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Introducing Booleans

Boole (1815-1864)

In Coq we define:

Inductive bool : Set :=
| true : bool
| false : bool.

Inductive is similar to Haskell’s data:

data Bool = True | False
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Operations on Booleans

negb : bool→ bool

negb x = if x then false else true

andb : bool→ bool→ bool

andb x y = if x then y else false

orb : bool→ bool→ bool

orb x y = if x then true, else y

operation infix
andb &&
orb ||

andb′ x y = if y then x else false

orb′ x y = if y then true else x

Do andb’ (orb’) define the same function as andb (orb)?
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Predicate logic

Predicate logic extents propositional logic.
We consider predicate logic over the Booleans for now.
Predicate logic consists of:

Sets E.g. bool : Set.
Terms e.g. true, false : bool and if-then-else.

Predicates and Relations e.g. equality
Given t , u : A where A : Set we obtain
t = u : Prop

Quantifiers
Name Math Coq English
Universal quantifier ∀x : A, P forall x:A,P for all
Existential quantifier ∃x : A, P exists x:A,P exists

where A : Set.

We can define new functions, predicates and relations using
Definition, see l04.v for examples.
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Syntax

Quantifiers like ∀x : A, P and ∃x : A, P bind the variable x .
The scope of the variable is only P.
Variables can be shadowed, i.e. in the expression
∀x : A,∀x : B, P any occurence of x in P refers to x : B.
Quantifiers bind weaker than any other connective

∀x : A, P → Q

is read as
∀x : A, (P → Q)
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Rules for ∀

Γ, x : D ` P x does not occur free in Γ.
intro x

Γ ` ∀x : D, P

H : ∀x : D, P ∈ Γ
Γ ` d : D

applyH
Γ ` P[x := d ]

intro: To prove ∀x : D, P we assume x : D and prove P.
apply: To show P[x := d ] for d : D it is enough, if we
know ∀x : D, P.
By P[x := d ] we mean that all free occurences of the
variable x are replaced by the term d .
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Rules for ∃

Γ ` d : D Γ ` P[x := d ]
exists d

Γ ` ∃x : D, P

H : ∃x : D, P ∈ Γ
Γ ` ∀x : D, P → R

elimH
Γ ` R

exists: To prove ∃x : D, P it is enough to exhibit a term
d : D (the witness) and show P[x := d ].
elim: To show R when we know ∃x : D, P it is enough to
show that P implies R for any x : D.
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Rules for =

Γ ` d : D
reflexivity

Γ ` d = d

H : d = e ∈ Γ
Γ ` P[x := e]

rewriteH
Γ ` P[x := d ]

reflexivity: For any d : D we have d = d .
rewrite: To show P[x := d ], if we know d = e it is
enough to show P[x := e].
There is also rewrite<- which applies the equation in
the other direction.
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bool vs Prop

Prop ∧ ∨ ¬ →
bool && || negb ???

We can show:

∀b c : bool, b = true ∧ c = true↔ b&&c = true

and the same for || and negb. See l03.v.

→ completeness
← soundness
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bool vs Prop

We can also reflect = (see ex03.v), there is a function
eqb : bool→ bool→ bool, s.t.

∀b c : bool, b = c ↔ eqbb c = true

We can even reflect quantifiers (see l03.v), there is a
function allb : (bool→ bool)→ bool, s.t.

∀f : bool→ bool, (∀b : bool, fb = true) ⇐⇒ forallb f = true

This also works for ∃.
As a consequence we can define a translation: given a
P : Prop where P only uses bool then we have a
translation P∗ : bool.
Hence, predicate logic over bool is decidable.
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Coq tricks

To destruct an assumption H : P ∧ Q, use destruct H
as [HP HQ], which replaces the assumption H by HP :
P and HQ : Q.
To expand a definition d use unfold d, or simpl which
expands and simplifies everything.
If you have an assumption H:A → False and you want
to prove any goal, you can just say contradictH.
If you have an assumption like H:true = false, you can
use discriminate H to prove anything.
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Summary

connective Introduction Elimination
P → Q intro(s) applyHyp
P ∧Q split elimHyp
True split

P ∨Q left,right caseHyp
False case Hyp

forall x : A, P intro(s) applyHyp
exists x : A, P existswit elimHyp

a = b reflexivity rewriteHyp
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