Computer Systems Architecture
http://cs.nott.ac.uk/~txa/gblcsa/

Thorsten Altenkirch and Liyang Hu

School of Computer Science
University of Nottingham

Lecture 13: Processor Architecture and Pipelining

r

The University of

Nottingham



http://cs.nott.ac.uk/~txa/g51csa/

Processor Architecture
.

Abstract View of MIPS Implementation

4 —»

Address Instruction

Instruction
memory

Data

Register #
Registers

Register #

Register #

Address

m

Data

Data
emory

r

The University of

Nottingham



Processor Architecture
]

Datapath and Control

@ Most instructions have common initial operations

o Fetch instruction from memory at address PC
Decode and select register(s) for subsequent operation
Use ALU for: address, arithmetic, logic or comparison
Remaining operations differ between instruction classes

o Consider datapaths used in following instruction classes
o Memory-reference: e.g. 1w and sw
o Arithmetic/logic: e.g. add, sub and slt
e Branching: e.g. beq and j
@ Multiplexors select between multiple data sources
o Another layer of control logic over previous diagram

r

The University of

Nottingham




Processor Architecture
°

Multiplexors and Control Logic

M
. u
X
%
ALU operation
Data
L [
Register # MemWrite
Address Instruction Registers M |~ Address
Register # M Zero Data
Instruction Ul r
. X memory
memory Register # RegWrite "’
Data
I MemRead

~ |

—| Control [

\\,,,/,/” r The University of
A" | Nottingham




Processor Architecture
°

Functional Units and Their Timings

@ There are at least five functional units, or stages:

IF — Instruction Fetch — get instruction from memory
ID  — Instruction Decode — get source register operands
EX - Execute — ALU operation

MEM — Memory Access - data memory read or write
WB — Write-Back — result to destination register

@ Some stages take longer to finish than others, e.g.
Type ‘ Duration! ‘ Stage

Memory 200ps | IF, MEM
ALU 200ps | EX
Register 100ps | ID, WB
B | The University of
!‘: Nottingham
110~12s = 1ps, one picosecond



Processor Architecture
°

Critical Paths and Instruction Timings

@ Each instructio

n uses different subset of functional units

Class IF ID EX MEM WB | Total
R-Type 200 100 200 100 600
Load 200 100 200 200 100 800
Store 200 100 200 200 700
Cond. Branch | 200 100 200 500
Jump 200 200

@ Hence some instructions could run faster than others

@ But if every instruction must take exactly one cycle,

o All instructions must take worst-case timing
o Clock speed will be constrained by slowest instruction

r

The University of

Nottingham



Pipelining
.

The Laundry Room Analogy

o If it takes 2 hours to wash, dry, fold and store one set of
clothes, how long will it take for 20 sets?

6 PM 7 8 9 10 11 12 1 2 AM

Time ] e

Task
nEEs |

order

A

5 §0=l

o S0l

- 0=

The University of

@ Total of 2 x 20 = 40 hours? .
!‘: Nottingham




Pipelining
.

The Laundry Room Analogy

o If it takes 2 hours to wash, dry, fold and store one set of
clothes, how long will it take for 20 sets?

6 PM 7 8 9 10 11 12 1 2 AM

nmew { [ { { X
Task

order —
§0=l

A

»  @5=Ml

c S0=l
: EE

The University of

@ Total of 0.5 x 20 +3 x 0.5 = 11.5 hours r
l .
Nottingham




Pipelining
°

A Production Line for Instructions

@ Execute multiple instructions overlapped
o Make each stage simple and fast; one cycle per stage
o Start next instruction as soon as current stage is free
o Same concept as a factory production line

@ Instruction /atency is just as long as before
o Maybe even a little longer due to pipelining overheads

@ But instruction throughput massively increased
o Throughput is more important than latency

@ Ideal case: every instruction with a timing of t can be

divided into s stages. Executing n instructions takes,
o Pipelined, at s/tHz: (n+ (s —1))t/s ~ nt/s
o Single-cycle, at 1/tHz: nt r
A

The University of

Nottingham




Pipelining
°

Pipeline Overheads

Program
execution —. 200 400 600 800 1000 1200 1400
Time T T T T T T T
order
(in instructions)
w $1,100(80) "G |Rea| AL | 022 |Reg
| i
W $2, 200($0) 200 ps | et |Reg| AU | %2 |Reg
lw $3, 300($0) 200 ps [ [Rea| AU | 228 IReg

200 ps 200 ps 200 ps 200 ps 200 ps

@ Even though some stages take less time than others. ..
@ ... speed is still limited by the slowest component
o Here, slowest stage rather than slowest instruction

r

The University of

Nottingham




Pipelining
.

Designing ISAs for Pipelining

@ Pipelining favours uniform timing and few special cases
@ MIPS architecture was designed with pipelining in mind

o Fixed 32-bit instructions simplifies instruction fetch
o Few instruction formats, sharing common operand fields
e Only 1w/sw access memory; ALU calculates address
o Aligned memory references for single-cycle access
o Slow instructions like mult taken out of pipeline
o Write to dedicated registers HI and LO (no WB stage)
@ Avoids slowing down the EX stage

The University of

Nottingham

r




Pipeline Hazards
°

Obstacles to Pipelining

Previously assumed no interaction between instructions
o Can always issue one instruction every clock cycle

Reality: various hazards prevents smooth pipeline flow
Structural Hazards: hardware cannot support instruction

Data Hazards: ALU needs value not yet in register file

Control Hazards: IF from PC+4 after branch instruction?

The University of

Nottingham

r




Pipeline Hazards
°

Structural Hazards

@ Structural Hazard: hardware cannot support instruction

@ Suppose we want to add a new instruction:
xor dst, srcg, n(srcy)

o Fetch second operand during MEM, two cycles after EXI!
o Requires an additional MEM (read) stage before EX

o Requires ALU to calculate n+src; as well as XOR

o But each instruction only has one cycle in EX stage!

@ Can't simultaneously IF and MEM on same memory bus

o Switch to a Harvard architecture
o Dual-ported memory allows two operations each cycle
o Cache memory often separate for instruction and data
o Design ISA to avoid structural-hazards! r

The University of

Nottingham

1
P —




Pipeline Hazards
°

Data Hazards

@ Data Hazards: ALU needs value not yet in register file
@ Suppose we execute the following dependent instructions:
add $s0, $t0, $t1
sub $t2, $s0, $t3
o Result of add not written to $s0 until WB
o But sub requires $s0 = $t0+$t1 the very next cycle!

. 200 400 600 800 1000
Time T T T T T

add $s0, $t0, $t1 1D -a MEM WB |

@ Stall sub in ID for 3 cycles until result written to $s07?

r The University of
~

Nottingham




Pipeline Hazards
°

EX Forwarding

@ Wasted cycles waiting for previous instruction to complete
@ Compiler could fill bubbles with independent instructions

o Or even the hardware — out-of-order execution
e Hard to find useful instructions; happens too often!

@ Better solution — forward result from EX output
o Extra hardware to take result directly from ALU output

Program

execution ) 200 400 600 800 1000
order Time T T T T T

(in instructions)
add $s0, $10, $t1 L 1D -a \ M we
sub $t2, $s0, $t3 ID WB

The University of

Nottingham

@ No stalls required



Pipeline Hazards
°

MEM Forwarding

@ What about load instructions?

@ Consider the following instruction sequence:
1w $s0, 20($t1)
sub $t2, $s0, $t3
o Result from 1w not available until after MEM stage

Program

execution

order Time
(in instructions)

200
Iw $s0, 20($t1) . ]:B

400 600 800 1000 1200 1400
T T T T T

sub $t2, $s0, $t3

The University of

@ Still requires one bubble to be inserted r Nottingham




Pipeline Hazards
°

Reordering Instructions

@ Reorder the following to eliminate pipeline stalls:

lw $s0, 20($t1) lw $s0, 20($t1)
sub $t2, $s0, $t3 1w $s1, 24($t1)
sw $s0, 20($t1) sub $t2, $s0, $t3
lw $s1, 24($t1) sw $s0, 20($t1)

@ Now try the example on H&P p378

The University of

Nottingham

r




Pipeline Hazards
.

Branch/Control Hazards

@ Control Hazards: IF from PC+4 after branch instruction?

@ Consider the following instruction sequence:
beq $s0, $s1, next
addi $s2, $s2, 1
next: lw $s0, ($s2)
@ Which instruction do we fetch after beq?
o Could stall for 2 cycles until $s0 = $s1 decided after EX
o Fetch addi anyway; if wrong, flush/restart the pipeline

@ Solutions not as effective as forwarding for data hazards

r

The University of

Nottingham




Pipeline Hazards
°

Branch Prediction

@ Static Branch Prediction
o If target before PC, predict ‘taken’ — likely to be a loop
o Otherwise could be if-then control — predict ‘not taken'
e Unconditional branches (or ‘jumps’) always ‘taken’

@ Dynamic Branch Prediction
o Keep track of recent branch decisions
o If previous branches taken, fetch from branch target
o Otherwise predict ‘not taken'; fetch from PC+4
@ Alternatively, employ delayed branches
o Execute the instruction at PC+4 anyway

o Instruction following branch called the ‘branch delay slot’

r

The University of

Nottingham




Pipeline Hazards
.

Reading Material

@ H&P: §5.1 Introduction to The Processor: Datapath and
Control

@ H&P: §6.1, An Overview of Pipelining
@ For more detailed information,

o H&P: §6.5, Data Hazards and Forwarding
o H&P: §6.6, Branch Hazards

The University of

Nottingham

r




	Processor Architecture
	Abstract View of MIPS Implementation
	Datapath and Control
	Multiplexors and Control Logic
	Functional Units and Their Timings
	Critical Paths and Instruction Timings

	Pipelining
	The Laundry Room Analogy
	A Production Line for Instructions
	Pipeline Overheads
	Designing ISAs for Pipelining

	Pipeline Hazards
	Obstacles to Pipelining
	Structural Hazards
	Data Hazards
	EX Forwarding
	MEM Forwarding
	Reordering Instructions
	Branch/Control Hazards
	Branch Prediction
	Reading Material


