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A procedure by any other name. . .

A portion of code within larger program, typically called:
procedures or subroutines in imperative languages like C
methods in OO languages like Java
and functions in functional languages such as Haskell

Functions usually return a value; procedures don’t

Procedures are necessary to
reduce duplication of code and enable re-use
decompose complex programs into manageable parts

Procedures can call other procedures; even themselves

What happens when we call a procedure?
Control hands over to the callee; the caller is suspended
Callee performs requested task
Callee returns control to the caller
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An Example of Procedures in C

int f(int x, int y) {
return sqrt(x * x + y * y);

}

int main() {
printf("f(5,12)=%d\n",f(5, 12));

}
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Calling Procedures in MIPS Assembly

jal label – jump and link

$ra := PC + 4; PC := [label]

Calls procedure at address label

jr src – jump register

PC := src

Issuing j $ra is the assembly equivalent of return

Register $ra contains the return address of the caller

Arguments are passed in registers $a0 to $a3

Results are left in registers $v0 and $v1
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First Attempt

f: mult $a0, $a0, $a0
mult $a1, $a1, $a1
add $a0, $a0, $a1
jal sqrt
jr $ra

main:
li $a0, 5
li $a1, 12
jal f
move $a0, $v0
li $v0, 1
syscall
jr $ra

What’s wrong with this?
$ra modified by jal, so. . .
j $ra jumps to wrong
address

Must save required registers
Previous value of $ra
f overwrites $a0 and $a1

What if we need > 4 arguments?
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The Stack

Not enough registers?
Save the contents of some registers to memory

The stack provides last-in, first out (LIFO) storage
Register $sp points to the topmost word on the stack
By convention, the stack grows downwards
Placing words onto the stack is termed pushing
Taking words off the stack is called popping
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Calling Convention

Caller
Push any of $a0-3, $v0-1 and $t0-9 needed later

Place arguments in $a0 to $a3, and stack if necessary

Make the call using jal callee; result in $v0 and $v1

Pop saved registers and/or extra arguments off stack

Callee
Push any of $ra, $s0-$s9 that may be overwritten

Perform desired task; place result in $v0 and $v1

Pop above registers off the stack

Return to caller with jr $ra
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Procedure Example

f:
addi $sp, $sp, -4 # allocate space on stack
sw $ra, 0($sp) # push $ra onto stack
mult $a0, $a0, $a0
mult $a1, $a1, $a1
add $a0, $a0, $a1
jal sqrt # call sqrt
lw $ra, 0($sp) # pop $ra off stack
addi $sp, $sp, 4 # deallocate space on stack
jr $ra
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Calling Convention Summary

Preserved by Callee Not Preserved
Saved registers $s0-$s7 Temporary registers $t0-$t9
Stack pointer $sp Argument registers $a0-$a3
Return address $ra Return values $v0 and $v1
Stack at/above $sp Stack below $sp

Items not preserved but needed later, caller must preserve

Stack contents preserved by not writing at/above $sp

Stack pointer ‘saved’ by always popping what we pushed

Leaf procedures are those which do not make further calls
In such instances, we needn’t explicitly save $ra

The main label is just another procedure
Ought to follow the same conventions
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Local Variables

We needn’t preserve the stack below the initial $sp
A convenient location for local storage

Creating locals: subtract number of bytes from $sp

Complex functions may do this many times
Each time this changes the $sp-offset of previous locals!
Assembly harder for humans and debuggers to read!

Solution: save initial value of $sp in $fp

Hence local variables always have the same $fp-offset
Note callee must preserve previous value of $fp!
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Example: Recursive Factorial

# int fact(int n): return n <= 0 ? 1 : n * fact(n-1);
fact:

addi $sp, $sp, -8 # space for two words
sw $ra, 4($sp) # save return address
sw $a0, 0($sp) # temporary variable to hold n
li $v0, 1
ble $a0, $zero, fact_return
addi $a0, $a0, -1
jal fact
lw $a0, 0($sp) # retrieve original n
mul $v0, $v0, $a0 # n * fact(n - 1)

fact_return:
lw $ra 4($sp) # restore $ra
addi $sp, $sp, 8 # restore $sp
jr $ra # back to caller
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Example: Recursive Fibonacci

# int fib(int n): return n < 2 ? n : fib(n-1) + fib(n-2)
fib: addi $sp, $sp, -8 # room for $ra and one temporary

sw $ra, 4($sp) # save $ra
move $v0, $a0 # pre-load return value as n
blt $a0, 2, fib_rt # if(n < 2) return n
sw $a0, 0($sp) # save a copy of n
addi $a0, $a0, -1 # n - 1
jal fib # fib(n - 1)
lw $a0, 0($sp) # retrieve n
sw $v0, 0($sp) # save result of fib(n - 1)
addi $a0, $a0, -2 # n - 2
jal fib # fib(n - 2)
lw $v1, 0($sp) # retrieve fib(n - 1)
add $v0, $v0, $v1 # fib(n - 1) + fib(n - 2)

fib_rt: lw $ra, 4($sp) # restore $ra
addi $sp, $sp, 8 # restore $sp
jr $ra # back to caller
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Reading

Read up on calling conventions in H&P:
§2.7 (pp 79–86)
Appendix A §6 (pp 22–33)
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