6 Pushdown Automata

We will now consider a new notion of automata Pushdown Automata (PDA).
PDAs are finite automata with a stack, i.e. a data structure which can be used
to store an arbitrary number of symbols (hence PDAs have an infinite set of
states) but which can be only accessed in a last-in-first-out (LIFO) fashion.
The languages which can be recognized by PDA are precisely the context free
languages.

6.1 What is a Pushdown Automaton?

A Pushdown Automaton P = (Q,%,T,4d,qo, Zo, F') is given by the following
data

e A finite set @ of states,
o A finite set ¥ of symbols (the alphabet),
e A finite set T' of stack symbols,
e A transition function
deQx (XU{e}) xT' = Pn(Q x T'*)
Here Pg,(A) are the finite subsets of a set, i.e. this can be defined as
Pan(A) = {X | X € A A Xis finite.}
e An initial state ¢y € Q,
e An initial stack symbol Z; € T,
e A set of final states F C Q.

As an example we consider a PDA P which recognizes the language of even
length palindromes over ¥ = {0,1} — L = {ww® | w € {0,1}*}. Intuitively,
this PDA pushes the input symbols on the stack until it guesses that it is in
the middle and then it compares the input with what is on the stack, popping
of symbols from the stack as it goes. If it reaches the end of the input precisely
at the time when the stack is empty, it accepts.

Po = ({90, 91,42}, {0, 1}, {0, L, #}, 6, qo. #. {q2})
where ¢ is given by the following equations:

(g0, 0,#) = {(q0,0#)}

0(go. 1, #) = {(a0,1#)}
5(9,0,0) = {(g0,00)}
3(q0,1,0) = {(q0,10)}
3(90,0,1) = {(g0,01)}
3(q,1,1) = {(g0,11)}
3(qo, e, %) = {(q1,#)}
(g0, €.0) = {(a1,0)}
3(q0,6,1) = {(q, 1)}
3(q1,0,0) = {(q1,€)}
a1, 1,1) = {(q1.€)}
a6, #) = {(g2,0)}
oqw,z) = {} everywhere else

To save space we may abbreviate this by writing:

0(a0,w,2) = {(qo,72)}
9062 = {(n,2)}
(q1,€)}

o(
g, ma) = |
g #) = {(g20)}
8(¢q,z,2) = {} everywhere else
where ¢ € Q,z € ¥,z € I'. We obtain the previous table by expanding all the
possibilities for ¢, z, z.
We draw the transition diagram of P by labelling each transition with a triple
v, Z,ywithze X, Zel,yel™:

X,Z,XZ XX, €

(@) a

£.22 e#e

6.2 How does a PDA work?

At any time the state of the computation of a PDA P = (Q,%,T, 4, qo, Zo, F) is
given by:

e the state ¢ € @ the PDA is in,
e the input string w € ¥* which still has to be processed,
e the contents of the stack v € I'*.

Such a triple (g, w,7) € @ X ¥* x I'* is called an Instantanous Description (ID).
We define a relation pC ID X ID between IDs which describes how the PDA can
change from one ID to the next one. Since PDAs in general are nondeterministic
this is a relation (not a function), i.e. there may be more than one possibility.
There are two possibilities for p:

1. (¢,zw,2zv) Fp (¢, w,ay) if (¢, a) € d(q, z, 2)

2. (q,w,27) Fp (¢ w,a7) if (¢, @) € 8(g, €, 2)
In the first case the PDA reads an input symbol and consults the transition
function ¢ to calculate a possible new state ¢’ and a sequence of stack symbols
« which replace the currend symbol on the top z.
In the second case the PDA ignores the input and silently moves into a new
state and modifies the stack as above. The input is unchanged.

Consider the word 0110 — what are possible sequences of IDs for Py starting
with (go,0110,#) ?

(90,0110,#) Fp, (90,110,0#) 1. with (go,0#) € 0(qo. 0, #)
. with (go, 10) € (go,1,0)

( 1 (
( 1 (
Fpy (q1,10,104) 2. with (q1,1) € d(go, €, 1)
( 1 (
( 1 (
( 2 (

o)
2

—
L
—
=)
*®

q1,0,04) . with (q1,€) € 6(q1,1,1)
1,6, #) . with (q1,€) € 6(¢1,0,0)
Fr, (q2,€€) - with (g2, €) € 6(q1, €, %)

34



We write (¢, w,7) Fp (¢/,w’,~) if the PDA can move from (¢, w,) to (¢/,w’,~")
in a (possibly empty) sequence of moves. Above we have shown that

(90,0110, %) i (g2, €, €).

However, this is not the only possible sequence of IDs for this input. E.g. the
PDA may just guess the middle wrong:

(g0, 0110, #) p, (g0,110,04) 1. with (go,0#) € d(qo,0, #)
Fp, (q1,110,0#) 2. with (g1,0) € 6(qo, €, 0)

We have shown (qo, 0110, #) =5, (q1,110,04). Here the PDA gets stuck there
is no state after (qi,110,0#).

If we start with a word which is not in the language L (like 0011) then the
automaton will always get stuck before reaching a final state.

6.3 The language of a PDA

There are two ways to define the language of a PDA P = (Q, %, T, 6, qo, Zo, F)
(L(P) C ©*) because there are two notions of acceptance:

Acceptance by final state
L(P) ={w] (qo,w, Zo) Fp (¢, 7) Nq € F}

That is the PDA accepts the word w if there is any sequence of IDs starting
from (qo,w, Zp) and leading to (g,€,7), where ¢ € F is one of the final
states. Here it doesn’t play a role what the contents of the stack are at
the end.

In our example the PDA P, would accept 0110 because (go, 0110, #) Fh,
(g2, €, €) and g2 € F. Hence we conclude 0110 € L(F).

On the other hand since there is no successful sequence of IDs starting
with (go, 0011, #) we know that 0011 ¢ L(FP).

Acceptance by empty stack

L(P) = {w | (q0,w, Z0) Fp (¢,€,€)}

That is the PDA accepts the word w if there is any sequence of IDs starting
from (qo, w, Zy) and leading to (g, €, €), in this case the final state plays no
role.

If we specify a PDA for acceptance by empty stack we will leave out the
set of final states F' and just use P = (Q,%,T, 4, o, Zo).

Our example automaton Py also works if we leave out F' and use accep-
tance by empty stack.

We can always turn a PDA which use one acceptance method into one which uses
the other. Hence, both acceptance criteria specify the same class of languages.

35

6.4 Deterministic PDAs

We have introduced PDAs as nondeterministic machines which may have several
alternatives how to continue. We now define Deterministic Pushdown Automata
(DPDA) as those which never have a choice.
To be precise we say that a PDA P = (Q,%,T,6, o, Zo, F) is deterministic (is
a DPDA) iff

16(a,2,2)| + 16(q, €, )] < 1

Remember, that | X| stands for the number of elements in a finite set X.

That is: a DPDA may get stuck but it has never any choice.

In our example the automaton P is not deterministic, e.g. we have §(qo. 0, #) =
{(a0,04#)} and 6(qo. €, #) = {(q1, #)} and hence |d(qo, 0, #)| + [0(qo, €, #)| = 2.
Unlike the situation for finite automata, there is in general no way to translate a
nondeterministic PDA into a deterministic one. Indeed, there is no DPDA which
recognizes the language L | Nondeterministic PDAs are more powerful
than deterministic PDAs.

However, we can define a similar language L’ over ¥ = {0,1,$} which can be
recognized by a deterministic PDA:

L' = {w$w™ | w € {0,1}*}

That is L' contains palindroms with a marker $ in the middle, e.g. 01810 € L'.
‘We define a DPDA P, for L':

P = ({90,91,92},{0,1,8},{0, 1, #}. 6", qo. #. {a2})

where ¢ is given by:

6(go,2,2) = {(q,zz) 2€{0,1}}
8(a0.8,2) = {(a1.2)}
oar,z,z) = {(a.€)}
Oa.e#) = {lae)}
6(q,z,2) = {} everywhere else
Here is its transition graph:
X,ZXZ XX, €

@ $zz &

‘We can check that this automaton is deterministic. In particular the 3rd and
4th line cannot overlap because # is not an input symbol.

Different to PDAs in general the two acceptance methods are not equivalent for
DPDAs — acceptance by final state makes it possible to define a bigger class of
langauges. Hence, we shall always use acceptance by final state for DPDAs.

36



6.5 Context free grammars and push-down-automata
Theorem 6.1 For a language L C X* the following is equivalent:

1. L is given by a CFG G, L = L(G).

2. L is the language of a PDA P, L = L(P).

To summarize: Context Free Languages (CFLs) can be described by a Context
Free Grammar (CFG) and can be processed by a pushdown automaton.

We will he only show how to construct a PDA from a grammar - the other
direction is shown in [HMUO1] (6.3.2, pp. 241).

Given a CFG G = (V, %, S, P), we define a PDA

P(G) = ({¢0}, 2, VUX,0,90,5)
where ¢ is defined as follows:
0(qo, €, A) = {(q0, ) | A= a € P}
forall Ae V.
(g0, @, a) = {(qo, €)}
for all a € X.

/e haven’t given a set of final states because we use acceptance by empty stack.
Yes, we use only one state!
Take as an example G = ({E, T, F},{(,),a,+, *}, E, P) where

P={E—-T|E+T

T—F|T+F
F—al(E)
we define
P(G) = ({a0},{(), a, +, %} {E, T, F, (;), @, +, %}, 6, g0, E)
with
(g0, 6, E) = {(q0, T), (g0, E + T)}
(q0,6,T) = {(qo, F), (qo,T*F>}
(g0, €, F) = {(q0, ), (g0, (E))}
6(q0, , O = {(qo,e>}
6(g0,3,)) = {(qo, )}
6(q0,2,2) = {(qo, )}
(g0, +,+) = {(qo, )}
6(q0, %, %) = {(qo, )}

37

How does the P(G) accept a + (axa)?

(0.2 + (axa), E)F (a*a), E+T)
(axa), T+1)
(axa), F+T")
(axa),a+T)
qo,+ (axa),+T)
qo, (axa),T)

qo, (axa),F)

q0, (axa), (E))

q, axa),E))

q0, axa),T))

qo, axa), T x F))
qo, axa),FxF))
q0, a*a),ax*F))
qo, *a),*F))

q, a),F))

q0, a),a))

+
+
+
+

T T T T T T T T T T T T T T T TT

Hence a + (a*a) € L(P(Q)).
This example hopefully already illustrates the general idea:

w € L(G)
—
S=...=w
<~

(g0,w, S) F -+ (g0, €, €)
— we L(P(G))
The automaton we have constructed is very non-deterministic: Whenever we

have a choice between different rules the automaton may silently choose one of
the alternative.

38



