
School of Computer Science, University of Nottingham

G52MAL Machines and their Languages, Spring 2011

Thorsten Altenkirch

Solutions to Exercises, Set 2

Friday 2nd March 2012

1. (a)

0 2 4

1 3

1 0

0 1
01

0

1

0 1

(b) Each state i represents the current remainder. If the current remainder is i and we read
a digit x then we have to shift the remainder, i.e. multiply it by 2 and add x modulo 5.
E.g. if the current remainder is 2 and we read a 1 then the remainder becomes 0 since
2× 2 + 1 ≡ 0 mod 5.

(c)

The reverse of an NFA can be constructed by reversing all arrows and swapping initial
and terminal states. This doesn’t necessarily give rise to a DFA but in the present case
it does - so that’s all we need to do.

0 2 4

1 3

1 0

0 1
01

0

1

0 1

2. (a) Transition table for N :

δ a b c d

→ 0 {0, 2} ∅ ∅ ∅
→ 1 ∅ {2} ∅ ∅

2 ∅ {2} {2, 3} {2}
∗ 3 ∅ ∅ ∅ ∅

1

(b)
δ̂ ({0, 1}, acb)

{def. δ̂}

δ̂ (
⋃
{δ (0, a), δ (1, a)}, cb)

{δ (0, a) = {0, 2}
δ (1, a) = ∅}

δ̂ (
⋃
{{0, 2}, ∅}, cb)

{
⋃
{{0, 2}, ∅} = {0, 2}}

δ̂ ({0, 2}, cb)

{def. δ̂}

δ̂ (
⋃
{δ (0, c), δ (2, c)}, b)

{δ (0, c) = ∅
δ (2, c) = {2, 3}}

δ̂ (
⋃
{∅, {2, 3}}, b)

{
⋃
{∅, {2, 3}} = {2, 3}}

δ̂ ({2, 3}, b)

{def. δ̂}

δ̂ (
⋃
{δ (2, b), δ (3, b)}, ε)

{δ (2, b) = {2}
δ (3, b) = ∅}

δ̂ (
⋃
{{2}, ∅}, ε)

{
⋃
{{2}, ∅} = {2}}

δ̂ ({2}, ε)

{def. δ̂}
{2}

(c) i. ε /∈ L (N)

ii. a /∈ L (N)

iii. bc ∈ L (N)

iv. dac /∈ L (N)

v. bbcc ∈ L (N)

vi. acdac /∈ L (N)

vii. aadbdc ∈ L (N)

(d) L (N) is the language of all words over {a, b, c, d } that start with either the symbol
b or a sequence of one or more as, and are then followed by a sequence of any length
made up of bs, cs and ds, and then finish with the symbol c.

3. (a) runDFA :: Eq q ⇒ DFA q σ → [σ] → Bool

runDFA (DFA δ q0 fs) w = δ̂ q0 w ‘elem‘ fs
where

δ̂ q [] = q

δ̂ q (x : w) = δ̂ (δ q x) w

(b) runNFA :: Eq q ⇒ NFA q σ → [σ] → Bool

runNFA (NFA δ ss fs) w = (δ̂ ss w ‘intersect ‘ fs) 6≡ []
where

δ̂ qs [] = qs

δ̂ qs (x : w) = δ̂ (unions [δ q x | q ← qs]) w

(c) dfa2nfa :: DFA q σ → NFA q σ

dfa2nfa (DFA δ q0 fs) = NFA δ′ [q0] fs
where

δ′ q x = [δ q x]

2

(d) nfa2dfa :: (Eq q ,Enum q ,Bounded q) ⇒ NFA q σ → DFA [q] σ
nfa2dfa (NFA δ ss fs) = DFA δ′ ss fs ′

where

δ′ p x = unions [δ q x | q ← p]

fs ′ = [p | p ← powerset enumerate, (p ‘intersect ‘ fs) 6≡ []]

3

