
Mathematics for Computer Scientists 2
(G52MC2)

L07 : Operations on sets

Thorsten Altenkirch

School of Computer Science
University of Nottingham

October 29, 2009

Thorsten Altenkirch g52mc2 L07

Enumerations

We construct finite sets by enumerating a list of names.
In Coq we use Inductive, e.g.
Inductive square : Set :=
| nought : square
| cross : square
| empty : square.

We use match to define functions on enumerations and
case to reason about them.
Im Maths we write square = {nought, cross, empty}
Note that square, nought, empty are constants, not
variables!
They cannot be bound by quantifiers and different
constants are never equal, e.g. nought 6= empty.
An important example is bool = {true, false}.

Thorsten Altenkirch g52mc2 L07

New sets from old . . .

Given sets A,B we can construct new sets:
Cartesian product

A× B is the set of pairs (a,b) with a : A and b : B.
Disjoint union

A + B is the set of elements of the form inl a with
a : A and inr b with b : B.

Functions
A→ B is the set of functions from A to B. We can
apply a function f : A→ B to an element a : A
obtaining f a : B.

Thorsten Altenkirch g52mc2 L07

Cartesian Product

a : A b : B

(a,b) : A× B

Example: Cartesian coordinates: R× R.
If A,B are finite sets where A has m elements and B has n
elements, then A× B has mn elements.
Use match in programs and case (or destruct) in
proofs.
Projections:

fst : A× B → A
snd : A× B → B

Thorsten Altenkirch g52mc2 L07

Polymorphism in Coq

Functions like fst and snd work for all sets.
They are polymorphic.
In Coq we can instantiate the explicitly:

fst bool nat : bool× nat→ bool

To avoid clutter, we use
Set Implicit Arguments.

Coq tries to infer instantiations, e.g. we can write:

fst (true,7) : bool

Thorsten Altenkirch g52mc2 L07

Disjoint union

Also called coproducts or sums.
a : A

inl a : A + B

b : B

inr b : A + B

If A,B are finite sets where A has m elements and B has n
elements, then A + B has m + n elements.
inl, inr are called injections.
Coq cannot infer one of the arguments, it has to be given
explicitely:

inl nat true : sum bool nat

Thorsten Altenkirch g52mc2 L07

Functions

A→ B is the set of functions with domain A and range (or
codomain) B.
If A,B are finite sets where A has m elements and B has n
elements, then A→ B has nm elements.
Application:

f : A→ B a : A

f a : B

λ-abstraction:
t : B given x : A

fun(x : A)⇒ t : A→ B

Thorsten Altenkirch g52mc2 L07

Extensionality

To show that two functions f ,g : A→ B are equal we need
the principle of extensionality:

(∀a : A, f a = g a)→ f = g

The principle of extensionality is not provable in Coq,
hence we assume it as an axiom (ext).
Unlike the principle of the excluded middle, ext is accepted
in intuitionistic logic.
It reflects the idea of a function as a black box.

Thorsten Altenkirch g52mc2 L07

Order of a function

The order of a function is determined by its type:

order N = 0
order (A→ B) = max ((order A) + 1) (order B)

E.g. f : (N→ N)→ N is a 2nd order function.

Thorsten Altenkirch g52mc2 L07

Isomorphisms

To sets A and B are isomorphic (A ' B) if there are
functions:

f : A→ B
g : B → A

such that

∀a : A,g (f a) = a
∀b : B, f (g b) = b

f ,g is called an isomorphism.
Two finite sets are isomorphic, iff (if and only if) they have
the same number of elements.
Examples of general isomorphisms, for all sets A,B,C:

A× (B × C) ' (A× B)× C
A× (B + C) ' A× B + A× C
A× B → C ' A→ (B → C)

Thorsten Altenkirch g52mc2 L07

The Curry-Howard correspondence

Curry and Howard observed that operations in sets
correspond to operations on sets.
A proposition is true if the corresponding set is inhabited.
This is an alternative to the classical correspondence of
bool and Prop.

Set Prop bool
× ∧ &&
+ ∨ ||
∅ False false
→ → implb

Thorsten Altenkirch g52mc2 L07

What about ∪, ∩ and ⊆ ?

In classical set theory people frequently use the following
operations on sets:

∪ union of sets
∩ intersection of sets
⊆ The subset relation between sets

These are not operations on sets in the sense of Coq.
Every element belongs precisely to one set in Coq, hence
the ⊆ relation doesn’t make sense.
However, for any set A we can define P A = A→ Prop
and:

⊆: P A→ P A→ Prop
P ⊆ Q = ∀a : A,P a→ Q a
∪,∩ : P A→ P A→ P A
(P ∪Q) a = P a ∨Q a
(P ∩Q) a = P a ∧Q a

Thorsten Altenkirch g52mc2 L07

