
Mathematics for Computer Scientists 2
(G52MC2)

L05 : Bool and Predicate Logic

Thorsten Altenkirch

School of Computer Science
University of Nottingham

October 15, 2009

Thorsten Altenkirch g52mc2 L05

Introducing Booleans

Boole (1815-1864)

In Coq we define:

Inductive bool : Set :=
| true : bool
| false : bool.

Inductive is similar to Haskell’s data:

data Bool = True | False

Thorsten Altenkirch g52mc2 L05

Operations on Booleans

negb : bool→ bool

negb x = if x then false else true

andb : bool→ bool→ bool

andb x y = if x then y else false

orb : bool→ bool→ bool

orb x y = if x then true, else y

operation infix
andb &&
orb ||

andb′ x y = if y then x else false

orb′ x y = if y then true else x

Do andb’ (orb’) define the same function as andb (orb)?

Thorsten Altenkirch g52mc2 L05

Predicate logic

Predicate logic extents propositional logic.
We consider predicate logic over the Booleans for now.
Predicate logic consists of:

Sets E.g. bool : Set.
Terms e.g. true, false : bool and if-then-else.

Predicates and Relations e.g. equality
Given t , u : A where A : Set we obtain
t = u : Prop

Quantifiers
Name Math Coq English
Universal quantifier ∀x : A, P forall x:A,P for all
Existential quantifier ∃x : A, P exists x:A,P exists

where A : Set.

We can define new functions, predicates and relations using
Definition, see l04.v for examples.

Thorsten Altenkirch g52mc2 L05

Syntax

Quantifiers like ∀x : A, P and ∃x : A, P bind the variable x .
The scope of the variable is only P.
Variables can be shadowed, i.e. in the expression
∀x : A,∀x : B, P any occurence of x in P refers to x : B.
Quantifiers bind weaker than any other connective

∀x : A, P → Q

is read as
∀x : A, (P → Q)

Thorsten Altenkirch g52mc2 L05

Rules for ∀

Γ, x : D ` P x does not occur free in Γ.
intro x

Γ ` ∀x : D, P

H : ∀x : D, P ∈ Γ
Γ ` d : D

applyH
Γ ` P[x := d]

intro: To prove ∀x : D, P we assume x : D and prove P.
apply: To show P[x := d] for d : D it is enough, if we
know ∀x : D, P.
By P[x := d] we mean that all free occurences of the
variable x are replaced by the term d .

Thorsten Altenkirch g52mc2 L05

Rules for ∃

Γ ` d : D Γ ` P[x := d]
exists d

Γ ` ∃x : D, P

H : ∃x : D, P ∈ Γ
Γ ` ∀x : D, P → R

elimH
Γ ` R

exists: To prove ∃x : D, P it is enough to exhibit a term
d : D (the witness) and show P[x := d].
elim: To show R when we know ∃x : D, P it is enough to
show that P implies R for any x : D.

Thorsten Altenkirch g52mc2 L05

Rules for =

Γ ` d : D
reflexivity

Γ ` d = d

H : d = e ∈ Γ
Γ ` P[x := e]

rewriteH
Γ ` P[x := d]

reflexivity: For any d : D we have d = d .
rewrite: To show P[x := d], if we know d = e it is
enough to show P[x := e].
There is also rewrite<- which applies the equation in
the other direction.

Thorsten Altenkirch g52mc2 L05

bool vs Prop

Prop ∧ ∨ ¬ →
bool && || negb ???

We can show:

∀b c : bool, b = true ∧ c = true↔ b&&c = true

and the same for || and negb. See l03.v.

→ completeness
← soundness

Thorsten Altenkirch g52mc2 L05

bool vs Prop

We can also reflect = (see ex03.v), there is a function
eqb : bool→ bool→ bool, s.t.

∀b c : bool, b = c ↔ eqbb c = true

We can even reflect quantifiers (see l03.v), there is a
function allb : (bool→ bool)→ bool, s.t.

∀f : bool→ bool, (∀b : bool, fb = true) ⇐⇒ forallb f = true

This also works for ∃.
As a consequence we can define a translation: given a
P : Prop where P only uses bool then we have a
translation P∗ : bool.
Hence, predicate logic over bool is decidable.

Thorsten Altenkirch g52mc2 L05

Coq tricks

To destruct an assumption H : P ∧ Q, use destruct H
as [HP HQ], which replaces the assumption H by HP :
P and HQ : Q.
To expand a definition d use unfold d, or simpl which
expands and simplifies everything.
If you have an assumption H:A → False and you want
to prove any goal, you can just say contradictH.
If you have an assumption like H:true = false, you can
use discriminate H to prove anything.

Thorsten Altenkirch g52mc2 L05

Summary

connective Introduction Elimination
P → Q intro(s) applyHyp
P ∧Q split elimHyp
True split

P ∨Q left,right caseHyp
False case Hyp

forall x : A, P intro(s) applyHyp
exists x : A, P existswit elimHyp

a = b reflexivity rewriteHyp

Thorsten Altenkirch g52mc2 L05

