MIPS Assembly

jal label – jump and link

$ra := PC + 4; PC := [label]

Calls procedure at address label

jr src – jump register

PC := src

Issuing j $ra is the assembly equivalent of return

Register $ra contains the return address of the caller

Arguments are passed in registers $a0 to $a3

Results are left in registers $v0 and $v1

Procedures Stack Local Variables and Recursion Homework

First Attempt

f: mult $a0, $a0, $a0
mult $a1, $a1, $a1
add $a0, $a0, $a1
jal sqrt
jr $ra

main:
li $a0, 5
li $a1, 12
jal f
move $a0, $v0
li $v0, 1
syscall
jr $ra

What’s wrong with this?
$ra modified by jal, so. . .
j $ra jumps to wrong
address

Must save required registers
Previous value of $ra
f overwrites $a0 and $a1

What if we need > 4 arguments?

Procedures Stack Local Variables and Recursion Homework

The Stack

Not enough registers?
Save the contents of some registers to memory

The stack provides last-in, first out (LIFO) storage
Register $sp points to the topmost word on the stack
By convention, the stack grows downwards
Placing words onto the stack is termed pushing
Taking words off the stack is called popping

Procedures Stack Local Variables and Recursion Homework

Calling Convention

Caller
Push any of $a0-3, $v0-1 and $t0-9 needed later

Place arguments in $a0 to $a3, and stack if necessary

Make the call using jal callee; result in $v0 and $v1

Pop saved registers and/or extra arguments off stack

Callee
Push any of $ra, $s0-$s9 that may be overwritten

Perform desired task; place result in $v0 and $v1

Pop above registers off the stack

Return to caller with jr $ra

Procedures Stack Local Variables and Recursion Homework

Procedure Example

f:
addi $sp, $sp, -4 # allocate space on stack
sw $ra, 0($sp) # push $ra onto stack
mult $a0, $a0, $a0
mult $a1, $a1, $a1
add $a0, $a0, $a1
jal sqrt # call sqrt
lw $ra, 0($sp) # pop $ra off stack
addi $sp, $sp, 4 # deallocate space on stack
jr $ra

Procedures Stack Local Variables and Recursion Homework

Calling Convention Summary

Preserved by Callee Not Preserved
Saved registers $s0-$s7 Temporary registers $t0-$t9
Stack pointer $sp Argument registers $a0-$a3
Return address $ra Return values $v0 and $v1
Stack at/above $sp Stack below $sp

Items not preserved but needed later, caller must preserve

Stack contents preserved by not writing at/above $sp

Stack pointer ‘saved’ by always popping what we pushed

Leaf procedures are those which do not make further calls
In such instances, we needn’t explicitly save $ra

The main label is just another procedure
Ought to follow the same conventions

Procedures Stack Local Variables and Recursion Homework

Local Variables

We needn’t preserve the stack below the initial $sp
A convenient location for local storage

Creating locals: subtract number of bytes from $sp

Complex functions may do this many times
Each time this changes the $sp-offset of previous locals!
Assembly harder for humans and debuggers to read!

Solution: save initial value of $sp in $fp

Hence local variables always have the same $fp-offset
Note callee must preserve previous value of $fp!

Procedures Stack Local Variables and Recursion Homework

Example: Recursive Factorial

int fact(int n): return n <= 0 ? 1 : n * fact(n-1);
fact:

addi $sp, $sp, -8 # space for two words
sw $ra, 4($sp) # save return address
sw $a0, 0($sp) # temporary variable to hold n
li $v0, 1
ble $a0, $zero, fact_return
addi $a0, $a0, -1
jal fact
lw $a0, 0($sp) # retrieve original n
mul $v0, $v0, $a0 # n * fact(n - 1)

fact_return:
lw $ra 4($sp) # restore $ra
addi $sp, $sp, 8 # restore $sp
jr $ra # back to caller

Procedures Stack Local Variables and Recursion Homework

Example: Recursive Fibonacci

int fib(int n): return n < 2 ? n : fib(n-1) + fib(n-2)
fib: addi $sp, $sp, -8 # room for $ra and one temporary

sw $ra, 4($sp) # save $ra
move $v0, $a0 # pre-load return value as n
blt $a0, 2, fib_rt # if(n < 2) return n
sw $a0, 0($sp) # save a copy of n
addi $a0, $a0, -1 # n - 1
jal fib # fib(n - 1)
lw $a0, 0($sp) # retrieve n
sw $v0, 0($sp) # save result of fib(n - 1)
addi $a0, $a0, -2 # n - 2
jal fib # fib(n - 2)
lw $v1, 0($sp) # retrieve fib(n - 1)
add $v0, $v0, $v1 # fib(n - 1) + fib(n - 2)

fib_rt: lw $ra, 4($sp) # restore $ra
addi $sp, $sp, 8 # restore $sp
jr $ra # back to caller

Procedures Stack Local Variables and Recursion Homework

Reading

Read up on calling conventions in H&P:
§2.7 (pp 79–86)
Appendix A §6 (pp 22–33)

	Procedures
	A procedure by any other name…
	An Example of Procedures
	Calling Procedures in MIPS Assembly
	First Attempt

	Stack
	The Stack
	Calling Convention
	Procedure Example
	Calling Convention Summary

	Local Variables and Recursion
	Local Variables
	Example: Recursive Factorial
	Example: Recursive Fibonacci

	Homework
	Homework

