
5 Initial algebras and terminal coalgebras

5.1 Natural numbers

Following Peano we define the natural numbers as inductively generated from
0 : N and suc : N ! N. We can define functions like addition + : N ! N ! N
by recursion:

0 +m = m

sucn+m = suc (n+m)

and we can prove properties such that for all n : N we have that n + 0 = n by
induction:

n = 0 0 + 0 = 0 follows from the definition of + .

n = sucm0 we assume that the statement holds for m:

n+ 0 = sucm+ 0

= suc (m+ 0) Defn of +

= sucm Ind.hypothesis

= n

To categorify natural numbers we observe that we have two morphisms

0 : 1 ! N
suc : N ! N

and given a set A and z : A or equivalently z : 1 ! A and s : A ! A we can
define ItA z s : N ! A as:

ItA z s 0 = z

ItA z s (sucn) = s (ItA z s n)

this is the unique morphism that makes the following diagram commute

A A

1 N N

s

z

0 suc

ItA z s ItA z s

The uniqueness of ItA z s can be shown by induction. We assume that there is
another function h : N ! A that makes the digram commute, i.e.

h � 0 = z

h � suc = s � h

We now show that h = ItA z s. Using extensionality it is enough to show
hn = ItA z s n for all n : N. We show this by induction:

27

n = 0

h 0 = h � 0
= z

= ItA z s 0

n = sucn0

h (sucn0) = (h � suc)n0

= (s � h)n0

= s(hn0)

= s(ItA z s n0) by ind.hyp.

= ItA z s (sucn0)

This leads directly to the definition of a Natural Number Object (NNO) in
a category C with a terminal object: it is given by an object N : |C| and two
morphisms 0 : C(1,N) and suc : C(N,N) such for any object A and z : C(1, A)
and s : C(A,A) there is a unique morphism ItA z s that makes the above diagram
commute.

We can derive the addition function exploiting also cartesian closure. We
choose A = N ! N and

z : 1 ! (N ! N)
z ()n = n

s : (N ! N) ! (N ! N)
s f n = suc (f n)

We can now define + = ItN!N z s : N ! (N ! N).

Exercise 48 Convince yourself that this computes the same function as the
previous definition of + using pattern maching.

We can prove that n+0 = 0 using the unicity of It instead of induction. We
observe that both idN and + 0 : N ! N make the following diagram commute:

N N

1 N N

suc

0

0 suc

idN +0 idN +0

And hence by uniqueness idN = +0, by applying both sides to n : N we obtain
n = idn = (+ 0)n = n+ 0.

Exercise 49 Verify the claim that both functions make the diagram commute.

28

One basic function on natural numbers is the predecessor, i.e. the inverse to
the successor. Initially we may think that we should define a function pred :
N ! N with pred (sucn) = n. But what should pred 0 be? We could arbitrarily
set pred 0 = 0 but this seems a very unprincipled move. It seems better to say
that pred should return an error when applies to 0. That is as well known in
functional programming, we should use theMaybe-monad 14 and use MaybeA =
1 +A as the result type. That is we define pred : N ! 1 + N as

pred 0 = inj
1

()

pred (sucn) = inj
2

n

However, we cannot translate this definition directly into an application of It
since in the successor case we referred directly to n while It just gives us the
recursive result. However, the following alternative definition works:

pred 0 = inj
1

()

pred (sucn) =
h

inj
2

0
inj

2

� suc
i

The idea is that the 2nd definition computes the predeccessor by delaying the
constructors by one step.

Exercise 50 Verify in detail that both definitions of pred compute the same
function.

The second definition can be translated into

pred : N ! 1 + N

pred = It
1+N (inj

1

())
h

inj
2

0
inj

2

� suc
i

pred is the inverse of the constructors 0 and suc. We can make this precise
by packaging 0 and suc into one function

in : 1 + N ! N

in =
h

0
suc

i

This is an instance of Lambek’s lemma which we will verify in the general case
later.

Exercise 51 Prove by induction or by using initiality that pred and in are an
isomorphism, i.e.

pred � in = id
1+N

in � pred = idN
14Even though we don’t actually know yet what a monad is

29

5.2 Initial algebras

Natural numbers are an instance of the general concept of an initial algebra
which are the categorical counterpart of what we call an inductive definition,
that is a datatype which is generated by constructors. An initial algebra is
specified by an endofunctor T . In the case of natural numbers this was the
functor TN : Set ! Set defined as TN X = 1 +X.

We give a general definition: Given an endofunctor T : C ! C an initial T -
algebra is given by an object µT : |C| and a morphism inT :: C(T µT, µ T) such
that for any T -algebra, that is a pair of A : |C| and a morphism f : C(T A,A)
there is a unique morphism ItT f : CµTA 15 that makes the following diagram
commute:

T A A

T (µT) µT

f

T (ItT f

inT

ItT f

Indeed, the initial algebra is just the initial object in the category of T -algebras,
whose objects are T -algebras and given T -algebras f : C(T A,A) and g :
C(T B,B) a morphism is given by a morphism h : C(A,B) such that the fol-
lowing diagram commutes:

T B B

T A A

g

f

T h h

Identity and composition is given by identity and composition in C, it is easy
to see that the corresponding diagrams commute.

Exercise 52 Show that N is the initial TN algebra with TN : Set ! Set defined
as TN X = 1 +X.

We can understand the type of lists in a similar fashion. List are given by
two constructors (pronounced nil and cons):

[] : ListA

:: : A ! ListA ! ListA

We can transform this into one constructor function by first uncurrying

1 ! ListA

A⇥ ListA ! ListA

and then merging them into one function using coproducts:

1 +A⇥ ListA ! ListA

Hence ListA is the initial algebra of the functor T
ListA : Set ! Set with

T
ListA X = 1 +A⇥X.

15I leave the carrier A implicit since it can be inferred from f .

30

Exercise 53 Define the function revA : ListA ! ListA using only the iterator.
Hint: it is useful to define an auxilliary function snoc : A ⇥ ListA ! A that
appends a single element at the end of a list using the iterator.

Show that this function is idempotent, that is revA � revA = id
ListA using

only initiality.

Exercise 54 What are the functors defining

1. unlabelled binary trees,

2. binary trees whose leaves are labelled with A : Set,

3. binary trees whose nodes are labelled with A : Set,

Since we already know that List is a functor, what is the initial algebra of
the list functor? This has a constructor

in
List

: List (µList) ! µList

Indeed, this is the type of finitely branching trees, that is any node has a list
of subtrees. We don’t need to include leaves explicitely because we can have a
node with an empty list of subtrees. This type is also called rose trees.

We can also construct infinitely branching trees which are the initial algebra
of the functor T X = 1 + N ! X. Here a node is given by a function that
assigns to every natural number a subtree. This raises the question wether
every functor on sets should have an initial algebra. We note that obviously
paradoxical cases like T X = X ! X are ruled out because they don’t give
rise to a functor. However, depending on our foundations even positive hence
functorial definitions like T X = (X ! Bool) ! Bool are problematic. If we
work in a classical setting then this is obviously paradoxical because it gives
us a fixpoint of the double powerset functor and from this we can derive a
contradiction using diagonalisation.

Exercise 55 Show that having an initial algebra of T : Set ! Set with T X =
(X ! Bool) ! Bool leads to a contradiction if we assume Prop = Bool (classi-
cal logic). Assume that inT : T (µT) ! µT is an isomorphism 16. Hint: Derive
a retraction, i.e. a function � : (µT ! Bool) ! µT that has a left inverse.
Show that such a retract cannot exists using Cantor’s diagonalisation.

5.3 Lambek’s lemma

We return to the predecessor function and show that the constructor morphism
inT : C(T (µT), µT) is an isomorphism for any initial T -algebra. The inverse is
given by

outT : C(µT, T (µT))

outT = ItT (T inT)

16We are going to prove this in the next section.

31

which generalizes our definition of pred. To see that this is an isomorphism, we
use the following diagram:

T (µT) µT

T (T (µT)) T (µT)

T (µT) µT

inT

T inT

T inT inT

T outT

inT

T id=id

outT

id

The lower square commutes due to the definition of outT , the upper square
commutes trivially. On the other hand the whole square also commutes with
id which on the left equals T id. However, since there is at most one algebra
morphism, we know that inT � outT = id. Now we can reason that :

outT � inT = T inT � T outT lower square

= T (inT � outT)
= T id

= id

Hence we have verified that inT and outT are an isomorphism.

5.4 Streams

The dual of initial algebras, terminal coalgebras, turn out to be useful as well.
An example of a coinductive type is the type of streams StreamA : Set this are
infinite sequences of elements of A : Set, that is

[a
0

, a
1

, a
2

· · · : StreamA

with ai : A. Streams can be understood via destructors, that is for for any
stream we can compute its head and its tail:

head : StreamA ! A

tail : StreamA ! StreamA

To construct streams we need a coiterator, that is given X : Set and functions

h : X ! A

t : X ! X

we obtain a function:

CoIth t : X ! StreamA

32

which is given by the copatterns:

head (CoIth t x) = hx

tail (CoIth t x) = CoIth t (t x)

CoIth t is the unique function that makes the following diagram commute:

X X

A StreamA Stream|, A
h

t

CoIth t CoIth t

head

tail

As an example we can define the function from : N ! StreamN which generates
a stream of natural numbers starting with the input. I.e.

fromn = [n, n+ 1, n+ 2, . . .

We can define from via copatterns

head (fromn) = n

tail (fromn) = from (sucn)

and this can be turned into an application of the coiterator:

from = CoIt idN suc

Stream is a functor, that is given a function f : A ! B we can define

Stream f : StreamA ! StreamB

head (Stream f ~a) = f (head a)

tail (Stream f ~a) = Stream f (tail~a)

Exercise 56 Define Stream f using only the coiterator.

We can use uniqeness to prove equations, for example we want to verify

from (sucn) = Stream suc (fromn)

for any number n. We turn this into an equation for functions N ! StreamN:
from � suc = Stream suc � from

We observe that

head (from (suc n)) = sucn

head (Stream suc (fromn)) = suc (head (fromn)

= sucn

tail (from (suc n)) = from (suc (sucn))

tail (Stream suc (fromn)) = Stream suc (tail (fromn))

= Stream suc (from (sucn))

That is both side are equal to CoIt suc suc and hence equal due to uniqueness.

Exercise 57 Prove that StreamA is isomorphic to N ! A.

33

5.5 Terminal coalgebras

In general a terminal coalgebra of an endofunctor T : C ! C is given by an
object ⌫T : |C| and a morphism outT :: C(⌫ T, T (⌫ T)) such that for any T -
coalgebra, that is a pair of A : |C| and a morphism f : C(A, T A) there is a
unique morphism CoItT f : CA⌫T that makes the following diagram commute:

A T A

⌫ T T (⌫T)

CoItT f

f

T (CoItT f

outT

Indeed, the terminal coalgebra is just the terminal object in the category of T -
coalgebras, whose objects are T -coalgebras and given T -coalgebras f : C(A, T A)
and g : C(B, T B) a morphism is given by a morphism h : C(A,B) such that
the following diagram commutes:

A T A

B T B

h

f

T h

g

As for algebras, Identity and composition is given by identity and composition
in C, it is easy to see that the corresponding diagrams commute.

It is clear that StreamA is the terminal coalgebra of the functor T
StreamA X =

A ⇥ X. We can look at initial algebras and terminal coalgebras for the same
functor. In the case of T

StreamA this is not very interesting because the initial
algebra is just the empty set. However, natural numbers TN X = 1 + X and
lists T

ListA X = 1 + A ⇥X are more interesting: here the terminal coalgebras
are called the conatural numbers and colists: they include both finite elements
and infinite elements.

Exercise 58 Show that the initial algebra of T
StreamA X = A⇥X is isomorphic

to the empty set

Exercise 59 Define addition for conatural numbers (N1 = ⌫X.1 + X) using
only the coiterator.

Exercise 60 Show explicitely that Lambek’s lemma hold for terminal coalge-
bras.

34

6 Limits and colimits

Until now we have stuck to constructions that correspond to simple types in
programming. But for many applications we need to go further and look at
categorical constructions corresponding to predicate logic or dependent types.

6.1 Pullbacks and equalizers

Pullbacks

As a first step we look at pullbacks in Set: Given two functions with the same
codomain: f : A ! C and g : B ! C

A

B C

f

g

we construct their pullback

f ⇥C g = {(x, y) : A⇥B | f x = g y}

together with the projections

⇡
1

: f ⇥C g ! A

⇡
1

(x, y) = x

⇡
2

: f ⇥ g ! B

⇡
2

(x, y) = y

We indicate that a square is a pullback by putting a y in the upper left corner.

f ⇥c g A

B C

⇡
1

⇡
2

y
f

g

The pullback satisfies the universal property that for any D : Set with
functions h : D ! A and k : D ! B such that f � h = g � k then there is a
unique function [h, k] : D ! E which is defined as

[h, k] d = (h d, k d)

which satisfies the equations

⇡
1

� [h, k] = h

⇡
2

� [h, k] = k

35

