Mathematics for Computer Scientists 2

(G52MC2)

LO7 : Operations on sets

Thorsten Altenkirch

School of Computer Science
University of Nottingham

October 29, 2009

Thorsten Altenkirch g52mc2 L07

Enumerations

@ We construct finite sets by enumerating a list of names.
@ In Coq we use Inductive, e.g.

Inductive square : Set :=
| nought : square
| cross : square
| empty : square.

@ We use match to define functions on enumerations and
case to reason about them.

@ Im Maths we write square = {nought, cross, empty}

@ Note that square, nought, empty are constants, not
variables!

@ They cannot be bound by quantifiers and different
constants are never equal, e.g. nought # empty.

@ An important example is bool = {true, false}.

Thorsten Altenkirch g52mc2 L07

New sets from old ...

Given sets A, B we can construct new sets:

Cartesian product
A x Bis the set of pairs (a,b) witha: Aand b : B.

Disjoint union
A+ B is the set of elements of the form inl a with
a:Aandinr b with b: B.

Functions

A — Bis the set of functions from Ato B. We can
apply a function f : A— Btoanelementa: A
obtaining fa: B.

Thorsten Altenkirch g52mc2 L07

Cartesian Product

a: A b:B
o—
(a,b):Ax B

@ Example: Cartesian coordinates: R x R.

@ If A, B are finite sets where A has m elements and B has n
elements, then A x B has mn elements.

@ Use match in programs and case (0Or destruct)in
proofs.

@ Projections:

fst : AxB—A
snd : AxB—B

Thorsten Altenkirch g52mc2 L07

Polymorphism in Coq

@ Functions like fst and snd work for all sets.
They are polymorphic.
@ In Coq we can instantiate the explicitly:

fstbool nat : bool x nat — bool

@ To avoid clutter, we use
Set Implicit Arguments.
@ Coq tries to infer instantiations, e.g. we can write:

fst (true, 7) : bool

Thorsten Altenkirch g52mc2 L07

@ Also called coproducts or sums.
a: A b:B

inla: A+ B inrb: A+ B

@ If A, B are finite sets where A has m elements and B has n
elements, then A+ B has m + n elements.

@ inl, inr are called injections.

@ Coq cannot infer one of the arguments, it has to be given
explicitely:
inl nat true : sum bool nat

Thorsten Altenkirch g52mc2 L07

Functions

@ A — Biis the set of functions with domain A and range (or
codomain) B.

@ If A, B are finite sets where A has m elements and B has n
elements, then A — B has n" elements.

@ Application:
f:A—B a: A
fa:B
@ \-abstraction:)
t:Bgiven x: A

fun(x : A)=t:A— B

Thorsten Altenkirch g52mc2 L07

Extensionality

@ To show that two functions f, g : A — B are equal we need
the principle of extensionality:

(Vva: Afa=ga)—Ff=g

@ The principle of extensionality is not provable in Coq,
hence we assume it as an axiom (ext).

@ Unlike the principle of the excluded middle, ext is accepted
in intuitionistic logic.
@ |t reflects the idea of a function as a black box.

Thorsten Altenkirch g52mc2 L07

Order of a function

@ The order of a function is determined by its type:

orderN = 0
order (A — B) = max ((order A) + 1) (order B)

@ E.g. f: (N— N) — Nis a2nd order function.

Thorsten Altenkirch g52mc2 L07

Isomorphisms

@ To sets A and B are isomorphic (A ~ B) if there are
functions:

f . A—B
g : B—-A
such that
Va:Ag(fa)=a
Vb:B,f(gb)=0>b
@ f,gis called an isomorphism.
@ Two finite sets are isomorphic, iff (if and only if) they have

the same number of elements.
@ Examples of general isomorphisms, for all sets A, B, C:

Ax(BxC) ~ (AxB)xC
Ax(B+C) ~ AxB+AxC
AxB—C ~ A—(B—0)

2

The Curry-Howard correspondence

@ Curry and Howard observed that operations in sets
correspond to operations on sets.

@ A proposition is true if the corresponding set is inhabited.

@ This is an alternative to the classical correspondence of
bool and Prop.

Set | Prop | bool |
X A &&

+ Vv I
() | False | false
— — | implb

Thorsten Altenkirch g52mc2 L07

What about U, " and C ?

@ In classical set theory people frequently use the following
operations on sets:
U union of sets
N intersection of sets
C The subset relation between sets
@ These are not operations on sets in the sense of Coq.
@ Every element belongs precisely to one set in Coq, hence
the C relation doesn’t make sense.
@ However, for any set A we can define P A= A — Prop
and:

C:PA—PA— Prop
PCQ=VvVa:APa— Qa
Uun:PA—-PA—-PA
(PuQ)a=PavQa
(PNnQ)a=PanQa

Thorsten Altenkirch g52mc2 L07

