Computer Aided Formal Reasoning
(G53CFR, G54CFR)

You guys are both my witnesses... He insinuated that
ZFC set theory is superior to Type Theory!

Thorsten Altenkirch (FPLab) CFR January 25, 2010 1/10



-
Zermelo-Fraenkel Set Theory

LS|

Zermelo (1871-1953) Fraenkel (1891-1965)
@ Axiomatic Set Theory ~ 1925
@ ZFC = Zermelo-Fraenkel with Axiom of Choice

@ Foundations of modern Mathematics
@ Additional axioms, e.g. the continuum hypothesis

Thorsten Altenkirch (FPLab) CFR January 25, 2010 2/10



Axiom of extensionality VxVy[Vz(ze x < zey) = x=y]

Axiom of regularity Vx[da(a € x) = y(y €e x A—-3z(z € y A Z € Xx))]
Axiom schema of specification VzVw;y ... w,dyVx[x € y & (x € Z A ¢)]
Axiom of pairing YxVy3z(x € zAy € 2)

Axiom of union VF3IAVYVx(x e YAY e F = x € A)

Axiom schema of replacement ...

Axiom of infinity ...

Axiom of power set ...

Axiom of Choice ...

Thorsten Altenkirch (FPLab) CFR January 25, 2010 3/10



-
Set Theory for Computer Science?

@ Set Theory is untyped (everything is a set), while programming
languages are typed (either statically or dynamically).

@ Basic concepts from computer science (records, functions) are not
primitive in Set Theory.

@ Basic operations in set theory (e.g. N, U) are not directly available
on types.

@ Set Theory is not constructive, i.e. there is a set theoretic function
solving the Halting Problem.

Question:
Is there an alternative to Set Theory? J

Thorsten Altenkirch (FPLab) CFR January 25, 2010 4/10



|
Martin-Lof Type Theory

/S
Per Martin-Lof (1942-)
@ Martin-L6f introduced Type Theory as a constructive foundation of
Mathematics since 1972.

@ Type Theory doesn’t rely on predicate logic but uses types to
represent propositions.

@ Basic operations on types are lN-types (dependent function types)
and X-types (dependent records).

@ Type Theory is a programming language.

Thorsten Altenkirch (FPLab) CFR January 25, 2010 5/10



Propositions as types
(The Curry-Howard Isomorphism)

@ A proposition corresponds to the types of it proofs.
@ A proposition is true if the corresponding type is non-empty.
@ Conjunction A A B is repesented by cartesian product (A x B).

@ Implication A — B is represented by function types A — B (looks
the same).

@ V and 3 correspond to N (depednent function) and ¥ (dependent
records).

Thorsten Altenkirch (FPLab) CFR January 25, 2010 6/10



UIf Norell

@ UIf Norell has implemented Agda, a functional programming
language based on Type Theory in his PhD in 2007.

@ Agda is inspired by earlier systems such as Epigram, Cayenne
and Coq.

@ Agda can be used to program and to reason.

Thorsten Altenkirch (FPLab) CFR January 25, 2010 7/10



N
Course contents

@ Agdaintro
© Propositions as types (using Agda)
© Dependently typed programming (in Agda)
» Refining programs to certifiably correct programs

» Representing data formats
» Typed Domain Specific Libraries

Thorsten Altenkirch (FPLab) CFR January 25, 2010 8/10



|
Practicalities

@ Two lectures: Tuesday and Thursday morning.
The early student catches the first.

@ Lab sessions each Friday 10:00, B52 (using Agda)
@ Regular coursework (in Agda)

@ Resources: available online
http://www.cs.nott.ac.uk/ " txa/g53cfr/

Thorsten Altenkirch (FPLab) CFR January 25, 2010 9/10



Assessment
G53CFR 40% Exercises
60% Online exam
G5H4CFR 40% Online exam

60% Project

Thorsten Altenkirch (FPLab) CFR



