
School of Computer Science, University of Nottingham

G52MAL Machines and their Languages, Spring 2012

Thorsten Altenkirch

Exercises, Set 3

Friday 24st February 2012

Deadline: Wednesday 14th March 2012, in your tutorial
(extended deadline)

Let Σ = {a, b, c} for questions 1–4.

1. Explicitly compute the languages denoted by the following regular expressions:

(a) ab+ c∗∅+ ǫc

(b) a(b+ c)b+ (∅+ c)ǫ

2. Give regular expressions denoting the following languages:

(a) {ε, a, b, ac, bc}

(b) {a bnc | n ∈ N,n > 2}

3. Give regular expressions defining the following languages:

(a) All words.

(b) All words that do not contain any as.

(c) All words that contain the sequence bbc.

(d) All words that contain at least two as.

(e) All words such that all as appear before all cs.

(f) All words such that the total number of bs is even.

(g) All words that do not contain the sequence cc.

(h) All words that do not contain the sequence ccc.

4. For each of the following regular expressions, construct an equivalent NFA following the
graphical construction given in the lectures (and lecture notes). You may eliminate unreach-
able and “dead-end” (those from which no accepting state can be reached) states, but you
should not perform any other reductions.

(a) a+ (bc)∗

(b) ∅a+ (b+ c)∗a+ ǫ

5. Bonus Exercise

Consider the following data type encoding regular expressions:

data RE σ = Empty

| Epsilon

| Symbol σ

| Plus (RE σ) (RE σ)
| Sequence (RE σ) (RE σ)
| Star (RE σ)
| Paren (RE σ)

deriving (Eq ,Show)

The type parameter σ is the underlying alphabet.

1

For example, some regular expressions over the alphabets of characters and integers are as
follows:

-- ǫ+ abc

re1 :: RE Char

re1 = Epsilon ‘Plus‘ ((Symbol ’a’ ‘Sequence‘ Symbol ’b’) ‘Sequence‘ Symbol ’c’)

-- (01)∗

re2 :: RE Char

re2 = Star (Paren (Symbol ’0’ ‘Plus‘ Symbol ’1’))

-- 1∗

re3 :: RE Int

re3 = Star (Symbol 1)

Consider also the following encoding of words and languages:

type Word σ = [σ]

type Language σ = [Word σ]

(a) Define the empty word for any alphabet:

ε :: Word σ

(b) Define a function that concatenates two languages.

langConcat :: Language σ → Language σ → Language σ

Note that this is substantially more challenging for infinite languages than for finite
languages. I suggest that you first define langConcat for finite languages, and then only
attempt to extend it to infinite languages if you are feeling particularly adventurous.

(c) Define a function that raises a language to an integer power (you can ignore negative
integers).

langExp :: Language σ → Int → Language σ

(d) Define a function that applies the Kleene Star operation to a language.

kleeneStar :: Eq σ ⇒ Language σ → Language σ

Note that while this function will not be terminating, it should be productive. That is,
it should enumerate all words in the (infinite) resultant language, rather than hanging.
Thus, for example, take n (kleeneStar l) should terminate for any language l and positive
integer n.

(e) Define a function that enumerates the language of a regular expression.

re2lang :: Eq σ ⇒ RE σ → Language σ

Hint: You may find the following functions helpful:

import Data.List (union)

unions :: Eq a ⇒ [[a]] → [a]
unions = foldr union []

Note that unions has been defined using foldr rather than foldl . If you have a working
solution, try using foldl instead and see if it makes a difference.

2

