
Mathematics for Computer Scientists 2
(G52MC2)

L02 : Coq basics, propositional logic

Thorsten Altenkirch

School of Computer Science
University of Nottingham

October 1, 2009

Thorsten Altenkirch g52mc2 L02



Propositional logic

Proposition: A statement which can be true or false.
Coq: P : Prop means P is a proposition.
Propositional variables: stand for any proposition;
e.g. in Coq:
Variables P Q R : Prop.

Tautology: A proposition containing propositional
variables which is always true.
Propositional constants True, False.
Basic propositional connectives:
Name Math Coq English
Implication P → Q P -> Q If P then Q
Conjunction P ∧Q P /\ Q P and Q
Disjunction P ∨Q P \/ Q P or Q
Equivalence P ↔ Q P <-> Q P if and only if Q

P iff Q
Negation ¬P ~ P not P

Thorsten Altenkirch g52mc2 L02



Syntactic conventions

→ is right-associative, i.e.

P → Q → R = P → (Q → R)

∨, ∧ bind stronger than → (and ↔), i.e.

P ∨Q → R = (P ∨Q) → R

∧ binds stronger than ∨:

P ∨Q ∧ R = P ∨ (Q ∧ R)

¬ binds stronger that ∧:

¬P ∧Q = (¬P) ∧Q

Thorsten Altenkirch g52mc2 L02



Coq basics

Start a proof with Lemma or Theorem. Give it a name! E.g.
Lemma andCom : P /\ Q -> Q /\ P

Coq displays the proof state. The user issues tactics until
Coq says Proof completed.

Finish with Qed.
Leaves the proof state and saves the proof under the given
name.
Read p : P as p is a proof of P, e.g.
andCom : P /\ Q -> Q /\ P

Thorsten Altenkirch g52mc2 L02



Coq proof state (example)

2 subgoals
H : P /\ Q
H1 : P
H2 : Q
============================
Q

subgoal 2 is:
P

Two subgoals: currently proving Q, when we are finished
we prove P.
Assumptions above ===. . .===.
Assumptions have names,
e.g. H, H1, H2
Current goal (e.g. Q) is below the line.
If current Goal = one of the assumptions, use exact,
e.g. exact H2.

Thorsten Altenkirch g52mc2 L02



Proof rules / basic tactics

General pattern

premise (what we need to show)
name of the rule

conclusion (what we want to show)

Read proof rules from bottom to top!
We write Γ ` P for
From the set of assumptions Γ (Gamma), we can prove P.
The symbol ` (turnstyle) replaces Coq’s ===. . .===
Example:

H : P ∈ Γ
exact H

Γ ` P

Read H : P ∈ Γ as H : P occurs in Γ.

Thorsten Altenkirch g52mc2 L02



Rules for implication

Γ, H : P ` Q
introH

Γ ` P → Q

H : P → Q ∈ Γ
Γ ` P

applyH
Γ ` Q

intro: to prove P → Q, assume P and prove Q.
apply: If we know P → Q then to prove Q it is enough to
prove P.
The actual behaviour of apply is more subtle!
See examples in l01.v

Thorsten Altenkirch g52mc2 L02



Rules for conjunction

Γ ` P Γ ` Q
split

Γ ` P ∧Q

H : P ∧Q ∈ Γ
Γ ` P → Q → R

elimH
Γ ` R

split: to prove P ∧Q prove P and then Q.
elim: If we know P ∧Q then to prove R it is enough to
prove P → Q → R.
See examples in l02.v

Thorsten Altenkirch g52mc2 L02



Rules for disjunction

Γ ` P
left

Γ ` P ∨Q

Γ ` Q
right

Γ ` P ∨Q

H : P ∨Q ∈ Γ
Γ ` P → R Γ ` Q → R

caseH
Γ ` R

left: to prove P ∨Q prove P.
right: to prove P ∨Q prove Q.
case: If we know P ∨Q then to prove R it is enough to
prove P → R and Q → R.
See examples in l02.v

Thorsten Altenkirch g52mc2 L02



Rules for True and False

split
Γ ` True

H : False ∈ Γ
caseH

Γ ` R

split: to prove True you need to prove nothing.
case: if you know False you can prove anything.

Thorsten Altenkirch g52mc2 L02



Summary

connective Introduction Elimination
P → Q intro(s) applyHyp
P ∧Q split elimHyp
True split

P ∨Q left,right caseHyp
False case Hyp

Thorsten Altenkirch g52mc2 L02



Defined connectives

negation
¬P = P → False

iff
P ↔ Q = (P → Q) ∧ (Q → P)

Thorsten Altenkirch g52mc2 L02


