School of Computer Science, University of Nottingham G52MAL Machines and their Languages, Spring 2012 Thorsten Altenkirch

Exercises, Set 4

Friday 9th March 2012

Deadline: Wednesday 21th March 2012, in your tutorial

1. Minimise the following DFA using the Table-Filling Algorithm. You should show the major steps of your derivation, and draw the transition diagram of the final minimal DFA.

- 2. Given $\Sigma = \{a, b\}$ show that the regular expressions a^*abb^* and aa^*b^*b generate the same language by constructing the minimal DFAs for both expressions. First translate the regular expressions into NFAs, then turn those into DFAs and minimize the DFAs.
- 3. Which of the following languages over $\Sigma = \{0, 1\}$ are regular?
 - (a) $\{ww \mid w \in \{0\}^*\}$
 - (b) $\{ww \mid w \in \{0,1\}^*\}$
 - (c) $\{0^n 1^m \mid n \equiv m \mod 2\}$ where $n \equiv m \mod 2$ means that m, n have the same remainder when divided by 2.
 - (d) $\{0^n 1^m \mid n = m\}$
 - (e) $\{1^{2n+3m} \mid n, m \in \mathbb{N}\}$

Either show that the language is regular by exhibiting a DFA, NFA or a regular expression, or show that the language is not regular by using the pumping lemma.

4. Bonus Exercise

Using the pumping lemma show that the language $\{0^n 1^m \mid n \neq m\}$ over $\Sigma = \{0, 1\}$ is not regular.

Hint: If you think this is easy you haven't understood the pumping lemme.