School of Computer Science, University of Nottingham G52MAL Machines and their Languages, Spring 2012 Thorsten Altenkirch

Exercises, Set 1

Friday, 10th February 2012

Deadline: Wednesday 22nd February 2011 in your tutorial

1. Let L_1 and L_2 be two languages over the alphabet $\Sigma = \{a, b, c\}$, defined as follows:

$$L_1 = \{a, ab\}$$

$$L_2 = \{\varepsilon, bb, bbc\}$$

Enumerate the words in the following languages:

- (a) $L_3 = L_1 \cup L_2$ (b) $L_4 = L_2 L_1$ (c) $L_5 = L_4 \emptyset L_3$ (d) $L_6 = L_1^* \cap L_2^*$
- 2. Given $\Sigma = \{a, b, c\}$ which of the following equations for $L_1, L_2 \in \mathcal{P}(\Sigma^*)$ are universally true:
 - (a) $L_1 L_2 = L_2 L_1$ (b) $L_1 \Sigma^* = L_1$
 - (c) $L_1 L_1 = L_1$
 - (d) $L_1^*L_1^* = L_1^*$
 - (e) $(L_1L_2)^* = L_1^*L_2^*$

Either give a counterexample or give a short explanation why you think the equation is true.

3. Consider the following DFA A over the alphabet $\Sigma = \{b, c\}$:

```
A = (\{0, 1, 2\}, \Sigma, \delta, 0, \{2\})

where

\delta (0, b) = 1

\delta (0, c) = 0

\delta (1, b) = 2

\delta (1, c) = 0

\delta (2, b) = 2

\delta (2, c) = 2
```

- (a) Draw a transition table for A.
- (b) Draw a transition diagram for A.
- (c) Which of the following words belong to L(A):
 - i. ε
 - ii. cb
 - iii. cbbcb
 - iv. bccbbbccb
- (d) Explicitly calculate $\hat{\delta}$ (0, *bcbb*). Clearly show each step of the calculation.
- (e) Describe the language L(A) in plain English.

4. Bonus Exercise

Recall the DFA D_1 from Lecture 3:

Encode D_1 in Haskell by giving definitions for the following data types and functions:

data $Q = \dots$ data $\Sigma = \dots$ type $Word = \dots$ $q_0 :: Q$ final $:: Q \rightarrow Bool$ $\delta :: (Q, \Sigma) \rightarrow Q$ $\hat{\delta} :: (Q, Word) \rightarrow Q$ $accept :: Word \rightarrow Bool$

Note that for syntactical reasons, Σ^* has been renamed *Word*.