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Overview

0 Intro

@ Categories

e Functors and natural transformations
@ Adjunctions

e Products and coproducts

e Exponentials

@ Limits and Colimits

© Initial algebras and terminal coalgebras

© Monads and Comonads
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The category Set
Objects: Sets |Set| = Set
Morphisms : Functions, given A, B € |Set|
Set(A,B)=A— B

Identity: Given A € Set idy € Set(A A)

idg = Xaa
Composition: Given f € Set(B, C), g € Set(A, B):
fog € Set(AC)

Laws: fog = Xaf(ga)
foid = f
idof = f

(fog)oh = fo(goh)
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Exercise 1

Derive the laws for Set using only the equations of the simply typed
A-calculus, i.e.

G (Ax.t)u = t[x = u]
n Ax.tx=tifx ¢FVt
t=u

AX.t=\x.u
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Definition: C is a category
A (large) set of objects:

|C| € Sety
Morphisms: For every A, B € |C| a homset
C(A, B) € Set

Identity: Forany A € C: ida € C(A A)
Composition: For f € C(B, C),g € C(A, B):

Laws: fogeC(AC)
foid = f
idof = f
(fog)oh = fo(goh)
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What is a category?
Size matters

@ | assume as given a predicative hierarchy of set-theoretic
universes:
Set = Sety € Setq € Sety € ...

which is cummulative
Setg C Sety C Sets C ...

@ To accomodate categories like Set we allow that the objects are a
large set (|C| € Sety) but require the homsets to be proper sets
C(A, B) € Set = Sety.

@ A category is small, if the objects are a set |C| € Set

@ We can repeat this definition at higher levels, a category at level n
has as objects |C| € Set, 1 and homsets C(A, B) € Set,
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Dual category
Given a category C there is a dual category C°P with
Objects |C°?| = |C|
Homsets C°P(A, B) = C(B, A)
and composition defined backwards.

Notation

For n € N we define
n={i<n}

Question
How many elements are in Set(2,3) and in SET®(2, 3)?
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Categories Isos

Isomorphism

An isomorphism between A, B € |C| is given by two morphisms
fe C(A,B)and f~' € C(B,A)suchthat fof~' =id, {1 o f =id:

1dCA BOld

We say that A and B are isomorphic A ~ B.

@ Isomorphic sets are the same upto a renaming of elements.

@ Concepts in category theory are usually defined up to
isomorphism.
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Exercise 2
Which of the following isomorphisms hold in Set:
2 I 2 ~

2x2

22

N+N

N x N

N—N

12

12

12

2
Z 2 Z A

A x B is cartesian product
AxB={(ab)|acAbecB}
A + Bis disjoint union
A+ B={inla|ac A} U{inrb| b e B}
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Monomorphism
f € C(B, C) is a monomorphism (short mono), if for all g, h € C(A, B)

fog=foh
g=h

@ In Set monos are precisely the injective functions.
@ We draw monos as A——B
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Epimorphism
f € C(A, B) is a epimorphism (short epi), if for all g, h € C(B, C)
gof=hof
g=nh

@ In Set epis are precisely the surjective functions.
@ We draw epis as A——=B
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Exercise 3
Show that every iso is both mono and epi. J

@ Assuming classical (non-constructive) logic, all bijections in Set
are isos.

Exercise 4
Show that in Set every morphism f € A — B can be written as a
composition of an epi and a mono:
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Monoids and preorders
Monoids

Definition: Monoid
A monoid (M, e, %) is givenby M € Set,ec Mand (x) e M - M — M
such that:

Xxe = X
exx = X
(xxy)xz = Xx*(y*2)

Example
(N, 0,+) is a (commutative) monoid.

Question
Give an example of a non-commutative monoid.
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@ Monoids correspond to categories with one object.

Monoid as a category

Every monoid (M, e, x) gives rise to a category M
Objects: M| ={()}

Morphisms M((),()) =M

e is the identity, * is composition.
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Preorder

(A,C) with A € Set and (C) € A— A — Prop is a preorder if R is
reflexive Vae A.aC a
transitive Va,b,ce AaCb—-bCc—alc

Example
(N, <) is a preorder.

@ (N, <) is a partial order, because it also satisfies

m<n n<m

m=n

Question
Give an example of a preorder, which is not a partial order. J
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@ Preorders correspond to categories where the homsets have at
most one element.

A preorder as a category
A preorder (A, C) can be viewed as a category A:
Objects |A|=A

Homsets A(a, b) = { ‘{{i)} ic];tiegrvﬁse

@ Monoids and preorders are degenerate categories.
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Monoids and preorders
Categories of sets with structure

The category of Monoids: Mon
Objects: Monoids (M, e, x)
Morphisms Mon((M, e, x),(M', €, ")) is given by f € M — M’ such
that fe=¢€ and f(xx y) = (fx) «' (fy).

Example
The embedding i € Mon((N, 0, +), (Z,0,+)) within=n

Exercise 5
Show that i/ is @ mono and an epi but not an iso in Mon.

Exercise 6
Define the category Pre of preorders and monotone functions.

v
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A menagerie of categories
Finite Sets

FinSet
Objects: Finite Sets
Morphisms: Functions

@ FinSet is a full subcategory of Set.

FinSetSkel
Objects: N
Morphisms: FinSetSkel(m,n) =m — n

@ FinSetSkel is skeletal, any isomorphic objects are equal.
@ FinSet and FinSetSkel are equivalent (in the appropriate sense).

Thorsten Altenkirch (Nottingham) MGS 2009 May 15, 2009 20/75



iz i s
Computational Effects

Error
Given a set of Errors E € Set
Objects: Sets
Morphisms: Error(A,B)=A— B+ E

State
Given a set of states: S € Set
Objects: Sets
Morphisms: State(A,B)=AxS—Bx S

Exercise 7
Define identity and composition for both categories.
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A menagerie of categories
A-terms

Lam
Objects: Finite sets of variables

Morphisms: Lam(X, Y) = Y — Lam X where Lam X is the set of
A-terms whose free variables are in X.

Exercise 8
@ Define identity and composition.
© Extend the definition to typed A-calculus.
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Product categories
Given categories C, D we define C x D:
Objects: C x D
Morphisms: C x D((A, B), (C, D)) = C(A, C) x D(B, D)
We abbreviate C> = C x C

Slice categories

Given a category C and an object A € |C| we define C/A as:
Objects: |C/A| =XB € |C|.C(B,A)

Morphisms: C/A((B, f),(C,g)):

h

NS

A

B C

V.
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Amenagerio of categories
Computable sets

w-Set

Objects: A Set A and a relation IF4C N x A such that
Vae Adi € N.ilk4 a.

Morphisms:

w_set((Avu_A)a (Ba ”_B))
={feA—B|JdieNVjajlaa
— Jk{i}j | k Nkl fa}

where {i}j | k means the ith Turing machine applied to
input j terminates and returns k.
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Amenagerio of categories
Partial computations

w-CPO
Objects: (A,Ca, | ]4) such that (A, C4) is a partial order, and

| |e{feN—A|VifiCaf(i+1)} — A
A

is the least upper bound of a chain, i.e. Vi.fiC | |4 f and
(VifiCa)—||sfCa

Morphisms: w—CPO((A,Ca, | l4), (B,Cg, | lg)) is given by functions
f € A— Bwhich are:
atab

faCfb

monotone

continuous f(| |4 h) =g (foh)
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Definition: Functor

Given categories C,D a functor F € C — D is given by

a map on objects F € |C| — |D|

maps on morphisms Given f € C(A,B), Ff e D(FA,F B)

such that Fida = idpg

F(feg) = (Ff)o(Fg)

@ A functor F € C — C is called an endofunctor.

Example
List : Set — Set, the list functor on morphisms is given by map
map f[] = ]
mapf(a:as) = fa:mapfas

We just write List f = map f.
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Functors and natural transformations Functors

Exercise 9
Show that List satisfies the functor laws.

Question

We consider endofunctors on Set, given maps on objects:
@ Is F{ X = X — N a functor?
Q Is F, X = X — X afunctor?
Q Is I3 X = (X — N) — N a functor?

v

@ All type expressions with only positive occurences of a set variable
give rise to (covariant) functors in Set — Set.

@ All type expressions with only negative occurences of a set
variable give rise to (contravariant) functors in Set®® — Set.

Exercise 10

Is there a type-expression which is not positive but still gives rise to a
covariant endofunctor on Set?
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Functors and natural transformations Natural transformations

Definition: natural transformation
Given functors F, G € C — D a natural transformation o : F — G is
given by a family of maps

a € |_|A€|C|D(FA, GA)

suchthatforany f € C(A,B) Fa-2. GA

Fi| Gfl

FB——GB
Exercise 11
@ Show that reverse € MX € Set.List X — List X is a natural
transformation.

Q@ Give a family of maps with the same type, which is not natural.

V.
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Functors and natural transformations Presheaves

Functor categories
Given categories C, D the functor category C — D is given by:
Objects: Functors Fe C —D

Morphisms Given F, G € C — D, a morphism is a natural
transformation a« € F — G

@ If Cis small, the functor category
PShC = C” — Set

is called the category of presheaves over C.

Exercise 12
Spell out the details of the objects and morphisms of PSh (N, <). J
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Functors and natural transformations The Yoneda lemma

We define a functor Y, the Yoneda embedding:

Y e C—PShC
YA=)X.C(X,A)

Exercise 13
Show that Y is a functor.

The Yoneda Lemma
Given F € PSh C the following are naturally isomorphic in A € |C|

PShC(YA F)~ FA

Exercise 14
Prove the Yoneda Lemma.
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The Yoneda femima
The category of categories

CAT

The category of categories is given by:
Objects: Categories

Morphisms: Functors

@ This is a category on level 1, |CAT| € Set,.

@ CAT is a 2-category because its homsets are categories
themselves (+ Godemont rules).
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Free Monoids
Free Monoids

@ The forgetful functor:

U € Mon — Set
UM,e,x)=M

@ Can we go the other way?
@ The free functor:

F € Set — Mon
F A= (ListA,[], (++))

@ How to specify that F is free?
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We construct two natural families of maps:

¢
Mon(F A, (M, e, *)) _ Set(A, U (M, e, x))
¢71

¢ (ListA—-M)—-A—-M

pfa="f|q
¢~ e (A— M) - (ListA — M)
o 'gll=e
¢~ 'g(a:as)=(ga)*(¢ 'gas)
Exercise 15
Show:
Q goopT=id
Q¢ 'lop=id
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Definition: Adjunction
Given functors:
c_ =D
F

we say that F is left adjoint to U (F 4 U)
or U is right adjoint to F
if there is a natural isomorphism (in A € |D|,B € |C|)

¢

D(F A, B) C(A, UB)

¢—1
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A semilattice (with zero) is a monoid (M, e, x) such that:
commutative , if for all x,y € M:
Xxy=yxX

idempotent , if for all x € M:
X* X=X

@ We define SLat as the category of semilattices with zero.
@ Morphisms and forgetful functors are defined as for Mon

Exercise 16

Construct the free functor F € Set — SLat and show that F is left
adjoint to U € SLat — Set.
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Products
Products in Set

|

| <f,g

N
A<—ﬂOAXB?>B

AxB={(ab)|acAbec B}
mo(a,b) = a

m (a,b) =b
<f,g>c=(fc,fc)

Laws: o0 < f.g >= f

7T1O<f’g>:g
mpoh=Ff moh=g

h=<fg>
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Products and coproducts Products

Products

Given objects A, B € |C| we say that A x B is their product if the
morphisms mq, 71 exists and for every f, g there is a morphism < f, g >
so that the following diagram commutes:

C
|
A<—7TOAXBT)B

Moreover, the morphism < f, g > is the unique morphism which makes
this diagram commute, i.e.

mpoh=f moh=g

h=<fg>
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Products and coproducts Products

Exercise 17
Show that products in C give rise to a functor (x) € C? — C.

Exercise 18
Show that the following equation holds

<f,g>oh=<foh,goh>

Exercise 19
Show that the following isomorphism exist in all categories with

products:
AxB~BxA

and that the assignment is natural in A, B.
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Products and coproducts Coproducts

Coproducts in Set
C
A
/ l[N
|
A_inl>A+B<inr_B
A+B={inlalac A}U{inrb| b e B}

[f,g](inla) =fa
[f.g] (inr b) = g b

Laws:
[f,g]oinl = f
[f,g]oinr =g
hoinl=f hoinr=g
h=1f,g]
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Products and coproducts Coproducts

Coproducts

Given objects A, B € |C| we say that A+ B is their coproduct if the
morphisms inl, inr exists and for every f, g there is a morphism [f, g] so
that the following diagram commutes:

A
LN
|
A —r A+ B F e B
Moreover, the morphism [f, g] is the uniqgue morphism which makes
this diagram commute, i.e.

hoinl=f hoinr=g
h=1f,9]
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Products and coproducts Adjunction

@ Products and coproducts are dual concepts:
Products in |C| are coproducts in |C°P| and vice versa.

@ Products and coproducts are left and right adjoints of the diagonal
functor:

AcC—C?
AA= (A A)
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Products and coproducts Terminal and initial objects
Terminal objects

1 € |C| is a terminal object, if for any object A € C there is exactly one
arrow l:
A- - >1
‘A

Initial objects
0 € |C| is an initial object, if for any object A € C there is exactly one
arrow 74:
0-->A
A

Question
What are initial and terminal objects in Set?

Exercise 20
Show that any two terminal objects are isomorphic.

v
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Terminal and initial objects
Global elements

@ In Set we have that
Set(1,A)~ A

@ Hence the elements of C(1, A) are called
the global elements of A.

@ A category C is well pointed, if for f, g € C(A, B) we have
Vae C(1,A).foa=goa
f=g

@ Set is well pointed.

Exercise 21

Consider PSh (N, <) again. What is the terminal object and what are
global elements? Show that PSh (N, <) is not well pointed.
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Products and coproducts Exercises

Exercise 22
Construct the following isomorphism in Set:

Ax(B+C)~AxB+AxC

Exercise 23

Show that CMon (the category of commutative monoids) has products
and coproducts.

Exercise 24
Give a counterexample for the isomorphism:

Ax(B+C)~AxB+AxC

in CMon.
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Exponentials in Set

@ In Set we have the curry/uncurry isomorphism:
AXB—)C:A—>(B—> C)
@ Indeed this is an adjunction F - G for

F, G € Set — Set
FX=XxB
GX=B—-X

Set(F A, C) ~ Set(A, G C)
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Exponentials

Exponentials

Given a category C with products. We say that the object B € |C| is
exponentiable, if the functor F X = X x B has a right adjoint F 4 G,
which we write as GX = B — X.

A category with products where all objects are exponentiable is called
cartesian closed. )

@ B — Cis often written as CB.

Question
What are the exponentials in FinSetSkel? J
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Exponentials

Exercise 25
Show that the category of typed A-terms is cartesian closed. J

@ Indeed, this is the initial cartesian closed category (or the
classifying category).

Exercise 26
Show that in a cartesian closed category with coproducts we have that

Ax(B+C)~(AxB)+(Ax Q)

Corollary
CMon is not cartesian closed.
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Exponentials

Exercise 27
Show that the presheaf categories (PSh C) are cartesian closed.

Exercise 28
Is there a cartesian closed category whose dual is also cartesian
closed?

Thorsten Altenkirch (Nottingham) MGS 2009 May 15, 2009 48 /75



Limits and Colimits Pullbacks and pushouts

Pullbacks

Given arrows f € C(A,C) and g € C(B, C), (f x¢ g, mo, 1) is their
pullback, if the diagram below commutes and for every (D, po, p1) there
is a unique arrow < pg, p1 > such that the diagram commutes:

@ Pullbacks in Set:

fxcg={(a,b)c AxB|fa=gb}

Thorsten Altenkirch (Nottingham) MGS 2009 May 15, 2009 49/75



Limits and Colimits Pullbacks and pushouts

Pushouts

Given arrows f € C(A, B) and g € C(A, C), (f +# g, inl, inr) is their
pushout, if the diagram below commutes and for every (D, iy, i1) there
is a unique arrow [pg, p1] such that the diagram commutes:

Exercise 29
What are pushouts in Set?
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Limits and Colimits In general

Limits and colimits

Given a small category of diagrams D, a D-diagram in C is given by a
functor F € D — C. A cone of a diagram is given by an object D € C
and a natural transformation « € Kp — F where Kp X = Dis a
constant functor.

Morphisms between cones (D, «) and (E, 3) are givenby f € D — E
such that oo f = (.

The limit of F is the terminal object in the category of cones.

Dually, a cocone is given by a natural transformation « € F — Kp, and
a morphism of cocones (D, «) and (E, 3) are given by f € D — E such
that foa = 5.

The colimit of F is the initial object in the category of cocones.
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052 2
Examples

@ Products are given by limits of

Note that we are leaving out identity arrows.

@ Dually, coproducts are given by colimits of the same diagram.

@ Pullbacks are limits of
[ ]
i

@ Pushouts are colimits of the dual diagram:

o ——

o —> 0

|

Thorsten Altenkirch (Nottingham) MGS 2009 May 15, 2009
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Limits and Colimits In general

@ Equalizers are limits of
—_—
[ ] [ ]
—_—

@ Dually, coequalizers are colimits of the same diagram.

Exercise 30
What are equalizers and coequalizers in Set? J

Exercise 31
Show that pullbacks can be constructed from equalizers and products. J

@ Actually, all finite limits can be constructed from equalizers and
finite products (i.e. binary products and terminal objects).
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Limits and Colimits Infinite (co)limits

@ Diagrams of (N, <) are called w-chains:

AO A1 A2
ao ai az2

Note that we are leaving out the composites of arrows.
@ An w-chain in Set is given by

A e N — Set
aclNneNAn—A(n+1)

@ We write colim (A, a) for the colimit of an w-chain.

Exercise 32
What is the colimit of the following chain?

An=n
ani=i
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Limits and Colimits Infinite (co)limits

@ Dually, Diagrams of (N, >) are called w-cochains:

A0<2% A1<81 pp 22

@ An w-cochain in Set is given by

Ae N — Set
aclneNA(n+1)— An

@ We write lim (A, a) for the limit of an w-cochain.

Exercise 33
Given a set X € Set. What is the limit of the following chain?

An=n— X
anf=\i.fi
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Initial algebras and terminal coalgebras Initial algebras

@ Natural numbers N € Set are given by:

0 € N
~ 1—=N
S € N—=N

@ We can combine the two constructors in one morphism:
[0,S]€e1+N—N

@ The functor T X = 1 + X is called the signature functor.
@ Apair (Ac Set,fe1+A— A)is a 1+-algebra.
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Initial algebras and terminal coalgebras Initial algebras

@ For any 1+-algebra (A, f) there is a uniqgue morphism fold (A, f)

such that the following diagram commutes:

[0.5]
1+N——=N
1+ (fold (A,f))i J/ fold (A,f)
1+A - A
with
fold(A,f)0 = f(inl())
fold (A, f)(Sn) = f(inr(fold (A, ) n))
Exercise 34

Define addition (+) € N — N — N using fold.
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Initial algebras and terminal coalgebras Initial algebras

T-algebras
Given an endofunctor T € C — C the category of T-algebras is given
by

Objects T-algebras (A, f) with

TA—A
f

Morphisms Given T-algebras (A, f),(B, g) a T-algebra morphism is a
morphism h € C(A, B) such that

TA——A

o

TBT>B

commutes. )
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Initial algebras and terminal coalgebras Initial algebras

Initial T-algebras

The initial object (if it exists) in the category of T-algebras is denoted
as (uT,inT). For every T-algebra (A, f) there is a unique morphism
foldr (A, f) such that

T(pT) >N
T (fold (A,f)) l jfold (Af)
TA A

f

commutes. )
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Initial algebras and terminal coalgebras Terminal coalgebras

@ Given A € Set the set of streams over A: A“ comes with two
destructors

hd ¢ A - A
t1 € AY — AY

@ We can combine the two destructors in one morphism:
< hd,tl >¢ AY - Ax A¥

@ Apair (X € Set,f € X — A x X) is a Ax-coalgebra.
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Initial algebras and terminal coalgebras Terminal coalgebras

@ For any Ax-algebra (X, f) there is a unique morphism unfold (X, f)
such that the following diagram commutes:

X *f> Ax X
unfold (X,f)l iAXunfold (X,f)
A G A
with
hd(unfold (X, f) x) = mp(fx)
tl(unfold (X, f) x) = unfold (X, f) (7 (X))
Exercise 35

Define the function from € N — N“, which produces the stream of
natural numbers starting with a given number, using unfold.
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Initial algebras and terminal coalgebras Terminal coalgebras

T-coalgebras

Dually, given an endofunctor T € C — C the category of T-coalgebras
is given by
Objects T-coalgebras (A, f) with

Morphisms Given T-coalgebras (A, f),(B, g) a T-coalgebra morphism
is @ morphism h € C(A, B) such that

A—T-TA

o |

B—5~TB

commutes.

v

Thorsten Altenkirch (Nottingham) MGS 2009 May 15, 2009 62/75



Initial algebras and terminal coalgebras Terminal coalgebras

Terminal T-coalgebras

The terminal object (if it exists) in the category of T-coalgebras is
denoted as (v T, outt). For every T-coalgebra (A, f) there is a unique
morphism unfoldt (A, f) such that

A—L-TA
unfold (A,f)l l/ T (unfold (X,f))

VTT T(l/ T)

tr
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Lambek's lemma
)
Lambek’s lemma

@ Initial algebras and terminal coalgebras are always isomorphisms.
@ We construct the inverse of inf € C(T (. T),n T) as

in' €C(uT,T(uT))
iny' = foldr (T (1 T), Tinr)

@ Dually, we construct an inverse to outr.

Exercise 36
Construct explicitely the inverses to the [0, S] and < hd, tl >.

Exercise 37
Prove Lambek’s lemma, i.e. show that in;' is inverse to inr.
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Initial algebras and terminal coalgebras Constructing ...

@ A functor T is called w-cocontinous if it preserves colimits of
w-chains, that is

T (colim (A, a)) ~ colim (An.T (An), An.T (an))

@ We can construct the initial T-algebra of an w-cocontinous functor
T by constructing the colimit of the following chain:

0—>T0— T20T27

Exercise 38

Complete the construction, and show that the colimit is indeed an
initial T-algebra.
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Initial algebras and terminal coalgebras Constructing ...

Exercise 39
Dualize the previous slide. What is an w-continous functor? How can
we construct its terminal coalgebra?

Exercise 40
Which of the following endofunctors on Set are w-cocontinous, and
which are w-continous:

X = XxX

X = N—-X
T3X = (X—=N)—N
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Monads and Comonads Binary trees

@ We define the functor of binary trees with labelled leafs:

BT c Set — Set
BTX=uYX+YxY

We write L = in o inl and N = in o inr for the constructors.
@ The natural transformation n constructs a leaf:

nacA— BTA
na=Xala

@ We define a natural transformation bind, which replaces each leaf
by a tree.

bindA,B S (A — BT B) — BTA— BTB

bindA,Bf(L a) =fa

bindA’B f(N (/, r)) =N (bindA7B f /, bindA,B fr)
@ Haskell’s (>>=) can be defined as a >>= f = bind f a.
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Monads and Comonads Kleisli triples

Monads (Kleisli triple)
A monad on C is a triple (T, 7, bind) with

T €¢ C—=C
n € C(ATA)
bind € C(A, TB)— C(TATB)
such that
(bindf)on = f
bind(nof) = f
(bind f) o (bindg) = bind ((bind f) o g)
Exercise 41

Show that the operations on binary trees satisfy the laws of a monad.

v
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Monads and Comonads Kleisli triples

Exercise 42

Show that the following functors over Set give rise to monads
(assuming E, S € Set):

Tewae X = E+ X
TStateX = S— (X X S)
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Monad
A monad on Cis a triple (T, n, 1) with

T € C—C
n € I—-T
p e T>°=T

(where T2 = T o T) such that the following diagrams commute.

TL T2 TS i) T2
T2 - T T2 —m T

Exercise 43
Show that the two definitions are equivalent.

v
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Monads and Comonads Comonads

@ We define infinite, labelled binary trees:

BT c Set — Set
BT*X=vY.Xx(YxY)

@ The operation e extracts the top label:

e€c BTA— A
e(a,(l,r)=a

@ cobind relabels a tree recursively:
cobind € (BT*A— B) — (BT A— BT> B)
cobind f t = (ft, cobind f (mat), cobind f (73t))

Exercise 44
Show that (BT, ¢, cobind) is a comonad, i.e. a monad in Set®.
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Monads and Comonads Kleisli category

Kleisli category

Given a monad (T, n,bind) on C we define the Kleisli category Ct as:
Objects: |C|

Morphisms: Cr AB = C(A, T B)
ldentity: n € CTAA

Composition: Given f € Cr BC, g € Cr AB we define

forg=(bindf)og

Exercise 45
Verify that that Cr is indeed a category.

Exercise 46
Explicitely construct the Kleisli-categories of Tgor and Tsgae
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Given an adjunction F 4 U

¢

D(F A, B) C(A,UB)
¢—1
we define:

C(A,U(FA)
n = ¢(idra)
D(F, UB)B
e = ¢ '(idyg)

this gives rise to a monad (T,¢, ) on C

3
m

a
m

T = UF
pw = UeF
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Monads and Comonads Kleisli category

Exercise 47

Spell out the constructed monad in the case where F € Set — Mon is
the free monad functor and U € Mon — Set the forgetful functor

Exercise 48
Verify the monad laws of the construction of a monad from an
adjunction.
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Monads and Comonads Kleisli category

@ Using C+ we can also go the other way: Ct gives rise to an
adjunction Fr 4 Ur suchthat T = Uy o Fr:

FreC—Cr
FFrA=A
Frf=nof
Ur e CT —C
UrA=TA
Urf=poTf
Exercise 49
Verify that Fr - Ur. J

@ This is not the only way to factor a monad into an adjunction.
Another construction is the Eilenberg-Moore category C', indeed
the two are initial and terminal objects in the category of
factorisations.
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