
3 Regular expressions

Given an alphabet Σ a language is a set of words L ⊆ Σ∗. So far we were able to
describe languages either by using set theory (i.e. enumeration or comprehen-
sion) or by an automaton. In this section we shall introduce regular expressions

as an elegant and concise way to describe languages. We shall see that the
languages definable by regular expressions are precisely the same as those ac-
cepted by deterministic or nondeterministic finite automata. These languages
are called regular languages or (according to the Chomsky hierarchy) Type 3
languages.
As already mentioned in the introduction regular expressions are used to define
patterns in programs such as grep. grep gets as an argument a regular ex-
pression and then filters out all those lines from a file which match the regular
expression, where matching means that the line contains a substring which is
in the language assigned to the regular expression. It is interesting to note that
even in the case when we search for a specific word (this is a special case of a
regular expresion) programs like grep are more efficient than a naive implemen-
tation of word search.
To find out more about grep have a look at the UNIX manual page and play
around with grep. Note that the syntax grep uses is slightly different from
the one we use here. grep also use some convenient shorthands which are not
relevant for a theoretical analysis of regular expressions because they do not
extend the class of languages.

3.1 What are regular expressions?

We assume as given an alphabet Σ (e.g. Σ = {a, b, c, . . . , z}) and define the
syntax of regular expressions (over Σ)

1. ∅ is a regular expression.

2. ε is a regular expression.

3. For each x ∈ Σ , x is a regular expression. E.g. in the example all small
letters are regular expression. We use boldface to emphasize the difference
between the symbol a and the regular expression a.

4. If E and F are regular expressions then E + F is a regular expression.

5. If E and F are regular expressions then EF (i.e. just one after the other)
is a regular expression.

6. If E is a regular expression then E∗ is a regular expression.

7. If E is a regular expression then (E) is a regular expression.

These are all regular expressions.
Here are some examples for regular expressions:

• ε

• hallo

• hallo + hello

13

• h(a + e)llo

• a∗b∗

• (ε + b)(ab)∗(ε + a)

As in arithmetic they are some conventions how to read regular expressions:

• ∗ binds stronger then sequence and +. E.g. we read ab∗ as a(b∗). We
have to use parentheses to enforce the other reading (ab)∗.

• Sequencing binds stronger than +. E.g. we read ab + cd as (ab) + (bc).
To enforce another reading we have to use parentheses as in a(b + c)d.

3.2 The meaning of regular expressions

We now know what regular expressions are but what do they mean?
For this purpose, we shall first define an operation on languages called the Kleene

star. Given a language L ⊆ Σ∗ we define

L∗ = {w0w1 . . . wn−1 | n ∈ N ∧ ∀i < n.wi ∈ L}

Intuitively, L∗ contains all the words which can be formed by concatenating an
arbitrary number of words in L. This includes the empty word since the number
may be 0.
As an example consider L = {a, ab} ⊆ {a, b}∗:

L∗ = {ε, a, ab, aab, aba, aaab, aaba, . . . }

You should notice that we use the same symbol as in Σ∗ but there is a subtle
difference: Σ is a set of symbols but L ⊆ Σ∗ is a set of words.
Alternatively (and more abstractly) one may describe L∗ as the least language
(wrt ⊆) which contains L and the empty word and is closed under concatenation:

w ∈ L∗ ∧ v ∈ L∗ =⇒ wv ∈ L∗

We now define the semantics of regular expressions: To each regular expression
E over Σ we assign a language L(E) ⊆ Σ∗. We do this by induction over the

definition of the syntax :

1. L(∅) = ∅

2. L(ε) = {ε}

3. L(x) = {x}
where x ∈ Σ.

4. L(E + F) = L(E) ∪ L(F)

5. L(EF) = {wv | w ∈ L(E) ∧ v ∈ L(F)}

6. L(E∗) = L(E)∗

7. L((E)) = L(E)

14

Subtle points: in 1. the symbol ∅ may be used as a regular expression (as in
L(∅)) or the empty set (∅ = {}). Similarily, ε in 2. may be a regular expression
or a word, in 6. ∗ may be used to construct regular expressions or it is an
operation on languages. Which alternative we mean becomes only clear from
the context, there is no generally agreed mathematical notation 1 to make this
difference explicit.
Let us now calculate what the examples of regular expressions from the previous
section mean, i.e. what are the langauges they define:

ε

L(ε) = {ε}

By 2.

hallo

Let’s just look at L(ha). We know from 3:

L(h) = {h}

L(a) = {a}

Hence by 5:

L(ha) = {wv | w ∈ {h} ∧ v ∈ {a}}

= {ha}

Continuing the same reasoning we obtain:

L(hallo) = {hallo}

hallo + hello

From the previous point we know that:

L(hallo) = {hallo}

L(hello) = {hello}

Hence by using 4 we get:

L(hallo + hello) = {hallo} ∪ {hello}}

= {hallo, hello}

h(a + e)llo

Using 3 and 4 we know

L(a + e) = {a, e}

Hence using 5 we obtain:

L(h(a + e)llo) = {uvw | u ∈ L(h) ∧ v ∈ L(a + e) ∧ w ∈ L(llo)}

= {uvw | u ∈ {h} ∧ v ∈ {a, e} ∧ w ∈ {(llo}}

= {hallo, hello}

1This is different in programming, e.g. in JAVA we use ". . . " to signal that we mean things

literally.

15

a∗b∗

Let us introduce the following notation:

wi = ww . . . w
︸ ︷︷ ︸

i times

Now using 6 we know that

L(a∗) = {w0w1 . . . wn−1 | n ∈ N ∧ ∀i < n.wi ∈ L(a)}

= {w0w1 . . . wn−1 | n ∈ N ∧ ∀i < n.wi ∈ {a}}

= {an | n ∈ N}

and hence using 5 we conclude

L(a∗b∗) = {uv | u ∈ L(a∗) ∧ v ∈ L(b∗)}

= {uv | u ∈ {an | n ∈ N} ∧ v ∈ {am | m ∈ N}}

= {anbm | m, n ∈ N}

I.e. L(a∗b∗) is the set of all words which start with a (possibly empty)
sequence of as followed by a (possibly empty) sequence of bs.

(ε + b)(ab)∗(ε + a)

Let’s analyze the parts:

L(ε + b) = {ε, b}

L((ab)∗) = {abi | i ∈ N}

L(ε + b) = {ε, b}

Hence, we have

L((ε + b)(ab)∗(ε + a)) = {u(ab)iv | u ∈ {ε, b} ∧ i ∈ N ∧ v ∈ {ε, b}

In english: L((ε + b)(ab)∗(ε + a)) is the set of (possibly empty) sequences
of interchanging as and bs.

3.3 Translating regular expressions to NFAs

Theorem 3.1 For each regular expression E we can construct ab NFA N(E)
s.t. L(N(E)) = L(E), i.e. the automaton accepts the language described by the

regular expression.

Proof:
We do this again by induction on the syntax of regular expressions:

1. N(∅):

16

N(0)

which will reject everything (it has got no final states) and hence

L(N(∅)) = ∅

= L(∅)

2. N(ε):

N()ε

This automaton accepts the empty word but rejects everything else, hence:

L(N(ε)) = {ε}

= L(ε)

3. N(x):

17

x

N(x)

This automaton only accepts the word x, hence:

L(N(x)) = {x}

= L(x)

4. N(E + F):

We merge the diagrams for N(E) and N(F) into one:

N(E)

N(F)

N(E+F)

I.e. given

N(E) = (QE , Σ, δE , SE , FE)

N(F) = (QF , Σ, δF , SF , FF)

Now we use the disjoint union operation on sets (see the MCS lecture

18

notes [Alt01], section 4.1)

QE+F = QE + QF

δE+F ((0, q), x) = {(0, q′) | q′ ∈ δE(q, x)}

δE+F ((1, q)), x = {(1, q′) | q′ ∈ δF (q, x)}

SE+F = SE + SF

FE+F = FE + FF

N(E + F) = (QE+F , Σ, δE+F , SE+F , FE+F)

The disjoint union just signals that we are not going to identify states,
even if they accidently happen to have the same name.

Just thinking of the game with markers you should be able to convince
yourself that

L(N(E + F)) = L(N(E)) ∪ L(N(F))

Moreover to show that

L(N(E + F)) = L(E + F)

we are allowed to assume that

L(N(E)) = L(E)

L(N(F)) = L(F)

that’s what is meant by induction over the syntax of regular expressions.

Now putting everything together:

L(N(E + F)) = L(N(E)) ∪ L(N(F))

= L(E) ∪ L(F)

= L(E + F)

5. N(EF):

We want to put the two automata N(E) and N(F) in series. We do this
by connecting the final states of N(E) with the initial states of N(F) in
a way explained below.

N(F)N(E)

N(EF)

19

In this diagram I only depicted one initial and one final state of each of
the automata although they may be several of them.

Here is how we construct N(EF) from N(E) and N(F):

N(E) = (QE , Σ, δE , SE , FE)

N(F) = (QF , Σ, δF , SF , FF)

• The states of N(EF) are the disjoint union of the states of N(E)
and N(F):

QEF = QE + QF

• The transition function of N(EF) contains all the transitions of N(E)
and N(F) (as for N(E +F)) and for each state q of N(E) which has
a transition to a final state of N(E) we add a transition with the
same label to all the initial states of N(F).

δEF ((0, q), x) = {(0, q′) | q′ ∈ δE(q, x)}

∪ {(1, q′′) | ∃q′.q′ ∈ δE(q, x) ∧ q′′ ∈ SE}

δEF ((1, q)) = {(1, q′) | q′ ∈ δF (q))}

• The initial states of N(EF) are the initial states of N(E), and the
initial states of N(F) if there is an initial state of N(E) which is also
a final state.

SEF = {(0, q) | q ∈ SE} ∪ {(1, q) | q ∈ SF ∧ SE ∩ FE 6= ∅}

• The final states of N(EF) are the final states of N(F).

FEF = {(1, q) | q ∈ FF }

We now set
N(EF) = (QEF , Σ, δEF , SEF , ZEF)

I hope that you are able to convince yourself that

L(N(EF)) = {uv | u ∈ L(N(E)) ∧ v ∈ L(N(F))

and hence we can reason

L(N(EF)) = {uv | u ∈ L(N(E)) ∧ v ∈ L(N(F)) = {uv | u ∈ L(E) ∧ v ∈ L(F)

= L(EF)

6. N(E∗):

We construct N(E∗) from N(E) by merging initial and final states of
N(E) in a way similar to the previous construction and we add a new
state ∗ which is initial and final.

20

N(E)

N(E*)

*

Given

N(E) = (QE , Σ, δE , SE , FE)

we construct N(E∗).

• We add one extra state ∗:

QE∗ = QE + {∗}

• NE
∗ inherits all transitions form NE and for each state which has

an arrow to the final state labelled x we also add an arrow to all the
initial states labelled x.

δE∗((0, q), x) ={(0, q′) | q′ ∈ δE(q, x)}

∪ {(0, q′) | ∃δE(q, x) ∩ FE 6= ∅ ∧ q′ ∈ SE}

• The initial states of N(E∗) are the initial states of N(E) and ∗:

SE∗ = {(0, q) | q ∈ SE} ∪ {(1, ∗)}

• The final states of NE∗ are the final states of NE and ∗:

FE∗ = {(0, q) | q ∈ FE} ∪ {(1, ∗)}

We define
N(E∗) = (QE∗ , Σ, δE∗ , SE∗ , FE∗)

We claim that

L(N(E∗)) = {w0w1 . . . wn−1 | n ∈ N ∧ ∀i < n.wi ∈ L(N(E))}

21

since we can run through the automaton an arbitrary number of times.
The new state ∗ allows us also to accept the empty sequence. Hence:

L(N(E∗)) = {w0w1 . . . wn−1 | n ∈ N ∧ ∀i < n.wi ∈ L(N(E))}

= L(N(E))∗

= L(E)∗

= L(E∗)

7. N((E)) = N(E)

I.e. using brackets does not change anything.

�

As an example we construct N(a∗b∗). First we construct N(a):

a

N(a)

Now we have to apply the ∗-construction and we obtain:

a

N(a*)

a

N(b∗) is just the same and we get

22

a

N(a*)

a

N(b*)

b

b

and now we have to serialize the two automata and we get:

b

a

N(a*b*)

b

a

a

a

Now, you may observe that this automaton, though correct, is unnecessary
complicated, since we could have just used

a

a b

However, we shall not be concerned with minimality at the moment.

3.4 Summing up . . .

From the previous section we know that a language given by regular expression is
also recognized by a NFA. What about the other way: Can a language recognized
by a finite automaton (DFA or NFA) also be described by a regular expression?
The answer is yes:

Theorem 3.2 (Theorem 3.4, page 91) Given a DFA A there is a regular

expression R(A) which recognizes the same language L(A) = L(R(A)).

We omit the proof (which can be found in the [HMU01] on pp.91-93). However,
we conclude:

Corollary 3.3 Given a language L ⊆ Σ∗ the following is equivalent:

23

1. L is given by a regular expression.

2. L is the language accepted by an NFA.

3. L is the language acceped by a DFA.

Proof: We have that 1. =⇒ 2 by theorem 3.1. We know that 2. =⇒ 3. by2.2
and 3. =⇒ 1. by 3.2. �

As indicated in the introduction: the languages which are characterized by
any of the three equivalent conditions are called regular languages or type-3-

languages.

24

