School for Computer Science and Information Technology Machines and their languages (G51MAL) Spring 2004

Dr. Thorsten Altenkirch

Solutions to 4th Coursework

1/03/2004

- 1. We assume that L_1 would be regular. Hence, by the pumping lemma there is a number n such that we can split all words longer than n. Consider $w = a^n bc^{n+1}$, we have $|w| \ge n$ and $w \in L_1$. By the pumping lemma there is a splitting of the word w = xyz s.t. $|xy| \le n$. Hence y may only contain as and it is not empty. Hence $xz = a^m bc^{n+1} \in L_1$ with m < n. However, this is clearly false since $m + 1 \ne n + 1$ and hence our assumption that L_1 is regular must have been wrong.
- 2. We assume that L_2 would be regular. Hence, by the pumping lemma there is a number n such that we can split all words longer than n. Consider $w = 10^n 10^n$, we have $|w| \ge n$ and $w \in L_2$. By the pumping lemma there is a splitting of the word w = xyz s.t. $|xy| \le n$ and hence xy is a prefix of 10^n where y is of the form 10^m or 0^m with m < n. In any case all the 1s in xz are now in the first half of the word and hence xz cannot be of the form w = vv which contradicts the conclusion of the pumping lemma that $xz \in L_2$. Hence L_2 cannot be regular.

If Σ contains only one letter than L_2 is the language of words with even length which is regular.