Computer Systems Architecture
http://cs.nott.ac.uk/~txa/gblcsa/

Thorsten Altenkirch and Liyang Hu

School of Computer Science
University of Nottingham

Lecture 11: Pointers and References

r

The University of

Nottingham

http://cs.nott.ac.uk/~txa/g51csa/

Pointers and References
€000

What does the following C program print?

void swap(int x,int y) {
int z;
zZ = X;
X =y;
y =z
}

int main() {

int a,b;

a = 2;

b = 3;

swap(a,b);

printf ("a=%d, b=%d\n",a,b); w The University of
—~

Nottingham

Pointers and References
000

References in C

@ We can declare pointer types in C, e.g.
int *x;
means that x holds a pointer to an integer.
@ To dereference a pointer we also use *, e.g. *x has type
int.
@ The operator & returns a pointer to a variable.
o E.g. if we have declared
int y
then & y has type int *, pointer to an integer.

r

The University of

Nottingham

Pointers and References
[Ye] Yo

What does the following C program print?

void swap(int *x,int *y) {
int z;
Z = *X;
X = *y;
Xy = z;

¥

int main() {

int a,b;

a = 2;

b = 3;

swap (&a,&b) ;

printf ("a=%d, b=%d\n",a,b); r The University of
A~~~

Nottingham

Pointers and References
ocooe

What about Java?

@ Java hasn't got pointer types.
@ Basic datatypes are always passed by value.
@ Objects, arrays and strings are passed as references.

@ Java avoids pointer bugs, which are common and hard to
deteect.

The University of

Nottingham

r

Pointers and References

What does the following Java program

print?

class Int {
int n;
Int(int m) { n =m; } }

public class Swap {

static void swap(Int x, Int y) {
int z;
Z = X.n;
X.n = y.n;
y.n=2z; }

public static void main(String args([]) {
Int a = new Int(1);
Int b = new Int(2);
swap(a,b);

System.out.println("a="+a.n+" b=“+b.rr Theu"iyersnyd
y P !)(Nottingham

Pointers and References

swap in MIPS

aa:
bb:

main:

swap:

.data

.word 1

.word 2

.text

.globl main

la $a0, aa

la $al, bb

jal swap # swap(&a,&b);
print a,b

x=%$a0, y=%$al, z=$t0
1w $t0, ($a0) # z = *xx;
1w $t1, ($al)

sw $t1, ($a0) # xx = xy; .
sw $t0, ($al) # *y m
jr $ra —

The University of

Nottingham

I
N

Arrays and Strings

@ One of the most basic data structures in CS
@ Usually a block of consecutive elements in memory

o All same size (s bytes); same offset from one to the next
o The it" element is at offset i x s bytes from beginning
o Looking up an element of the array is termed ‘indexing’

@ Characterised by constant-time indexing

o No more faster to look up xs[0] than xs[42]

o Contrast this with a linked-list! (not in this course)
@ We can implement arrays using pointer arithmetic

@ e.g. Assembly equivalent of an int[] in Java/C would
be. ..

@ a consecutive block of word-sized signed integers
o represented by its starting address and Ierh
]

The University of

Nottingham

Like lists in Haskell

Arrays and Strings

Using (Integer) Arrays: C

int as[8] ={ 3, 1, 4, 1, 5, 9, 2, 6 };

int array_max(int xs[], int length) {

int i,m;
m = INT_MIN;
for(i=0; i<length; i++) {

if(m < xs[i])

m = xs[i];

}
return m;

by

int main() {]
printf("max = %d\n",array_max(as,8))m

The University of

Nottingham

}

Arrays and Strings
°

Using (Integer) Arrays: Assembly, Part 1

array_max: # $a0: array address, $al: array length

1i $v0O, 0x80000000 # MIN_VALUE
1i $t0, O #1 =20
j am_cond

am_loop:

sll $t1, $t0, 2 # 4 % i
add $t1, $a0, $t1 # xs + 4xi bytes
1w $t1, ($t1) # lookup xs[i]
addi $to, $to, 1 # oi++

#

#

bge $v0, $t1, am_cond if(m < xs[i])
move $v0, $ti1 m = xs[i]
am_cond:
blt $t0, $al, am_loop # i < lengtr The University of
jr $ra A' | Nottingham

Arrays and Strings

Using (Integer) Arrays: Assembly, Part 2

as:

.data

.word 3, 1, 4,
.text

.globl main

main: addi $sp, $sp,

sw $ra, 0($sp)
la $a0, as

1i $al, 8

jal array_max
move $a0, $vO
1i $vO, 1
syscall

lw $ra, 0($sp)
addi $sp, $sp,
jr $ra

$a0 = address of as
$al = as.length
array_max(as, as.length)

print_int

The University of

Nottingham

4 g

Arrays and Strings
[1]

Strings

@ Java strings are opaque objects of class String

@ Assembly strings are arrays of ASCII characters, or bytes
o End marked with a NUL, rather than storing its length

@ You've already used them before

e with the .asciiz directive
e and the print_string syscall

@ What else can we do with strings?

The University of

Nottingham

r

Arrays and Strings
oe

String length in C

int strlen(char *s) {
int 1;
1 =0;
while(xs '= 0) {
S++;
1++;
}
return 1;

}

int main() {
printf ("%d\n",strlen("hello"));

} w The University of
—~

Nottingham

Arrays and Strings
°

String Length in Assembler

strlen: # s=$a0,1=$v0

1i $v0, O #1 =0,
j strlen_cond

strlen_loop:

addi $vO, $vO, 1 # 1++
strlen_cond:

1bu $t0, ($a0)

addi $a0, $a0, 1 # s++
bne $t0, $zero, strlen_loop # while(xs != ’\0’)
jr $ra

The University of

Nottingham

r

Arrays and Strings
°

String Length in Assembler

.data
hello: .asciiz "hello"
.text
.globl main
main: la $a0,hello

jal strlen
move $al,$v0

1i $vO, 1 # print_int
syscall

1i $v0,10

syscall # exit

The University of

Nottingham

r

Heap and Memory Management

strcat, 1st attempt

char*x strcat(char *s, char *t) {
char *r;
r = s;
while(*s != ’\0’) s++;
do {
s = *t;
S++;
t++;
} while(xt != ’\0’);
return r;

by

The University of

Nottingham

int main() { s
printf ("%s\n",strcat("hello ", "worldm)
A~~~

}

Heap and Memory Management

sean:code txa$ strcatl
Bus error

The University of

Nottingham

r

Heap and Memory Management
0

Dynamic Data

@ So far we've only dealt with static data

e Contents may change, but size and location doesn't
@ Same sense as the static keyword in Java

@ In Java, "hello" + "world" contatenates two strings

o But neither of the original strings are modified
o Instead a new string is created on the heap

@ The heap is a much larger pool of memory than the stack
o In C we can allocate data using malloc
o Unused data can be returned by using mfree

@ Storage allocated on the heap persist across procedures

o Caller can’t access stack storage
r The University of
~

Nottingham

Heap and Memory Management
oe

strcat, 2nd attempt

char* strcat(char *s, char *t) {
char *r,*u;
r = (char *) malloc(strlen(s)+strlen(t)+1);

u=r;
while(*s != ’\0’) {

*u = *s;

s++;

ut++;
}
do {

*u = *t;

u++;

t++;
} while(xt !'= ’\0’); r The University of
return r; | 8 Nottingham

Heap and Memory Management
.

Horrors of Memory Leaks

int main() {

char x*s;
while(1) {
s = malloc(1000);
*S=JX);
printf(".");
}
}
r The University of
A' | Nottingham

Heap and Memory Management
°0

Horrors of Memory Leaks

@ Program uses up all memory and will eventually crash.

@ Small leaks hard to discover: may run for a long time

The University of

Nottingham

r

Heap and Memory Management
oe

Java version

public class Foo {
public static void main(Stringl[] args) {
while(true) {
int[] as = new char[1000];
as[0] = ’x7;

T3}

The University of

Nottingham

r

Heap and Memory Management

Automatic Garbage Collection

@ Java has automatic garbage collection
o Inaccessible objects are periodically freed by JVM
e SPIM doesn’t/can’t have automatic garbage collection

@ Can you write a Java program which runs out of memory?

The University of

Nottingham

r

	Pointers and References
	What does the following C program print?
	What does the following Java program print?
	swap in MIPS

	Arrays and Strings
	Arrays
	Using (Integer) Arrays: C
	Using (Integer) Arrays: Assembly, Part 1
	Using (Integer) Arrays: Assembly, Part 2
	Strings
	String Length in Assembler
	String Length in Assembler

	Heap and Memory Management
	Dynamic Data
	Horrors of Memory Leaks
	Horrors of Memory Leaks

