
Introduction to Haskell and GHC

Henrik Nilsson and Neil Sculthorpe
School of Computer Science
University of Nottingham

31st January 2011

1 Introduction

The purpose of this document is to introduce you to Haskell and GHC (the
Haskell system we are using). This is recommended reading if you are taking
the G52MAL or G53CMP modules. However it is there only for your benefit:
it is not assessed and there is nothing to hand in. Nevertheless, even if you
have used Haskell before, we advise you go through this as a refresher. It
may contain aspects of Haskell and GHC that you are not familiar with,
but which are used in the supplied code as they are useful when developing
large programs. For a more comprehensive introduction to Haskell, Graham
Hutton’s book Programming in Haskell is highly recommended (in particular,
the first 70 pages).

We recommend that you use the Haskell system GHC on the School’s
Linux servers. However, you could use other Haskell implementations, such
as Hugs or NHC, or different platforms, such as Unix, Mac OS X, or Windows,
if you prefer. In particular, the Haskell Platform (which includes GHC) has
recently been installed on the Windows machines in the Lab. Note that if
you use other platforms or Haskell implementations, then you cannot expect
the course TAs to provide much technical assistance if you run into trouble
with your installation. The site www.haskell.org is your starting point for
everything you possibly want to know about Haskell, and for downloading
Haskell implementations, related tools, and documentation.

1

www.haskell.org


2 Setting Up

2.1 Linux

Log on to your Linux server. At time of writing, these are avon for 1st year
students, bann for 2nd year students and clyde for 3rd and 4th year students.

Start the interactive GHC environment by issuing the command ghci at
the command line prompt:

bann$ ghci

Some information about GHCi gets printed, and you’ll then get a new
prompt:

Prelude>

2.2 Windows

The Haskell Platform, which includes GHCi, has been installed on the Win-
dows machines in the lab. Just select GHCi from the start menu (you will
find it under the Haskell Platform). You can navigate around using the :cd
command, for example:

:cd H:

Also, GHCi has been set as the default program associated with .hs files,
so you can load them into GHCi just by clicking on them.

As you may be aware, Unix (on which Linux is based) and Windows
use different line-ending conventions for text files. Consequently, you could
encounter problems if you switch between systems. In particular, the source
code for the coursework was created under Linux, and thus uses its line-
ending convention. To get around this problem, you can use the unix2dos

and dos2unix programs to convert text files from Unix to Windows and vice-
versa (respectively). You can run these programs (under Unix/Linux) by
supplying them with two arguments, the input and output filenames (which
can be the same). For example:

dos2unix myFile-win.hs myFile-unix.hs

2



3 Getting Started

3.1 Using GHCi

The text before > (in this case Prelude) are the names of the modules whose
definitions are in scope. Thus the above prompt means that everything in
the Haskell standard Prelude is available.

Now evaluate some simple expressions. For example:

Prelude> 1 + 2

Prelude> "Hello World!"

Prelude> putStrLn "Hello World!"

Prelude> "Hello\nWorld!\n"

Prelude> putStrLn "Hello\nWorld!\n"

Make sure you become familiar with the command-line editing facilities to
save on typing. For example, try out the arrow keys and various Emacs
bindings.

Beside expressions, which get evaluated when entered, GHCi accepts a
number of commands. They are all prefixed by : to distinguish them from
Haskell expressions. The command :help prints a list of available commands.
Try it now. Note that commands may be abbreviated to save on typing. For
example :h is enough to get help. Try it. What is the command to load a
Haskell module (and recursively all modules it depends on) from a file? What
is the command for leaving GHCi? Try it now, and then restart GHCi.

3.2 Haskell Online

Visit www.haskell.org and locate:

1. The tutorial Haskell in 5 Steps.

2. The page on learning Haskell.

3. The page on books and tutorials.

4. The GHC documentation, in particular the section on GHCi.

4 Trees

Task 1

Using a text editor of your choice, define a module called Tree. The GHC
convention is that there should be one module per file, and that the name

3

www.haskell.org


of the file should be the same as the name of the module defined in it with
an additional .hs extension. (This is how GHC can find the definitions of a
module given just its name.) In your case the file should be called Tree.hs.

The module Tree should contain a data declaration for a tree with three
data constructors representing:

• an empty tree

• a singleton tree (a leaf)

• a non-empty tree consisting of two subtrees

Both the singleton tree node and the interior tree nodes should carry a single
Int value. Call the constructors Empty, Leaf, and Node, for example.

Task 2

Load the module into GHCi. If there are errors, fix them and try again.
Note how the prompt changes to indicate that the definitions in the module
Tree now are in scope. Which are they? What are their types? (Hint: try
the command :type.)

As the module Prelude is implicitly imported into every module unless
explicitly hidden, all Prelude definitions are still available. (The * in the
prompt *Tree> means that the Prelude is in scope.)

Task 3

Construct some Tree values. Can you print them? Can you compare them
using the operators == or <? If not, fix the problem (hint: make use of a
deriving declaration) and reload the module.

Task 4

The command :show modules shows all loaded modules. Try it. Switch
back so that only Prelude definitions are in scope again. Command :module

Prelude (or just :m Prelude). Are your Tree type and data constructors
now available?

You can still get at your definitions by using their fully qualified names.
That is, by prefixing the name of a defined entity with the name of the module
in which it is defined. For example, if one of your Tree data constructors
is called Node, it is available as Tree.Node. Try this. This works because
GHCi as an extra convenience implicitly imports the definitions of all loaded

4



modules under their fully qualified names into all scopes. (When a module is
compiled by any Haskell 98 compiler, such as GHC, all used definitions from
other modules must be explicitly imported in one way or another, except for
those from the Prelude.) Now switch back to the Tree scope.

Task 5

Generalise the your Tree definition so that the tree can carry data of an
arbitrary type. That is, make it polymorphic. Load the new definition into
GHCi and test it. What are the types of the Tree data constructors now?
Make sure you understand them!

Task 6

Using your polymorphic data constructors, create trees of integers, charac-
ters, and strings. Check that you can print and compare them and that they
have the expected type.

Task 7

Create a new module called Main (in the file Main.hs). Import the module
Tree into this module.

Task 8

Define a function size that returns the size of a tree. The size of the tree is
the number of values carried by the tree.

Task 9

Load the new module into GHCi and test it on trees of a few different sizes.
(Hint: you may want to define a number of test trees under some convenient
names, either in the module Main or in a separate third module of containing
test data that you import into Main.)

Check which modules are loaded now. Switch between the different mod-
ule scopes and figure out which definitions are available where (without giving
their fully qualified names).

5



Task 10

Define a function insert that inserts a value at the right place in an ordered
tree. A tree is ordered if all values in the left sub tree is strictly smaller
than the value in the top node, and all values in the right subtree is strictly
greater than the value of the top node. A particular value occurs at most
once in a tree.

Task 11

Load the new version of Main. What is the type of insert. Why? Add an
explicit type signature to the definition of insert as documentation!

Task 12

Change your Tree definition so that it uses named (also called labelled) fields.
This is Haskell’s version of records. Let the name for all value fields be value.
Let the names for the left and right subtree be left and right respectively.

Task 13

Load the new definition. Verify that you can construct trees using the named
field notation, and that the order among the fields does not matter when you
do so. For example, assuming the constructors are called Empty, Leaf, and
Node:

*Main> Node {left=Leaf {value=1}, value=2, right=Empty}
*Main> Node {right=Empty, left=Leaf {value=1}, value=2}

Verify that you still can construct trees using the normal way of applying
the constructor functions (i.e. with positional arguments). For example

*Main> Node (Leaf 1) 2 Empty

Note that the result tree still gets printed using the named field notation.
What happens if you don’t provide values for all fields? Or indeed for no

field? For example, what are the results of the following? Why?

*Main> :type Node {left=Empty}
*Main> :type Node {}
*Main> Node {left=Empty}
*Main> Node {}

6



Verify that you automatically got selector functions value, left, and
right, that these have the expected types, and that you can use them to
pick trees apart. What happens if you apply these selector functions to trees
with the wrong top-level constructor, such as:

*Main> value Empty

*Main> left (Leaf 2)

Explain.

Task 14

Redefine your size and insert functions so that they make use of the field
names when pattern matching. Verify that you can match the fields in any
order. Also note that you easily can omit field names that are of no interest
(e.g. value when you’re defining the function size). It may also make
sense to leave out field names that are only of interest in certain conditional
branches of the code to make the pattern matching clearer and draw attention
to what is most important for selecting the right conditional branch. The
remaining fields can always be accessed using the field selectors as and where
needed.

5 Scope Rules

This is an exercise on understanding Haskell’s scope rules. In the following
code fragments, draw an arrow from each use of a variables (x, y, etc.) to
its defining occurrence, if it has one in the provided fragment. For example
for a code fragment like

let x = 3 in x + x

you would draw an arrow from each of the x’s in the expression x + x to
the x in x = 3 as that is the corresponding defining occurrence. Note that
a particular variable name, like x, may be used for more than one variable
even within the scope of a definition for the variable in question since inner
definitions are allowed to shadow outer definitions in Haskell. For example,
the value of the Haskell expression

let x = 7 in

(let x = 3 in x + x) * x

is 42. Note that the following fragments are not examples of good style
Haskell code! They have deliberately been made somewhat confusing to
make a good exercise on Haskell’s scope rules.

7



1. f xs ys =

let xs = x : xs in take 10 (ys ++ xs)

where

x = head xs

2. f x y =

let n = 3 in take n (g y) ++ take n (g x)

where

g x = take n xys

where

xys = x : yxs

yxs = y : xys

n = 10

3. f xxs@(x:xs) =

case xs of

[] -> [x] : take n (repeat xs)

(x:xs) -> [x] : take n (repeat xs)

where

n = length xxs

8


	Introduction
	Setting Up
	Linux
	Windows

	Getting Started
	Using GHCi
	Haskell Online

	Trees
	Scope Rules

