School of Computer Science, University of Nottingham G52MAL Machines and their Languages, Spring 2011 Thorsten Altenkirch

Solutions to Exercises, Set 1

Friday 24th February 2011

- 1. (a) $L_3 = \{a, ab, \varepsilon, bb, bbc\}$
 - (b) $L_4 = \{a, ab, bba, bbab, bbca, bbcab\}$
 - (c) $L_5 = \emptyset$
 - (d) $L_6 = \emptyset$
- 2. (a) Doesn't hold in general, i.e. let $L_1 = \{a\}, L_2 = \{b\}$ then $L_1L_2 = \{ab\} \neq L_2L_1 = ba$.
 - (b) Doesn't hold in general, i.e. let $L_1 = \{\epsilon\}$, then $L_1 \Sigma^* = \Sigma^* \neq \{\epsilon\}$.
 - (c) Doesn't hold in general, i.e.let $L_1 = \{a\}$ then $L_1L_1 = \{aa\} \neq \{a\} = L_1$.
 - (d) Is always true. We show first that $L_1 * \subseteq L_1^* L_1 *$ since given $w \in L_1^*$ we know $w = w\epsilon$ and $\epsilon \in L_1 *$ hence $w = w\epsilon \in L_1^* L_1^*$. On the other hand $L_1^* L_1 * \subseteq L_1^*$ since if $w \in L_1^* L_1^*$ we know that w = uv with $u, v \in L_1^*$ but then $w = uv \in L_1^*$.
 - (e) Doesn't hold in general, i.e. choose $L_1 = \{a\}, L_2 = \{b\}$ then $abab \in (L_1L_2)^*$ but $abab \notin L_1^*L_2^*$ (On the other hand $aab \in L_1^*L_2^*$ but $aab \notin (L_1L_2)^*$).

(c) i. $\varepsilon \notin L(A)$ ii. $cb \notin L(A)$ iii. $cbbcb \in L(A)$ iv. $bccbbbccb \in L(A)$

$$\begin{split} \hat{\delta} & (0, bcbb) \\ &= \qquad \{ \det, \hat{\delta} \} \\ \hat{\delta} & (\delta & (0, b), cbb) \\ &= \qquad \{ \delta & (0, b) = 1 \} \\ \hat{\delta} & (1, cbb) \\ &= \qquad \{ \det, \hat{\delta} \} \\ \hat{\delta} & (\delta & (1, c), bb) \\ &= \qquad \{ \delta & (1, c) = 0 \} \\ \hat{\delta} & (0, bb) \\ &= \qquad \{ \det, \hat{\delta} \} \end{split}$$

$$\begin{split} \hat{\delta} & (\delta & (0, b), b) \\ &= & \{\delta & (0, b) = 1\} \\ \hat{\delta} & (1, b) \\ &= & \{ \det. \hat{\delta} \} \\ \hat{\delta} & (\delta & (1, b), \varepsilon) \\ &= & \{\delta & (1, b) = 2\} \\ \hat{\delta} & (2, \varepsilon) \\ &= & \{ \det. \hat{\delta} \} \\ 2 \end{split}$$

- (e) L(A) contains all words over $\{b, c\}$ which contain bb.
 - 4. data $Q = Q_0 | Q_1$ data $\Sigma = A | B$ type Word = $[\Sigma]$ $q_0 :: Q$ $q_0 = Q_0$ final :: $Q \rightarrow Bool$ final $Q_0 = False$ final $Q_1 = True$

$$\begin{split} \delta &:: (Q, \Sigma) \to Q \\ \delta &(Q_0, A) &= Q_1 \\ \delta &(Q_0, B) &= Q_0 \\ \delta &(Q_1, A) &= Q_0 \\ \delta &(Q_1, B) &= Q_1 \\ \hat{\delta} &:: (Q, Word) \to Q \\ \hat{\delta} &(q, []) &= q \\ \hat{\delta} &(q, x : w) &= \hat{\delta} &(\delta &(q, x), w) \\ accept :: Word \to Bool \\ accept w &= final &(\hat{\delta} &(q_0, w)) \end{split}$$