Machines and their languages (GSlMAL) I hope that you are able to spot all the errors in the first program. It may be

actually suprising but the 2nd (strange looking) program is actually correct.
L t How do we know whether a program is syntactically correct? We would hope
eCture notes that this doesn’t depend on the compiler we are using.

Spring 2003 1.2

Thorsten Altenkirch L

January 29, 2004

1 Introduction .

Most references refer to the course text [[INMUOI]. Please, note that the 2nd
edition is quite different to the first one which appeared in 1979 and is a classical
reference on the subject.

I have also been using [Sch99] for those notes, but note that this book is written 3
in german.

The online version of this text contains some hyperlinks to webpages which 1.3
contain additional information. .
1.1 Examples on syntax

In PR1 and PR2 you are learning the language JAVA. Which of the following

programs are syntactically correct, i.e. will be accepted by the JAVA compiler

without error messages?

Hello-World.java .

public class Hello-World {

public static void main(String argc[3]) {
System:out.println(’Hello World’);

} L]
}
A.java
class A {
class B {
void C () {
4 {43}
¥
}
}

‘What is this course about?
Mathematical models of computation, such as:
e Finite automata,
e Pushdown automata,
e Turing machines
How to specify formal languages?
e Regular expressions
o Context free grammars
o Context sensitive grammars

The relation between 1. and 2.

Applications
Regular expressions
Regular expressions are a convenient ways to express patterns (i.e. for
search). There are a number of tools which use regular expressions:
— grep pattern matching program (UNIX)
— sed stream editor (UNIX)

— lex A generator for lexical analyzers (UNIX)

Grammars for programming languages.

The appendix of [GJSB00] contains a conteat free grammar specifying the
syntax of JAVA.

YACC is a tool which can be used to generate a C program (a parser)
from a grammar. Parser generators now also exist for other languages,
like Java CUP for Java.

Specifying protocols

See section 2.1 (pp 38 - 45) contains a simple example of how a protocol
for electronic cash can be specified and analyzed using finite automata.

1.4 History
1.4.1 The Chomsky Hierarchy

All languages

Type 0 or recursively enumerable languages

Turing machines

Type 1 or context sensitive
languages

Type 2 or context free
languages

pushdown automata

Type3or
regular languages
finite automata

Noam Chomsky introduced the Chomsky hierarchy which classifies grammars
and languages. This hierarchy can be amended by different types of machines
(or automata) which can recognize the appropriate class of languages.
Chomsky is also well known for his unusual views on society and politics.

1.4.2 Turing machines

Alan Turing (1912-1954) introduced an abstract model of computation, which
we call Turing machines, to give a precise definition which problems can be
solved by a computer. All the machines we are introducing can be viewed as
restricted versions of Turing machines.

I recommend Andrew Hodges biography Alan Turing: the Enigma.

1.5 Languages

In this course we will use the terms language and word different than in everyday
language:

e A language is a set of words.
e A word is a sequence of symbols.

This leaves us with the question: what is a symbol? The answer is: anything,
but it has to come from an alphabet ¥ which is a finite set. A common (and
important) instance is ¥ = {0, 1}.

More mathematically we say: Given an alphabet 3 we define the set X* as set
of words (or sequences) over X: the empty word ¢ € ¥* and given a symbol
z € ¥* and a word w € £* we can form a new word zw € ¥*. These are all the
ways elements on X* can be constructed (this is called an inductive definition).
E.g. in the example ¥ = {0,1}, typical elements of ¥* are 0010, 00000000,e.
Note, that we only write € if it apperas on its own, instead of 00e we just write
Oe. It is also important to realzie that although there are infinite many words,
each word has a finite length.

An important operation on X* is concatenation. Confusingly, this is denoted
by an invisible operator: given w,v € ¥* we can construct a new word wv €
¥* simply by concatenating the two words. We can define this operation by

primitive recursion:

e = v

(zw)v = x(wv)

A language L is a set of words, hence L C * or equivalently L € P(X). Here
are some informal examples of languages:

The set {0010,00000000, ¢} is a language over ¥ = {0,1}. This is an
example of a finite language.

The set of words with odd length over ¥ = {1}.

The set of words which contain the same number of Os and 1s is a language
over ¥ = {0,1}.

The set of words which contain the same number of 0s and 1s modulo 2
(i.e. both are even or odd) is a language over ¥ = {0, 1}.

The set of palindroms using the english alphabet, e.g. words which read
the same forwards and backwards like abba. This is a language over
{a,b,...,z}.

The set of correct Java programs. This is a language over the set of
UNICODE characters (which correspond to numbers between 0 and 216 —

1).

The set of programs, which if executed on a Windows machine, will print
the text “Hello World!” in a window. This is a language over ¥ = {0,1}.

(@3

2 Finite Automata

Finite automata correspond to a
We will introdus
to nondetern

computer with a fixed finite amount of memory.
¢ finite automata (DFA) first and then move
wtomata (NFA). An automaton will accept certain
of symbols of a given alphabet) and reject others. The set
alled the language of the automaton. We will show that
the class of languages which are accepted by DFAs and NFAs is the same.

2.1 Deterministic finite automata
2.1.1 What is a DFA?
A deterministic finite automaton (DFA) A = (Q, %, 4, qo, F) is given by:
1. A finite set of states Q,
2. A finite set of input symbols X,
3. A transition function 6 € Q@ X ¥ — Q,
4. An initial state ¢y € Q,
5. A set of accepting states ' C Q.
As an example consider the following automaton

D = ({90, 91,92}, {0,1},0p, 90, {g2})

where

op = {((90,0), 1), ((90, 1), 90), ((91,0), 41), (91, 1), g2). (g2, 0), q2), (g2, 1), 32) }

The DFA may be more conveniently represented by a transition table:

011

The table represents the function 4, i.e. to find the value of §(g,) we have to
look at the row labelled ¢ and the column labelled x. The initial state is marked
by an — and all final states are marked by .

Yet another, optically more inspiring, alternative are transition diagrams:

There is an arrow into the initial state and all final states are marked by double
rings. If §(¢q,z) = ¢ then there is an arrow from state ¢ to ¢’ which is labelled
z

We write X* for the set of words (i.e. sequences) over the alphabet ¥. This
includes the empty word which is written e. IL.e.

{0,1}* = {¢,0,1,00,01,10,11,000,... }

2.1.2 The language of a DFA

To each DFA A we associate a language L(A) C X*. To see whether a word
w € L(A) we put a marker in the initial state and when reading a symbol
forward the marker along the edge marked with this symbol. When we are in
an accepting state at the end of the word then w € L(A), otherwise w ¢ L(A).
In the example above we have that 0 ¢ L(D),101 € L(D) and 110 ¢ L(D).
Indeed, we have

L(D) = {w | w contains the substring 01}

To be more precise we give a formal definition of L(A). First we define the
extended transition function § € Q x ¥* — Q. Intuitively, S(Q,’w) =q if
starting from state ¢ we end up in state ¢’ when reading the word w. Formally,
b is defined by primitive recursion:

o(g,e) = 0]
¥(g.zw) = 6(5(q,x),w))

S

Here zw stands for a non empty word whose first symbol is x and the rest is w.
E.g. if we are told that xzw = 010 then this entails that = 0 and w = 10. w
may be empty, i.e. zw = 0 entails z =0 and w = .

As an example we calculate 5D(q0, 101) = g¢1:

dn(g0,101) = Ip(dp(g0,1),01) by (2)
= 0p(q,01) because dp(qo, 1) = qo
= 0p(dn(g,0),1) by (2)
= oplq,1) because 6p(qo,0) = q1
= op(dp(qr, 1)) Dby (2)
= 0p(g2:€) because dp(q1,1) = g2
= & by (1)

Using b we may now define formally:
L(A) = {w | b(qo,w) € F}

Hence we have that 101 € L(D) because dp(qo, 101) = g5 and g3 € Fp.

2.2 Nondeterministic Finite Automata
2.2.1 What is an NFA?

Nondeterministic finite automata (NFA) have transition functions which may
assign several or no states to a given state and an input symbol. They accept
a word if there is any possible transition from the one of initial states to one
of the final states. It is important to note that although NFAs have a non-
determistic transition function, it can always be determined whether or not a
word belongs to its language (w € L(A)). Indeed, we shall see that every NFA
can be translated into an DFA which accepts the same language.

Here is an example of an NFA C' which accepts all words over ¥ = {0,1} s.t.
the symbol before the last is 1.

A nondeterministic finite automaton (NFA) A = (Q,%,0,qo, F) is given by:
1. A finite set of states @,
2. A finite set of input symbols X,
3. A transition function 0§ € Q x ¥ — P(Q),
4. A set of initial state S C Q,
5. A set of accepting states ' C Q.

The differences to DFAs are to have start states instead of a single one and the
type of the transition function. As an example we have that

C = ({0, 91,42}, {0,1},0¢, {ao}, {42})

where d¢ so given by

oc 0 1

Note that we diverge he slightly from the definition in the book, which uses a
single initial state instead of a set of initial states. Doing so means that we can
avoid introducing e-NFAs (see [HMU01], section 2.5).

2.2.2 The language accepted by an NFA

To see whether a word w € £* is accepted by an NFA (w € L(A)) we may have
to use several markers. Initially we put one marker on the initial state. Then
each time when we read a symbol we look at all the markers: we remove the
old marker and put markers at all the states which are reachable via an arrow
marked with the current input symbol (this may include the state which was

marked in the previously). Thus we may have to use several marker but it may
also happen that all markers disappear (if no appropriate arrows exist). In this
case the word is not accepted. If at the end of the word any of the final states
has a marker on it then the word is accepted.

E.g. consider the word 100 (which is not accepted by C'). Initially we have

01

After reading 1 we have to use two markers because there are two arrows from
qo which are labelled 1:

01
0 @ Ql@@»

Now after reading 0 the automaton has still got two markers, one of them in an
accepting state:

01
© @ a1@§»

However, after reading the 2nd 0 the second marker disappears because there
is no edge leaving g2 and we have:

01
© 1 (@ Ql@@»

which is not accepting because no marker is in the accepting state.

To specify the extended transition function for NFAs we use an generalisation
of the union operation U on sets. We define | J to be the union of a (finite) set
of sets:

U{AI;A2~,~~~An} =AUAU---UA,
In the special cases of the empty sets of sets and a one element set of sets we
define:
Uo=¢ W4a=4
As an example
Ut 2,35 {131 = (13 u{2.33 U {13} = {1,2.3}

Actually, we may define | by comprehension, which also extends the operation
to infinite sets of sets (although we don’t need this here)

UB={x]134€Bac 4}

We define § € P(Q) x £* — P(Q) with the intention that §(S,w) is the set
of states which is marked after having read w starting with the initial markers
given by S.

5(S,€) S (3)
5(8,2w) = S(U{ﬁ(q,x) |qgeStw) (4)

As an example we calculate 5(; (g0, 100) which is {go} as we already know from
playing with markers.

0c({qo},100) = (E(‘(U{(i(‘ q,1) | ¢ € {qo}},00) by (4)
= dc(0c(,1),00)
= dc({qo, @1}, 00)
= 0c(U{dc(4,0) | ¢ € {a0,1}},0) by (4)
= 0c(0c(9,0) Udc(q1,0),0)
= odc({a}U{e},0)
= dc({q0.42},0)
= 0c(U{dc(q.0) | ¢ € {0, 223} €) by (4)
= dc(dc(q,0) Udc(gz,0),0)
= dc({ao}tU{}.)
= {q} by (3)

Using the extended transition function we define the language of an NFA as
A) = {w | 3(S,w) N F # {}}
This shows that 100 ¢ L(C) because

({40}, 100) = {go} N {22} = {}

2.2.3 The subset construction

DFAs can be viewed as a special case of NFAs, i.e. those for which the the there
is precisely one start state S = {qo} and the transition function returns always
one-element sets (i.e. 6(q,z) = {¢'} for all ¢ € Q and z €).

Below we show that for every NFA we can construct a DFA which accepts the
same language. This shows that NFAs aren’t more powerful as DFAs. However,
NFAs need a lot fewer states than the corresponding DFA and
they are easier to construct.

Given an NFA A = (Q, X%, 4,5, F) we construct the DFA

D(A) = (P(Q),%,p(a), S, Fp(a))

in some c

where

Ipa)(S2) = J{o(g,z) | g € S}
D) ={SCQnI[SNF#{}}

The basic idea of this construction (the subset construction) is to define a DFA
whose states are sets of states of the NFA. A final state of the DFA is a set

10

which contains at least a final state of the NFA. The transitions just follow the
active set of markers, i.e. a state S € P(Qn) corresponds to having markers on
all ¢ € S and when we follow the arrow labelled x we get the set of states which
are marked after reading z.

As an example let us consider the NFA C above. We construct a DFA D(C)

D(C) = (P({q0, 41, 92},{0,1},9p 0y, {90}, Fp(c))

with dp (¢ given by

Lemma 2.1 . .
Op(ay(S,w) = 04(S,w)

The result of both functions are sets of states of the NFA A: for the left hand
side because the extended transition function on NFAs returns sets of states and
for the right hand side because the states of D(A) are sets of states of A.

Proof: We show this by induction over the length of the word w, let’s write |w|

nee) ||

0 ‘ 1 for the length of a word.

~
-

— {ao}
{ar}
#{q2}

{ {
{0} {q0,¢1}
{a2} {a2}

{ {3

|w| =0 Then w = € and we have

5D(A)(S~€> =5 by (1)
= 0a(S,e) by (3)

{quQI} {lZoM]z} {1107(11-112} .
“{q0, g2} {q0} {q0,q1} |w| =n+1 Then w = zv with |v] = n.
Hoset | Ael | {e} Sp(Siar) = o @pen(Sial) by (2)
*{q0, 1,2} || {20, a2} | {90, a1, q2} = 54(p(a)(5.2).0) ind.hyp.

and Fp(c) is the set of all the states marked with = above,i.e. = da(U{da(q.)| ¢ € S},v)

= 04(S,zv) by (4)

Fpey = {{a2}, {90, @2}, {a1, @2}, {90, @15 @2} }
. i .]
Looking at the transition diagram: ‘We can now use the lemma to show
Theorem 2.2
0 L(A) = L(D(4))
OQ Proof:
roof:
({0} T> w e L(A)
<= Definition of L(A) for NFAs
0a(S,w) N Fa # {}
{q1} <= Lemma 2.1
0p(A)(S,w) N Fa # {}
<= Definition of Fp(A)
0p(A)(S,w) € Fp(a)
<= Definition of L(A) for DFAs
w € Lp(a)

we note that some of the states ({},{q1},{q2},{q1,¢2}) cannot be reached from o

the initial state, which means that they can be omitted without changing the

language. Hence we obtain the following automaton: Corollary 2.3 NFAs and DFAs recognize the same class of languages.

Proof: We have noticed that DFAs are just a special case of NFAs. On the
0 other hand the subset construction introduced above shows that for every NFA

()Q /—\ we can find a DFA which recognizes the same language. [m]
1
- o ()
1

We still have to convince ourselves that the DFA D(A) accepts the same lan-
guage as the NFA A, i.e. we have to show that L(A) = L(D(A)). 12
As a lemma we show that the extended transition functions coincide:

11

