
8 Turing machines and the rest

A Turing machine (TM) is a generalization of a PDA which uses a tape instead
of a stack. Turing machines are an abstract version of a computer - they have
been used to define formally what is computable. There are a number of al-
ternative approaches to formalize the concept of computability (e.g. called the
λ-calculus, or µ-recursive functions, . . . ) but they can all shown to be equiv-
alent. That this is the case for any reasonable notion of computation is called
the Church-Turing Thesis.
On the other side there is a generalization of context free grammars called phrase
structure grammars or just grammars. Here we allow several symbols on the
left hand side of a production, e.g. we may define the context in which a rule
is applicable. Languages definable by grammars correspond precisely to the
ones which may be accepted by a Turing machine and those are called Type-0-
languages or the recursively enumerable languages (or semidecidable languages)
Turing machines behave different from the previous machine classes we have
seen: they may run forever, without stopping. To say that a language is accepted
by a Turing machine means that the TM will stop in an accepting state for each
word which is in the language. However, if the word is not in the language the
Turing machine may stop in a non-accepting state or loop forever. In this case
we can never be sure whether the given word is in the language - i.e. the Turing
machine doesn’t decide the word problem.
We say a language is recursive (or decidable), if there is a TM which will always
stop. There are type-0-languages which are not recursive — the most famous
one is the halting problem. This is the language of encodings of Turing machines
which will always stop.
There is no type of grammars which captures all recursive languages (and for
theoretical reasons there cannot be one). However there is a subset of recur-
sive languages which are called context-sensitive languages which are given by
context-sensitive grammars, these are those grammars where the left hand side
of a production is always shorter than the right hand side. Context sensitive
languages on the other hand correspond to linear bounded TMs, these are those
TMs which use only a tape whose length can be given by a linear function over
the length of the input.

8.1 What is a Turing machine?

A Turing machine M = (Q, Σ, Γ, δ, q0, B, F ) is given by the following data

• A finite set Q of states,

• A finite set Σ of symbols (the alphabet),

• A finite set Γ of tape symbols s.t. Σ ⊆ Γ. This is the case because we use
the tape also for the input.

• A transition function

δ ∈ Q × Γ → {stop} ∪ Q × Γ × {L, R}

The transition function defines how the function behaves if is in state q
and the symbol on the tape is x. If δ(q, x) = stop then the machine stops

45

otherwise if δ(q, x) = (q′, y, d) the machines gets into state q′, writes y on
the tape (replacing x) and moves left if d = L or right, if d = R

• An initial state q0 ∈ Q,

• The blank symbol B ∈ Γ but B /∈ Σ. In the beginning only a finite section
of the tape containing the input is not blank.

• A set of final states F ⊆ Q.

In [HMU01] the transition function is defined without the stop option as δ ∈
Q×Γ → Q×Γ×{L, R}. However they allow δ to be undefined which correspond
to our function returning stop.
This defines deterministic Turing machines, for non-deterministic TMs we change
the transition function to

δ ∈ Q × Γ → P(Q × Γ × {L, R})

Here stop corresponds to δ returning an empty set. As for finite automata
(and unlike for PDAs) there is no difference in the strength of deterministic or
non-deterministic TMs.
As for PDAs we define instantaneous descriptions ID for Turing machines. We
have ID = Γ∗ × Q × Γ∗ where (γl, q, γr) ∈ ID means that the TM is in state Q
and left from the head the non-blank part of the tape is γl and starting with
the head itself and all the non-blank symbols to the right is γr.
We define the next state relation `M similar as for PDAs:

1. (γl, q, xγr) `M (γly, q′, γr) if δ(q, x) = (q′, y, R)

2. (γlz, q, xγr) `M (γl, q
′, zyγr) if δ(q, x) = (q′, y, L)

3. (γl, q, ε) `M (γly, q′, γr) if δ(q, B) = (q′, y, R)

4. (ε, q, xγr) `M (γl, q
′, Byγr) if δ(q, x) = (q′, y, L)

The cases 3. and 4. are only needed to deal with the situation if we have reached
the end of the (non-blank part of) the tape.
We say that a TM M accepts a word if it goes into an accepting state, i.e. the
language of a TM is defined as

L(M) = {w ∈ Σ∗ | (ε, q0, w) `∗

M (γl, q
′, γr) ∧ q′ ∈ F}

I.e. the TM stops automatically if it goes into an accepting state. However, it
may also stop in a non-accepting state if δ returns stop - in this case the word
is rejected.
A TM M decides a language if it accepts it and it never loops (in the negative
case).
To illustrate this we define a TM M which accepts the language L = {anbncn |
n ∈ N} — this is a language which cannot be recognized by a PDA or be defined
by a CFG.
We define M = (Q, Σ, Γ, δ, q0, B, F ) by

• Q = {q0, q1, q2, q3, q4, q5, q6}

• Σ = {a, b, c}

46



• Γ = Σ ∪ {X, Y, Z,  }

• δ is given by

δ(q0,  ) = ( , q6, R)

δ(q0, a) = (X, q1, R)

δ(q1, a) = (a, q1, R)

δ(q1, Y ) = (Y, q1, R)

δ(q1, b) = (Y, q2, R)

δ(q2, b) = (b, q2, R)

δ(q2, Z) = (Z, q2, R)

δ(q2, c) = (Z, q3, R)

δ(q3,  ) = ( , q5, L)

δ(q3, c) = (c, q4, L)

δ(q4, Z) = (Z, q4, L)

δ(q4, b) = (b, q4, L)

δ(q4, Y ) = (Y, q4, L)

δ(q4, a) = (a, q4, L)

δ(q4, X) = (X, q0, R)

δ(q5, Z) = (Z, q5, L)

δ(q5, Y ) = (Y, q4, L)

δ(q5, X) = (X, q6, R)

δ(q, x) = stop everywhere else

• q0 = q0

• B =  

• F = {q6}

The machine replaces an a by X (q0) and then looks for the first b replaces it
by Y (q1) and looks for the first c and replaces it by a Z (q2). If there are more
cs left it moves left to the next a (q4) and repeats the cycle. Otherwise it checks
whether there are no as and bs left (q5) and if so goes in an accepting state (q6).
Graphically the machine can be represented by the following transition diagram,
where the edges are labelled by (read-symbol,write-symbol,move-direction):

47

Y,Y,L

Z,Z,L

b,b,L

a,a,L

q0 q1 q2 q3

q4
q5

q6

a,X,R b,Y,R c,Z,R

a,a,R

Y,Y,R

b,b,R

Z,Z,R

c,c,LX,X,R

 , ,L

Z,Z,L

Y,Y,L

X,X,R

E.g. consider the sequence of IDs on aabbcc:

(ε, q0, aabbcc) ` (X, q1, abbcc)

` (Xa, q1, bbcc)

` (XaY, q2, bcc)

` (XaYb, q2, cc)

` (XaYbZ, q3, c)

` (XaYb, q4, Zc)

` (XaY, q4, bZc)

` (Xa, q4, YbZc)

` (X, q4, aYbZc)

` (ε, q4, XaYbZc)

` (X, q0, aYbZc)

` (XX, q1, YbZc)

` (XXY, q1, bZc)

` (XXYY, q2, Zc)

` (XXYYZ, q2, c)

` (XXYYZZ, q2, ε)

` (XXYYZ, q5, Z)

` (XXYY, q5, ZZ)

` (XXY, q5, YZZ)

` (XX, q5, YYZZ)

` (X, q5, XYYZZ)

` (ε, q6, XXYYZZ)

We see that M accepts aabbcc. Since M never loops it does actually decide L.

8.2 Grammars and context-sensitivity

Grammars G = (V, Σ, S, P ) are defined as context-free grammars before with
the only difference that there may be several symbols on the left-hand side of a
production, i.e. P ⊆ (V ∪ T )+ × (V ∪ T )∗. Here (V ∪ T )+ means that at least

48



one symbol has to present. The relation derives ⇒G (and ⇒∗

G
) is defined as

before

⇒G ⊆ (V ∪ T )∗ × (V ∪ T )∗

αβγ ⇒G αβ′γ : ⇐⇒ β → β′ ∈ P

and as before the language of G is defined as

L(G) = {w ∈ Σ∗ | S ⇒∗

G w}

We say that a grammar is context-sensitive (or type 1) if the left hand side of a
production is at least as long as the right hand side. That is for each α → β ∈ P
we have |α| ≤ |β|
Here is an example of a context sensitive grammar: G = (V, Σ, S, P ) with
L(G) = {{anbncn | n ∈ N ∧ n ≥ 1}. where

• V = {S, B, C}

• Σ = {a, b, c}

•

P = {S → aSBC

S → aBC

aB → ab

CB → BC

bB → bb

bC → bc

cC → cc}

We present without proof:

Theorem 8.1 For a language L ⊆ Σ∗ the following is equivalent:

1. L is accepted by a Turing machine M , i.e. L = L(M)

2. L is given by a grammar G, i.e. L = L(G)

Theorem 8.2 For a language L ⊆ Σ∗ the following is equivalent:

1. L is accepted by a Turing machine M , i.e. L = L(M) such that the length
of the tape is bounded by a linear function in the length of the input, i.e.
|γl| + |γr| ≤ f(x) where f(x) = ax + b with a, b ∈ N.

2. L is given by a context sensitive grammar G, i.e. L = L(G)

8.3 The halting problem

Turing showed that there are languages which are accepted by a TM (i.e. type 0
languages) but which are undecidable. The technical details of this construction
are quite involved but the basic idea is quite simple and is closely related to
Russell’s paradox, which we have seen in MCS.

49

Let’s fix a simple alphabet Σ = {0, 1}. As computer scientist we are well aware
that everything can be coded up in bits and hence we accept that there is an
encoding of TMs in binary. I.e. given a TM M we write dMe ∈ {0, 1}∗ for its
binary encoding. We assume that the encoding contains its length s.t. we know
when subsequent input on the tape starts.
Now we define the following language

Lhalt = {dMew | M holds on input w.}

It is easy (although the details are quite daunting) to define a TM which accepts
this language: we just simulate M and accept if M stops.
However, Turing showed that there is no TM which decides this language. To
see this let us assume that there is a TM H which decides L. Now using H we
construct a new TM F which is a bit obnoxious: F on input x runs H on xx.
If H says yes then F goes into a loop otherwise (H says no) F stops.
The question is what happens if I run F on dF e? Let us assume it terminates,
then H applied to dF edF e returns yes and hence we must conclude that F on
dF e loops??? On the other hand if F with input dF e loops then H applied to
dF edF e will stop and reject and hence we have to conclude that F on dF e will
stop?????
This is a contradiction and hence we must conclude that our assumption that
there is a TM H which decides Lhalt is false. We say Lhalt is undecidable.
We haven shown that a Turing machine cannot decide whether a program (for
a Turing machine) halts. Maybe we could find a more powerful programming
language which overcomes this problem? It turns out that all computational
formalisms (i.e. programming languages) which can actually be implemented
are equal in power and can be simulated by each other — this observation
is called the Church-Turing thesis because it was first formulated by Alonzo
Church and Alan Turing in the 30ies.

8.4 Back to Chomsky

At the end of the course we should have another look at the Chomsky hierarchy,
which classifies languages based on sublasses of grammars or equivalently by
different types of automata which recognize them

50



languages

finite automata

pushdown automata

Type 2 or context free

Type 3 or
regular languages

Type 1 or context sensitive 
languages

Decidable languages
Turing machines

Type 0 or recursively enumerable languages

All languages

We have worked our way from the bottom to the top of the hierarchy: start-
ing with finite automata, i.e. computation with fixed amount of memory via
pushdown automata (finite automata with a stack) to Turing machines (finite
automata with a tape). Correspondigly we have introduced different grammat-
ical formalisms: regular expressions, context-free grammars and grammars.
Note that at each level there are languages which are on the next level but not
on the previous: {anbn | n ∈ N} is level 2 but not level 3; {anbncn} is level 1
but not level 2 and the Halting problem is level 0 but not level 1.
We could have gone the other way: starting with Turing machines and grammars
and then introduce restrictions on them. I.e. Turing machines which only use
their tapes as a stack, and Turing machines which never use the tape apart
for reading the input. Again correspondingly we can define restrictions on the
grammar sise: first introduce context-free grammars and then grammars where
all productions are of the form A → aB or A → a, with A, B non-terminal
symbols and a, b are terminals. These grammars correspond precisely to regular
expressions (I leave this as an exercise).
I believe that Chomsky introduced his herarchy as a classification of grammars
and that the relation to automata was only observed a bit later. This is maybe
the reason why he introduced the Type-1 level, which is not so interesting from
an automata point of view (unless you are into computational complexity, i.e.
resource use - here linear use of memory). It is also the reason why on the other
hand the decidable languages do not constitute a level: there is no corresponding
grammatical formalism (we can even prove this).

51


